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Abstract. Artificial neural networks (ANN) have been found
efficient, particularly in problems where characteristics of
the processes are stochastic and difficult to describe using
explicit mathematical models. However, time series predic-
tion based on ANN algorithms is fundamentally difficult and
faces problems. One of the major shortcomings is the search
for the optimal input pattern in order to enhance the forecast-
ing capabilities for the output. The second challenge is the
over-fitting problem during the training procedure and this
occurs when ANN loses its generalization. In this research,
autocorrelation and cross correlation analyses are suggested
as a method for searching the optimal input pattern. On
the other hand, two generalized methods namely, Regular-
ized Neural Network (RNN) and Ensemble Neural Network
(ENN) models are developed to overcome the drawbacks of
classical ANN models. Using Generalized Neural Network
(GNN) helped avoid over-fitting of training data which was
observed as a limitation of classical ANN models. Real in-
flow data collected over the last 130 years at Lake Nasser
was used to train, test and validate the proposed model. Re-
sults show that the proposed GNN model outperforms non-
generalized neural network and conventional auto-regressive
models and it could provide accurate inflow forecasting.

1 Introduction

Developing optimal release policies for a multi-objective
reservoir such as Lake Nasser is a complex process. Lake
Nasser is a vast reservoir in southern Egypt and northern Su-
dan. Strictly speaking, “Lake Nasser” refers only to the much
larger portion of the lake that is in Egyptian territory (83% of
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the total), with the Sudanese preferring to call their smaller
body of water Lake Nubia. The area of Sudan-administered
Wadi Halfa Salient was largely flooded by Lake Nasser/Lake
Nubia. The lake was created as a result of the construction of
the Aswan High Dam across the waters of the Nile between
1958 and 1970. The lake is some 550 km long and 35 km
across at its widest point, which is near the Tropic of Cancer.
It covers a total surface area of 5250 km2 and has a storage
capacity of some 157 km3 of water.

The complexity is attributed to the explicit stochastic envi-
ronment (e.g., uncertainty in future inflows) and the fact that
when modelling such environments with high uncertainty,
future returns cannot be predicted with acceptable accuracy.
In this context, several forecasting models were developed
using the univariate auto-regressive moving average repre-
sentative of the natural inflow at Aswan High Dam (AHD)
(see Fig. 1) (Georgakakos et al., 1995; Georgakakos, 2007).
These models tend to either overestimate low flows or un-
derestimate high flows. The drawbacks are very significant
when it comes to efficient and effective reservoir regulation.
Therefore, it is essential to develop a forecasting model that
is robust and free from these drawbacks.

River flow is believed to be highly nonlinear, time-varying,
spatially distributed and not easily described by simple mod-
els. Two major approaches for modelling the river flow
forecasting process have been explored in the literature.
These are the conceptual (physical) models and the system-
theoretic models. Conceptual river flow forecasting mod-
els are designed to approximate within their structures (in
some physically realistic manner) the general internal sub-
processes and physical mechanisms, which govern the hy-
drologic cycle. These models usually incorporate simpli-
fied forms of physical laws and are generally nonlinear,
time-invariant and deterministic, with parameters that are
representative of river flow characteristics. Until recently,
for practical reasons (data availability, calibration problems,
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Fig. (1). Location of Aswan High Dam  Fig. 1. Location of Aswan High Dam.

etc.) most conceptual river flow-forecasting model assumed
combine representations of the parameters. While such mod-
els ignore the spatially distributed, time-varying and stochas-
tic properties of the river flow process, they attempt to incor-
porate realistic representations of the major nonlinearity in-
herent in the river flow and climatic parameters relationships.
Conceptual river flow models are generally reported to be re-
liable in forecasting the most important features of the hydro-
graph, such as the beginning of the rising limb, the time and
the height of the peak and volume of flow. However, the im-
plementation and calibration of such a model can typically
encounter various difficulties including sophisticated math-
ematical tools, significant amounts of calibration and some
degree of experience with the model.

While conceptual models are important in the understand-
ing of hydrologic processes, there are many practical situa-
tions such as river flow forecasting where the main concern
is making accurate predictions at specific locations. In such
a situation, it is preferable to develop and implement a sim-
pler system-theoretic model instead of developing a concep-
tual model. In the system-theoretic approach, models based
on differential equations (or difference equations in case of
discrete-time systems) are used to identify a direct mapping
between the inputs and outputs without detailed considera-
tion of the internal structure of the physical processes. The
linear time-series models such as ARMAX (Auto Regressive
Moving Average with exogenous inputs) models developed
by Box and Jenkins (1970) have usually been used in such
situations because they are relatively easy to develop and
implement. They have been determined in providing satis-
factory predictions in many applications (Salas et al., 1980;
Wood, 1980; Bras and Rodriguez-Iturbe, 1985). However,
such models do not attempt to represent the nonlinear dy-
namics inherent in the river streamflow and, therefore, may
not always perform adequately.

Motivated by the difficulties associated with nonlinear
models, their complex structure and parameter estimation

techniques, some truly nonlinear system-theoretic river flow
forecasting models have been reported. In most cases, lin-
earity or piece-wise linearity has been assumed (Natale and
Todini, 1976). Allowing the model parameters to vary with
time can compensate for the model structural errors that may
exist. For example, real-time identification techniques, such
as recursive least squares and state-space Kalman filtering,
have been applied for adaptive estimation of model param-
eters (Chiu, 1978; Kitanidis and Bras, 1980a, b; Bras and
Rodriguez-Iturbe, 1985).

The success with which Artificial Neural Network ANNs
have been used to model dynamic systems in several fields
of science and engineering suggests that the ANN approach
may prove to be an effective and efficient way to model the
river flow process in situations where explicit knowledge of
the internal hydrologic sub-process is not available. Some
studies in which ANN models have been applied to problems
involving river watershed and weather prediction have been
reported in the literature. Kang et al. (1993) developed ANNs
for daily and hourly streamflow forecasting based on the his-
torical inflow data at the same incremental rate (daily and/or
hourly) using one of four pre-specified network structures.
Seno et al. (2003) proposed a new model architecture for in-
flow forecasting of the Karogawa Dam utilizing not only the
rain data inside the dam basin, but also the outside rain data.
The proposed architecture reduced the overall inflow fore-
casting error by about 30%. Coulibaly et al. (1998, 1999,
2000 and 2001) introduced several ANN inflow-forecasting
models with different neural network types and various input
data structures. It was reported that recurrent neural networks
(RNN) can be appropriately utilized for inflow forecasting
while taking into consideration the precipitation, snowmelt
and temperature. However, it was also reported that a com-
plex training procedure, as well as long training time, is re-
quired in order to achieve the desired performance.

ANNs show excellent capacity and greatly promote the
process in hydrological science. Cheng et al. (2005, 2002)
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made their contributions in the rainfall-runoff calibrations
and Chau (2006), Lin et al. (2006), Wang et al. (2009)and
Wu et al. (2009) in flow forecasting, utilizing different meth-
ods of optimization by genetic algorithm and particle swarm
optimization.

Recently, the authors already developed Artificial Intel-
ligent (AI) model for inflow forecasting at AHD utilizing
Adaptive Neuro-Fuzzy Inference System (ANFIS), Mutli-
Layer Perceptron Neural Network MLPNN and Radial Basis
Function Neural Network (RBFNN), (El-Shafie et al., 2007,
2008, 2009). In fact, those models showed very good po-
tential for providing a relatively high level of accuracy for
inflow forecasting at AHD. Obviously, AI provides a viable
and effective approach for developing input-output forecast-
ing models in situations that do not require modelling of the
whole and/or part of the internal parameter of the river flow.
Although, those models have proved to be efficient, its con-
vergence tends to be very slow and yields sub-optimal solu-
tions. This may not be suitable for dynamic adaptive accurate
forecasting purpose. In fact, the major objective of training
an ANN for prediction is to generalize, i.e., to have the out-
puts of the network approximate target values given inputs
that were not in the training set. However, time series pre-
diction based on ANN learning algorithms is fundamentally
difficult and faces problems. One of the major shortcomings
is that the ANN model experienced an over-fitting problem
while in a training session and occurs when a neural network
loses its generalization.

The aim of this paper is to introduce two generalization
methods to be integrated with classical MLPNN to overcome
the over-fitting problem. Among different types of neural
networks, this research focuses mainly on MLPNN for pre-
diction, because of the inherent simple architecture of these
networks. However, any other neural network architecture
will be acceptable through this approach. These methods are
suitable for the application of predicting time series of com-
plex systems’ behaviour, based on neural networks and us-
ing soft computing methods. The main idea of the proposed
method is to introduce a technique to overcome the over-
fitting problem while developing ANN prediction model. Fi-
nally, the proposed methods will be examined and compared
with the developed non-generalized MLPNN for inflow fore-
casting at AHD.

2 Data collection and analysis

In this study, the Nile River inflow data in Aswan published
by the Egyptian Ministry of Water Resources and Irrigation
was utilized. The inflows in Aswan for the period between
1871 and 1902 have been deduced using a general stage-
discharge table, which has been constructed from the Aswan
downstream gauge. Due to the construction of several dams
and other hydraulic structures in Egypt and Sudan, the natu-
ral inflow from 1902 onwards has been derived directly from

the general stage-discharge relationship in Aswan by cor-
recting the measured inflow from the effect of losses from
upstream reservoirs, abstractions in Sudan and the effect of
regulation by Sennar Reservoir.

From the data collected, it is obvious that the natural in-
flow is random in nature. Accordingly, it is recommended to
analyse the data by studying the auto-correlation sequences
for each month over the 130 years and the cross-correlation
between consequent months in the same year. The study of
the auto-correlation function clearly tells how the process is
correlated with itself over time. While studying the cross-
correlation sequences, it provides information about the mu-
tual correlation between two consequent months.

The auto-correlation sequence for a random processx(t),
corresponding to a monitored inflow at a certain month, is
defined as

Rx(t)(τ ) =
E((xt −µ)(xt+τ −µ))

σ 2
(1)

Whereτ is the independent time variable of the autocorrela-
tion sequenceR(τ), µ is the expected value ofXt andσ its
variance.

On the other hand, the cross-correlation sequence between
the processesx(t) andy(t), corresponding to inflows at two
consequent months, is defined as

Rx(t),y(t)(τ ) =
E((xt −µ)(yt −µ))

σxσy

(2)

Figure 2 shows the auto-correlation sequence for 4 different
months with respect to time over 130 years. Obviously, these
auto-correlation sequences decrease rapidly with respect to
time showing insufficient correlation over time. In this case,
the auto-correlation function is more likely to represent a
white sequence which is impossible to predict over time. In
other words, it is unlikely to use neural networks to predict
the inflow of a certain month at a certain year utilizing the
monitored/forecasted inflow of the same month from previ-
ous years.

Fortunately, studying the cross-correlation between the in-
flow at montht(Q(t)) and the inflow at three previous months
(Q(t −1), Q(t −2), Q(t −3)) showed a strong correlation
over time. Figure 3 shows the cross-correlation function
between August and the previous three months (July–June–
May).

3 Methodology

3.1 Artificial Neural Network and over-fitting

Artificial Neural Networks (ANN) is densely interconnected
processing units that utilize parallel computation algorithms.
The basic advantage of ANN is that they can learn from rep-
resentative examples without providing special programming
modules to simulate special patterns in the dataset (Gibson
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Fig. (2). The auto-correlation sequence for the inflow for months of  
 

Fig. 2. The auto-correlation sequence for the inflow for months of(August, September, October, November).

and Cowan, 1990). This allows ANN to learn and adapt to a
continuously changing environment. Therefore, ANN can be
trained to perform a particular function by tuning the values
of the weights (connections) between these elements. The
training procedure of ANN is performed so that a particular
input leads to a certain target output as shown in Fig. 4.

The input and output layers of any network have numbers
of neurons equal to the number of the inputs and outputs of
the system, respectively. The architecture of a multi-layer
feed-forward neural network can have many layers between
the input and the output layers where a layer represents a
set of parallel processing units (or nodes), namely the hid-
den layer. The main function of the hidden layer is to allow
the network to detect and capture the relevant patterns in the
data and to perform complex nonlinear mapping between the
input and the output variables. The sole role of the input
layer of nodes is to relate the external inputs to the neurons
of the hidden layer. Hence, the number of input nodes corre-
sponds to the number of input variables. The outputs of the
hidden layer are passed to the last (or output) layer, which
provides the final output of the network. Finding a parsimo-
nious model for accurate prediction is particularly critical,
since there is no formal method for determining the appro-
priate number of hidden nodes prior to training. Therefore,
here we resort to a trial-and-error method commonly used for
network design.

One of the most important aspects of machine learning
models is how well the model generalizes to unseen data.
The over-fitting problem occurs when a neural network loses

its generalization feature. In other words, it cannot gener-
alize the relations which exist between training inputs and
their related outputs to the similar hidden patterns of the un-
observed data. In such cases the performance of neural net-
work measured on the training set is much better compared
to new inputs. In predicting time series, the aim is to be able
to deal with time varying sequences. This can be achieved
if the network input-output patterns involved in such a way
that it can respond to temporal sequences. Consequently, net-
works within its structure should be considered as a good
choice. However, whatever architecture is used, some defi-
nite problems such as over-fitting will be met (Tetko et al.,
1995; Haykin, 1994; Bishop, 1996; Duda et al., 2001; Box
and Jenkins, 1970).

In the following section, a brief description for ANN
model for inflow forecasting at AHD will be reported (El-
Shafie et al., 2008), then the proposed methods for gener-
alization will be applied to overcome the experienced over-
fitting in the model.

3.2 Inflow forecasting with Multi-Layer Perceptron
(MLP) Neural Network

The inputs to the network are fixed length successive se-
quence of its recent behaviour. The inputs are used to predict
the next time-step. The general behaviours of the complex
system are saved in the layers of networks. In the predic-
tion stage, the input data together with this overall total be-
haviour are presented to the hidden layers. The output of the
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Fig. (3). The cross-correlation sequence for the inflow for months of 
 

* C.C.S. (t) represents the cross correlation sequence of the two variables (Brown and 

Hawng 1997) 

Fig. 3. The cross-correlation sequence for the inflow for months of (August–July, August–June, August–May).∗ C.C.S. (t) represents the
cross-correlation sequence of the two variables (Brown and Hawng, 1997).

hidden layer becomes a well-conditioned result of the total
system behaviour and then the prediction can be done after
this stage.

Comprehensive data analysis for the historical inflow pat-
tern for each month has been carried out (El-Shafie et al.,
2008). In fact, the monitored inflow is random in nature and
has to be modelled stochastically in order to develop an ap-
propriate inflow forecasting method. Stochastic models are
always established based on correlation analysis (El-Shafie
et al., 2008). Accordingly, an analysis of such random in-
flow data by studying the auto-correlation sequences for each
month over the past 130 years and the cross-correlation be-
tween consecutive months in the same year was performed
(El-Shafie et al., 2008). The study of the auto-correlation
function clearly informs us how the process is correlated with
itself over time and, while studying the cross-correlation se-
quences, provides information about the mutual correlation
between two consecutive months. Such analyses allow for
the achievement of the appropriate number of inflows of the
prior months utilized as input to the ANN model in order to
provide accurate inflow forecasting at a certain month. More-
over, the inflow forecasted at montht can be used with the
monitored inflow of some previous months to provide a fore-
casting at montht + 1. This procedure of using the fore-
casted inflow can be repeated forL months with the value
of L dependent upon the environmental conditions and the
basin characteristics (Salem and Dorrah, 1982). It has been
reported by Atiya et al. (1990) that the lead-timeL cannot be
more than three months.

 39

 
 

Fig. (4). Artificial Neural Network Model Diagram  Fig. 4. Artificial neural network model diagram.

Our pilot investigation showed that inflow forecasting at
month t , based on the monitored inflow from the previ-
ous years of the same month (instead of previous months
of the same year), cannot provide reliable results. There-
fore, in this study, ANN, with its nonlinear and stochastic
modelling capabilities, is utilized to develop a forecasting
model that mimics the inflow pattern at AHD and predicts
the inflow pattern for three months ahead based upon the
monitored/forecasted inflow from the three previous months
(El-Shafie et al, 2008). The inflowQf forecasted at month
t , based on the inflow monitoredQm at the previous three

www.hydrol-earth-syst-sci.net/15/841/2011/ Hydrol. Earth Syst. Sci., 15, 841–858, 2011



846 A. El-Shafie and A. Noureldin: Generalized versus non-generalized neural network model

 40

Train NN Q(t+1)

Mean 

Square 

Error < 10-4

Adjust weight

using scaled conjugate 

gradient 

Save NN for Q(t+1)

Repeat for all t

t= month 

Save 12 NN 

Input Data

Inflow Q(t), Q(t-1) and Q(t-2)

Start Multi-Lead forecasting

Input Data

Inflow Q(t), Q(t-1) and Q(t-2)

Call NN (Q(t+1))

Forecast for (Q(t+1))

Input Data

Forecasted Q(t+1), Q(t) and Q(t-1)

Call NN (Q(t+2))

Forecast for (Q(t+2))

Input Data

Forecasted Q(t+2), forecasted Q(t+1) and Q(t)

Call NN (Q(t+3))

Forecast for (Q(t+3))

End

No

yes

 
 

Fig. (5). Schematic representation of the proposed inflow forecasting procedure Fig. 5. Schematic representation of the proposed inflow forecasting procedure.

months, can be expressed as:

Qf (t) = f (Qm(t −1),Qm(t −2),Qm(t −3)) (3)

Consequently, the inflow for montht +1 can be forecasted
as follows:

Qf (t +1) = f (Qm(t −1),Qm(t −2),Qm(t −3)) (4)

Qf (t +1) = f (Qf (t),Qm(t −1),Qm(t −2)) (5)

Similarly, the inflow for montht +2 can be forecasted using
the following equations:

Qf (t +2) = f (Qm(t −1),Qm(t −2),Qm(t −3)) (6)

Qf (t +2) = f (Qf (t +1),Qf (t),Qm(t −1)) (7)

Qf in all of the above equations represents forecasted in-
flow while Qm is a monitored inflow. It should be noted
that Eqs. (4) and (6) introduced the procedure of the first ap-
proach, while Eqs. (5) and (7) represent the procedure for
the second approach proposed for multi-lead forecasting. A
schematic representation of the above procedure is given in
Fig. 5. However, an examination for the forecasting skills
utilizing different input pattern will be carried out in order to
evaluate and verify the findings of the cross-correlation anal-
ysis. With the purpose of performing the multi-lead forecast-
ing, two approaches have been carried out. The first approach
is to useQm(t−1),Qm(t−2) andQm(t−3) to predict the in-
flow onQ(t +1), in other word, is to rely only on the natural

inflow as presented in Eqs. (2a) and (3a). While the second
approach is to utilize forecasted inflow atQ(t) (Qf(t)) even
it has a certain level of error, but at the same time highly
correlated with output,Qm(t −2) andQm(t −3) to predict
Q(t +1).

The ANN model is established using the above three
equations. The architecture of the network consists of an
input layer of three neurons (corresponding to the moni-
tored/forecasted inflow of the previous three months at the
inputs to the network), an output layer of one neuron (corre-
sponding to the forecasted inflow) and a number of hidden
layers of arbitrary number of neurons at each layer. In order
to achieve the desirable forecasting accuracy, twelve ANN
architectures were developed (one for each month). Monthly
natural inflows for the period of sixty years, from 1871 to
1930, were utilized in order to train the twelve networks. The
performance and the reliability of the ANN models were ex-
amined using the inflow data monitored between 1931 and
1960. The capabilities of the developed ANN models were
further verified by the inflow data between 1961 and 2000,
which corresponds to the inflow monitored after the con-
struction of AHD in 1960.

In order to accelerate the training procedure and to achieve
minimum mean square estimation error, the inflow data was
normalized. Different MLP-ANN architectures (while keep-
ing three neurons in the input layer and only one neuron in
the output layer) were used to examine the best performance.
There is no theoretical limit to the number of hidden lay-
ers that may be included in a feed-forward back-propagation
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Fig. (6). The Neural Network Architecture for August  

Fig. 6. The neural network architecture for August.

network. There is, however, some practical limits which
should generally not be exceeded. According to Caudill
(1991) a single hidden layer is usually sufficient unless there
is an overriding, truly completing need to go to three hidden
layers. Such recommendations arose from the fact that the
back-propagation learning rule used to train the network may
become ineffective when dealing with such multi-layered
networks. As the number of hidden layers increases, the sur-
rogate metric used to quantify necessary changes in the in-
ternal knowledge representation loses its theoretical ground-
ing. On the other hand, the method currently available to
determine the correct number of neurons in the hidden lay-
ers is experimentation. In the experimentation process, net-
works with different numbers of hidden neurons are trained
and evaluated for their ability to generalize and detect signif-
icant input features. The network with the least number of
neurons that is still able to detect all significant features is
considered as the network with the optimal number of neu-
rons. In this context, in this study, the maximum number of
the neuron within each hidden layer is two times the number
of input neuron in the input layer.

In this study, the choice of the number of hidden layers
and the number of neurons in each layer is based on two per-
formance indices. The first index is the root-mean-square
(RMS) value of the prediction error and the second index is
the value of the maximum error. Both indices were obtained
while examining the ANN model with the inflow data be-
tween 1931 and 1960. The last group of data (between 1961
and 2000), that was not used in training, was used to ver-
ify the capabilities of the ANN model. An example of ANN
architecture used for predicting the inflow for the month of
August is presented in Fig. 6 (El-Shafie et al., 2008).

Table 1. The ANN architecture for each month.

Month R N1 N2 N3 Transfer Transfer Transfer
Function Function Function

Aug 3 6 4 2 LS TS PL
Sep 3 6 4 1 LS TS PL
Oct 3 5 3 2 LS LS PL
Nov 3 5 3 2 LS LS PL
Dec 3 6 3 1 LS TS PL
Jan 2 6 2 1 LS PL –
Feb 2 4 3 1 LS PL –
Mar 2 4 3 1 LS PL –
Apr 2 6 4 1 LS PL –
May 2 6 4 2 LS PL –
Jun 3 5 4 2 LS TS PL
Jul 3 5 4 2 LS TS PL

R: Number of hidden layers
N(i): number of neuron in the Hidden layer (i)
LS: Log sigmoid
TS: Tansigmoid
PL: Pure-line

The number of hidden layers (R) and the number of neu-
rons in each layer (N) for twelve networks are presented in
Table 1. The transfer functions used in each layer of the net-
works are also listed in Table 1. All twelve networks utilize
the backpropagation algorithm during the training procedure.
Once the network weights and biases are initialized, during
the training process the weights and biases of the network
are iteratively adjusted to minimize the network performance
function mean-square-error MSE – the average squared er-
ror between the network outputsa and the target outputs
t . In order to overcome and improve the proposed model
performance, two procedures are introduced hereafter in the
following sub-sections.
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Over-fitting has often been addressed using techniques
such as weight decay, weight elimination and early stop-
ping to control over-fitting (Weigend et al., 1992). Among
these methods Early-stopping is the most well-known solu-
tion (Prechelt, 1998). However, using this method on time
series of complex systems’ behaviour, it stops the training
process too early and the chance of detecting meaningful re-
lations between the network outputs and actual behaviour of
the complex system does decrease. This indicates that the
resulting model will not have proper features for predicting
the time series of the system’s behaviour. In the proposed
method, we do not focus on removing the over-fitting prob-
lem for a single neural network. Instead the major effort is to
find an algorithm which is applied on the outputs of the over-
fitted networks to produce the correct results. This algorithm
will be presented in the following sections.

3.3 Neural network generalization

3.3.1 Regularization procedure

Network over-fitting is a classical machine learning prob-
lem that has been investigated by many researchers (Schaffer,
1993; Stallard and Taylor, 1999). Network over-fitting usu-
ally occurs when the network captures the internal local pat-
terns of the training dataset rather than recognizing the global
patterns of the datasets. The knowledge rule-base that is ex-
tracted from the training dataset is, therefore, not general. As
a consequence, it is important to recognize that the specifica-
tion of the training samples is a critical factor in producing
a neural network capable of making the correct responses.
The problem of over-fitting has also been investigated by re-
searchers with respect to network complexity (Ripley, 1996;
Ooyen and Nienhuis, 1992; Livingstone, 1997).

Here, to avoid an over-fitting problem, we utilized the
regularization technique (Nordström and Svensson, 1992).
This is known as a suitable technique when the scaled con-
jugate gradient descent method is adopted for training, as is
the case in this study. The regularization technique involves
modifying the performance function which is normally cho-
sen to be the sum of squares of the network errors on the
training set defined as:

MSE=
1

2

n∑
P=1

(YO−YP)2 (8)

The modified performance function is defined by adding a
term that consists of the mean of the sum of squares of the
network weights and biases to the original mean-square-error
(MSE) function as:

MSEreg= γ ×MSE + (1−γ ) × MSW (9)

Whereγ is the performance ratio that takes values between
0 and 1; and MSW is computed as:

MSW=
1

M

M∑
j=1

w2
j (10)

whereM is the number of weights utilized inside the net-
work structure andw is weight matrix of the network. Using
the performance function of Eq. (8), the neural networks to
predict the inflow at AHD were developed with the intention
to avoid over-fitting of data.

3.3.2 Assembly Neural Network Procedure

Initialization phase

In this procedure, it is proposed that in finding a technique
based on ensemble neural networks (Chiewchanwattana et
al., 2002; Drucker et al., 1994; Cheni et al., 2005), using
over-fitted neural networks leads to generalization. In order
to achieve this goal, we use a sequence of the previous sys-
tem behaviour as the training data, then generate a sequence
of inputs with the proper length and their corresponding out-
puts from first, the 90 percent of 60 years (training data) and
then with respect to the size of the best period from the previ-
ous section. Subsequently, we construct a series of networks
by guessing the number of hidden layers’ neurons and initial-
ize their parameters randomly. Finally, for every network, the
parameters vector will stop on a local minimum of its perfor-
mance surface. Up to this point, all of the networks are over-
fitted on the training set. Afterwards, a Simulated Annealing
process is applied on each network. To do this, the model
is modified to generate a set of vectors named the noise vec-
tors. The length of each noise vector is equal to the length
of each network parameters vector and its components are
random numbers with uniform distribution between−0.05
and +0.05. By adding noise vectors to the network param-
eter vectors, a new set of network parameters are obtained.
This action makes relatively minor changes to the location of
each network in its state space.

Networks are trained with these noisy parameters until an-
other local minimum is achieved. Making noise vectors and
training are repeated for a number of times and the outputs
of these networks are compared to the following 10 percent
of the 60 years which are not used during training steps. The
winner has the best generalization amongst all and is selected
as the first member of an ensemble of neural networks.

Learning phase

In this phase, a random vector of lengthN is generated where
N is the length of the sequence of the first 60 years of time
series values. This vector is called data noise vector and is
shown by the following equation:

Vdn= M ×10−2
×z× rand(1,N) (11)

In this equationz is the number of networks added to the
ensemble of neural networks before this step. Rand (1,N )
is a 1× N vector. The components of this vector are
uniformly distributed random numbers between−0.05 and
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Fig. (7). Learning Phase Process for Ensemble Neural network  Fig. 7. Learning phase process for ensemble neural network.

+0.05. Also, M = Max–Min where Max and Min are the
maximum and minimum values of time series of the sys-
tem’s behaviour, respectively. Once again, we select the net-
work that has the best generalization on these new training
datasets. But this time, the number of neurons in the hidden
layers of networks is calculated using the following equa-
tions:

n′

1 =

∣∣∣∣x ×
n1

n2

∣∣∣∣ (12)

n′

2 = x +n2 (13)

Wheren1 andn2 are the initial number of neurons in the first
and second hidden layers of the first set of networks andn′

1
andn′

2 are new values. The value ofx is gained through the
following equation:

x =

{∣∣∣∣ IN +1

2

∣∣∣∣×mod((IN −1),2)

}
(14)

−

{[∣∣∣∣ IN +1

2

∣∣∣∣×
∣∣∣∣∣∣
1+sign( n2−

∣∣∣ IN+1
2

∣∣∣
2

∣∣∣∣∣∣+
(

(2×n2−

∣∣∣∣ IN +1

2

∣∣∣∣)−1

)

×

∣∣∣∣∣∣
1−sign( n2−

∣∣∣ IN+1
2

∣∣∣
2

∣∣∣∣∣∣+0.5

]
×mod(IN,2)

}

In this equation, IN is the iteration number. Following the
initial step, if IN is even the networks will be constructed
with the previous structure, but with more neurons. However,
if IN is odd then the number of neurons will be decreased un-
til a zero limit is met. At this step, we will continue the pro-
cess by increasing the number of neurons. This enables us to
find more suitable number of neurons in the completion pro-
cess of the ensemble if the initial guess was not accurate and
networks need more (or less) number of neurons to achieve a
good generalization.

After finding the best network in each set, we compute the
sum of absolute errors in the prediction of the last 10 percent
of data using the following equations:

e1 =

z∑
i=1

k∑
j=1

|Ts(j)−Pr(i,j)|

z
(15)

e2 =

z+1∑
i=1

k∑
j=1

|Ts(j)−Pr(i,j)|

z+1
(16)

In the above equationsz is the number of networks that was
added to the ensemble before this step.Ts is the sequence
of the last 10 percent events of time series in training dataset
andk is the size ofTs. Pr(i,j) is the value thatith member
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Fig. (8). Training Curve for August  

Fig. 8. Training curve for August.

of ensemble predicts for thej th event in the last 10 percent
of time series events. Ife1 > e2, adding the best network
of this step to the ensemble has caused improvements in the
generalization of the ensemble totally. Otherwise, we do not
add the selected network to the ensemble and repeat this step
again with new noisy datasets and a new set of networks with
different number of neurons in their hidden layers. The ter-
minating condition is as follows: a predefined number of it-
erations (namelyitr) are considered and at the end of these
iterations the improvement of ensemble predictions (on the
last 10 percent) are measured. If this value is smaller than
a predefined factor, the termination condition is met. Oth-
erwise this process will be repeated. Figure 7 illustrates the
learning phase for the proposed ensemble ANN model.

4 Results and discussions

The ANN model architecture of Fig. 5 is employed in this
study to provide inflow forecasting for each month. The
monitored inflow over sixty years between 1871 and 1930
was used to train twelve networks with each network cor-
responding to one month. All twelve networks successfully
achieved the target MSE of 0.0001. For example, the train-
ing curve for the month of August is demonstrated in Fig. 10
showing convergence to the target MSE after 73 iterations.
Two sets of analysis were performed: network without gen-
eralization and network with generalization.

However, evaluation for the ANN model performance
has been developed utilizing different input patterns rang-
ing between one input (Q(t − 1)) and five input (Q(t − 1),
Q(t − 2),. . . , Q(t − 5)). Figure 9 shows the best RMSE
(BCM) achieved for each input pattern. It could be observed
from Fig. 9 that the RMSE values efficiently improved when
using three inputs over the RMSE values when using one
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Fig. (9). Root Mean Square Error (BCM) for different input pattern during the period 

between 1931 and 1960  

Fig. 9. Root Mean Square Error (BCM) for different input pattern
during the period between 1931 and 1960.

and two inputs for all months with the exception of August,
September and October. This is due to the fact that these
three months are the wettest months of the year. On the other
hand, the RMSE values increased for all the months once in-
cluding more inputs in the input layer. In order to keep the
model input pattern consistent for all months, it was decided
to consider the previous three months natural inflow as the
input pattern.

Different MLP-ANN architectures (while keeping three
neurons in the input layer and only one neuron in the out-
put layer) were used to examine the best performance. In
fact, there is no formal and/or mathematical method for de-
termining the appropriate “optimal set” of the key parameters
of Neural Network (number of hidden layers, number of neu-
rons with each hidden layer and the type of transfer function
between two consequence layers). Therefore, it was decided
to perform this task utilizing the trial and error method. Sev-
eral sets were examined with a maximum of 3 hidden layers
and a maximum of 10 neurons within each layer. Therefore,
the choice of the number of hidden layers and the number of
neurons in each layer is based on two performance indices.
The first index is the root-mean-square error (RMSE) value
of the prediction error and the second index is the value of
the maximum error. Both indices were obtained while ex-
amining the ANN model with the inflow data between 1931
and 1960. In fact, in developing such a forecasting model
using Neural Network, the model could perform well dur-
ing the training period and might provide a higher level of
error when evaluating during either the validation or testing
period. In the context of this study, the authors used these
performance indices to make sure that the proposed model
could provide consistent levels of accuracy during all peri-
ods. The advantages of utilizing these two statistical indices
as a performance indicator of the proposed model are first, to
make sure that the highest error while evaluating the perfor-
mance is within the acceptable error for such a forecasting
model. This is done while utilizing the RMSE to ensure that
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Fig. (10). Neural Network Performance “RMSE and maximum error%” utilizing 

different Architecture, (a) one hidden layer (b) & (c) two hidden layers  
Fig. 10. Neural Network Performance “RMSE and maximum error%” utilizing different Architecture,(a) one hidden layer(b) and(c) two
hidden layers.

the summation of the error distribution within the validation
period is not high. Consequently, by using both indices it
guarantees the consistent level of errors by providing a great
potential for having the same level error while examining the
model for unseen data in the testing period.

In order to show how the trial and error procedure for se-
lecting the best parameter set of certain ANN architecture
was performed, an example for the month of January is pre-
sented in Fig. 10. For better visualization, the inverse value
of both RMSE and maximum error were used as seen in
Fig. 10b and c instead of the real values, while Fig. 10a
shows the real value for both indices. Figure 10 shows the
changes in the value of the RMSE and the maximum error
versus the number of neurons when the number of hidden
layers is one (Fig. 10a) and for two hidden layers in Fig. 10b
(RMSE) and c for the maximum error during the validation
period between 1930 and 1960. It is interesting to observe
the large number of local minima that exist in both domains.
It can be observed that the best combination of the proposed
statistical indices for evaluating the forecasting model for the
month of January when the ANN architecture has 6 neurons
in the first layer and 2 neurons in the second layer, achieving
RMSE 0.65BCM and maximum error 2.92%.

The optimal number of hidden layers (R) and the number
of neurons in each layer (N ) for twelve networks are pre-
sented in Table 1. The transfer functions used in each layer
of the networks are also listed in Table 1. All twelve net-
works utilize the backpropagation algorithm during the train-

ing procedure. Once the network weights and biases are ini-
tialized during the training process, the weights and biases of
the network are iteratively adjusted to minimize the network
performance function mean square error (MSE) – the average
squared error between the network outputsa and the target
outputst . In order to overcome and improve the proposed
model performance, two procedures are introduced hereafter
in the following subsections.

4.1 Non-generalized network

The twelve non-regularized networks developed during the
training procedure are used to provide the inflow forecast-
ing for the next thirty years between 1931 and 1960. Since
the inflow was accurately monitored over the thirty year pe-
riod, the performance of the proposed ANN-based architec-
ture can be examined and evaluated. The distribution of the
percentage value of the error over these thirty years, as well
as its RMS value, are the two statistical performance indices
used to evaluate the model accuracy. The distribution of the
percentage error between the monitored (actual) and the fore-
casted inflows for four different months over thirty years be-
tween 1931 and 1960 is shown in (Fig. 11). It can be ob-
served that the highest percentage error for these four spe-
cific months is 7%. However, other months (October, April,
May and July) show higher percentage errors, up to 18%, as
depicted in (Fig. 12).
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Fig. (11). Error distribution for (a) August (b) December (c) January (d) June  

Fig. 11. Error distribution for(a) August(b) December(c) January
(d) June.

Table 2 shows the RMS value of the error over the same
thirty years for the different months. Small RMS values of
the errors associated with the months of (August, Septem-
ber, November and March) can be observed. This agrees
with the relatively small percentage errors shown in (Fig. 11).
Although, the RMS values of the errors associated with the
months of February and May might look small, they corre-
spond to relatively small values of the monitored inflow. For
example, RMS error values of 1.0689 Billion Cubic Meter
(BCM) and 0.2282 BCM have been evaluated for the months
of October and February, respectively. These values of RMS
errors are relatively high since they correspond to monitored
inflow range of 27.40–5.97 BCM for October and 6.04–1.15
BCM for February. On the other hand, RMS error values
of 0.49 BCM and 0.0909 BCM have been evaluated for the
months of August and March, respectively. These values of
RMS errors are relatively small as they correspond to moni-
tored inflow range of 29.10–6.50 BCM for August and 5.81–
1.07 BCM for March, respectively.

In the search for a better understanding of the above ob-
servations, further analysis was performed to study the re-
lation between the root-mean-square error (RMSE) and the
average monitored inflow associated with each month. The
analysis was carried out through scaling the errors by divid-
ing the RMSE values by the average monitored inflows over
the period between 1871 and 1930 for each month, see Ta-
ble 2, Column 5. It becomes obvious that the non-regularized
ANN models require further optimization to produce robust
forecasting with consistent error levels over all networks.
The problem of non-consistent prediction is always related
to over-fitting during learning (Ripley, 1996; Haykin, 1999).
The over-fitting problem is simply that the network was only
trained to memorize the training examples and it did not learn
to generalize.
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Fig. (12). Error Distribution for (a) October (b) April (c) May (d) July  

Fig. 12. Error Distribution for (a) October (b) April (c) May
(d) July.

Table 2. RMSE associated with NN forecasting model for each
month.

Month RMSE Maximum Minimum RMSE/
(BCM) inflow (BCM) inflow (BCM) (Ave Inflow)

Aug 0.4900 29.10 6.50 0.0275
Sep 0.7805 32.79 7.31 0.0389
Oct 1.0689 27.40 5.97 0.0640
Nov 0.1801 14.40 4.12 0.0194
Dec 0.2838 11.00 2.83 0.0410
Jan 0.2347 7.70 1.72 0.0490
Feb 0.2282 6.04 1.15 0.0634
Mar 0.0909 5.81 1.07 0.0264
Apr 0.2389 5.26 0.95 0.0760
May 0.3215 4.72 0.80 0.1164
Jun 0.2665 5.16 0.90 0.0879
Jul 0.5544 11.03 1.74 0.0868

4.2 Generalization of Neural Network

The generalization techniques described in Sects. 2.3.1 and
2.3.2 were applied to improve the generalization of the train-
ing process of the twelve networks. For the regularized tech-
nique, a trial and error procedure is applied to determine the
bestγ ratio that overcomes the over-fitting problems. Op-
timization techniques were not necessary as the value ofγ

easily converged by simplified trial and update procedures
(Gelb, 1979). Different values ofγ ranging between 0 and
1 are examined for each network. The analysis showed
that γ ratio is equal to 0.8 provided a considerable reduc-
tion in the error distributions of all twelve networks. Fig-
ure 13 demonstrates the reduction of the distribution of the
errors for the months of October, February, May and July. It
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Fig. (13). Error Distribution after Regularization for (a) October (b) April (c) May (d) 

July  Fig. 13. Error Distribution after Regularization for(a) October
(b) April (c) May (d) July.

can be determined that the regularized network improved the
distribution of errors by about 40% for October compared
with non-regularized network.

On the other hand, the ensemble ANN model is applied to
the same four months (October, April, May and July) which
experienced over-fitting problem while training. Figure 14
shows that 4, 8, 10 and 5 networks are selected as ensem-
ble members for the above-mentioned months, respectively,
before the termination conditions met. It should be noted
that the RMSE calculated here is associated with the last 10
percent (1924–1930) of the training dataset between 1871
and 1930. Utilizing ensemble ANN method, as shown in
this figure, could reduce the RMSE significantly if compared
with the non-generalized ANN method (over-fitted network).
Moreover, the performance of the ensemble ANN model dur-
ing the testing data period between 1930 and 1960 was exam-
ined. Figure 15 demonstrates the error distribution over this
period. It can be depicted that the ensemble ANN model suc-
cessfully provides a consistent level of accuracy with error
level ranging between±5% which obviously outperformed
the non-generalized ANN and or regularized ANN model
showed in Figs. 12 and 13.

For further analysis, Table 3 shows the RMSE values of
the errors at each month for both non-generalized and en-
semble ANN model. When compared with regularized net-
works, smaller values of RMS errors can be depicted after
eliminating the over-fitting problem. For example, compar-
ing the RMS value of inflow error for the month of October
during the same period between 1930 and 1960, a reduction
from 1.0689 BCM to 0.689 BCM has been achieved. Similar
improvement on the performance of almost all networks can
be observed.

Figure 16 demonstrates the distribution of the errors for
the months of July, June, May and March for the period be-
tween 1961 and 2000. This period is intentionally exam-
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Fig. (14). The Effect of Increasing Number of Ensemble Networks on Root Mean 

Square Error (RMSE) For Last 10 Percent of the training data set for Month  

October, April, May and July during the period between 1871 and 1930  Fig. 14.The Effect of Increasing Number of Ensemble Networks on
Root Mean Square Error (RMSE) For Last 10 Percent of the training
dataset for the month of October, April, May and July during the
period between 1871 and 1930.

Table 3. RMSE associated with Ensemble ANN forecasting model
before and after generalization (1931–1960).

Month RMSE before RMSE after Reduction in
Generalization Generalization with forecasting

(BCM) Ensemble ANN (BCM) error (%)

Aug 0.4900 0.4100 16
Sep 0.7805 0.5805 26
Oct 1.0689 0.689 36
Nov 0.1801 0.1201 33
Dec 0.2838 0.2838 0
Jan 0.2347 0.2347 0
Feb 0.2282 0.2282 0
Mar 0.0909 0.0909 0
Apr 0.2389 0.1389 42
May 0.3215 0.1721 46
Jun 0.2665 0.2665 0
Jul 0.5544 0.3854 30

ined due to its inclusion of significant variation in the in-
flow patterns for experiencing different cycles of high flow
and drought. It can be observed that the proposed ensem-
ble ANN model was capable of predicting inflow with better
accuracy. This demonstrates an important feature of the de-
veloped model with its ability to perform well at regular and
extreme events. For the visualization of the proposed ANN
model performance, a demonstration of the observed versus
the forecasted inflow during the period between 1961 and
2000 is shown in Fig. 17 for the same months in Fig. 16.
It is obvious that the proposed ANN model with ensemble
procedure provides forecasted inflow that able to mimic the
pattern (dynamics) in the observed values, in addition, for
those extreme values experienced during this period.

www.hydrol-earth-syst-sci.net/15/841/2011/ Hydrol. Earth Syst. Sci., 15, 841–858, 2011



854 A. El-Shafie and A. Noureldin: Generalized versus non-generalized neural network model

 50

1935 1940 1945 1950 1955 1960
-5

0

5

Year

%
 E

rr
o

r

1935 1940 1945 1950 1955 1960
-5

0

5

Year

%
 E

rr
o

r

1935 1940 1945 1950 1955 1960
-5

0

5

Year

%
 E

rr
o

r

1935 1940 1945 1950 1955 1960
-5

0

5

Year

%
 E

rr
o

r)

(a) (b) 

(c) (d) 

 
 

Fig. (15). Error Distribution Utilizing Ensemble Neural Network for  

(a) October (b) April (c) May (d) July  Fig. 15. Error Distribution Utilizing Ensemble Neural Network for
(a) October(b) April (c) May (d) July.

Moreover, to compare the ANN to existing modelling
techniques, we compared the prediction error of the ANN
with the prediction error from the auto-regressive moving
average (ARMA) models (Salem and Dorrah, 1982). The
ARMA model developed utilizing the natural flow data dur-
ing the period between 1800 and 1980. The natural flows
records were originally recorded on the Nilometer, a well
five metres by five metres in the area in which the stage of
the water was etched into the wall. These data were analysed
in the time-domain with fitting a model of the following form

yt = φ1yt−1+ ...+φpyt−p +θ1εt−1+ ...φqεt−q +εt +δ (17)

which best predicts the values of variableY at timet based
on previous observations,yt−1...yt−p, previous error terms
εt−1... εt−q , and a constant,δ. The q values are collec-
tively referred to as the autoregressive part of the model (of
orderp), whereasθ ’s constitute the moving-average compo-
nent (of orderq). The inclusion of a nonzeroδ introduces a
deterministic trend in the model. We refer to this stochastic
process as an autoregressive-moving-average model (ARMA
(p, q)), and we are concerned with identifying the order
of the model and estimating its coefficients. Models in
which there are no moving-average terms (i.e.,q = 0) are sim-
ply called autoregressive (AR(p)), whereas moving-average
models (MA(q)) are those with no autoregressive compo-
nents. The ARMA models of order (2, 1) yield superior re-
sults to either pure MA or AR forms.

Table 4 shows the comparison of the performance of the
ANN to the ARMA models over the period between August
1995 and July 2000 (two water years) using the Relative Er-
ror (RE)% indicator for each month.

RE(%) = 100·

(∣∣Qf(testing) −Qm
∣∣

Qm

)
(18)

Where,Qf(testing) is the forecasted inflow for a specific month
andQm is the monitored inflow for this month. It is obvious
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Fig. (16). Error Distribution for (a) July (b) June (c) May (d) March  

Fig. 16. Error Distribution for(a) July (b) June(c) May (d) March.

from Table 4 that the ANN model outperformed the ARMA
models with remarkable improvements in the RE% for all
months.

To verify the performance of the ensemble ANN-based in-
flow forecasting model, the inflow data between 1961 and
2000 was used. Table 5 shows the RMS value of the inflow
error over these forty years using the twelve ensembles ANN
developed above. Apparently, similar levels of errors have
been achieved if compared with those RMSE values for the
period between 1931 and 1960, as shown in Table (3).

In order to evaluate the performance of the proposed ANN
model for multi-lead forecasting skill, the result of the two
approaches presented in Sect. (3.2) are shown in Table 6. Ta-
ble 6 shows the performance of the multi-lead forecasting for
the two months ahead, (L = 2 andL = 3). For the first ap-
proach, the second column corresponds to the case when one
forecasted inflow and two monitored inflows are used as net-
work inputs, while the third column corresponds to the case
when two forecasted inflows and one monitored inflow are
utilized. The following fourth and fifth columns are associ-
ated with the results when applying the second approach.

Generally, for both approaches, it can be observed that
the inflow forecasting accuracy is reduced when less mon-
itored inflow is used at the network input. For example, the
RMSE for the inflow forecasted at the month of November
was 0.1369 BCM when the monitored inflows of the months
of August, September and October are utilized at the input,
see Table 5. In the case of the current month being Septem-
ber, the month of November is considered as second multi-
lead ahead (L = 2), the error increases to 0.1657 BCM as
the available monitored inflows are for months of July, Au-
gust and September, as shown in Table 6, the second column.
Consequently, the error has been further increased to 0.2154
BCM when the month of November is third multi-lead ahead
(L = 3) (the current month is August), the available moni-
tored inflows are for months of June, July and August, Ta-
ble 6, third column.
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Fig. (17). Observed versus predicted values for (a) July (b) June (c) 
May (d) March with one month lag time

          (A)          (B) 

  
          (C)          (D) 

  
 

0

2

4

6

8

10

12

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

In
flo

w
 (B

C
M

)

Years

Natural Inflow

Prediction

0

1

2

3

4

5

6

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

In
flo

w
 (B

C
M

)

Years

Natural Inflow
Prediction

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

In
flo

w
 (B

C
M

)

Years

Natural Inflow

Prediction
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

In
flo

w
 (B

C
M

)

Years

Natural Inflow
Prediction

Fig. 17. Observed versus predicted values for(a) July (b) June(c) May (d) March with one month lag time.

On the other hand, while using the second approach, for
the first multi-lead ahead, identical level of RMSE errors are
achieved as the predictor pattern are the same. For the same
example for the month of November, for second multi-lead
ahead, the RMSE is equal to 0.1441 BCM when the moni-
tored inflows of August and September and the forecasted in-
flow of October are used as shown in the fourth column. Fur-
thermore, the RMSE has further increased to 0.1561 BCM
when the monitored inflow of August and the forecasted in-
flows of September and October are used as shown in the
fifth column. In addition, it can be depicted that the sec-
ond approach outperformed the first approach for most of
the months except April, May and June, however, the change
RMSE values are not significant. This is due to the fact that
these months are considered as the dry period and might ex-
perience slow decay in the cross-correlation with the previ-
ous months. This is confirmation that, for multi-lead fore-
casting, it might be better to utilize the forecasted values with
a certain level of error, but highly correlated with the output
as a predictor rather than utilizing actual values which are not
correlated and a higher order with the output.

5 Conclusions

Although neural networks have been widely used as a proper
tool for predicting time series, they do face a few problems
such as over-fitting. This research proposed two different
methods to resolve the over-fitting problem which is based
on training multi-layer feed-forward neural networks and us-
ing the simulated annealing for the optimization purpose. To
reduce the effects of over-fitting, regularized and ensemble
neural networks are used. In order to evaluate the proposed
approach, the proposed generalized methods were examined
for inflow forecasting of the Nile River at Aswan High Dam
utilizing the monitored 130 years monthly based inflow data.
The outcomes clearly show that the proposed methods suc-
ceed in overcoming the over-fitting experienced for standard
neural network model and perform well in characterising and
predicting complex time series events and improve the out-
put accuracy when switching the model to the verification
stage. In spite of the highly stochastic nature of the inflow
data in this region, the proposed ensemble ANN model was
capable of mimicking the inflow pattern accurately with rel-
atively small inflow forecasting errors. Furthermore, the en-
semble ANN model significantly outperformed the classical
and the regular neural network of similar architecture and the
conventional ARMA models.
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Table 4. RE % associated with the output of Ensemble ANN and ARMA models on a monthly basis for years 1999 and 2000.

Month
Ensemble ANN Model Conventional Model

ARMA (Salem and Dorrah, 1982)
1995–1996 1996–1997 1997–1998 1998–1999 1999–20001995–1996 1996–1997 1997–1998 1998–1999 1999–2000

Aug −4.66 5.18 4.94 4.70 6.19 −23.56 27.28 −25.30 −24.80 −27.57
Sep 1.93 −2.14 −2.14 1.79 −2.04 22.44 24.56 26.69 23.62 29.77
Oct 6.86 −6.70 −6.70 −6.38 −7.62 −21.37 −23.39 −25.86 −22.49 32.15
Nov −6.53 7.26 6.91 5.76 −6.62 −20.35 −22.28 −17.35 −21.42 −25.53
Dec 6.46 −7.18 −6.84 −5.26 4.54 26.22 28.70 −16.56 27.60 35.07
Jan −0.19 0.14 0.22 0.08 2.01 −24.74 −27.08 −10.42 −26.04 −35.43
Feb −5.63 6.26 2.87 1.91 5.96 30.06 32.91 34.80 31.64 35.78
Mar 3.20 2.10 5.10 6.90 2.60 27.80 30.43 31.31 29.26 −36.14
Apr 4.55 6.20 5.21 4.04 6.10 29.75 32.57 14.09 31.32 21.21
May 3.60 4.40 4.60 4.02 3.85 21.99 24.08 −14.35 23.15 21.00
Jun 0.13 −1.20 −3.20 −0.20 −1.01 −23.09 −25.28 27.23 −24.31 −22.05
Jul −4.30 −6.58 −6.58 −6.68 −7.10 32.99 36.12 35.42 34.73 31.01

Table 5. RMSE associated with Ensemble ANN forecasting model
for the period 1961–2000.

Month RMSE (BCM)

Aug 0.4510
Sep 0.6385
Oct 0.7785
Nov 0.1369
Dec 0.3121
Jan 0.2640
Feb 0.2601
Mar 0.1027
Apr 0.1541
May 0.1996
Jun 0.2931
Jul 0.4432

In general, the application of neural network in monthly
inflow forecasting is promising together with the proposed
ensemble procedure. However, the proposed ANN model ap-
proaches are still lacking an appropriate method for search-
ing the optimum ANN architecture. In addition, preprocess-
ing of the data is an essential step for time series forecasting
model and requires more survey and analysis that could lead
to better accuracy in this application. The selection of key pa-
rameter sets and components with the ANN model and vari-
able selection procedures (input pattern) in monthly inflow
forecasting were attempted in this study. However, the opti-
mal selection of the key parameter still needs to be achieved
by augmenting the ANN model with other optimization mod-
els such as genetic algorithm or particle swarm optimization
methods. On the other hand, the variable selection (input
pattern) in the ANN model is always a challenging task due
to the complexity of the hydrologic process. Some other
advanced ANN model, namely Dynamic Neural Network

Table 6. RMSE associated with Ensemble ANN forecasting model
for the period 1961–2000 and the lead time for two months ahead.

Month
RMSE (BCM)

First approach Second approach
L = 2 L = 3 L = 2 L = 3

Aug 0.8266 1.4878 0.5166 0.6150
Sep 1.0101 1.2121 0.6966 0.8127
Oct 1.2815 1.4738 0.8268 0.8957
Nov 0.1657 0.2154 0.1441 0.1561
Dec 0.4428 0.6642 0.3406 0.3689
Jan 0.3942 0.4140 0.2816 0.3051
Feb 0.3149 0.5038 0.2738 0.2967
Mar 0.1146 0.1661 0.1091 0.1182
Apr 0.1597 0.3328 0.1667 0.1806
May 0.1863 0.6954 0.2066 0.2238
Jun 0.2877 0.5804 0.3198 0.3465
Jul 0.6938 0.8325 0.4625 0.5011

(DNN), that considers the time-dependent interrelationship
between the input and output pattern could be investigated
and might provide better forecasting model. Furthermore,
more robust input pattern selection approaches (e.g., system-
atic searching of optimal or near optimal variable combina-
tion in DNN with ensemble procedure) can be explored and
may lead to important new methods for monthly inflow fore-
casting in hydrological processes.

In fact, in the current research, the comparison analysis
might not be sufficiently performed as long as the architec-
ture of the ANN differs from the ARMA model. Therefore,
for future research an enhancement for the current ARAM
model would be proposed to be relatively similar to the ANN
model in order to carry out the comparison analysis in a tol-
erable manner. Indeed, there is a potential for enhancing the
classical ARMA model. In spite of the comparative analysis
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carried out in this study, it showed that the proposed ensem-
ble neural network model significantly outperformed the or-
dinary ARMA model, better formulation of ARMA model
might lead to successful forecasting skills. As a result of
the correlation analysis, identification and simulation tech-
niques based on a periodic ARMA (PARMA) model to cap-
ture the seasonal variations in Nile river flow could be de-
veloped. In addition to the correlation analysis, there are
certain principles that should be considered while develop-
ing the PARMA model including the marginal distribution
of the process, the long-term dependence of the process and
the linearity in lagged flows of the Nile.
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