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Abstract. Hydrological modelling of floods relies on pre-
cipitation data with a high resolution in space and time. A
reliable spatial representation of short time step rainfall is of-
ten difficult to achieve due to a low network density. In this
study hourly precipitation was spatially interpolated with the
multivariate geostatistical method kriging with external drift
(KED) using additional information from topography, rain-
fall data from the denser daily networks and weather radar
data. Investigations were carried out for several flood events
in the time period between 2000 and 2005 caused by dif-
ferent meteorological conditions. The 125 km radius around
the radar station Ummendorf in northern Germany covered
the overall study region. One objective was to assess the ef-
fect of different approaches for estimation of semivariograms
on the interpolation performance of short time step rainfall.
Another objective was the refined application of the method
kriging with external drift. Special attention was not only
given to find the most relevant additional information, but
also to combine the additional information in the best possi-
ble way. A multi-step interpolation procedure was applied to
better consider sub-regions without rainfall.

The impact of different semivariogram types on the in-
terpolation performance was low. While it varied over the
events, an averaged semivariogram was sufficient overall.
Weather radar data were the most valuable additional infor-
mation for KED for convective summer events. For inter-
polation of stratiform winter events using daily rainfall as
additional information was sufficient. The application of the
multi-step procedure significantly helped to improve the rep-
resentation of fractional precipitation coverage.
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(a.verworn@iww.uni-hannover.de)

1 Introduction

Precipitation data with a high resolution in space and time
are the driving forces for hydrological modelling of floods.
While the temporal resolution of the recording stations is
suitable, the network density is often too sparse for a reli-
able spatial interpolation. So, the more variable convective
rainfall in spring and summer is captured worse than the less
variable stratiform winter precipitation (Kalinga et al., 2003).
Precipitation data from non-recording stations are usually
provided in a dense network, but have only a daily temporal
resolution. Meanwhile radar data have been used more fre-
quently as input for hydrological modelling due to its advan-
tage of the high spatial resolution. A considerable number of
studies have shown though, that uncorrected radar data are
insufficient due to the frequently occurring large space-time
variable bias (Cole and Moore, 2008; Ehret et al., 2008). To
obtain high space-time resolution fields of precipitation for
flood studies it is therefore necessary to apply sophisticated
interpolation methods on the short time step rainfall data in
combination with radar information and other available ad-
ditional information.

Several mapping techniques for rainfall fields like ordinary
kriging or spline-surface fitting have been in use over some
time (Creutin and Obled, 1982; Dubois et al., 2003). They
provide the basis for the application and further development
of multivariate geostatistical methods like kriging with exter-
nal drift or collocated co-kriging using various co-variables
(Sarangi et al., 2005; Grimes et al., 1999; Lloyd, 2005;
Carrera-Hernandez and Gaskin, 2007). Goovaerts (2000)
uses annual and monthly rainfall observations to demon-
strate, that the three multivariate geostatistical methods, all
incorporating a digital elevation model, outperform three
other univariate methods. Kyriakidis et al. (2001) consid-
ers seasonal average daily precipitation showing that the
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integration of atmospheric and terrain characteristics in a
geostatistical framework leads to more accurate representa-
tions of the spatial distribution of rainfall.

Due to the better availability and improved accuracy of
radar data a new sector of radar-raingauge merging meth-
ods has been evolved. Velasco-Forero et al. (2009) compare
three geostatistical interpolation methods, all incorporating
radar data as secondary information in combination with a
non-parametric technique to automatically compute correlo-
grams. Kriging with external drift shows the most accurate
results. Ehret at al. (2008) have developed a merging method
combining a mean precipitation field interpolated from rain
gauge observations with information about the spatial vari-
ability from radar data. Garcı́a-Pintado et al. (2009) combine
a multiplicative - additive decomposition and an objective
analysis scheme to estimate multisensor rainfall. Gouden-
hoofdt and Delobbe (2009) have evaluated several radar-
gauge merging methods with various degrees of complexity
and favour the geostatistical merging methods. Still several
questions need further adressing for an improvement of in-
terpolation like sufficient consideration of fractional cover-
age of rainfall occurrence (Seo, 1998), importance of pre-
processing of radar data, value of topography for short time
step interpolations, relevance for discriminating seasons and
storm types when chosing interpolation methods etc.

Prior to the interpolation task, the spatial persistence struc-
ture of precipitation has to be analysed usually based on
semivariogram analysis (Holawe and Dutter, 1999; Skoien
and Bl̈oschl, 2003; van de Beek et al., 2010). Especially
in mountainous regions it is critical to determine semivari-
ograms based on a sparse raingauge network only. Germann
and Joss (2001) report it to be less critical if using evenly
spaced radar data. As an alternative the application of a 3-
D estimation of the variogram with rainfall duration as third
coordinate is suggested (Bargaoui and Chebbi, 2008). This
leads to significantly lower prediction error than the classical
2-D kriging. Kravchenko (2002) has shown that the interpo-
lation performance of soil properties with kriging and known
variogram parameters usually outperforms the case when
variogram parameters are unknown. Furthermore, optimal
sampling schemes for a minimal kriging variance are consid-
erably influenced by variogram parameters (van Groenigen,
2000). Yet the influence of the semivariogram estimation on
the interpolation performance of short time step rainfall is
relatively unknown.

This research extends on a case study of Haberlandt (2007)
about hourly rainfall interpolation using rain gages and radar
for one extreme rainfall event. Here, based on a set of 15 rain
storms, investigations focus first on a detailed analysis of
various approaches for variogram inference with differenti-
ations between seasons and storm types. Then, several in-
terpolation methods are compared using additional informa-
tion from weather radar, topography and from the daily rain-
gauge network. Special attention is given to consider the
fractional rainfall coverage, to analyse effects of radar data

preprocessing and relating the results to the different storm
types and seasons. This study will provide the basis for a
subsequent hydrological validation based on rainfall runoff
modelling using the differently interpolated precipitation in-
put fields.

This paper is organised as follows. After the “Introduc-
tion” the section “Methods” follows with a description of the
semivariogram estimation techniques and a description of the
interpolation method kriging with external drift (KED) con-
sidering the special cases which were applied here. The study
area and the available data will be introduced in section three.
Also, the processing of the data, especially the radar obser-
vations, is described here. Section four discusses the results
and is divided into two subsections dealing with variogram
inference results and performance evaluations of the applied
interpolation methods using different additional information.
In the final section the main findings are concluded and an
outlook is presented.

2 Methods

2.1 Semivariogram estimation

The spatial structure of rainfall mainly depends on weather
conditions, type of the precipitation, topography of the study
area, spatial and temporal scale, and can be quite dynamic in
space and time. Therefore, one particular problem for geosta-
tistical interpolation of complete time series is the effective
and reliable estimation of the semivariograms for each time
step.

A semivariogram measures the spatial variability of a re-
gionalized variableZ assuming the variable being stationary
or intrinsic (Armstrong, 1998). The traditional experimental
semivariogram is defined as follows:

γ (h) =
1

2 · N(h)

N(h)∑
i=1

(Z(ui) − Z(ui + h))2, (1)

where N(h) is the number of data pairs, which are lo-
cated a distance vectorh apart. The fitting of a theoretical
model is necessary in order to deduce semivariogram values
for any possible lagh required by interpolation algorithms
(Goovaerts, 1997). The spherical model with a nugget com-
ponent is chosen for the investigations, showing a linear be-
haviour near the origin:

γ (h) = c0 +

{
c ·

(
3
2 ·

h
a

−
1
2 ·

h3

a3

)
,if h ≤ a

c otherwise
(2)

wherea is the range,c the sill andc0 the nugget. The ex-
act matching of the experimental and theoretical variogram
is considered less important than the choice of variogram
model itself (Wackernagel, 1995).

Theoretically, the semivariogram estimation needs to be
carried out separately for each time step. If this is done man-
ually, the procedure will be very time-consuming. Therefore,
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an automatic approach was applied in addition to some aver-
aging techniques, which are explained in the following:

– Event-specific semivariograms:
For each event a specific experimental semivariogram
was obtained by averaging over all time steps, which
exceed a specific threshold of precipitation intensity.
Before averaging, the experimental semivariogram was
standardized by the variance for each time step:

γev(h) =
1

n
·

n∑
i=1

γ (h,i)

var(i)
, (3)

where n is the number of time steps,γ (h,i) is the
semivariogram value for the distance classh of time
step i and var(i) is the variance of time stepi. Af-
terwards a spherical variogram model was fitted man-
ually. Additionally, two cases were distinguished: One
with assumed isotropy (“event isotropic”) and the other
one where spatial anisotropy was taken into consid-
eration (“event anisotropic”). The zonal anisotropy
was modelled with nested spherical structures and an
anisotropy factor, respectively (Deutsch and Journel,
1992). The term “zonal” means, that not only geomet-
ric anisotropies with different ranges but same sills were
taken into consideration, but also more complex struc-
tures with sills not being the same in all directions.

– Average semivariograms:
Based on the “event isotropic” type a total average semi-
variogram over all events (“average isotropic”) was de-
rived by weighting the parameters of the theoretical
semivariograms by the number of time steps of each
event which were used for averaging:

θk =
1

m∑
i=1

n(i)

·

m∑
i=1

θk(i) · n(i), (4)

whereθk stands for the parameterk of the theoretical
semivariogram of eventi, m is the number of events
andn(i) the number of time steps of eventi. Further-
more, an averaged semivariogram was calculated for
each season (summer and winter) separately (“season-
type isotropic”).

– Automatic semivariograms:
An automatic fitting method (“automatic isotropic”)
was applied for each time step, such that a weighted sum
of squared differences between the experimental and the
applied spherical semivariogram model was minimized
(Cressie, 1985):

L∑
l=1

k(l,i)

γ 2(l,i)
·

[
γ ∗(l,i) − γ (l,i)

]2

(5)

→ Min ∀ i = 1, ..., n,

wherek is the number of data pairs for each lagl and
time stepi. The minimisation of Eq. (5) was achieved
with the Nelder and Mead optimisation method (see
e.g. Press et al., 1989) assuming that the variance is
equal to the sum of nuggetc0 and sillc. This has been
done with the objective to provide sufficiently robust re-
sults. This way only the two parameters range and ratio
of nugget to sill are optimised, instead of three param-
eters range, sill and nugget. The nugget was forced to
zero only, if the calculated value was below zero. The
sill was then set equal to the variance. For each time step
the obtained objective function value for the automatic
variogram was compared with a value considering the
averaged variogram instead and that variogram with the
lower objective function value was selected. Also, if no
convergence could be reached, the averaged semivari-
ogram was chosen and scaled with the variance.

– Assumed-linear semivariograms:
As the simplest version without using any data, a linear
isotropic semivariogram withγ (h) = h was applied.

2.2 Kriging with external drift

For interpolation, kriging with external drift (KED), ordinary
kriging (OK) and inverse distance weighing (IDW) were ap-
plied. Only KED will be described in the following. OK
and IDW were used as reference for comparisons. Kriging
with external drift (KED) is a simple and efficient algorithm
allowing the incorporation of one or more secondary vari-
ables, which are assumed to be linearly related to the ex-
pected value of the primary variable. As opposed to the
method “kriging with a trend model”, the additional infor-
mation is not modelled as a function of the coordinates, but
is treated as a smoothly varying linear function according to
the denotation as “external variable” (Goovaerts, 1997).

The KED estimator for the unknown point consists of a
weighted sum ofn observed points in the neighbourho “or-
dinary kriging” (Webster and Oliver, 2001):

Z∗(u0) =

n∑
i=1

λi · Z(ui), (6)

whereλi are the kriging weights. For KED it is assumed that
the expected value ofZ is linearly related to a number ofm
additional variablesYk(u) as

E [ Z(u)|Yk(u)] = b0 +

m∑
k=1

bk · Yk (u). (7)
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The unknown parametersbk are estimated implicitly and do
not appear in the kriging system:

n∑
j=1

λj · γ
(
ui − uj

)
+ µ0 +

m∑
k=1

µk · Yk (ui) (8)

= γ (ui − u0) i = 1, ..., n

n∑
j=1

λj = 1

n∑
j=1

λj · Yk

(
uj

)
= Yk (u0) k = 1, ..., m

wheren is the number of neighbours,m is the number of
additional variablesYk included, whileµk are Lagrange mul-
tipliers. The variogram valuesγ are inferred simply from the
original variableZ and not from the trend residuals. Using
the semivariogram of original rainfall data instead of residu-
als for KED is certainly a simplification. The difficulty lies in
simultaneously estimating the unknown trend and the residu-
als. To overcome this problem, the trend component could be
computed with a slightly modified KED system (Deutsch and
Journel, 1992), while calculating the residuals and the resid-
ual semivariogram afterwards. However, this iterative pro-
cess would be very demanding. Another simpler approach
could be to infer the semivariogram only from data pairs,
that are unaffected by the trend. Investigations of Haber-
landt (2007) have shown though, that there were no signifi-
cant differences in interpolation performance, which was the
reason, why the simplified approach is applied here as well.
A more detailed description of external drift models can be
found in Chil̀es and Delfiner (1999).

One main focus of this study was the refined application of
kriging with external drift using various additional variables.
In this context the following versions were implemented:

– Due to the assumption of a linear relation between pri-
mary and secondary variable, an appropriate transfor-
mation of the latter could be useful in the form of loga-
rithm or square-root in case of a non-linear relations.

– In order to avoid instabilities in the KED system, a so-
called “conditional” version of KED was introduced.
Instabilities mostly occur at time steps, where rain is
detected only at very few stations, and, therefore, the re-
lation between primary and secondary variable is weak.
To overcome this problem, KED was only executed, if
the correlation between both variables exceeded a cer-
tain threshold. Otherwise, OK was used for those time
steps.

– In addition, a “multi-step” interpolation procedure was
set up to consider sub-regions without rainfall in a more
appropriate way. First binary indicator kriging was ap-
plied as follows: The precipitation time series of all

recording stations were transformed into zero’s for no
rain and one’s for rain. Afterwards OK was carried out
on the binary time series to determine rainy and no-rainy
cells. Estimated cell values below a threshold of 0.5
were counted as dry and were set to zero. Cell values
equal or above of 0.5 were counted as wet and set to
one. As a second step KED or OK was applied on the
original time series. For obtaining the final estimate,
the interpolated fields from both steps were multiplied,
which resulted basically in interpolating just over the
wet areas. However, it has to be mentioned that this pro-
cedure does not fully preserve the precipitation volume
and therefore possibly produces a bias.

Finally, different combinations of various additional vari-
ables were investigated, given that KED allows the incorpo-
ration of more than one drift variable. This procedure was
carried out under the assumption, that some additional infor-
mation might only be valuable in concurrent use with other
variables.

2.3 Performance assessment

The impact of the semivariogram inference on the interpo-
lation performance as well as the interpolation performance
itself was evaluated by precipitation cross-validation. The
principle of the so called “leave-one-out-method” is to es-
timate rainfall successively for each sampled location us-
ing the known neighbours but always discarding the sample
value at the particular location. An estimate was therefore
obtained at every sample point, which was compared with
the observed values using the following performance mea-
sures.

In addition to the simple bias criterion

Bias =
1

n
·

n∑
i=1

[
Z∗(ui) − Z(ui)

]
(9)

the root-mean-square-error (RMSE), standardized with the
observed averageZ, was applied

RMSE =
1

Z
·

√√√√1

n
·

n∑
i=1

[Z∗(ui) − Z(ui)]2, (10)

whereZ∗(ui) is the estimated value andZ(ui) the observed
value, both at locationui . TheRVar coefficient measures the
preserved variance of the interpolated values in relation to
the variance of the observed values

RVar =
Var

[
Z∗(u)

]
Var[Z(u)]

. (11)

According to the known but unwanted smoothing character
of precipitation interpolation, it was aimed for an RVar value
close to 1, preserving the observed variance as much as pos-
sible.
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Fig. 1. Location of the study area.

3 Study area and data

3.1 Study regions

The 125 km radius around the radar station “Ummendorf” in
the northern part of Germany comprises the total study area
including 21 recording rainfall gauges. Within the operating
radius of the radar also 676 non-recording rainfall gauges
are located providing daily precipitation values. The ter-
rain is characterized mainly by flat land in the north-eastern
part, while the south-eastern part is strongly influenced by
the Harz Mountains and its foothills (Fig. 1). The eleva-
tion ranges from almost sea level to 1043 m a.s.l. (above sea
level). The total study area was used for areal rainfall estima-
tion and precipitation cross-validation. According to Fuchs
et al. (2003), the mean annual precipitation for the study area
varies between around 400 mm yr−1 on the leeward side of
the Harz Mountains and about 1300 mm yr−1 at the mountain
tops. This variability is caused by the windward/rain shadow
effect with moist air masses usually coming from the west,
leading to increased precipitation on the western side of the
mountains, while on the eastern side there is a large drop in
precipitation.

3.2 Data and pre-processing

The general idea was to carry out investigations on an event
basis. The rainfall events were selected based on the inspec-
tion of flood hydrographs observed at streamflow gauges in
the study area. Our intention was to validate the interpola-
tion methods using hydrological modelling in a subsequent

investigation. The recording stations provide data with 10-
min time steps, which were aggregated to hourly values.
Events occurring in different seasons and caused by differ-
ent weather conditions were considered. Both convective and
stratiform precipitation structures might have contributed to
one event. The selected events as well as some statistics are
listed in Table 1. For the calculation of standard deviation
and coefficient of variation (COV) only those time steps were
used which exceed an average precipitation of 0.1 mm h−1.
This low threshold was used for the event statistics in order
to exclude time steps with non-significant rainfall. A clas-
sification of the events into convective and stratiform storms
was made based the COV and season. A COV value above
1.70 indicated rather convective precipitation, equal or be-
low 1.70 a more stratiform event. Rather convective precip-
itation usually occurs during summer. The threshold of 1.70
was established based on visual inspections of specific radar
images for all events.

Three different types of additional information for interpo-
lation using kriging with external drift (KED) were utilised
here. The derivation of those data is explained in the follow-
ing.

The first type consists of the two time-invariant exter-
nal drift variables elevation and luv/lee index, both derived
from a digital elevation model (DEM) with a resolution of
1 km× 1k̇m and a fixed window size of 230 km× 230 km.
The determination of the luv/lee index was based on the di-
rection of slope and wind. The slope direction was directly
inferred from the digital elevation model while the wind di-
rection was taken from the climate station “Brocken” (Fig. 1)
providing daily observed wind data. The wind direction was
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Table 1. Precipitation statistics of the selected events with hourly time step data; standard deviation, coefficient of variation and no-rain
fraction are spatially calculated and averaged over time.

Ev. Period Duration No-rain Average Maxi- Average Average Average Type Season
No. fraction rainfall mum rainfall standard coefficient

sum intensity deviation of variation
[h] [mm/ev.] [mm h−1

] [mm h−1
] [mm h−1

] [−] [−] [−]

2 2 Jul–5 Jul 2000 95 28% 19.4 18.3 0.29 1.35 2.78 Conv. Summer
3 4 Jan–5 Jan 2001 47 40% 10.9 6.3 0.41 0.74 1.42 Stratif. Winter
4 31 May–4 Jun 2001 119 6% 34.1 14.3 0.31 0.65 1.71 Conv. Summer
5 7 Jul–16 Jul 2001 239 37% 67.7 26.8 0.47 1.08 1.80 Conv. Summer
6 2 May–4 May 2002 71 7% 28.5 12.9 0.43 0.81 1.56 Stratif. Summer
7 16 Jul–19 Jul 2002 95 3% 63.0 20.2 0.71 1.50 2.08 Conv. Summer
8 29 Dec–3 Jan 2003 143 17% 59.4 8.4 0.51 0.67 1.37 Stratif. Winter
9 7 Sep–11 Sep 2003 119 12% 52.9 14.8 0.51 1.29 1.90 Conv. Summer
10 3 Oct–9 Oct 2003 167 21% 32.7 8.9 0.25 0.69 1.94 Conv. Summer
11 11 Dec–16 Dec 2003 143 36% 37.7 7.9 0.41 0.73 1.55 Stratif. Winter
12 28 Jan–2 Feb 2004 143 22% 25.7 5.2 0.23 0.58 1.71 Conv. Winter
13 1 May–7 May 2004 167 20% 45.5 13.1 0.34 0.88 2.16 Conv. Summer
14 15 Nov–22 Nov 2004 191 19% 48.4 5.1 0.31 0.55 1.63 Stratif. Winter
16 3 May–7 May 2005 119 33% 23.6 14.3 0.31 0.75 2.00 Conv. Summer
17 20 Jul–23 Jul 2005 95 23% 27.0 6.8 0.37 0.90 1.69 Stratif. Summer

assumed to be spatially constant over the study area. The
spatial resolution of the luv/lee index was of special interest
though. The precipitation occurrence is usually affected by
larger-scale climatologic characteristics. A small DEM res-
olution was not appropriate in this case, given that it would
indicate luv cells in an overall lee area and vice versa through
its dependence on the slope direction. To find the optimal
resolution of the digital elevation model regarding derivation
of topographic indices, the cellsize was changed, but with
the condition of keeping the same extent. This procedure re-
sulted in a cell size of 5.75 km× 5.75 km for the luv/lee index
showing the highest correlation to observed precipitation.
The subsequent downscaling of the index to the 1 km× 1 km
resolution for the precipitation interpolation task was carried
out with a bilinear resampling technique.

The second type of additional information concerns time-
variant daily rainfall data from the non-recording stations.
Three different versions were distinguished here: (a) rain-
fall data were used on the daily basis as measured (Pdaily),
(b) daily rainfall values were accumulated up to the current
interpolation time step (Pcum), and (c) rainfall data were ag-
gregated to event sums (Pevent). The data were spatially in-
terpolated with the inverse distance method (IDW). Another
alternative would have been the application of ordinary krig-
ing (OK). However, due to the dense network of daily sta-
tions the differences were expected to be low and the simpler
procedure has been applied here.

As third type of additional information for KED the highly
dynamic time-variant radar data were employed. The high
spatial resolution of radar data is most valuable in combi-
nation with KED. For processing of radar data it should be

noted that those data were used here only as background field
and not independently as primary rainfall information. A
good correlation between hourly rainfall from the recording
stations and radar information was therefore more important
than an optimal adjustment or unbiased estimation of radar
rainfall.

Radar observations from the C-band instrument at “Um-
mendorf” were provided as raw reflectivities with a spatial
polar resolution of 1 km× 1 km azimuth and a time discreti-
sation of 5 min (dx-product of the German Weather Service,
DWD). A statistical clutter filter was applied by the DWD on
the raw data already. Prior to a transformation into rainfall
intensities missing radar values were filled by interpolation
and a circle with clutter close to the location of the radar in-
strument was cut out from the study area. Afterwards, the
reflectivities were transformed into rainfall intensities apply-
ing the well-knownZ−R relationship:

Z = a · Rb, (12)

whereZ is the reflectivity in mm6 m−3 andR is the rain-
fall intensity mm/h. The parameters were set toa = 200 and
b = 1.60 constantly for each time step and for all events ac-
cording to the standard Marshall-PalmerZ−R relationship.

Both reflectivities and rainfall intensities were used here
as additional variables for KED. The variables were interpo-
lated on a regular raster with a resolution of 1 km× 1 km as
follows. If more than one radar observation in polar coordi-
nates belongs to a raster cell, the radar data were averaged.
In case no radar point falls into a raster cell, which occurs
at further distances from the radar origin, the value of the
nearest neighbour was allocated to the particular raster cell.
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Finally, the 5 min time step data were aggregated to hourly
values.

Table 2 shows estimated average correlations between
rainfall at all recording stations and radar rainfall at the corre-
sponding cells for each event. Correlations range from 0.28
to 0.93 depending on the specific event with an overall aver-
age of 0.70. This indicates that radar data could be expected
to be a useful additional variable for KED.

Using radar data directly as rainfall information an atten-
uation correction is strongly recommended (Krämer, 2008;
Illingworth, 2004). When using radar data as background
field for interpolation as applied in this case, the importance
of attenuation correction is not so clear. In order to evaluate
the influence of attenuation correction, a simple test was car-
ried out as follows. In addition, the transformations into radar
rainfall intensities were carried out with a uniform non-linear
attenuation correction for all time steps and for all events ac-
cording to Kr̈amer (2008). The correlation between precipi-
tation at all recording stations and attenuation corrected radar
rainfall intensities was calculated and is shown in Table 2.
The effect of a uniform non-linear attenuation correction on
the correlations was negligible. So, it could be omitted when
using KED for interpolation.

4 Analyses and results

4.1 Variogram inference and impact on interpolation

Semivariograms were inferred from radar data rainfall due
to the higher resolution in space compared to the record-
ing stations. One thousand randomly selected radar cells
based on the 1 km× 1 km grid were used for the estima-
tion of experimental semivariograms. Comparative simu-
lations have shown that this number represents the spatial
precipitation structure sufficiently. In order to put more
weight on time steps with significant precipitation, the es-
timation of experimental semivariograms was applied only
for time steps exceeding an average radar rainfall threshold
of 0.5 mm h−1. For some smaller events, the threshold was
lowered to 0.25 mm h−1. With higher thresholds not enough
time steps would have been available for some events due to
the systematic rainfall underestimation by radar.

Precipitation cross-validation was carried out for each
event evaluating the influence of the different variogram
types as described in Sect. 2.1. The methods ordinary krig-
ing (OK) and kriging with external drift (KED) in their orig-
inal versions were applied for this interpolation task. For
the latter only the radar rainfall intensities were used as addi-
tional variable. The root mean square error standardized with
the observed average (RMSE) served as a performance indi-
cator. The cross-validation exercise was applied for all time
steps with an average precipitation intensity of the record-
ing stations exceeding a rainfall threshold of 1.0 mm h−1. In
order to still focus on time steps with heavy precipitation,

Table 2. Correlation between precipitation at all recording-stations
and radar rainfall intensities for time steps exceeding a threshold of
1.0 mm/h of average precipitation.

Event No. w/o attenuation with attenuation Time steps
correction correction

2 0.93 0.93 4
3 0.46 0.41 4
4 0.72 0.72 8
5 0.82 0.84 23
6 0.83 0.84 7
7 0.80 0.81 24
8 0.53 0.54 21
9 0.68 0.65 19

10 0.53 0.51 6
11 0.73 0.74 14
12 0.63 0.63 2
13 0.69 0.71 6
14 0.28 0.30 7
16 0.54 0.55 6
17 0.77 0.75 10

Avg. 0.698 0.699 159

the threshold had to be raised here in comparison to the case
when using radar data alone.

Event-specific isotropic experimental semivariograms
were estimated for each event. The manually estimated pa-
rameters nugget, range and sill for a spherical model are
listed in Table 3. The detected low nugget effects are prob-
ably related to the used dense network of radar data con-
sidering one thousand randomly selected radar cells. Fur-
thermore, averaged variogram parameters for summer and
winter as well as in total were calculated. Although the
averaging of theoretical variogram parameters is rather un-
usual it provided a straightforward way to estimate mean var-
iograms. Comparisons have shown, that a mean experimen-
tal variogram calculated over all events matches well with a
mean theoretical variogram based on averaged parameters.
In Fig. 2 event-specific isotropic experimental and theoreti-
cal semivariograms for two selected precipitation events of
different types are presented. The summer events and con-
vective storms showed generally shorter range and higher
sill compared to winter events and frontal storms. For in-
stance, the range of the frontal rainfall event no. 14 was
with a = 115 km more than twice as large as the range of the
convective summer storm event no. 16 witha = 45 km. The
low nugget effect is clearly visible for both events. Compar-
ing semivariograms for different directions, zonal anisotropy
was visible for all events. Figure 3 shows an example, where
the higher sill has an azimuth angle of 90◦, while the greater
range was found in the north-south direction. This behaviour
corresponded to the general weather pattern with storms usu-
ally moving from west to east over the region.
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Table 3. Estimated semivariogram parameters considering a spherical model for each event, averaged over seasons and averaged over all
events (sill is standardised with variance; only time steps with radar rainfall intensity>1 mm h−1 are used for variogram estimation).

Winter Summer

Event Nugget Sill Range Time Event Nugget Sill Range Time
No. [km] steps No. [km] steps

3 0.00 1.250 72 8 2 0.00 0.850 43 9
8 0.00 1.300 80 10 4 0.00 0.850 50 7

11 0.00 1.075 65 7 5 0.03 0.770 53 15
12 0.00 1.150 71 9 6 0.00 1.000 62 7
14 0.00 1.200 115 13 7 0.00 0.850 53 17

9 0.00 1.050 62 18
10 0.00 1.125 91 6
13 0.00 0.950 45 9
16 0.00 1.050 45 4
17 0.00 0.550 68 10

Avg.: 0.00 1.202 84 47 Avg.: 0.00 0.887 57 102

Nugget Sill Range
[km]

Total 0.00 0.986 65
avg.
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Fig. 2. Experimental and theoretical semivariograms for two pre-
cipitation events.

A comparison of interpolation performance for the differ-
ent variogram types is shown in Figs. 4 and 5 using cross-
validation based on the methods OK and KED. Generally, the
choice of method to calculate the semivariogram had only a
small impact on prediction performance. It could even be no-
ticed that for some events interpolation performs better when
using an “assumed linear” variogram compared to specifi-
cally estimated variograms. Nevertheless, for the major part
of events the specific variograms were the better choice.
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Fig. 3. Directional experimental and theoretical semivariograms for
event 9 showing zonal anisotropy (0◦: north-south; 90◦: east-west).

Being more precise regarding the differences between the
selected variogram types, it was difficult to identify which
variogram type shows the best performance as it varied from
event to event. This was the case for both interpolation meth-
ods OK and KED. In addition, the relative performance of
a specific variogram often changed with the applied inter-
polation method. A comparison of averaged RMSE values
over all events is shown in Table 4. It indicated that the
“assumed linear” variogram was slightly worse than specific
semivariograms. However, it was hard to determine which
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Fig. 4. RMSE difference between the selected variogram type and
an “assumed linear” variogram, averaged over time steps with mean
precipitation intensity exceeding a threshold of 1.0 mm h−1. OK is
used for interpolation.

specific variogram type was the best overall, since the abso-
lute RMSE differences were very small (Table 4). The use of
an averaged isotropic semivariogram seemed therefore suf-
ficient, while the proposed automatic estimation method did
not lead to further improvements. Figure 6 confirms the re-
sults from the cross-validation showing the spatial distribu-
tion of precipitation for one hour on the 17 July 2002 inter-
polated with OK based on the diverse semivariograms. Us-
ing specific semivariograms the spatial pattern looked simi-
lar, while an ‘assumed linear’ type produced a different and
smoother map.

4.2 Interpolation using different additional information

Spatial interpolation of hourly precipitation was carried out
with the average isotropic semivariogram (see Table 3).
Here, the focus was on the evaluation of different versions of
the multivariate geostatistical method kriging with external
drift (KED) as described in Sect. 2.2. The univariate interpo-
lation methods inverse distance weighting (IDW) and ordi-
nary kriging (OK) were used as reference. The interpolation
performance was assessed on the basis of cross-validations
(see Sect. 2.3) including all 15 events, but only time steps
exceeding a threshold 1.0 mm h−1 of average precipitation
intensity as for the variogram cross-validations. The perfor-
mance indicators RMSE and RVar were averaged over sum-
mer and winter events weighted by the number of time steps
for each event. The interpolation variants were separated into
four cases: (a) reference methods IDW and OK, (b) KED
interpolation without using weather radar as additional in-
formation, (c) KED interpolation using radar reflectivities as
central additional information and (d) KED interpolation us-
ing radar rainfall as central secondary variable. Considering
the conditional version of KED, tests showed that a corre-
lation threshold of 0.5 for interpolation without radar data
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Fig. 5. RMSE difference between the selected variogram type and
an “assumed linear” variogram, averaged over time steps with mean
precipitation intensity exceeding a threshold of 1.0 mm h−1. KED
with radar rainfall intensities is used for interpolation.

Table 4. Interpolation performance from cross-validation of the var-
ious variogram types with respect to RMSE criterion, averaged over
all events and time steps exceeding a threshold of 1.0 mm h−1 of av-
erage precipitation.

Semivariogram type OK KED

Event isotropic 0.985 0.821
Event anisotropic 0.983 0.816
Automatic isotropic 0.984 0.819
Season-type isotropic 0.982 0.816
Average isotropic 0.976 0.817
Assumed linear 0.997 0.840

and 0.3 for interpolation with radar data produced the lowest
RMSE, which were therefore applied here. Higher thresh-
olds reduced the number of cases when KED is applied,
while at lower thresholds instabilities in the KED kriging sys-
tem prevented better results. Theoretically KED should be
equivalent to OK if there is no correlation between primary
and secondary variables. However, experimental evidence
showed that for some time steps with low correlation KED
resulted in significant worse performance than OK. Apply-
ing the conditional versions this could be avoided. Results of
precipitation cross-validation are shown in Table 5 for sum-
mer events and in Table 6 for winter events. Selected results
are visualised in Figs. 7 and 8, which are discussed in detail
as follows.

Using elevation as additional information for KED gen-
erally did not show a reduction of the RMSE in compari-
son with OK. Neither a transformation in the form of log-
arithm or square-root of the additional variable nor inter-
polation in the conditional version improved the interpola-
tion performance compared to OK for summer events. Only
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Fig. 6. Spatial distribution of precipitation in mm h−1 for one hour between 06:00 p.m. and 07:00 p.m. on the 19 July 2002 interpolated with
OK, but different semivariogram types.

in the conditional version for winter events a marginal im-
provement was detected (Table 6, B1). A conclusion which
types of rainfall benefit from KED interpolation with eleva-
tion, could not be made in this study. One reason for the
weak correlation between precipitation and elevation is cer-
tainly the short hourly time step. Similar results were ob-
tained for summer using the luv/lee index as additional in-
formation, while for winter storms a significant reduction of
the RMSE was achieved (Table 6, B2).

The most valuable additional information for interpola-
tion without radar came from the daily precipitation net-
work favouring daily rainfall amounts, followed by cumu-
lated multi daily rainfall and event rainfall. Either version
was clearly preferred to the other additional variables no mat-
ter for which season. The RMSE could further be reduced by
the logarithmic transformation ofPdaily in combination with
conditional KED, but mainly for winter events. However,
the variance was preserved significantly less (Tables 5 and 6,
B7). The best performance was achieved with the applica-
tion of the multi-step procedure. Due to the better discrim-
ination of regions with and without rainfall, the RMSE was
smaller no matter what additional variable was used. In ad-
dition, the variance of the observed rainfall was preserved
better. The disadvantage of producing a negative bias using
this method (see Sect. 2.2) was not a problem here as can be
seen from Tables 5 and 6. Only for the cases D using radar
rainfall as additional variable a small negative bias occurred.
Even if time steps with rainfall smaller than 1.0 mm h−1 were

included in cross-validations, the negative bias did not in-
crease. However, regarding spatial interpolation, a loss of
total precipitation volume needs to be considered. The use
of more than one additional variable for cases without radar
showed no improvement compared to the application of each
additional variable alone. This was true for both seasons.

The fact that the elevation did not contribute to a better
interpolation performance was related possibly to the short
time step and to the topography of the study area. Over three
quarters of the recording stations were located in flat terrain
and the average correlation between rainfall and elevation
or luv/lee index was only 0.32 and 0.16, respectively. The
daily stations were available from a dense network showing
a stronger average correlation of 0.61 to the hourly rainfall
data. However, the daily rainfall data are not available for
real-time applications like operational flood forecasts.

Comparing summer and winter events up to this step the
relative reduction of the RMSE with the methods above
turned out to be similar. However, the absolute values of the
RMSE were almost twice as high for summer events. The
RVar indicated a higher preserved variance of the observed
values during winter.

Finally, radar data were employed as additional informa-
tion for KED in form of reflectivities as well as rainfall in-
tensities (see Sect. 3.2). Applying raw reflectivities as only
secondary information for summer events, a significant im-
provement was made if rainfall as primary and reflectivities
as secondary variable were both log transformed (Table 5,
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Table 5. Precipitation cross-validation results using all summer events averaged over time steps with an average precipitation exceeding a
threshold of 1 mm h−1 (“log”: all Yk are log-transformed, “log-log”: bothZ and allYk are log-transformed; highlighted no. are presented in
Fig. 7).

No. Interpolation Add. Add. Transform. Conditional Multi- Bias RMSE RVar
Method Var. 1 Var. 2 Step [mm h−1

] [−] [−]

A1 IDW 0.114 1.140 0.520
A2 OK 0.096 1.091 0.300
A3 OK x −0.051 1.082 0.342

B1 KED Elevation x 0.054 1.101 0.243
B2 KED Luv/Lee x 0.066 1.103 0.212
B3 KED P daily 0.071 1.053 0.427
B4 KED P daily x −0.100 1.038 0.463
B5 KED P daily x 0.058 1.034 0.383
B6 KED P daily log 0.074 1.041 0.384
B7 KED P daily log x 0.068 1.036 0.347
B8 KED P daily log x −0.103 1.026 0.422

C1 KED RadarZ log-log −0.123 0.860 0.670
C2 KED RadarZ log-log x −0.149 0.859 0.686
C3 KED RadarZ Elevation log-log −0.122 0.853 0.675
C4 KED RadarZ P daily log-log −0.096 0.828 0.723
C5 KED RadarZ P daily log-log x −0.096 0.828 0.723
C6 KED RadarZ P daily log-log x −0.125 0.826 0.739

D1 KED RadarR 0.094 0.886 0.800
D2 KED RadarR Elevation 0.080 0.881 0.830
D3 KED RadarR x −0.027 0.875 0.871
D4 KED RadarR x 0.088 0.863 0.734
D5 KED RadarR log 0.061 0.848 0.659
D6 KED RadarR P daily 0.115 0.858 0.870
D7 KED RadarR P daily x 0.110 0.854 0.859
D8 KED RadarR P daily x x −0.020 0.835 0.915
D9 KED RadarR P daily log 0.096 0.833 0.689
D10 KED RadarR P daily log x x −0.005 0.819 0.733

E1 Radar only −1.112 1.148 –

C1). This leads to a linearization of theZ −R relationship
(Eq. 12) and satisfies the basic assumption of KED (Eq. 7).
In case of interpolation on log-transformed valuesy, the
estimated values were back-transformed taking exp(y) be-
fore calculating performance measures. With interpolation
on log-transformed values, problems with biased results may
occur. The exponentiation in the back-transformation pro-
cess exponentiates any errors, which is very sensitive to in-
terpolation outliers. However, in this case the results seemed
not to be affected by that as the cross-validation showed val-
ues of the bias in the same magnitude as for interpolation
methods without log-transformed data. In case of winter
events (Table 6) the use of reflectivities as additional infor-
mation did not lead to an increase in performance compared
to using daily rainfall. A further reduction of the RMSE
could be achieved ifPdaily was added as another additional
variable (Tables 5 and 6, C4). Elevation led to a higher

preserved variance, but only in winter (Table 6, C3). The
conditional version was without effect if all variables were
log transformed (Tables 5 and 6, C5).

Using rainfall intensities as additional information for
KED (Table 5, D1), the RMSE was a bit larger than for
the case with log-log transformed reflectivities (Table 5, C5),
while the indicator for preserved variance rose. In case of
winter events (Table 6) using rainfall intensities likewise an
increase in performance was not detectable in comparison to
the application of daily rainfall as external drift. Adding an-
other secondary variable besides radar, only daily rainfall led
to a further reduction of the RMSE and a significant higher
preserved variance of the estimated values, which was the
case for both seasons (Tables 5 and 6, D6). Neither elevation
nor the luv/lee index was valuable in combination with radar
data in this case. Solely the variance of the estimated rainfall
was higher with elevation or the luv/lee index as additional

www.hydrol-earth-syst-sci.net/15/569/2011/ Hydrol. Earth Syst. Sci., 15, 569–584, 2011



580 A. Verworn and U. Haberlandt: Spatial interpolation of hourly rainfall – effect of additional information

Table 6. Precipitation cross-validation results using all winter events averaged over time steps with an average precipitation exceeding a
threshold of 1 mm h−1 (“log”: all Yk are log-transformed, “log-log”: bothZ and allYk are log-transformed highlighted no. are presented in
Fig. 8).

No. Interpolation Add. Add. Transform. Conditional Multi- Bias RMSE RVar
Method Var. 1 Var. 2 Step [mm h−1

] [−] [−]

A1 IDW 0.084 0.710 0.599
A2 OK 0.087 0.699 0.395
A3 OK x 0.066 0.702 0.419

B1 KED Elevation x 0.033 0.690 0.432
B2 KED Luv/Lee x 0.055 0.653 0.367
B3 KED P daily 0.078 0.646 0.799
B4 KED P daily x 0.054 0.647 0.825
B5 KED P daily x 0.070 0.625 0.726
B6 KED P daily log 0.066 0.589 0.633
B7 KED P daily log x 0.066 0.590 0.623
B8 KED P daily log x 0.040 0.586 0.658

C1 KED RadarZ log-log −0.065 0.601 0.594
C2 KED RadarZ log-log x −0.081 0.599 0.624
C3 KED RadarZ Elevation log-log −0.057 0.606 0.697
C4 KED RadarZ P daily log-log −0.030 0.534 0.917
C5 KED RadarZ P daily log-log x −0.030 0.534 0.917
C6 KED RadarZ P daily log-log x −0.046 0.535 0.942

D1 KED RadarR 0.056 0.657 0.652
D2 KED RadarR Elevation 0.016 0.664 0.755
D3 KED RadarR x −0.044 0.660 0.826
D4 KED RadarR x 0.054 0.654 0.590
D5 KED RadarR log 0.043 0.634 0.611
D6 KED RadarR P daily 0.056 0.581 0.927
D7 KED RadarR P daily x 0.056 0.581 0.927
D8 KED RadarR P daily x x −0.037 0.596 1.082
D9 KED RadarR P daily log 0.042 0.531 0.776
D10 KED RadarR P daily log x x −0.043 0.546 0.913

E1 Radar only −0.886 0.980 –

variable while the RMSE remained almost constant (Tables 5
and 6, D2).

A log-transformation of the rainfall intensities only
showed an improvement regarding RMSE for both seasons
(Tables 5 and 6, D5). The criterion RVar dropped notably
when using log-transformed radar rainfall intensities alone
as well as in combination with the daily rainfall. The ad-
vantage of the conditional version was barely detectable for
rainfall intensities in cross-validations because of the high
rainfall intensity threshold of 1.0 mm h−1 selected (Tables 5
and 6, D4). The RVar coefficient decreases due to the use of
ordinary kriging for the rare time steps when the correlation
between recording stations and radar rainfall intensities were
below the threshold of 0.3.

The benefit of the multi-step interpolation procedure in
combination with radar data was expected to be less in com-
parison to the cases without radar due to the higher spatial

resolution of the former. In case of radar reflectivities no im-
provements regarding RMSE and RVar were observed, but
for rainfall intensities RVar was significantly improved, es-
pecially for winter events.

Considering both RMSE and RVar the best overall in-
terpolation performance for summer and winter seasons
was achieved using KED either with radar reflectivities and
daily rainfall with all variables being log transformed in
a multi-step interpolation mode (Tables 5 and 6, C10) or
with log transformed radar rainfall intensities and log trans-
formed daily rainfall in conditional and multi-step interpola-
tion mode (Tables 5 and 6, D10). For summer events radar
data were the most valuable additional information by far
(Fig. 7). If radar data were absent, only using daily rain-
fall as secondary variable could improve the interpolation
performance in comparison with the univariate method OK.
However, Fig. 8 clearly shows that for winter events with
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Fig. 7. Precipitation cross-validation results using all summer events averaged over time steps with average precipitation exceeding a
threshold of 1 mm h−1 for selected interpolation methods (red bars: univariate methods; yellow bars: KED without radar; green bars: KED
with radar reflectivities; blue bars: KED with radar rainfall intensities; grey bars: RVar coefficient, black bar: radar rainfall intensities only).

Fig. 8. Precipitation cross-validation results using all winter events averaged over time steps with average precipitation exceeding a threshold
of 1 mm h−1 for selected interpolation methods (red bars: univariate methods; yellow bars: KED without radar; green bars: KED with radar
reflectivities; blue bars: KED with radar rainfall intensities; grey bars: RVar coefficient; black bar: radar rainfall intensities only).

stratiform precipitation structures radar data were not really
necessary. Almost the same performance could be achieved
using KED with the daily rainfall as drift variable.

In addition, the potential value of using radar data directly
as rainfall without calibration was evaluated. For that no
cross-validation is carried out, but a direct comparison of
radar rainfall with observed gauge rainfall (case E1 in Ta-
bles 5 and 6 as well as in Figs. 7 and 8). The direct utili-
sation of radar rainfall showed the worst performance, espe-
cially for stratiform winter events. The negative bias revealed
a strong underestimation of observed rainfall.

Comparing the RMSE values from Tables 5 and 6 it can
be seen, that for summer events the RMSE is significantly
larger than for winter events. The large RMSE values, espe-
cially in summer, show the overall high uncertainty in hourly
precipitation interpolation.

In Fig. 9 maps are presented showing the spatial distribu-
tion of hourly precipitation interpolated using selected meth-
ods exemplarily for one hour on the 17 July 2002. While
the application of OK (A2) shows quite a smooth map as
expected, the addition of the daily rainfall (B3) did not sig-
nificantly improve the representation of the spatial precipi-
tation pattern. This was related to the low correlation be-
tween primary and additional variable (0.24) for this time
step. Only when radar data were used as additional informa-
tion for KED, the complex spatial structures of precipitation
appeared in the maps. For the log-log transformed case with
reflectivities (C1) the local extremes were most pronounced
which might be a negative artefact of the transformation. Us-
ing radar rainfall intensities in combination with the digital
elevation model (D2), the mapping seemed slightly improved
regarding the sharper differentiation of spatial structures in
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Fig. 9. Spatial distribution of precipitation in mm/h for one hour between 06:00 p.m. and 07:00 p.m. on the 17 July 2002 interpolated with
different methods (variant number see Table 5).

comparison to the case without elevation (D1). If radar rain-
fall intensities and daily rainfall were employed in combina-
tion with the multi-step procedure (D8), the no rainfall frac-
tion in the region was largest, which is in most cases desir-
able. Geostatistical interpolation methods usually lead to a
spatial smoothing of the rainfall distribution with underesti-
mation of high values und overestimation of low values. Es-
pecially, no rain areas become rainy areas with low precipi-
tation intensities after interpolation. These smoothing effects
are not wanted for flood simulation.

5 Summary and conclusions

In this study first the effect of using different approaches for
estimating semivariograms on the spatial interpolation per-
formance of hourly precipitation was assessed. Furthermore,
different versions of kriging with external drift (KED) us-
ing additional information from physiographic factors, from
the daily rainfall measurement network and especially from
weather radar were investigated. The main results and con-
clusions can be summarised as follows:

– The impact of different semivariogram types on the pre-
cipitation interpolation performance was low. Neverthe-
less, the performance varied over the events, whereas
the event-specific types showed on average no improve-
ments in comparison with average types. However, the
worst performance was found for the simple “assumed
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linear” type. Using an average semivariogram seemed
therefore sufficient for this kind of interpolation.

– Weather radar data proved to be the most valuable ad-
ditional information for KED for convective summer
events. When using reflectivities both primary and sec-
ondary variable should be log transformed. A uni-
form non-linear attenuation correction applied on the
raw radar data did not improve the interpolation perfor-
mance.

– For stratiform winter events daily rainfall as additional
information was sufficient, while radar data did not sig-
nificantly contributed to a better interpolation perfor-
mance. Generally, in absence of radar data the use of
rainfall from the daily network as secondary variable
was recommended.

– Using KED with additional variables like elevation or
luv/lee index could hardly improve the interpolation
performance according to the cross-validation results
compared with the univariate method ordinary krig-
ing (OK). However, when including topography, spatial
distributions of precipitation showed sharper differenti-
ations of spatial structures, which seemed more plausi-
ble. So, the use of additional information from topogra-
phy can generally be recommended.

– Applying log-transformations only on the additional
variables except for radar reflectivities the interpolation
performance could be further improved, although the
preserved variance decreased.

– The application of the multi-step procedure signifi-
cantly contributed to a better representation of fractional
precipitation coverage.

This study was conducted on the basis of 15 flood events
caused by precipitation of different characteristics with
hourly discretisation in time. It is expected, that the main
findings regarding precipitation interpolation performance
will generally hold for other events and also for similar re-
gions. For mainly mountainous regions additional informa-
tion from topography and climatology might have a greater
influence on the precipitation interpolation performance as in
this case. In subsequent work investigations should extend to
other regions with different characteristics as well as to anal-
yses with different time resolutions. The hydrological vali-
dation of the interpolation performance using rainfall-runoff
modelling is in progress for selected catchments within this
study area and will be reported elsewhere.
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Gómez-Herńandez, J.: A non-parametric automatic blending
methodology to estimate rainfall fields from rain gauge and radar
data, Adv. Water Resour., 32, 986–1002, 2009.

Wackernagel, H.: Multivariate Geostatistics, Springer-Verlag,
Berlin, Heidelberg, Germany, 1995.

Webster, R. and Oliver, M. A.: Geostatistics for Environmental Sci-
entists, John Wiley & Sons, Chichester, 2001.

Hydrol. Earth Syst. Sci., 15, 569–584, 2011 www.hydrol-earth-syst-sci.net/15/569/2011/

http://dx.doi.org/10.5194/hess-13-195-2009
http://dx.doi.org/10.5194/hess-13-195-2009
http://dx.doi.org/10.5194/hess-15-171-2011
http://dx.doi.org/10.5194/hess-15-171-2011

