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Abstract. The linear unit hydrograph used in hydrologic de-
sign analysis and flood forecasting is known as the trans-
fer function and the kernel function in time series analysis
and systems theory, respectively. This paper reviews the use
of an input-dependent or variable kernel in a linear convo-
lution integral as a quasi-nonlinear approach to unify non-
linear overland flow, channel routing and catchment runoff
processes. The conceptual model of a variable instanta-
neous unit hydrograph (IUH) is characterized by a nonlin-
ear storage-discharge relation,q = cN sN , where the storage
exponentN is an index or degree of watershed nonlinearity,
and the scale parameterc is a discharge coefficient. When
the causative rainfall excess intensity of a unit hydrograph is
known, parametersN andc can be determined directly from
its shape factor, which is the product of the unit peak ordinate
and the time to peak, an application of the statistical method
of moments in its simplest form. The 2-parameter variable
IUH model is calibrated by the shape factor method and ver-
ified by convolution integral using both the direct and in-
verse Bakhmeteff varied-flow functions on two watersheds of
vastly different sizes, each having a family of four or five unit
hydrographs as reported by the well-known Minshall (1960)
paper and the seldom-quoted Childs (1958) one, both located
in the US. For an 11-hectare catchment near Edwardsville in
southern Illinois, calibration for four moderate storms shows
an averageN value of 1.79, which is 7% higher than the
theoretical value of 1.67 by Manning friction law, while the
heaviest storm, which is three to six times larger than the
next two events in terms of the peak discharge and runoff vol-
ume, follows the Chezy law of 1.5. At the other end of scale,
for the Naugatuck River at Thomaston in Connecticut hav-
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ing a drainage area of 186.2 km2, the average calibratedN
value of 2.28 varies from 1.92 for a minor flood to 2.68 for a
hurricane-induced flood, all of which lie between the theoret-
ical value of 1.67 for turbulent overland flow and that of 3.0
for laminar overland flow. Based on analytical results from
the small Edwardsville catchment, the 2-parameter variable
IUH model is found to be defined by a quadruplet of pa-
rametersN , c, the storm duration or computational time step
1t , and the rainfall excess intensityi(0), and that it may be
reduced to an 1-parameter one by defaulting the degree of
nonlinearityN to 1.67 by Manning friction. For short, in-
tense storms, the essence of the Childs – Minshall nonlinear
unit hydrograph phenomenon is encapsulated in a peak flow
equation having a single (scale) parameterc, and in which
the impact of the rainfall excess intensity increases from the
linear assumption by a power of 0.4. To illustrate key steps
in generating the direct runoff hydrograph by convolution in-
tegral, short examples are given.

1 Introduction

In a comprehensive survey of similarities and contrasts be-
tween analyses of hydrologic elements and processes over a
very large range of scales, Dooge (2005) makes a convincing
case that progress in analysis has been made through simpli-
fication of these complex processes. He advocates a strategy
based on arigorous analysis of simplified equations of mo-
tion (emphasis added). According to him, a wide range of
forms of simplification has been used in hydrology, includ-
ing: reducing the number of independent and dependent vari-
ables, and of parameters, such as by the dimensional anal-
ysis; and simplifying the basic equations. He cites previ-
ous studies on, among others, overland flow, flood routing in
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406 J. Y. Ding: Interpreting a variable instantaneous unit hydrograph model

channels, and catchment runoff processes. Specifically, he
reviews the work of Amorocho and Orlob (1961) on labora-
tory experiments of overland flow, and of Minshall (1960) on
unit hydrographs on a small experimental watershed.

The purpose of this paper is to present an additional ap-
proach of simplification or approximation that the author has
found useful, over his professional life of some 30 years,
in unifying concepts behind these and other nonlinear pro-
cesses in the context of rainfall excess – direct runoff mod-
elling. In essence, this involves the use of an input-dependent
or nonlinear kernel in a linear convolution integral, a relax-
ation of the principle of superposition in linear systems. The
concept of variable kernel or instantaneous unit hydrograph
(IUH) will be reviewed, and the parameters reinterpreted.
The classical example of the Minshall (1960) nonlinear unit
hydrograph data on a small watershed in southern Illinois,
the United States, will be analyzed using the variable IUH
model to determine the degree of nonlinearity and scale pa-
rameter. Another set of unit hydrograph data from an earlier
study by Childs (1958) on a large Naugatuck River in Con-
necticut, the United States, will be re-examined to determine
its nonlinearity.

It is hoped this fresh look at two sets of some 50-year
old unit hydrograph data from a nonlinear perspective will
help identify areas for research by younger generations. Al-
though the concept of nonlinear systems is not much diffi-
cult to grasp than that of linear ones, it is found much harder
to carry out numerical analysis for even a simple nonlinear
system, such as the 2-parameter variable IUH model, charac-
terized by a nonlinear storage-discharge relation,q = cN sN .
Because of the presence of the exponentN , it is rather con-
fusing, even to the author, to convert variables and parame-
ters from one set of measurement units to another, short ex-
amples will be given to illustrate key calculations.

2 Basic equations and assumptions for the overland
flow

For flow over a plane subjected to a constant rate of rainfall
excess, the continuity equation is expressed by:

ds

dt
= i −q (1)

wherei is the inflow rate in mm/dt or mm h−1, q is the out-
flow rate in mm/dt or mm h−1, s is the active or detention
storage in mm, andt is time in h.

The equation of motion is approximated by a nonlinear
storage-discharge relation:

q = cN sN (2)

where N is the storage exponent (dimensionless) known
as a shape parameter, andc is the discharge coefficient in
(mm/dt)1/N/mm or (mm h−1)1/N /mm, known as a scale pa-
rameter. (Please note that parameterc having the latter time

unit of hours now replaces the so-called standardizedCh used
extensively in the Discussion paper.)

For flow on a wide rectangular channel,N = 1.5 by Chezy
friction law, and 1.67 by Manning (Horton, 1938; Ding,
1967a; Dooge, 2005). In the case of laminar overland flow,
N = 3.0 (Horton, 1938; Izzard, 1946; Ding, 1967a). Note that
Horton used the depth of flow instead of the volume of water
in Eq. (2). The volume or storage is approximated by depth
times the surface area. ParameterN has been proposed by
Ding (1974) as an index or degree of nonlinearity for storage
elements.

Equation (2) is known as a kinematic wave approximation
to the equation of motion (Dooge, 2005). In the author’s
view, Eq. (2) may be looked at more appropriately as a sim-
plification of the Bernoulli energy equation, as it converts the
potential energy (s) of a storage element into a kinetic energy
(q) without loss. Therefore, some other form of the equation
of motion will have to be specified to account for the flow
acceleration.

In a review of overland flow data from laboratory exper-
iments by Amorocho and Orlob (1961), Dooge (2005) ob-
serves that if the laboratory system represents a wide rect-
angular channel with Manning friction, then the characteris-
tic time should be inversely proportional to the characteristic
discharge to a power of 0.4. His analysis of their experimen-
tal data shows a power of 0.3997, which is very close to the
theoretical value.

For a laboratory watershed having a converging surface
towards the outlet, Singh (1975), like Horton (1938) before
him, used the local depth of flow in Eq. (2):

q = ahN (3)

whereh is the depth of flow at the outlet, anda is a constant.
Based on data from 210 experimental runs for 50 geo-

metric configurations having varying physical characteristics
collapsed into seven groups of similar surface characteristics,
Singh (1975) found that parameterN is relatively stable, and
parametera is extremely sensitive to rainfall input character-
istics and surface composition, and that there exhibits a high
correlation between the two. He fixed theN value at 1.5 by
Chezy friction, which also led to a smaller variance of pa-
rametera. For the 1-parameter kinematic wave model, he
found the prediction error based on the hydrograph peak to
be well below 25%.

3 Similarity between channel routing and overland flow

The movement of a flood wave down a channel reach typ-
ically exhibits a looped storage-discharge relation, a char-
acteristic the well-known Muskingum model is capable
of simulating.
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The kinematic wave approximation, Eq. (2), can be modi-
fied to simulate the hysteretic phenomenon by adding a term
reflecting the rate of change in storage:

q = cN sN
−c1

ds

dt
(4)

wherec1 is a constant. Substitutingds/dt in Eq. (1) into
Eq. (4):

s =
1

c
[c1i +(1−c1)q]

1/N (5)

WhenN = 1, this reduces to the form of Muskingum model
(Ding, 1967b, 1974).

The 3-parameter, nonlinear form of Muskingum model
was evaluated by Gill (1978), Tung (1985) and Singh and
Scarlatos (1987). Gill (1978) used a segmented-curve
method to determine the three parameters on one test exam-
ple and found an optimalN value of 1/2.347. Tung (1985)
used four parameter optimization methods on the same test
example and found theN values varying from 1/1.7012 to
1/2.3470. Note these fractional exponents are contrary to that
of greater than unity as defined in connection with Eq. (2).

Singh and Scarlatos (1987) pre-set a moderately highN

value of 2.0, and found that the model’s accuracy depends
mainly on the scale parameterc, and unlike the linear case,
the weighting factorc1 is much less significant. They found
that the use of a lowerN of 1.33 would improve the per-
formance of the nonlinear model. A comparison by them
with the linear case using four sets of inflow-outflow data
shows that the nonlinear method is less accurate than its
linear counterpart.

The Singh and Scarlatos (1987) findings are indicative of
the stability problem associated with nonlinear analysis in
which the impact of the inflow rate is amplified by the degree
of system nonlinearity. It is noted that assessment on the ac-
curacy of linear or nonlinear form of Muskingum model is
complicated by the presence of local inflow along the river
reach, which affects the accuracy of the outflow data used for
calibration. The somewhat contradictory findings regarding
the degree of nonlinearity by these investigators point to the
need for verification by flume tests, similar to those for over-
land flow in Sect. 2 above, in a hydraulic laboratory where
the effects of local inflow can be eliminated or controlled.

Besides the looped storage-discharge relation, another
characteristic of the Muskingum model is the occurrence of
negative outflow rates at the beginning of the outflow hydro-
graph (e.g. Chang et al., 1983). This problem can be fixed by
imposing in Eq. (4) a non-negative condition forq, which,
depending on the ratio of the storage to its rate of change,
will define the size of computational time steps, generally
larger.

In passing, the variable IUH model, which was origi-
nally developed by Ding (1974) to simulate catchment runoff
process, has been extended by Tsao (1981) for use as a
flood routing model as well. This was also suggested by

Kundzewicz (1984) apparently unaware of his work which
appeared in Chinese literature.

4 Similarity between catchment runoff and overland
flow

The transformation of rainfall into runoff on small catch-
ments, a building block of watershed models, is probably the
most difficult problem to tackle in hydrology. A distinct fea-
ture of the process is the existence of a time lag observed on
most watersheds between a short, intense storm and the re-
sultant hydrograph peak. The pair of continuity equation and
the kinematic wave approximation (Eqs. 1 and 2) on their
own, however, fails to model this characteristic time.

From a review of the Horton (1938) and Izzard (1946) ex-
periments, Ding (1974) realized that the rising limbs of their
overland flow hydrographs are essentially a summation, S-
curve or S-hydrograph. This fact, apparently having been
overlooked by previous investigators, provides a conceptual
link to the catchment runoff process via a classical concept,
which states that the ordinate of an instantaneous unit hydro-
graph is the first derivative of an S-hydrograph normalized
by the rainfall excess intensity. Mathematically, the relation
between the two is expressed as follows:

u(t) =
1

i(0)

dq(t)

dt
(6)

whereu(t) is the IUH ordinate in h−1. Lesser known is
the fact that the variableu(t), representing the time rate of
change in discharge, reflects the flow acceleration. Because
of this, the IUH or, more precisely, the variable IUH which
retains the rainfall excess intensity term, may be considered
an alternate and simplified form of the equation of motion.

5 Catchment runoff process

For a special case of constant rainfall excess intensity over
an indefinite period of time, i.e.i(t) = i(0)> 0, Eq. (6) is a
differential form of the linear convolution integral with an
input-dependent or variable kernel:

q(t) =

∫ t

τ=0
i(t −τ)u[i(t −τ);τ ]dτ (7)

whereu[i(0); t ] is a nonlinear kernel associated with the
causative rainfall excess intensityi(0). For convenience,
u[i(0); t ] will be abbreviated asu(t), on the understanding
that the IUH ordinate depends on the causative rainfall ex-
cess intensity as well as the elapsed time.

Also note the difference between two related terms being
used in this paper. In terms of the measurements, the kernel
or IUH ordinate has only the time unit of h−1, and that of the
1t unit hydrograph used in engineering practice is produced
by oneunit of rainfall excess, i.e. 1 mm in this paper, thus
having an additional depth or volumetric unit as in mm h−1

or m3 s−1.
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Fig. 1. The Minshall family of unit hydrographs for the Ed-
wardsville, Illinois, watershed, USA. (Reprinted with permission
of ASCE.)

The use of an input-dependent kernel in the linear convo-
lution integral was proposed by Amorocho (1967) to simu-
late the systematic variation of the unit hydrographs observed
by Minshall (1960) as shown in Fig. 1. The latter showed
that on a 27.2-acre (11-hectare) experimental watershed near
Edwardsville in southern Illinois, there exists not a single
unit hydrograph, but a family of five, each dependent on its
causative rainfall intensity. (This watershed will be referred
to as the Edwardsville catchment.)

Similar phenomenon has been reported for medium-sized
watersheds as well. For example, two years prior to Min-
shall’s work, Childs (1958) presented an illuminating ex-
ample of nonlinear runoff response for the 71.9 sq. mi.
(186.2 km2) Naugatuck River at Thomaston in Connecticut.
He showed, in Fig. 2, a family of four 3-hour unit hydro-
graphs derived from flood records, in which as the flood peak
discharge increases from a low of 3200 c.f.s. (91 m3 s−1 ) to
a high of 41 600 c.f.s. (1178 m3 s−1 ), the latter caused by
Hurricane Diane in August 1955, the unit hydrograph peak
rate increases from approximately 3000 c.f.s. (85 m3 s−1) to
7400 c.f.s. (211 m3 s−1), and the peak time shortens from
9 h to 6.

The work of Minshall (1960) has been cited by many
studies as a classical case of nonlinear watershed response,
some of which were cited previously by Ding (1974). Since
then, other studies citing Minshall’s work include Overton
and Meadows (1976), Chen and Singh (1986), Singh (1988),
Robinson et al. (1995), Lee and Yen (2000), Cranmer et
al. (2001), Sivapalan et al. (2002), Kokkonen et al. (2004),
and Paik and Kumar (2004). By contrast, the work of Childs
(1958) has rarely been cited, Ashfag and Webster (2000) be-
ing a notable exception.

Fig. 2. The Childs family of unit hydrographs for the Naugatuck
River in Connecticut, USA. (Reprinted with permission of ASCE.)

6 Variable instantaneous unit hydrograph in catchment
runoff process

Equation (7) is a linear or 1-dimensional convolution in-
tegral having a variable kernel. It is of interest to note
that a 2-dimensional extension having an additional vari-
able kernel was proposed by Chen and Singh (1986). In
keeping with the Dooge (2005) strategy of simplification,
only the original 1-dimensional variable IUH model is re-
viewed in this paper. Detailed derivation of the model and
its properties can be found in the Ding (1974) paper. For
his personal retrospective on the development of the model
in the broader context of hydrologic modelling during the
second half of the last century, including other technical
details, the reader is invited to consult the 2-part consol-
idated response (http://www.hydrol-earth-syst-sci-discuss.
net/2/S1256/2006/hessd-2-S1256-2006.pdf).

6.1 Derivation of the variable IUH

The solution of Eqs. (1), (2) and (7) for a constanti(t) is a
pair of parametric equations having a dummy variablev:

u(t) = NcvN−1(1−vN )i1−1/N (0) (8)

t =
F(v,N)

ci1−1/N (0)
(9)
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Bakhmeteff function F(v,N)
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Fig. 3. The Bakhmeteff varied-flow function for three different de-
grees of watershed nonlinearity,N . N = 1.001 for nearly linear, 1.67
for moderately nonlinear, and 3.0 for highly nonlinear watersheds.

where

F(v,N) =

∫ v

v=0

dv

1−vN
(10)

F(v, N) is the well-known Bakhmeteff (1932) varied-flow
function. Conceptually,v is not a dummy variable, but a
normalized flow rate, [q(t)/i(0)]!/N .

Note in Eqs. (8) and (9), not only does the IUH ordinate
vary directly, but also the elapsed time inversely, with the
rainfall excess intensity to a power of (1–1/N) so that the
area under the IUH remains unity. The effect of parameterN

on the IUH shape is complicated by the fact that it amplifies
the impact of the rainfall excess intensity as well as having its
own. The effect of parameterc is straightforward, as it affects
the IUH ordinate directly and elapsed time inversely. The
fact that the elapsed time varies inversely with the intensity is
found making calibration of the nonlinear model less straight
forward than that of linear ones.

Substitutingu(t) in Eq. (8) into Eq. (7), the convolution
integral becomes:

q(t) = Nc

∫ t

τ=0
vN−1(1−vN )i2−1/N (t −τ)dτ (11)

Eqs. (9) and (11) constitute the 2-parameter, variable IUH
model.

6.2 Bakhmeteff varied-flow function

To calculate the value of the varied-flow function, Bakhme-
teff (1932) expands the integrand in Eq. (10) by the Taylor
series and sums the successive higher-order terms:

F(v,N) =

∞∑
p=1

v(p−1)N+1

(p−1)N +1
(12)

Rp ≤
vpN+1

pN +1
·

1

1−vN
(13)

whereRp is the residue of the series afterp number of terms.
He sets the residual error at less than or equal to 0.0005.

As an example of calculation, forN = 1.67 by Manning
friction and v = 0.473, the latter yields the IUH peak as
shown in Sect. 6.7 below:

F(0.473, 1.67) = 0.473+
(0.473)2.67

2.67
+

(0.473)4.34

4.34
+

(0.473)6.01

6.01
+

(0.473)7.68

7.68
+ ....

= 0.473+0.051+0.009+0.002+0.000= 0.535

Figure 3 shows the curves of the Bakhmeteff function for
three different degrees of nonlinearity. Note the function and
the time variablet are related linearly by Eq. (9). Thus the
Bakhmeteff function tracks or traces the rising limb of an
overland flow hydrograph.

6.3 Variable IUH peak characteristics

In Eq. (8), the peak ordinate of the IUH corresponds to the
maximum value of the dummy-variable factor,vN−1(1–vN ).
Maximizing the factor yields:

v(tp) =

(
N −1

2N −1

)1/N

(14)

wheretp is time to the peak.
Substitutingv(tp) in Eq. (14) into Eqs. (8) and (9), the peak

characteristics are expressed as follows:

u(tp) = Eci1−1/N (0) (15)

tp = tL =
F

ci1−1/N (0)
(16)

where:

E =
N2(N −1)1−1/N

(2N −1)2−1/N
(17)

F = F [v(tp), N] (18)

Note these peak functions depend on the value ofN only.
In Eq. (16),tp is the time to IUH peak measured from the

start of the rainfall-excess storm, andtL is the time to the
peak from the mid-point of rainfall excess, the latter known
as the basin lag or simply the lag. For the IUH in which1t

approaches zero,tp andtL are identical.
The product ofu(tp) and tp defines the shape of an IUH

and is known as a shape factor. Model calibration by using
the shape factor is a special, and the simplest, case of the
method of moments in which only the time to peak and the
peak ordinate are multiplied to calculate the statistical mo-
ment. Product of Eqs. (15) and (16) yields:

u(tp) · tp = u(tp) · tL = E ·F (19)

Note the IUH shape factor also is a function ofN only.
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6.4 Discretization of the variable instantaneous unit
hydrograph model

The variable IUH model and its peak characteristics summa-
rized above are mathematically derived treating the rainfall
excess – direct runoff transformation as a continuous pro-
cess. For application, the process will have to be sampled or
discretized along the time axis.

Equations (11) and (9) in the continuous form are approx-
imated by a discrete form as follows:

q(j) = Nc

j∑
k=0

i2−1/N (j −k+1/2)vN−1(1−vN )1t (20)

j =
F(v,N)

ci1−1/N (j −k+1/2)1t
(21)

where indicesj andk are non-negative integers.
In comparison with the original formulation given by Ding

(1974), there are two major differences worthy of noting.
Firstly, in accordance with Fortran programming language
convention, the index of a subscripted variable starts from
1, and not 0. This restriction is now removed. Secondly,
a time-shift factor of (1t /2) now applies to the time index
of the input variable,i(j1t). This accounts for the inherent
time-measurment lag that exists between the rainfall excess
input, which is accumulated from (j −1)1t to j1t having a
midpoint at (j −1/2)1t , and the direct runoff output,q(j1t),
measured at the time instant or pointj1t , even though both
are recorded at the same time point,j1t . Use of the time-
shift factor synchronizes the rainfall excess series with the
direct runoff one. See Fig. 2 for an illustration of the second
point. Notationally, at time zero,i(0) =i(1) in this paper.

Note the IUH as represented by Eqs. (7) to (19) thus be-
comes a1t-unit hydrograph (or1tUH for short). Since the
midpoint of the rainfall excess, rather than the starting point,
is more representative of the input variable,tL will be used as
a characteristic time. In a discrete form, the relation between
the time to peak and the lag time is:

tp =
1t

2
+ tL (22)

The IUH shape factor in Eq. (19) is now approximated by the
1tUH shape factor, which will be used to determine the de-
gree of nonlinearity for both the Edwardsville and Naugatuck
watersheds.

6.5 Conversion of the outflow rate

In applications of the variable IUH model, it has been found
more intuitive to express both the variables and parameters
in terms of the depth of water over the watershed. As a final
step in hydrograph synthesis, the outflow rateq in mm h−1 is
converted to a new variableQ having the familiar volumetric
units of m3 s−1. Let A be the watershed area in km2, the
relation between the two is:

Q = qA/3.6 (23)

6.6 Variable IUH equations for a unit pulse input

For direct runoff hydrograph generated by a single block
of rainfall excess and initially ignoring the time-shift factor,
i.e. i(j −k +1/2) = i(0) when indicesj = k, andi(j −k +

1/2) = 0 otherwise, Eqs. (11) and (9) become:

q(j) = Nci2−1/N (0)vN−1(1−vN )1t (24)

j =
F(v,N)

ci1−1/N (0)1t
(25)

At the time to peak, by making use of Eqs. (14), (17), (18)
and (22), and putting back the time-shift factor of1t /2 into
the time indexj , the above reduce to the following:

q(jp) = Eci2−1/N (0)1t (26)

jp = 0.5+
F

ci1−1/N (0)1t
(27)

wherejp is a multiple of1t denoting the peak time.

6.7 Variable IUH by the Manning friction law

For N = 1.67 by Manning friction, the variable IUH
shape factor is calculated in several steps: by Eq. (14),
v(tp) = 0.473; Eq. (17),E = 0.722; Eq. (18),F = 0.535; and
finally by Eq. (19),u(tp)tL = 0.386. Table 1 lists some other
values of the IUH shape factor, which are extracted from a
VUH Model manual (Ontario Ministry of Natural Resources,
1983).

Let i(0) =RE/1t whereRE is the rainfall excess amount.
Substituting the values of peak functions,E and F , into
Eqs. (26) and (27) yields the following:

q(jp) = 0.722c(RE/1t)1.41t (28)

jp = 0.5+
0.535

c(RE/1t)0.41t
(29)

Equation (28) illustrates the relative effects on the peak dis-
charge, of the rainfall excess intensity, and then equally the
watershed discharge coefficient and the storm duration, if the
Manning friction law holds on a watershed. Other things be-
ing equal, given the same intensity, a longer duration storm
would produce a higher peak discharge than a shorter one.
A sensitivity analysis of the unit peak ordinate to change in
parameterN , c or the rainfall excess intensityi(0) is given in
Appendix A.

As a final step, the peak flow rateq(jp) in mm h−1 is con-
verted by Eq. (23) to the peak dischargeQ(jp) in m3 s−1 as
follows:

Q(jp) = 0.2c(RE/1t)1.4A1t (30)

This is in contrast to the well-known rational formula,
Q = kCIA, in metric units in that the variable IUH model am-
plifies the impact of the rainfall excess intensity by a power
of 0.4. Needless to say, the parameters and the input vari-
ables have different meanings, all defined by their respective
models or formulas.
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Table 1. Variable instantaneous unit hydrograph (IUH) shape
factor.

Degree of Normalized Peak ordinate Peak time IUH shape
nonlinearity unit peak function function factor

N v(tp) E F u(tp)tL
(1) (2) (3) (4) (5)

1.4 .342 .709 .378 .268
1.5 .397 .709 .444 .315
1.6 .444 .715 .500 .358

1.67 .473 .722 .535 .386

1.7 .484 .725 .549 .398
1.8 .520 .738 .590 .435
1.9 .550 .753 .627 .472

2.0 .577 .770 .658 .507
2.1 .601 .788 .686 .541
2.2 .623 .807 .711 .574
2.3 .642 .826 .733 .605
2.4 .660 .847 .752 .637

2.5 .675 .867 .770 .668
2.6 .690 .889 .785 .698
2.7 .703 .910 .799 .727

Source: Ontario Ministry of Natural Resources (1983)
Col. (5): u(tp)tL = EF

6.8 Hydrograph generation by the direct and inverse
Bakhmeteff function methods of convolution

In hydrologic design analysis, one uses the convolution inte-
gral as approximated by Eqs. (20) and (21). To generate the
hydrograph ordinates at evenly-spaced time points, one com-
putes the values of the Bakhmeteff function,F(v,N), from
Eq. (21), finds the corresponding values of dummy variable
v by interpolation, and then computes the hydrograph ordi-
nates by Eq. (20). This, we call for the purpose of this paper,
the inverse Bakhmeteff function method of convolution, or
the inverse method for short.

For short, intense storms, such as those reported by Min-
shall (1960), one has an option of generating the hydrograph
ordinates in high resolution or definition by computing the
Bakhmeteff function directly. Given values of N, c,1t and
i(0), one generates simultaneously the hydrograph ordinates
and the elapsed times from Eqs. (20) and (21) by varying the
dummy variablev from 0 to 0.99 at av step of, say, 0.01.
This we call the direct method of convolution.

6.9 Model calibration methodology

In the context of the variable IUH, the storage exponent
N in Eq. (2) defines the degree of watershed nonlinearity.
Ding (1998) conducted a survey of the variable IUH model
applications in Ontario, Canada and in China (Collins and
Moon Ltd., 1981; Tsao, 1981; Wisner et al., 1984; Chen
and Singh, 1986) and reported that the calibratedN values

on watersheds ranging in size from one to 1900 km2 vary
from 1.2 to 3.4.

As a form of simplification, Collins and Moon Ltd. (1981),
in a calibration study in Ontario, Canada, fixed theN value
at 1.5 according to Chezy friction, thus leaving only the scale
parameterc to be determined. For the normal range of storm
events used in calibration, they found that the 1-parameter
model does not suffer significant loss in its flexibility to fit
observed hydrographs. For some 10 watersheds in south-
western Ontario, they found that the scale parameter is in-
versely proportional to watershed area to a power of 0.31, i.e.
the larger the watershed, the smaller the discharge coefficient

Given a pair of rainfall excess hyetograph and direct
runoff hydrograph, the variable IUH model parameters can
be simultaneously calibrated or optimized by the process
of reversing the convolution integral (Eqs. 20 and 21),
i.e. de-convolution. A parameter optimization procedure
based on the method of differential corrections is given by
Ding (1974). [Note: in Eq. (43) of the paper, the factor:
vn0/ (1 –vn0) should readv n0ln v / (1 – vn0).] However,
this approach will not be followed because only the unit hy-
drograph peak characteristics will be used for calibration.

Instead, an alternate approach called the variable IUH
shape factor method will be used to determine or calibrate
the shape parameterN , which in turn determines the scale
parameterc. To verify the accuracy of calibrated parame-
ters, hydrographs including the peak characteristics will be
regenerated by applying both the direct and inverse Bakhme-
teff function methods of convolution for comparison with ob-
served one.

7 Analysis of the Minshall unit hydrograph data for the
Edwardsville catchment

7.1 Shape parameter

The Minshall (1960) family of five unit hydrographs for the
11-hectare Edwardsville catchment is among the oft-cited
examples of watershed nonlinearity. These storm events
have a much wider range of rainfall values and provide an
excellent data set for another closer look at the watershed
nonlinearity.

Since Minshall (1960) provided data in the finished form
of unit hydrographs, especially the peak rates and the time
to peak, these lend themselves to the use of the IUH shape
factor for calibration.

Table 2a shows the unit hydrograph data for the Ed-
wardsville catchment. Columns (2) to (9) are reproduced
from one of Minshall’s more extensive tables, with the data
converted from the imperial units to the metric. The “unit”
hydrograph as used in this paper refers to that produced by a
unit storm having 1 mm in rainfall excess instead of 1 inch
(25.4 mm) in Minshall’s paper. The headings are slightly
modified to reflect the present-day usage. The data are
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Table 2a. Unit hydrograph data for the Edwardsville catchment. Relation between rainfall intensity, unit hydrograph peak rate and time to
peak.

Runoff used in UH peak Time to
Rainfall producing UH computing UH ordinate peak

Storm Date Duration Amount Intensity Peak rate Amount
number 1t q(tp) RE u(tp) tp

min mm mm h−1 mm h−1 mm h−1 min
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 27 May 1938 14 28.19 120.81 60.45 16.76 3.61 12
2 2 Sep 1941 12 13.46 67.30 9.65 4.32 2.23 18
3 17 Apr 1941 13 10.67 49.25 6.35 3.56 1.78 20
4 22 Oct 1941 10 5.59 33.54 3.56 2.54 1.40 24
5 20 Jul 1948 17 6.86 24.21 6.35 5.33 1.19 30

Source: adapted from Minshall (1960) and converted to metric units. Catchment area 11 hectare.

Table 2b. Unit hydrograph data for the Edwardsville catchment. Variable instantaneous unit hydrograph (IUH) model parameters.

Rainfall 1tUH Degree Peak
Storm excess Lag shape of ordinate Scale

number intensity time factor nonlinearity function parameter
i(0) tL

mm h−1 h u(tp)tL N E c

(1) (10) (11) (12) (13) (14) (15)

1 71.83 0.08 0.30 1.47 0.708 1.30
2 21.60 0.20 0.45 1.84 0.744 0.74
3 16.43 0.23 0.40 1.71 0.726 0.77
4 15.24 0.32 0.44 1.81 0.739 0.56
5 18.81 0.36 0.43 1.79 0.737 0.44

Average 1.72 0.76
Average: 2–4 1.79 0.63

Col. (15):c in (mm h−1)1/N /mm

arranged in the descending order of the rainfall intensity in
Col. (5). Note the time to peak in Col. (9), when expressed in
the multiple of the storm duration1t in Col. (3), is an integer
of 1 to 2, i.e. the response time is very short.

Table 2b shows the calculations of the variable1t UH
model parameters. The rainfall excess intensity in Col. (10)
is computed from the rainfall excess in Col. (7) and the storm
duration in Col. (3). The range of rainfallexcessintensity is
found much narrower than that of rainfall intensity in Col. (5)
and, in terms of the former, the lowest event is found out of
order. In unit hydrograph analysis, data for the rainfall excess
intensity, and not the rainfall intensity, are required, hence
reference will be made to the former.

The lag time in Col. (11) is computed fromtp in Col. (9)
and1t in Col. (3). The IUH shape factor is approximated by
the1tUH shape factor in Col. (12). According to Minshall
(1960), periods of high rainfall intensity all occurred late in
the storm for all five events. These imply that computed val-
ues of the lag time may be too long, which may in turn cause

an over-estimation of parameterN values because, as can be
seen from Table 1,N value increases as does the IUH shape
factor. Because of absence of the observed data, their effects
onN values will not be pursued. The degree of nonlinearity
in Col. (13) is interpolated using Table 1 for a given value of
the1tUH shape factor.

For the five unit hydrographs, the calibratedN value varies
from 1.47 to 1.84, with an average of 1.72, as shown in Fig. 4.
All events, except the largest one, have an averageN value of
1.79, which is 7% higher than the theoretical value of 1.67 by
Manning friction law. The largest event, storm no. 1, alone
has a lowerN value of 1.47. This is close to the theoretical
value of 1.5 by Chezy friction, which, as mentioned in Sect. 2
above, is the value chosen by Singh (1975) for his laboratory
watershed. An examination of Tables 2a and b shows that in
comparison with other events, this has an atypical unit hy-
drograph in that it peaked before the storm ended, and is an
outlier because its rainfall excess intensity is three and a half
times higher than the rest.
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Table 2c. Unit hydrograph data for the Edwardsville catchment.
Regeneration of unit peak characteristics by the inverse Bakhmeteff
function method of convolution.

Hydrograph peak Hydrograph peak time

Storm Peak Estimation Time to Estimation
number rate error peak error

q(tp) tp
mm h−1 % min min

(1) (16) (17) (18) (19)

1 34.93 −42.2 21 9
2 9.67 −0.2 18 0
3 6.36 0 20 0
4 3.55 0.3 25 1
5 6.09 −4.1 25 5

Prediction
1a 41.93 −30.6 21 9

1a,b 44.97 −25.6 23 11
1c 40.04 −33.8 21 9
1d 22.02 −63.6 21 9

a based on the averages of calibratedN andc values of storm nos. 2–5.
b Using a computational time step of1t /7, i.e. 2 min.
c Based on the maximumN andc values of storm nos. 2–5.
c Doubling the averagedc value of storm nos. 2–5.

As mentioned in Sect. 2 above, in a review of the Amoro-
cho and Orlob (1961) laboratory experimental data, Dooge
(2005) concludes that the characteristic time is inversely pro-
portional to the characteristic discharge to a power of 0.4.
Note that the Dooge relation is of the same form as the Man-
ning friction-based IUH peak time equation expressed by
Eq. (29). It follows that for Amorocho and Orlob’s over-
land flow plane, theN value is 1.67. This is in contrast to
anN value of 1.5 for the Singh (1975) laboratory watershed
having a converging surface.

7.2 Scale parameter

When parameterN has been determined, parameterc can
be determined from the IUH peak characteristics either by
Eq. (15) or (16), and the results are shown in Table 2b and
Fig. 4. The peak ordinate function in Col. (14) is computed
by Eq. (17), and parameterc in Col. (15) by Eq. (15). The
c values vary from 0.44 to 1.30, with an average of 0.63
for four moderate storms. The calibratedc values have a
much wider scatter than do theN values, with the highest
c value, as well as the lowestN , associated with the largest
event, storm no. 1. The lowestc value is associated with the
20 July 1948 event, storm no. 5, which had the longest du-
ration of 17 min, compared to that of 10 to 14 min for the
rest.
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Fig. 4. Variations of the variable IUH model parameters with the
causative rainfall excess intensity as calibrated for five storms on
the Edwardsville, Illinois, watershed.

7.3 Regeneration of unit hydrograph peak
characteristics

The accuracy of parameters calibrated by the shape factor
method in Sects. 7.1 and 7.2 above can be verified by ap-
plying the convolution integral to regenerate hydrographs for
comparison with the observed one.

Based on the calibratedN and c values shown in Ta-
ble 2b, hydrographs for each of the five events are regener-
ated by convolution by, firstly the direct Bakhmeteff function
method, and secondly the inverse method. Computations are
done using a discrete form of the convolution integral with a
variable IUH (Eqs. 20 and 21). In the computations, the time-
shift factor of (1t /2) is ignored initially in the time index of
the input variable, and the resultant hydrograph by convo-
lution is then shifted forward in time by1t /2 to arrive at a
regenerated hydrograph. The simulation results from using
both the direct and inverse methods are shown, in Figs. 5a
and b for storm no. 1, the largest event, and in Figs. 6a and
b for the four moderate storms, storm nos. 2–5. In addition,
results from the inverse method are tabulated in Table 2c.

For the largest event, storm no. 1, Fig. 5a shows that the
direct method reproduces perfectly the peak characteristics,
and Fig.5b shows that the inverse method under-captures the
peak ordinate by about 42%. The inability of the inverse
method to capture the peak rate may be, on the first glance,
due to it’s being an atypical unit hydrograph, as explained
in Sect. 7.1 above. Note that its time step (1t) of 14 min
is larger than the time to peak (tp) of 12 min by 2 min or
17%, thus the1t unit hydrograph becoming an incomplete
S-curve hydrograph, “incomplete” in the sense that it had not
approached the state of equilibrium.

For the four other moderate events, storm nos. 2–5, Fig. 6a
shows a1t unit hydrograph produced by the direct method
of convolution based on the averages of calibrated param-
eter values and of the storm data. (Not being shown are
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Fig. 5a. Regeneration of the1t unit hydrograph by the direct Bakhmeteff function method of convolution for the largest storm, storm no. 1,
on the Edwardsville, Illinois, watershed. For comparison, the peak characteristics reported by Minshall (1960) are shown as a red star.
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Fig. 5b. Same as Fig. 5b, except the1t hydrograph is computed by the inverse Bakhmeteff function method of convolution.

1t unit hydrographs for each of the four events, each of
which reproduces perfectly its peak characteristics.) Simi-
larly, Fig. 6b shows an average1t hydrograph produced by
the inverse method of convolution. From results tabulated in
Table 2c, the inverse method reproduces the moderate storms
very well, having a maximum under-capturing rate of about
4%. Therefore, it may be concluded that for four moderate
storms on the Edwardsville catchment, parameter values cal-
ibrated by the shape factor method are correct.

7.4 Prediction of the extreme floods

One of the purposes of conducting model calibration on
gauged watersheds is to obtain the best-fitted parameter val-

ues, and then apply these to predict or forecast hydrographs
that would result from storms of greater magnitude.

Let’s combine the four moderate storms, storm nos. 2–5,
into a “calibration” group, and let the largest event, storm
no. 1, form another group of one, called the “verification” or
“prediction” one. Based on the averagedN andc values from
the calibration group, these together with the storm data for
the largest event are used to “predict” the storm hydrograph
using the variable IUH model. Table 2c tabulates results
using the inverse method for this, labelled storm 1a, under
the sub-heading “Prediction”. Figure 7a and b show, respec-
tively, that the direct method of convolution under-captures
the peak ordinate by about 15%, but the inverse method dou-
bles the error to−30%. Using a smaller time step ranging
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Fig. 6a. Regeneration of the1t unit hydrograph by the direct Bakhmeteff function method of convolution for an average storm, using the
averages of calibrated variable IUH model parameters for four moderate storms, storm nos. 2–5, on the Edwardsville, Illinois, watershed.
For comparison, the peak characteristics reported by Minshall (1960) are shown as red stars.
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Fig. 6b. Same as Fig. 6b, except the1t hydrograph is computed by the inverse Bakhmeteff function method of convolution.

from 1t /2 to 1t /(14× 60), i.e. 7 min to 1 sec, the inverse
method reduces the estimation errors to between−24% and
−26%, a fairly large amount but within a very narrow range.
As an example, Fig. 7c shows the “predicted” hydrograph for
the so-called storm 1b in Table 2c, which is computed using a
time step of 2 min. Note the S-curve appears to represent the
upper limit encompassing the predicted peak characteristics.

In an attempt to improve the simulation accuracy of the
peak ordinate, several other configurations were tested, but
only two are included in Table 2c. Storm 1c takes an “envelop
curve” approach of using the maximums ofN andc values of
the calibration group, and storm 1d doubles the calibratedc
value, the latter of which should have doubled the simulated
peak ordinate by Eq. (20) alone. However, the simulation

results in Table 2c show that these two approaches worsen
the accuracy of estimations by lowering it to about−34%
and−64%, respectively.

In a previous study carried out under the author’s super-
vision, Collins and Moon Ltd. (1981) obtained similar re-
sults arising from sensitivity testing of the model parame-
ters. They observe that for very highc values, the storm hy-
drograph becomes very responsive to storm rainfall, giving
peaks in storm runoff for each high-intensity period. The os-
cillating ordinates in a simulated hydrograph with very high
c values thus produce an anomaly of a higherc value generat-
ing alowerpeak ordinate than does the lowerc, an instability
problem generally associated with a nonlinear system.
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Fig. 7a.Prediction of the1t unit hydrograph for the largest storm, storm no. 1, on the Edwardsville, Illinois, watershed, using the calibrated
variable IUH model parameters for four moderate storms, storm nos. 2–5, and by the direct Bakhmeteff function method of convolution. For
comparison, the peak characteristics reported by Minshall (1960) are shown as a red star.
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Fig. 7b. Same as Fig. 7a, except the1t hydrograph is computed using the inverse Bakhmeteff function method of convolution.

Note that to capture the peak ordinate of a hydrograph due
to a single block of rainfall excess and pinpoint its time of
occurrence, one can make use of the Manning friction-based
peak equations given by Eqs. (28) or (30), and (29). For
storm 1a , Eqs. (28) and (29) yield:

q(jp) = 0.722×0.63×(16.76/0.233)1.4
×0.233= 42.16mm h−1

jp = 0.5+0.535/[0.63×(16.76/0.233)0.4
×0.233] = 1.1591t or 16 min

which are comparable to those of 41.93 mm h−1 and 21 min
obtained by the inverse Bakhmeteff function method.

7.5 Size of the time step and its role in
model application

All of those discussed in Sect. 7.4 above have profound im-
plications for calibration, verification and application of lin-
ear and nonlinear models alike, albeit in different ways, the
variable IUH model included. (The linear models extrapo-
late the peak magnitude of storm events in a straight line and
fail to model the nonlinear Childs-Minshall phenomenon, the
focus of the paper.)

We have observed in Sect. 7.4 above that in computing
the convolution integral, the inverse Bakhmeteff function
method all under-captures the peak ordinate of all storm
events, and that the direct method reproduces perfectly the
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Fig. 7c. Same as Fig. 7b, superimposed by the incremental, composite or S-curve, and the time-shifted hydrographs using a computational
time step of1t /7, i.e. 2 min.

peak characteristics: the ordinate and the timing. The1t unit
hydrograph generated by the direct method for a quadruplet
of (N , c,1t andRE) or more intuitively, (N , c,1t andi(0))
as shown in Figs. 5a and 6a, provides both a window and a
measuring stick, so to speak, to peek at and capture the mov-
ing peak characteristics being generated by the variable IUH
model.

Imagine the time step1t as a stick or ruler of a fixed length
and without decimal marks. As the length of the stick in-
creases from near zero, the chance of its skipping the time to
peak, thus the peak ordinate, becomes greater: the larger the
time-step size, the greater the chance of missing the peak or-
dinate. To capture the peak timetp, the time-step size1t , or
its multiple, would have to be equal totp. But the search for a
fixed tp, thus a fixed1t , proves elusive and futile, as the for-
mer varies with, among others, the rainfall excess intensity
as indicated by Eq. (16).

The role of the time-step size and its importance in hydro-
logic modelling analysis have somewhat been overlooked,
because one usually works with the hourly or even daily rain-
fall and runoff data collected and published by government
agencies. But given the Manning friction law which defines
N as 1.67,1t ranks equally in importance withc, right after
i(0), according to Eq. (28). Thus for the variable IUH model,
N,c1t andi(0) form a quadruplet, among them inseparable
from one another.

When the duration of a storm is less than the published
time step of, say, 1 h, but is assumed to be so, this effectively
under-reports the rainfall excess intensityi(0). To match the
observed peak ordinate, according to Eq. (28), one has to
increase thec value. (Or more directly, while the rainfall
excess depthRE remains the same, increasing1t should be
accompanied by increasingc value so that the same peak or-
dinate holds.)

Regarding the highc value of 1.30 calibrated from the
largest event, storm no. 1, this should be considered as a
result of curve-fitting. Since the scale parameterc is a
discharge coefficient of the watershed storage as shown by
Eq. (2):q = cN sN , heuristically one would expect thec value
to be less than or equal to one. How could the water storage,
active or detention one, contribute more than what it had to
the outflow? Unless the storage operating like an “invisible
hand” (to borrow Adam Smith’s famous phrase) in the rain-
fall excess – direct runoff system was overloaded and over-
taken by sheer force of the rainfall excess input under a big
storm on a small catchment.

Similar cautionary note may sound to the use of highN

values in hydrologic design analysis. In an inter-comparison
study of three unit hydrograph models for six Ontario,
Canada, watersheds, Wisner et al. (1982) obtained by curve
fitting an N value of 1.9 for one watershed, and of 2.0 for
another. For the latter, coupled with ac value of 0.235 and a
time step of 1 h, the variable IUH model generates unrealisti-
cally high peak estimates for some design storm conditions.
As noted in Sect. 6.1 above, parameterN amplifies the im-
pact of the rainfall excess intensity by a power of (1–1/N) in
unit hydrograph generation [and of (2–1/N) in hydrograph
one] as well as having its own on the peak ordinate, thus
making the very high estimates when compared with those
obtained by linear unit hydrograph models.

As a parting advice based on the analytical results from the
Edwardsville catchment, which is small in size, one should
use the best tool available, i.e. the convolution by the di-
rect Bakhmeteff function method. Estimation by the inverse
method is shown to be always low, but may be improved
by using a smaller time step, but only up to about – 25%.
Because of the input-dependent, variable IUH model be-
ing represented by a pair of simultaneous equations in the
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Table 3a.3-hour unit hydrograph data for the Naugatuck River. Peak characteristics and calibration of the degree of nonlinearity.

Observed 25.4 times UH Time 1tUH Degree
peak UH peak peak to Lag shape of

Date discharge rate ordinate peak time factor nonlinearity
Q(tp) 25.4u(tp) u(tp) tp tL u(tp)tL N

m3 s−1 m3 s−1 h−1 h h
(1) (2) (3) (4) (5) (6) (7) (8)

Aug 1955 1178.1 211.3 0.16 6.0 4.5 0.72 2.68
Dec 1948 288.9 141.6 0.11 6,5 5.0 0.54 2.10
Sep 1938 282.4 117.5 0.09 8.7 7.2 0.64 2.42
Jun 1952 90.6 85.0 0.06 9.0 7.5 0.48 1.92

Average 2.28

Col. (3): 25.4 mm of runoff is the “unit” depth (1 inch) in the Childs unit hydrograph.
Source: adapted from Childs (1958) and converted to metric units.
Drainage areaA = 186.2 km2.
Storm duration1t = 3 h

Table 3b. 3-hour unit hydrograph data for Naugatuck River. Calibration of the scale parameter and regeneration of peak characteristics by
the inverse Bakhmeteff function method of convolution.

Regenerated hydrograph

Peak Rainfall 68.58 times
ordinate excess Scale UH peak Peak Peak

Date function intensity parameter rate rate Error time Error
E i(0) c 68.58u(tp) q(tp) tp

mm h−1 (mm h−1)1/N /mm mm h−1 mm h−1 % h h
(1) (9) (10) (11) (12) (13) (14) (15) (16)

Aug 1955 0.906 22.86 0.025 10.99 9.26−15.7 7.5 1.5
0.028 10.91 −0.7 4.5 −1.5
0.030 12.29 11.8 4.5 −1.5

Col. (12): 68.58 mm is the rainfall excess amount from the runoff rate of 0.9 in/h (or 22.86 mm h−1) for 3 h.
ParameterN = 2.68

hydrograph ordinate and the elapsed time, any other com-
binations of calibrated parameter values are shown to only
slightly improve the simulation accuracy. But in practice,
one does not have the luxury of using the direct method,
due to the external constraint that the size of a time step is
a fixed value, say 1 h, as pre-determined by rainfall and/or
runoff measurements. Therefore one would have to take an
approach similar to that of Wisner et al. (1982) to force the
model to fit the observed peak characteristics, either the mag-
nitude or the timing, or both, the latter seems rather unlikely.
The calibrated parameter values so obtained are to be con-
sidered product of curve fitting, rather than of physical rea-
soning, if the degree of nonlinearityN is found significantly
higher than 1.67 as dictated by Manning friction law.

8 Analysis of the Childs unit hydrograph data for the
Naugatuck River

8.1 Shape parameter

As mentioned in Sect. 5 above, the Childs (1958) family of
unit hydrographs for the Naugatuck River is an earlier but
rarely cited example of watershed nonlinearity. Since he as-
sociated the variation of the unit hydrographs with the ob-
served (and thus effected) peak discharges, not the causative
rainfall excess intensities, thus one key piece of data was
missing for the calculation of parameterc.

Table 3a shows the 3-hour unit hydrograph peak charac-
teristics for four events on the Naugatuck River as provided
by Childs (1958) and converted to metric units from the im-
perial ones. As is the case for the Edwardsville catchment,
the “unit” hydrograph refers to that produced by a unit storm
having 1 mm in rainfall excess. Data are arranged in the
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Fig. 8a. Regeneration of the 3-hour unit hydrograph for the Naugatuck River in Connecticut, by the direct Bakhmeteff function method of
convolution, for the Hurricane Diane in August, 1955. For comparison, the peak characteristics reported by Childs (1958) are shown as a
red star.
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Fig. 8b. Same as Fig. 8a, except the1t hydrograph is computed using the inverse Bakhmeteff function method of convolution.

descending order of the observed peak discharge in Col. (2).
Column (3) shows the traditional “unit” hydrograph peak
rates, i.e. for 1 inch (25.4 mm) of rainfall excess, which are
read off the Childs graph in Fig. 2. The unit hydrograph peak
ordinate in Col. (4) is computed from the peak rate in Col. (3)
divided by the drainage area of 186.2 km2. Values for the
time to peak in Col. (5) are also read off his graph. In terms
of the storm duration of 3h, the time to peak is an integer
of 2 to 3 in comparison with that of only 1 to 2 for the Ed-
wardsville catchment. The1t UH shape factor and degree of
nonlinearity for each of the events are computed in the same
manner as described in Sect. 7.1 above for the Edwardsville.

For the four 3-hour unit hydrographs, the calibratedN

value varies from 1.92 to 2.68, with an average of 2.28. The
smallestN value of 1.92 and the largest of 2.68 are associ-
ated with the smallest and largest flood events, respectively.

They all lie between the theoretical value of 1.67 by Man-
ning friction for turbulent overland flow, and that of 3.0 for
laminar overland flow (Ding, 1967a).

When compared to the average nonlinearity of 1.79 for
four moderate storms on the 11-hectare Edwardsville catch-
ment, the larger Naugatuck River with a drainage area of
186.2 km2 has a much higher nonlinearity of 2.28. Accord-
ing to Eq. (2), between these two watersheds, the large river
is more efficient in converting the flood storage into flood
flow than the small catchment.

8.2 Scale parameter

The calculation of scale parameterc requires data for the
causative rainfall excess intensity, which were not given in
the Childs paper.
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For the August 1995 Hurricane Diane, Childs (1958) re-
ported that the computed peak discharge of 41 600 c.f.s. was
equivalent to a rate of runoff of 0.9 inches per hour from
the entire drainage area of 72 sq. mi., and that the rate of
rainfall probably did not greatly exceed a basin-wide aver-
age of 1 inch per hour, thus the Naugatuck River becoming a
proverbial“tin-roof” (in Childs’ word) under extreme flood
conditions.

Based on his estimated rainfall excess intensity of
0.9 inches per hour (or 22.86 mm h−1), parameterc is calcu-
lated by the same shape factor method, which gives ac value
of 0.025 as shown in Table 3b. This is very much smaller
than the averagec value of 0.63 for four moderate storms
on the Edwardsville catchment, i.e. the larger the watershed
size, the smaller the discharge coefficient.

8.3 Regeneration of unit hydrograph peak
characteristics

Based on calibratedN andc values shown in Tables 3a and
b, the1t unit hydrograph and1t hydrograph for the Au-
gust 1955 flood event are regenerated using both the direct
and inverse Bakhmeteff function methods of convolution and
shown in Figs. 8a and b, respectively. Results from the latter
are also shown in Table 3b. For the Naugatuck River with
a computational time step of 3h, the direct method again re-
produces perfectly the peak characteristics, but the inverse
method under-captures the peak ordinate by about 16%. In-
creasing the calibratedc value from 0.025 to 0.028, or about
10%, would reduce the under-capturing rate to about 1%.
Again, same caution applies about the use of a higherN

value and the relative large1t relative to the time to peak
as described in Sects. 7.4 and 7.5 above.

9 Summary and conclusions

The author has described conceptual linkages between non-
linear overland flow, channel routing and catchment runoff
processes through the use of an input-dependent kernel or
variable IUH. A 2-parameter variable IUH model has been
applied to two watersheds of vastly different sizes. The cali-
bration for the Edwardsville and Naugatuck watersheds both
is carried out using their unit hydrograph shape factor, be-
cause of the availability of the unit hydrograph data in a
finished form. Based on analysis of these well-documented
storm events, but mainly on one small catchment, a number
of conclusions regarding the model are summarized below.

General

a. In the context of rainfall excess – direct runoff mod-
elling, the variable IUH model having a shape param-
eterN and a scale parameterc is one of the simplest

nonlinear models reported in literature. These two pa-
rameters plus the unit storm data: the duration1t , and
either the rainfall excess depthRE or rainfall excess in-
tensityi(0), constitute a quadruplet that completely de-
fines the model. Changing one of its parts, such as1t ,
would affect the others, as they are related, for example,
by Eqs. (28) and (29) for a Manning friction law – based
system.

b. There are two ways of computing the convolution in-
tegral representing the variable IUH model. The di-
rect Bakhmeteff function method, which generates the
unit hydrograph in high definition, reproduces perfectly
the peak characteristics resulting from short, intense
storms. By contrast, the inverse Bakhmeteff function
method, which generates the hydrograph ordinates at
evenly-spaced time points, always under-captures the
peak ordinates because of the non-zero size of the com-
putational time step1t ; the larger the size of a time
step, the greater the magnitude of under-capturing.

Shape parameter

c. The Minshall (1960) unit hydrograph data for the 11-
hectare Edwardsville catchment show mixed results.
For moderate storms, the degree of nonlinearity aver-
ages 1.79, or 7% higher than the theoretical value of
1.67 by Manning friction. For the largest event, which
has an atypical unit hydrograph in that it peaked prior
to the end of the storm, and is an outlier in terms of the
peak discharge, it has anN value of 1.47, close to the
theoretical value of 1.5 by Chezy friction.

d. The Childs (1958) unit hydrograph data for the Nau-
gatuck River having a drainage area of 186.2 km2 indi-
cate a highly nonlinear river basin withN values rang-
ing from 1.92 to 2.68 with an average of 2.28. These
lie between the theoretical value of 1.67 for turbulent
overland flow by Manning friction, and that of 3.0 for
laminar overland flow.

Scale parameter

e. The larger Naugatuck River has ac value of 0.025 cal-
ibrated from a hurricane-induced flood, and the smaller
Edwardsville catchment has an average calibrated value
of 0.63 for four moderate storms. Given similarN val-
ues, the larger the watershed size, the smaller the dis-
charge coefficient.

Computational time step

f. The peak discharge in the variable IUH model is
very sensitive to change in the storm duration or
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computational time step. The use of a single time step of
the full storm duration is next to the best available to ap-
proximate the peak magnitude by the inverse Bakhme-
teff function method of convolution. Decreasing the
size of time steps beyond a factor of 2 does not signifi-
cantly improve simulation accuracy.

Interaction of parameters and the time step

g. ParametersN and c are calibrated by the unit hydro-
graph shape factor method, and verified by convolu-
tion. For the Edwardsville catchment having storm du-
rations in the order of 10 min, both the direct and in-
verse Bakhmeteff function methods give similar peak
rates for moderate events. For the Naugatuck River hav-
ing a storm duration of 3h for the hurricane-induced
August 1955 flood, the inverse method using the cali-
brated parameters under-captures the peak discharge by
about 16%.

h. The model parameters are applicable to the size of time
step for which they are calibrated.

i. To calculate hydrograph peak characteristics produced
by a block of uniform rainfall excess, the IUH peak
equations (Eqs. 29 and 30) are available for such a pur-
pose. This pair of Manning friction-based equations,
having a single (scale) parameterc, crystallizes and cap-
sulizes at once the essence of nonlinear unit hydrograph
phenomenon explored by Childs (1958) and Minshall
(1960), modelled by, among others, Amorocho (1967),
Overton and Meadows (1976) and the author (Ding,
1974), the latter’s work further extended by Chen and
Singh (1986).

j. For hydrologic design purposes, the instantaneous unit
hydrograph and the S-curve hydrograph approaches ap-
pear to encompass the design hydrograph shape, includ-
ing the peak characteristics, resulting from a uniform
rainfall excess series.

Application to ungauged basins

k. For small ungauged watersheds, by defaulting the de-
gree of nonlinearityN to the theoretical value of either
1.67 by Manning friction (or 1.5 by Chezy), the variable
IUH model reduces to a single parameter one, leaving
only the scale parameterc to be determined. Parameter
c has a very appealing property in that the IUH peak or-
dinate varies directly and the peak time inversely with
it. The scale parameterc, when calibrated for more wa-
tersheds under a wide range of storm sizes, may be re-
gionalized to provide guidance for prediction or design
purposes on ungauged basins.

Appendix A

Sensitivity of the unit peak ordinate

Equations (8) and (9) show that the unit hydrograph ordi-
nates,u(tp) included, vary linearly, and the elapsed times in-
versely, with parameterc, but they vary with parameterN
in a more complicated manner. The latter is caused by its
presence in the power of the rainfall-excess-intensity term,
i1−1/N (0), which amplifies the impact of the intensity by a
power of (1–1/N) on the peak characteristics. Since param-
eterN has its own impact, intuitively, the unit peak ordinate
is expected to vary more withN thanc.

Mathematically, the sensitivity ofu(tp) to change in ei-
ther N or c can be expressed by the partial derivatives of
u(tp) = Eci1−1/N (0) in Eq. (15) with respective to each of
the parameters as given below:

∂[u(tp)]

∂N
= ci1−1/N (0)

∂E

∂N
+

Eci1−1/N (0)lni(0)

N2
=

(
1

E

∂E

∂N
+

lni(0)

N2
)u(tp) (A1)

∂[u(tp)]

∂c
= Ei1−1/N (0) =

u(tp)

c
(A2)

whereE is the peak ordinate function given previously by
Eq. (17):

E =
N2(N −1)1−1/N

(2N −1)2−1/N

The derivative of functionEwith respective toN as required
by Eq. (A1) is rather complicated, but can be simplified by
making use of the expression forE itself:

∂E

∂N
=

N + ln[(N −1)/(2N −1)]

N2
E (A3)

Equation (A1) can then be rewritten as follows:

∂[u(tp)]

∂N
=

lni(0)+N + ln[(N −1)/(2N −1)]

N2
u(tp) (A4)

Note that on the right-hand side of Eq. (A4), the numerator
excludingu(tp) can be negative in value. Therefore compar-
isons should be based on its absolute value.

Equation (A2) shows that the sensitivity ofu(tp) to change
in c is itself the ratio ofu(tp) to c, i.e. u(tp) varies linearly
with c with a gradient ofEi1−1/N (0), butE itself is a func-
tion of N . Eq. (A1) shows a more complicated relation be-
tweenu(tp) andN .

The relative sensitivity ofu(tp) to changes inN and c

depends on their relative magnitude. If one were to de-
fault parameterN to some constant,N should have less ex-
planatory power thanc in the variance of the peak ordinate.
Statistically,∣∣∣∣∂[u(tp)]

∂N

∣∣∣∣ ≤ ∂[u(tp)]

∂c
(A5)
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Fig. A1. The iso-sensitivity lines of the variable IUH model param-
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above each of the constant rainfall excess intensity lines, it is more
sensitive to change in parameterN than inc, and vice versa. For
comparison, the calibrated parameter values for all five storms on
the Edwardsville, Illinois, watershed, are shown as red dots.

Based on Eqs. (A2) and (A4), the following inequality has to
be met:

c ≤
N2

|lni(0)+N+ln[(N−1)/(2N−1)]| (A6)

For a given rainfall excess intensityi(0) and degree of non-
linearity N , the right-hand side of Eq. (A6) establishes the
maximumc value below whichu(tp) is more sensitive to
change inc thanN , and vice versa. Figure A1 shows the
iso-sensitivity lines ofu(tp) in the N and c plane, and the
calibrated parameter values for all five storms on the Ed-
wardsville catchment. It shows that for the largest storm
event, the peak ordinate is more sensitive to change inN than
in c. The four moderate storms, having an average intensity
of 18 mm h−1 are also more sensitive to change inN .

In hydrologic design analysis and flood forecasting, the
rainfall excess intensity line generally shifts downward with
increasing intensities, thus making parameterN more domi-
nate thanc on small catchments.
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