
Hydrol. Earth Syst. Sci., 15, 39–55, 2011
www.hydrol-earth-syst-sci.net/15/39/2011/
doi:10.5194/hess-15-39-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Water resource monitoring systems and the role
of satellite observations

A. I. J. M. van Dijk and L. J. Renzullo

Water Information R & D Alliance/CSIRO Water for a Healthy Country, G.P.O. Box 1666, Canberra, ACT 2601, Australia

Received: 23 July 2010 – Published in Hydrol. Earth Syst. Sci. Discuss.: 26 August 2010
Revised: 29 November 2010 – Accepted: 14 December 2010 – Published: 4 January 2011

Abstract. Spatial water resource monitoring systems
(SWRMS) can provide valuable information in support of
water management, but current operational systems are few
and provide only a subset of the information required. Nec-
essary innovations include the explicit description of water
redistribution and water use from river and groundwater sys-
tems, achieving greater spatial detail (particularly in key fea-
tures such as irrigated areas and wetlands), and improving ac-
curacy as assessed against hydrometric observations, as well
as assimilating those observations. The Australian water re-
sources assessment (AWRA) system aims to achieve this by
coupling landscape models with models describing surface
water and groundwater dynamics and water use. A review
of operational and research applications demonstrates that
satellite observations can improve accuracy and spatial de-
tail in hydrological model estimation. All operational sys-
tems use dynamic forcing, land cover classifications and a
priori parameterisation of vegetation dynamics that are par-
tially or wholly derived from remote sensing. Satellite ob-
servations are used to varying degrees in model evaluation
and data assimilation. The utility of satellite observations
through data assimilation can vary as a function of dominant
hydrological processes. Opportunities for improvement are
identified, including the development of more accurate and
higher spatial and temporal resolution precipitation products,
and the use of a greater range of remote sensing products in
a priori model parameter estimation, model evaluation and
data assimilation. Operational challenges include the con-
tinuity of research satellite missions and data services, and
the need to find computationally-efficient data assimilation
techniques. The successful use of observations critically de-
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pends on the availability of detailed information on obser-
vational error and understanding of the relationship between
remotely-sensed and model variables, as affected by concep-
tual discrepancies and spatial and temporal scaling.

1 Introduction

1.1 Background

The first spatially-distributed water resources model was
conceived in the 1960s (Freeze and Harlan, 1969; Craw-
ford and Linsley, 1966). Satellite observations were first
operationally assimilated into numerical weather prediction
(NWP) models in the early 1970s (Tracton and McPher-
son, 1977). The first operational uses of satellite observa-
tions in water resources were developed in the early 1980s
(Ramamoorthi, 1983). Almost 30 years later, few satellite
data are used in only a handful of operational surface wa-
ter resources monitoring systems (SWRMS, reviewed further
on)1. There appears to be little evidence that the information
they provide has found wide uptake in water management.

This seems curious when considering the ever increas-
ing pressure on water resources in many countries and
the utility of water resource information in water manage-
ment. Some benefits of SWRMS include: (1) improved
spatial understanding of the water cycle and its sensitiv-
ity to climate variation, natural disturbances and human in-
terventions; (2) generation of retrospective water resources

1We define “operational” here as producing information on a
regular basis, and “spatial water resources monitoring systems”
(SWRMS) as software that integrates observations into models to
produce spatial estimates of current (and past) water resources dis-
tribution.
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accounts for policy planning and evaluation and compliance
monitoring (Molden, 1997); (3) near-real time monitoring of
soil, river and groundwater availability to support drought re-
sponse policies and actions (Henricksen and Durkin, 1986);
(4) initialisation of flood warning and water resource forecast
models; and (5) data to evaluate hydrological models used for
“what-if” scenario assessments.

There are indications that the development of operational
SWRMS is currently progressing rapidly however, partic-
ularly now that some of the main technological obstacles
have been overcome. Internet communication and teleme-
try have become fast and inexpensive. Reliable and accessi-
ble near-real time satellite data services have become avail-
able (though much data is still collected by research mis-
sions and therefore arguably not truly operationally reliable).
Robust yet flexible information and communications tech-
nology (ICT) solutions have been developed to support the
development of operational systems (Kumar et al., 2008;
Werner and Whitfield, 2007). The onus, therefore, is on the
hydrological community to develop modelling systems that
integrate satellite and on-ground observation systems as nec-
essary to produce water resources information that is of use
to decision makers.

1.2 Australian context

Recent experiences in Australia provide an example where
demand for water resources information has led to the devel-
opment of a SWRMS. Large swathes of Australia have been
experiencing extraordinary drought conditions since around
2001 prompting federal and state governments to reform wa-
ter information management and dissemination. New water
laws in 2007 delegated a legislative mandate and resources to
the Bureau of Meteorology (BoM) to develop a range of up-
to-date water information services and the statutory power
to request water observations from all relevant sources. Ser-
vices will include an annual national water account, sched-
uled water resources assessments that interpret current and
future water availability, and forecasts of water availabil-
ity for days to decades (http://www.bom.gov.au/water/). To
achieve this, BoM and the Commonwealth Scientific and
Industrial Research Organisation (CSIRO) in 2008 initiated
development of an underpinning SWRMS. The Australian
water resources assessment (AWRA,http://connect.csiro.au/
water/) system currently exists as experimental operational
systems in CSIRO and in BoM; that is, information is gener-
ated routinely and automatically but is not yet provided as a
data service.

1.3 Objective

The aim of this paper is to assess the current state of progress,
opportunities and challenges to achieve greater use of satel-
lite observations in SWRMS. This is pursued by considering
the following questions:

– What operational SWRMS currently exist?

– How do these systems use satellite observations?

– What research applications have been published that
may be implemented operationally?

These questions will be considered through the prism of the
water information requirements that led to the development
of AWRA. A short description of the system is therefore pro-
vided.

2 Spatial water resource monitoring systems

2.1 Spatial hydrological models

Over the years, a wide range of spatial hydrological mod-
els has been developed. Several reviews of these models
have been published (e.g. Kampf and Burges, 2007, and ref-
erences therein). Typical applications of these models are
either at the catchment or groundwater systems scale. The
first dynamic hydrological model that was feasibly appli-
cable over large areas (e.g. a continent) as well as demon-
strated utility for water resources applications was the vari-
able infiltration capacity (VIC) model, developed in the early
nineties (Wood et al., 1992; Liang et al., 1994). VIC was
developed with the intention to be included in global cli-
mate models (GCMs) but was also evaluated against stream-
flow with satisfactory results. Since then, the land surface
models (LSMs) in most GCMs have received at least some
attention to the representation of hydrological processes in
part due to their participation in the Project for Intercom-
parison of Land-Surface Parameterization Schemes (PILPS;
Henderson-Sellers et al., 1995, 1993) and similar initiatives.
Due to their lineage, LSMs typically evolve at sub-daily time
steps and have a domain and resolution commensurate with
the GCM. LSMs are not primarily intended to provide wa-
ter resources information and are not used widely in water
management. When compared to more conventional catch-
ment models, LSMs show poorer performance in reproduc-
ing streamflow observations and other water resources re-
lated variables (Oki et al., 1999; Nijssen et al., 2001; Wood et
al., 1998; Lohmann et al., 2004). Reasons include the more
elaborate parameter calibration techniques used in catchment
models, and the combination of coarse resolution (of precipi-
tation forcing in particular) and strong non-linearity in runoff
generating processes. LSMs also vary in the degree to which
hydrological processes important to water resources manage-
ment (such as groundwater dynamics, streamflow generation
and water use) are represented.

The first uses of dynamic continental to global hydrolog-
ical modelling for large scale water resources assessment
were published between 1998 and 2000, including the land-
mark study of V̈orösmarty et al. (2000). Since then, several
more distributed water resource models have been developed
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to help understand the characteristics and sensitivities of wa-
ter resource systems. A distinguishing feature of these mod-
els is that they consider water resource generation and use.
Initial studies manipulated tabulated data on aggregate wa-
ter use, but in recent years models have been developed that
include a dynamic description of in-river processes (the man-
agement and dynamics of reservoirs and other water bodies,
extractions, irrigation water use) yet can still be applied for
large areas or even globally (Döll et al., 2003).

2.2 Operational monitoring systems

Arguably, the only SWRMS specifically designed for use
by water resource managers is the Netherlands Hydrological
modelling Instrument (NHI) that was made operational very
recently (Berendrecht et al., 2009; Weerts et al., 2009). It
provides daily water resources estimates and forecasts across
the Netherlands (41 526 km2) at 250-m resolution to support
surface water allocation decisions during drought. The sys-
tem integrates a grid-based vertical soil water model with
surface and groundwater models that are coupled online with
a regional surface water model and water distribution model
to provide estimates of variables such as surface water and
groundwater levels and root zone soil moisture.

In addition, a handful of systems exist that provide syn-
optic information about landscape hydrological variables.
Some of these are described briefly below. While incomplete
from a water resources perspective, they do provide informa-
tion that can be relevant to water management, such as soil
moisture status and streamflow in unregulated systems.

A Land Data Assimilation System (LDAS) technology
was developed in the US to combine data from multiple
sources within models to produce gridded maps of land sur-
face states and fluxes. Implementations include the North
America LDAS (NLDAS, http://www.emc.ncep.noaa.gov/
mmb/nldas/andhttp://ldas.gsfc.nasa.gov/nldas/) (Mitchell et
al., 2004) and the Global LDAS (GLDAS;http://ldas.gsfc.
nasa.gov/gldas/) (Rodell et al., 2004). Both rely on the Land
Information System (Kumar et al., 2008), a software infras-
tructure that drives several spatial models, including Noah,
Mosaic, VIC, the Community Land Model, and the Sacra-
mento model (for details and comparison see Mitchell et al.,
2004; Rodell et al., 2004). Retrospective and updated NL-
DAS model output is available with five days latency, and soil
moisture percentile and anomaly maps are provided through
the experimental NLDAS Drought Monitor website (http:
//www.emc.ncep.noaa.gov/mmb/nldas/drought/). GLDAS
output is produced as 3-hourly and monthly values and at
0.25–1◦ resolution. Data are available from the NASA web
site with around one month latency.

Two large-scale experimental operational hydrological
monitoring and forecasting systems have been developed by
Princeton University for the eastern USA (http://hydrology.
princeton.edu/∼luo/research/FORECAST/project.php) and

by the University of Washington for the western USA
(http://www.hydro.washington.edu/forecast/westwide/).
Both systems evolved from NLDAS, use the VIC model,
and provide near-real time (latency around one day) spatial
model estimates of soil moisture and snow water equivalent,
as well as weekly streamflow at gauging locations. Com-
ponents of the two systems are currently being merged to
provide operational seasonal forecasts for the US through
NCEP (E. F. Wood, personal communication, 2010).

The European Flood Alert System (EFAS;http://floods.
jrc.ec.europa.eu/efas-flood-forecasts) uses a gridded catch-
ment model (LISFLOOD; Van der Knijff et al., 2010) that
is initialised using atmospheric conditions inferred from on-
ground observations, near real-time satellite data and fore-
casts of precipitation, temperature and evaporation up to
15 days out (Thielen-del Pozo et al., 2009). The same sys-
tem outputs are used to provide daily updates of soil moisture
conditions at 0.05◦ resolution through the European Drought
Observatory (EDO;http://edo.jrc.ec.europa.eu/).

Apart from the discussed operational systems, some mon-
itoring and forecasting systems exist that are not intended
for water resources applications but nonetheless contain hy-
drological models or land surface models. An example is
the experimental AWAP system (Australian Water Availabil-
ity Project; Raupach et al., 2008; King et al., 2010) which
provides monthly and weekly updates on soil moisture sta-
tus for Australia at 0.05◦ resolution (http://www.eoc.csiro.au/
awap/). Groundwater and flow routing are not represented,
but the system has been shown to produce monthly estimates
of runoff that show useful agreement with observed stream-
flow (Raupach et al., 2008).

Finally, various monitoring and warning systems exist
that have relevance to water resources but do not use a dy-
namic spatial hydrological model. These include flood and
drought monitoring systems based on atmospheric model
output, data collected by in situ networks, satellite products,
or a combination of these. Examples include the US Drought
Monitor (http://watermonitor.gov/), Global Flood Detection
System (http://www.gdacs.org/flooddetection/), Dartmouth
Flood Observatory (http://www.dartmouth.edu/∼floods/) and
flood warning services in many countries (including Aus-
tralia; http://www.bom.gov.au/hydro/flood/). These systems
are beyond the scope of this paper.

3 The Australian Water Resources Assessment (AWRA)
system

3.1 Design

The purpose of AWRA is to provide up-to-date, accurate and
relevant information about the history, present state and fu-
ture trajectory of the water balance, with sufficient detail to
inform water resources management. Intended dissemina-
tion of the information is by BoM through occasional and
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Figure 1. Conceptual structure of the AWRA system showing the connections between 

models for the different hydrological processes, and the role of satellite and on-ground 

observations (indicated by the pictograms). Blue arrows indicate a water transfer from one 

model to another, black arrows indicates data flow through initialization or assimilation. Not 

all fluxes between models are shown and direction of water transfer can be reverse in some 

cases. 

Fig. 1. Conceptual structure of the AWRA system showing the connections between models for the different hydrological processes, and
the role of satellite and on-ground observations (indicated by the pictograms). Blue arrows indicate a water transfer from one model to
another, black arrows indicates data flow through initialization or assimilation. Not all fluxes between models are shown and direction of
water transfer can be reverse in some cases.

scheduled water resources assessments and the annual Na-
tional Water Account. The systems described in Sect. 2 pro-
vide important lessons but do not generally fulfil all require-
ments.

First, regulated and unregulated redistribution through sur-
face water and groundwater systems forms the primary fo-
cus of water resources management and needs to be repre-
sented explicitly and accurately. Features that need to be
described include irrigation, off-reach wetlands, floodplain
inundation, surface water-groundwater exchanges, ground-
water discharge to the soil, and the dynamic behaviour of
water stored in public and private reservoirs and other water
bodies. Except for the NHI, current SWRMS do not describe
these processes and therefore additional development is re-
quired. This is achieved by coupling the spatial landscape
hydrological model to lumped river models as well as lumped
or distributed groundwater models, where required. In addi-
tion, surface and groundwater water extraction metering data
are combined with satellite ET estimates to synthesise spatial
information on water use (Fig. 1).

Second, the system needs to achieve estimates of river-
and groundwater balance terms that are as good as those
achieved with “conventional” hydrological tools, and prefer-
ably better. Tools widely used in Australia include lumped
rainfall-runoff tools to estimate streamflow (e.g. Sacramento;
Burnash et al., 1973); rational methods to estimate land
cover effects on ET (Zhang et al., 2001); and soil-vegetation-
atmosphere models such as WAVES (Zhang and Dawes,

1998) to estimate groundwater recharge. These models are
often simpler than LSMs and only target specific water bal-
ance terms and time scales, but they have been more compre-
hensively compared against field observations and are trusted
by water resource managers. Their performance sets a bench-
mark in system development.

Third, the on-ground hydrometric network of streamflow
and water level gauges, groundwater monitoring wells and
diversion and extraction meters needs to be integrated with
the model. For example, lumped rainfall-runoff models tend
to be amenable to optimisation of a small number of (non-
distributed) parameters to observed streamflow, and these pa-
rameter sets can have predictive value in nearby catchments
as well (Chiew, 2010). Achieving similar performance in
distributed models requires some of these parameterisation
techniques to be used. Moreover, in water accounting hydro-
metric observations and model estimates will need to be rec-
onciled. This introduces a need for model-data fusion tech-
niques that do not only integrate satellite observations, but
also on-ground observations.

Fourth, the information needs to have sufficient spatial res-
olution for water resources applications. Some processes or
features tend to occur at resolutions lower than those con-
sidered in LSMs; for example irrigation, surface water bod-
ies, floodplains and wetlands, and residential water use. In
theory, there is high resolution satellite data to provide in-
formation on these features at very high (<50 m) resolu-
tion. In practice, it is currently not feasible computationally
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to model at this resolution over areas as large as Australia
(7.7 million km2).

To address these challenges, the AWRA system has con-
ceptually been designed as a modular system with four com-
ponents (Fig. 1): (1) a grid-based, one-dimensional land-
scape hydrological model (AWRA-L; Sect. 3.2) that shows
similarities to both LSMs and conventional hydrological
tools; (2) a lumped model describing the river and flood-
plain water balance and routing; (3) lumped or finite element
aquifer models for regions where groundwater dynamics are
not well described by the landscape model (high transmissiv-
ity regional groundwater systems, floodplain aquifers); and
(4) a water use model that uses metering and gridded satel-
lite ET estimates to spatially infer lateral inflow derived from
the river and groundwater systems (Van Dijk and Renzullo,
2009b).

The two-way coupling between these four models needs
to be described in a way that is practical for operational ap-
plication. This currently rules out fully-dynamic coupling.
Instead, initialisation and data assimilation approaches are
being developed to reconcile component models. These
estimates are subsequently reconciled within the landscape
and river water balance models through data assimilation in
model re-analysis. These components and exchanges are
currently still in development and not implemented opera-
tionally. The focus of satellite data use is in the AWRA
landscape hydrological model, which is operational and de-
scribed below.

3.2 AWRA Landscape model

The design of the AWRA Landscape (AWRA-L) model re-
flects a desire for parsimony – from a computational per-
spective, to achieve operational robustness (e.g., numerical
model solutions requiring iteration were avoided), and from
a scientific perspective, to reduce parameter uncertainty (or
equifinality; Beven and Binley, 1992; Beven, 1989). The
choices made in model formulation do sometimes represent
a compromise between the aim for parsimony and the need
to simulate variables that can be assimilated or that are re-
quired for reporting purposes (e.g. in the National Water Ac-
counts; Bureau of Meteorology, 2010). As all AWRA com-
ponents, AWRA-L has been designed as modular software,
so that process descriptions are easily included, replaced and
removed.

The current model version 0.5 is described in a report (Van
Dijk, 2010a) and summarised briefly here. The AWRA-L
structure may be described as a hybrid between a simplified
“tiled” (sensu Avissar and Pielke, 1989) LSM and a lumped
catchment model applied at grid resolution (cf. Chiew, 2010).
Effectively, each grid cell is conceptualised as a catchment
(or several identical catchments in parallel) that does not lat-
erally exchange water with neighbouring cells. The validity
of this assumption will vary as a function of model resolu-
tion, geohydrological conditions, and time scale. Grid reso-

lution, domain and the number of sub-grid land cover classes
(Hydrological Response Units; HRUs) are not prescribed but
defined by the model inputs. The version implemented in
the experimental AWRA system uses Australia-wide forc-
ing data at 0.05◦ resolution and considers two HRUs; deep-
rooted vegetation and shallow-rooted vegetation.

The model evolves on a daily time step. The water bal-
ance of a top soil, shallow soil and deep soil compartment
are simulated for each HRU and groundwater and surface
water dynamics are simulated at grid resolution. Simple and
where available well-established equations were used to de-
scribe processes determining the radiation, energy and water
balance. Evapotranspiration (ET) can be estimated following
the Penman-Monteith equation or the Priestley-Taylor equa-
tion (Priestley and Taylor, 1972; Monteith, 1965), depend-
ing mainly on the availability of wind speed data. Storm
and baseflow generation equations were selected after an
evaluation of alternatives against streamflow observations
(Van Dijk, 2009, 2010b). A simplified soil water hydraulics
scheme that has minimal computational demands was de-
rived empirically from simulations with a detailed model us-
ing Richards’ equation. New approaches were developed to
describe surface albedo dynamics and vegetation phenologi-
cal response to water availability (Van Dijk, 2010a)

All HRU and catchment parameters can be prescribed as
uniform values or as spatially-varying grids. Prior estimates
for all parameters were based on literature review or analyses
carried out as part of model development. The minimum me-
teorological inputs are daily gridded precipitation, incoming
short-wave radiation and daytime average or maximum and
minimum temperature. Where daily or daytime wind speed,
vapour pressure and air pressure data are available they can
be used optionally.

AWRA-L simulations have been compared against vari-
ous in situ and satellite observations to assess performance
in the absence calibration or assimilation. Satellite observa-
tions used for model evaluation are discussed in Sect. 4.4.
In situ observations included streamflow measurements from
362 small Australian catchments affected minimally by reg-
ulation and flux tower ET observations at four sites across
Australia (Van Dijk and Warren, 2010). Flux tower ET for
dry canopy conditions was reproduced well; the main source
of error was found to be caused by differences between
tower-based precipitation measurements and grid-based esti-
mates. Comparison of total ET was difficult due to the large
uncertainty in rainfall interception evaporation estimated
from the flux tower measurements. Streamflow records were
reproduced with very similar accuracy to that achieved by
lumped rainfall-runoff models in the absence of calibration.
Simulations are likely to be improved by applying more
advanced parameter calibration developed for such models
(Chiew, 2010), particularly at smaller spatial and temporal
scales.
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3.3 Operational implementation

As part of operational trialling, two experimental AWRA
systems have been implemented, using respectively the ICT
frameworks developed for the AWAP system (King et al.,
2010) and Delft-FEWS (Werner and Whitfield, 2007). Both
systems use 0.05◦ resolution forcing data of daily precipita-
tion, short-wave radiation, and minimum and maximum tem-
peratures produced by the BoM. The precipitation fields are
derived by interpolation of gauge observations only and are
produced in a staged manner as observations with increasing
latency become available (Jones et al., 2009). Minimum and
maximum temperature fields are also derived by interpola-
tion of station observations (Jones et al., 2009). Incoming
short-wave radiation is estimated by blending station obser-
vations and geostationary measurements (see Sect. 4.2).

Satellite observations were used to estimate HRU fractions
and some of the parameter fields (see Sect. 4.3). The opera-
tional AWRA-L model has not yet undergone any automated
parameter optimisation. Simple observational models have
been implemented to facilitate data assimilation for state up-
dating (see Sect. 4.5) but data assimilation is currently not
implemented operationally.

Outputs produced include gridded fields of water storage
in the three soil compartments and groundwater, ET, stream-
flow generation, groundwater recharge. In addition some
variables are produced for diagnostic purposes and as a pre-
cursor to operational data assimilation. These include veg-
etation biomass and leaf area index (LAI), and “synthetic”
satellite observations such as fractional cover, vegetation
greenness indices, soil surface wetness, and total column ter-
restrial water storage. An example output is shown in Fig. 2.

4 Operational use of satellite observations

4.1 Utility of satellite observations

Several papers have surveyed the potential or actual uses
of satellite observations in hydrology (Schultz and Engman,
2000; Wagner et al., 2009; Fernández Prieto et al., 2009;
Schmugge et al., 2002; Rango and Shalaby, 1998). They are
summarised here with a focus on use in SWRMS and com-
pared to the ground observations currently used in hydrolog-
ical modelling (Fig. 3).

– Atmosphere:
Conventionally, the atmospheric variables that are re-
quired as forcing for hydrological models are precipita-
tion gauge and weather station observations or derived
interpolation products. Particularly in data sparse re-
gions, satellite observations can help improve the qual-
ity of these inputs, for example by blending precipita-
tion gauge information with rainfall radar and multi-
satellite rainfall products; and combining satellite ob-
servations of cloud cover, atmospheric composition and

 

 

Figure 2. Total water storage anomaly map for 1 February 2010, including water in the 
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Fig. 2. Total water storage anomaly map for 1 February 2010, in-
cluding water in the vegetation, soil, ground water and surface stor-
ages. Anomalies are calculated with reference to the average for
the same day in the years 1980–2009. Points indicate the location
of rain gauges used in the derivation of the interpolated model forc-
ing.

temperature with weather station observations and/or
NWP models.

– Vegetation and snow:
Optical and passive microwave observations can pro-
duce estimates of snow cover and snow water equivalent
water storage, which can be used to initialise hydrolog-
ical models. Optical satellite observations can be used
to classify the landscape into land cover classes. Op-
tical observations of albedo and thermal infrared (TIR)
and microwave brightness temperatures or derived land
surface temperatures (LSTs) can be assimilated into sur-
face radiation and energy balance models to improve the
accuracy of ET estimates. Similarly, optical observa-
tions of vegetation greenness and derived products such
as the fraction of absorbed photosynthetically active ra-
diation (FPAR) and leaf area index, and passive or active
microwave derived estimates of vegetation water con-
tent, biomass and vegetation structure, can be used to
estimate such variables as emissivity, canopy conduc-
tance and vegetation roughness, which affect the parti-
tioning of radiation into ET and other terms.

– Soil:
Active and passive microwave observations have been
used to estimate the topsoil moisture content, and the
temporal decay in soil (brightness) temperature ob-
servations has been used to estimate soil hydraulic
properties.
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– Surface water:
Satellite altimetry can be used to measure water level
in larger water bodies, and optical active and passive
microwave remote sensing have been applied to monitor
the extent of water bodies and floods, as well as volume
(through combination with elevation data).

– Groundwater:
While optical and microwave observations are too su-
perficial to produce much information on groundwater
dynamics, they have been used interpretatively in geo-
hydrological mapping, and the occurrence of thermal
anomalies can indicate groundwater discharge zones.

Finally, gravity measurements such as those by the Gravity
Recovery and Climate (GRACE; Tapley et al., 2004) provide
observations of total column water storage, which includes
water in all stores mentioned above. Despite their currently
coarse spatial resolution, they are a unique integrated mea-
surement and have proven valuable for evaluation of large
scale hydrological models.

This brief summary shows a wealth of possibilities for
satellite observations to aid in hydrological modelling, in-
cluding “soft” or interpretative uses (e.g., mapping, evalua-
tion) as well as “hard” or quantitative uses (as model input
or in data assimilation). Below, we review published oper-
ational and experimental uses of these observations, making
a distinction between the use of satellite products for (1) dy-

namic forcing; (2) a priori parameter estimation; (3) model
evaluation and development; and (4) data assimilation, in-
cluding both non-sequential techniques (such as parameter
calibration) and sequential techniques (i.e., state updating).

4.2 Dynamic forcing

Several NWP systems routinely assimilate satellite observa-
tions and their products make their way into some of the op-
erational systems that use weather analysis data and fore-
casts. For example, the NLDAS system uses daily grid-
ded 0.25◦ resolution precipitation estimated by interpolation
of data from 6500 gauges measured in near-real time and
13 000 gauges with greater latency; these data are interpo-
lated to 0.125◦ resolution and subsequently disaggregated
to hourly estimates using rainfall radar observations (Cos-
grove et al., 2003). Geostationary satellite observations are
used to estimate incoming shortwave radiation at 0.5◦ reso-
lution. Other atmospheric variables (e.g. humidity, tempera-
ture, wind) are derived from NCEP NWP analysis (Cosgrove
et al., 2003). The GLDAS system uses 2-hourly meteoro-
logical forcing derived from the NCEP global data assim-
ilation system (GDAS) as a default. Precipitation is esti-
mated from global 2.5◦ resolution 5-day precipitation fields
derived retrospectively by blending gauge and satellite obser-
vations (CMAP; Xie and Arkin, 1997) that are disaggregated
in time and space using GDAS precipitation fields. Radiation
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is based on a 0.25◦ resolution global satellite cloud cover
product (Rodell et al., 2004). The two experimental seasonal
forecasting systems for the USA use NLDAS forcing data
for initialisation, augmented by non-operational station data
for the western USA (E. F. Wood, personal communication,
2010. EFAS uses near-real time meteorological data based
on approximately 2000 weather stations around Europe and
available with 1 day latency. NHI uses precipitation forcing
that includes 1 km radar derived rainfall fields and observa-
tions from 325 gauges.

The AWAP and AWRA systems both use 0.05◦ resolution
gridded fields of daily rainfall and temperature based on in-
terpolated station data only (Jones et al., 2009). Satellite ob-
servations are however used in the operational estimation of
incoming shortwave radiation, by combining solar reflective
measurements from imagers aboard the Japanese GMS and
MTSAT-IR geostationary satellites with station-level radia-
tion measurements (Weymouth and Le Marshall, 2001).

The quality and resolution of precipitation data is recog-
nised as one of the main limitations on useful hydrological
monitoring (Nijssen et al., 2001). An important aspect of
AWRA development has been the generation of better qual-
ity precipitation fields, in terms of spatial and temporal res-
olution as well as in accuracy. In several regions the density
of stations is very low and consequently interpolation uncer-
tainty large (cf. Fig. 2). The global Tropical Rainfall Measur-
ing Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA 3B42; Huffman et al., 2007) is a product that extends
back to 1998. Only a subset of the Australian station network
is used for bias correction in the product. Alternative statis-
tical approaches to blending station data and satellite rainfall
products have been explored. Li and Shao (2010) tested or-
dinary kriging and co-kriging with the TMPA data as a co-
variate, and developed a double kernel-smoothing technique
to blend the two rainfall data sets. An example of the kernel-
based blended rainfall estimate for Australia is given in Fig. 4
along with gauge-only analysis generated by the BoM and
daily accumulation computed from the TMPA 3B42 rain
rates. Cross validation suggested that among the approaches
tested the double smoothing technique produced the lowest
standard error and bias. The degree to which the resulting
blended precipitation product improves AWRA estimates is
currently being tested.

Opportunities and challenges

Opportunities for further development include the use of al-
ternative satellite precipitation products (e.g. Joyce et al.,
2004) in blending, as well as additional data sources such
as NWP analysis data and rainfall radar. These data sources
may facilitate the generation of informative estimates of sub-
daily rainfall distribution. Rainfall intensity is known to in-
fluence processes such as overland flow generation and rain-
fall interception losses, and there is reason to assume that
a significant fraction of the differences between model es-

Figure 4 
 
 

 
 
 
 
 
 

Fig. 4. Daily rainfall estimates for 5 January 2005:(a) gauge-only
analysis (Jones et al., 2009) (black dots represent gauge locations);
(b) 24-h accumulations of satellite-based TMPA 3B42 rain rates;
and(c) blended satellite-gauge rainfall estimate generate using the
kernel-based algorithm of Li and Shao (2010).

timated and observed peak streamflow is due to these pro-
cesses (Van Dijk, 2010b; Giannoni et al., 2003).

There are also challenges to be addressed when using
satellite data to generate dynamic forcing operationally. In
particular, caution needs to be taken when ingesting a prod-
uct for which continuity is not assured, or the quality of
which relies on research missions (the TMPA product is a
case in point). Another challenge is the need to understand
the error in gauge records as well as satellite products, and
temporal and spatial scaling between the two.

4.3 A priori parameter estimation

The adjective a priori is used here to distinguish those pa-
rameters estimated in independent data analysis or heuris-
tics from those obtained via formal model optimisation (see
Sect. 4.5).

There are several examples of the use of satellite observa-
tions and derived products to parameterise hydrological mod-
els. The most common use is for land cover classification
and to prescribe vegetation canopy structural and biophysical
properties. Both NLDAS and GLDAS use a 1-km resolution
13-class land cover data set derived from AVHRR (Hansen et
al., 2000). The different models in NLDAS use different ap-
proaches to prescribing an LAI or canopy fraction climatol-
ogy, but all are based on AVHRR NDVI data (see Mitchell et
al., 2004 for details). GLDAS, too, uses AVHRR NDVI ob-
servations to produce gridded LAI climatologies for the vari-
ous land cover classes using a procedure described in Rodell
et al. (2004) and Gottschalck et al. (2002). The LISFLOOD
model in EFAS uses a classification based on a blend of
AVHRR (Mucher et al., 2000) and SPOT/VEGETATION
(Bartholoḿe and Belward, 2005) derived products; monthly
LAI estimates are derived from SPOT/VEGETATION and
ATSR/AATSR (Garrigues et al., 2008). AWAP uses NDVI
and FPAR derived from SeaWiFS (Gobron et al., 2002).
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In AWRA, grid cell fractions of deep- and shallow-
rooted vegetations are estimated from persistent and recur-
rent greenness fractions based on AVHRR NDVI observa-
tions (Donohue et al., 2009). MODIS albedo and vegeta-
tion properties (Knyazikhin et al., 1999; Myneni et al., 2002;
Schaaf et al., 2002) were also used to derive parameters de-
scribing the interrelationships between LAI, fraction canopy
cover and albedo, whilst a photosynthetic capacity index was
calculated from the enhanced vegetation index (EVI; Huete
et al., 2002) and used to estimate surface conductance. Fi-
nally, ENVISAT ASAR GM radar (Pathe et al., 2009) ob-
servations were used to derive parameters describing the re-
lationship between topsoil moisture content and soil albedo
(Van Dijk, 2010a). Canopy dynamics are explicitly simu-
lated by the model and satellite vegetation climatology is not
used operationally.

Opportunities and challenges

There are many opportunities for greater use of satellite ob-
servations to derive spatially continuous fields of soil and
vegetation parameters. Examples include the use of multi-
and hyperspectral data to estimate canopy assimilative ca-
pacity and/or water content and thereby surface conduc-
tance (Guerschman et al., 2009; Glenn et al., 2008); the
use of radar and microwave data to parameterise vegeta-
tion biomass or water content (Meesters et al., 2005), height
(Kellndorfer et al., 2004) and aerodynamic roughness (Pri-
gent et al., 2005). Satellite albedo products can improve
radiation balance estimates which can help hydrological es-
timation. Finally, it has been shown feasible to estimate
soil hydraulic properties with the aid of temporal patterns in
remotely-sensed temperatures or soil moisture or ET prod-
ucts (Mattikalli et al., 1998), although this is perhaps bet-
ter approached through parameter optimisation techniques,
given the influence of forcing on the temporal behaviour of
these variables (Gutmann and Small, 2010; Pauwels et al.,
2009; and references therein).

There are also some difficult challenges in the inference of
vegetation and soil parameter fields. All biophysical prop-
erties (e.g. LAI, albedo, biomass) are inferred from remote
sensing and are thus subject to uncertainties in the parame-
ters and assumptions of the retrieval model (e.g. Glenn et al.,
2008). In addition, there can be conceptual differences be-
tween variables that are superficially similar between remote
sensing products and models. Examples include the differ-
ence between FPAR and fraction canopy cover, between op-
tical depth and biomass, and between remotely-sensed sur-
face soil properties and desired integrated soil properties.

4.4 Model evaluation and improvement

While not essential to support an operational system, satel-
lite observations can be useful to evaluate the performance
of hydrological models. Evaluation can help to (1) set a
benchmark against which future modifications can be tested;
(2) understand how and against which observations model
estimates are most usefully compared; (3) identify processes
or quantities that are not described well by the model; (4) in-
form the development of model-data assimilation techniques;
and (5) allow the model results to be used with appropriate
caveats and “fit for purpose” disclaimers.

Several SWRMS have undergone evaluation against satel-
lite observations. Such evaluations are usually included
when testing the performance of satellite data assimilation
techniques (e.g. as “open loop” estimates; see Sect. 4.5). For
example, NLDAS LST simulations were compared to GOES
satellite LST fields (Mitchell et al., 2004) and Laguardia
and Niemeyer (2008) compared soil moisture simulations by
the EFAS/LISFLOOD system against ERS radar derived soil
moisture. There have also been numerous studies using satel-
lite observations to evaluate results from non-operational hy-
drological models. For example, Kite and Droogers (2000)
compared several hydrological models and satellite-based
ET estimation methods, as well as field measurements. Spa-
tial soil moisture fields derived from hydrological models
have been compared to estimates derived from passive mi-
crowave observations (Liu et al., 2010) and radar (Vischel et
al., 2008; Parajka et al., 2009). Biftu and Gan (2001) used
AVHRR and Landsat LST and radar soil moisture to evalu-
ate model results. GRACE observations have been used to
evaluate simulated total water storage in several studies (see
reviews by G̈untner, 2008; Ramillien et al., 2008).

AWRA simulations have been assessed against satellite-
derived estimates of topsoil moisture content, surface and
vegetation properties (fraction cover, FPAR, EVI), total ter-
restrial water storage, and ET estimates. Topsoil moisture
derived from ENVISAT/ASAR GM showed spatial patterns
that corresponded well with independent satellite product er-
ror estimates (Pathe et al., 2009; Van Dijk, 2010a; Doubkova
et al., 2010). AVHRR- and MODIS-derived estimates of
FPAR, canopy cover fraction and greenness were reproduced
well for seasonal vegetation that responds dynamically to
water availability, while temperature driven phenology and
small variations in canopy properties for evergreen forests
were not reproduced. AWRA simulated total terrestrial water
storages have also been evaluated against GRACE-derived
terrestrial water storage estimates (Van Dijk and Renzullo,
2009a).This showed generally good agreement in the dy-
namic range and patterns (Fig. 5) and emphasised the utility
of satellite gravity observations to identify errors in forcing
and the model description of soil and groundwater dynamics,
even if currently only at coarse scale.

More recently, evaluation against MODIS albedo (Schaaf
et al., 2002) has proven useful in assessing where the model
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Figure 5 
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(b)

Fig. 5. Comparison of large scale average TWS derived from three
GRACE products (orange band) and AWRA (blue line) for the(a)
Timor sea drainage division, and the(b) Murray Basin.

performs better than a climatology (Van Dijk et al., 2010);
and evaluation against AMSR-E and TRMM derived soil
moisture products (Liu, 2008) along with radar based esti-
mates and in situ observations has helped to assess optimal
soil moisture blending methods (Liu et al., 2010). Compar-
ison against a MODIS reflectance-based scaling ET prod-
uct (Guerschman et al., 2009) has allowed the mapping of
areas where lateral inflows of river or groundwater occur
(Van Dijk et al., 2010).

Opportunities and challenges

Where systematic differences are observed and can be at-
tributed to model error, this can subsequently lead to im-
provements in model structure or parameterization. Several
model inter-comparison experiments have been undertaken
in order to assess alternative modelling approaches, although
interpretation tends to be confounded by the inability to as-
cribe observed performance differences to forcing, param-
eters and model structure (e.g. Dirmeyer et al., 2006; Fox
et al., 2006; Henderson-Sellers et al., 1995). An additional
challenge in using satellite retrieved data can be the uncer-
tainty introduced by the retrieval model. It has frequently
been suggested to the authors that an evaluation against satel-
lite retrieved products is not strictly valid, as it constitutes
“a comparison of models against models”. While some re-

trieval methods indeed rely on pragmatic but, strictly speak-
ing, wrong assumptions and/or unknown or uncertain model
parameters, this ignores the fact that the estimation of bio-
physical fluxes from field measurements also requires pro-
cessing that can equally introduce large uncertainties. Ex-
amples include the potential for large errors in the discharge
rating curve to convert water level to streamflow; and the
various corrections and gap-filling required to estimate ET
from flux tower measurements. A distinct additional dis-
advantage of field observations can be the uncertainty when
scaling these observations to model resolution. In fact it has
been argued that satellite ET algorithms have reached an ac-
curacy that is on par with flux tower techniques (Guerschman
et al., 2009; Van Dijk and Warren, 2010).

4.5 Data assimilation

Data assimilation here includes all computational techniques
used to minimise differences between modelled and observed
variables, including non-sequential techniques such as pa-
rameter calibration (or “tuning”) and sequential state updat-
ing techniques.

The use of hydrometric observations to calibrate hydro-
logical models is well established, but the use of satellite
observations to estimate parameters in spatially-distributed
hydrological models is less common. A challenge is the
computational burden of finding an optimal parameter set for
each model unit (e.g. grid cell-HRU combination). Exist-
ing examples appear to be restricted to research studies. For
example, Kalma et al. (2008) reviewed some uses of LST
observations to calibrate LSMs, and additional studies have
been published since (Winsemius et al., 2008; Renzullo et al.,
2008; Immerzeel and Droogers, 2008; Droogers et al., 2010).
Campo et al. (2006) and Parajka et al. (2009) attempted the
use of radar soil moisture retrievals to calibrate hydrologi-
cal models. GRACE data were included in multi-objective
parameter optimization approaches to constrain groundwater
hydrological parameters (Lo et al., 2010).

In models with a large number of modelling units (e.g. grid
cells), state updating can require fewer model iterations than
parameter optimization and hence be more attractive for op-
erational applications. Operational satellite-based state up-
dating in NWP has existed since the 1970s and has improved
the accuracy of short (<7 day) term forecasts remarkably
(Simmons and Hollingsworth, 2002) and continues to do so
(Poli, 2010). Common approaches include optimal inter-
polation, three- and four-dimensional variational techniques
(Bouttier and Courtier, 1999; Kalnay, 2003). Apart from the
use of remotely-sensed LAI time series, operational assim-
ilation in hydrological models appears to be limited to the
GLDAS system. GLDAS assimilates sub-daily LST from
TIROS/TOVS geostationary observations (Ottlé and Vidal-
Madjar, 1992) by optimal interpolation and assimilates a
MODIS snow cover product (Hall et al., 2002) using a rule-
based algorithm. Experiments have been done to assimilate
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Fig. 6. Indicators of estimation uncertainty for alternative model-data fusion approaches for flux tower ET (the area of the circles is propor-
tional to the unexplained variance, varying between 11–17%). The most desirable result would show a small circle in lower left corner. Note
that the absolute value of bias for each site was calculated before averaging.

passive microwave derived soil moisture and GRACE ob-
servations but these have not yet been implemented opera-
tionally (Rodell et al., 2004; Zaitchik et al., 2008). Similarly,
experiments have been done to assimilate remotely-sensed
snow cover and microwave brightness temperature (Pan et
al., 2009; Andreadis and Lettenmaier, 2006).

There are several more published off-line data assimila-
tion experiments. The assimilation of satellite observations
such as LST and microwave brightness temperature has typ-
ically involved LSMs rather than models with a hydrological
lineage (Troch et al., 2003). Probably an important reason
has been that assimilation of radiances and surface tempera-
tures requires description of the diurnal surface radiation and
energy balance; consideration of atmospheric transmissivity
on sensor observations; and a model structure and ICT in-
frastructure that facilitate (gridded) data assimilation – all
of which are available within NWPs but not usually in hy-
drological models. One of the first studies attempting as-
similation of satellite observations into a conventional hy-
drological model was Ottlé and Vidal-Madjar (1994), who
used AVHRR-derived LST and NDVI to update a rainfall-
runoff model. Houser et al. (1998) were among the first
to use brightness temperature to improve soil moisture es-
timation in a distributed hydrological model. More straight-
forward in hydrological models is the assimilation of satel-
lite derived products. So far, research results have been in-
conclusive as to whether assimilating remotely-sensed soil
moisture products improves estimates of streamflow; some
studies found improvements (Francois et al., 2003; Pauwels
et al., 2002) while others obtained mixed or unsatisfactory
results (Parajka et al., 2006; Crow et al., 2005). Other as-
similation experiments with distributed hydrological models
have used Landsat LST-derived ET (Schuurmans et al., 2003;
Qin et al., 2008), Landsat and SPOT derived LAI (Boegh
et al., 2004), and both MODIS LAI and LST-derived ET
(Vazifedoust et al., 2009).

AWRA currently does not assimilate satellite observa-
tions, but some assimilation experiments have been done
to guide implementation. The effectiveness of assimilat-
ing MODIS Enhanced Vegetation Index (EVI) (Huete et al.,
2002) observations into AWRA was tested at four flux tower
sites (Van Dijk and Renzullo, 2009c). Approaches tested in-
clude non-sequential parameter optimisation of, respectively,
six sensitive model parameters (calibration against EVI, and
for comparison against ET or both EVI and ET) or a single
rainfall scaling factor. An ensemble Kalman filter was ap-
plied for sequential updating of either LAI or soil moisture,
respectively. Performance was evaluated in terms of stan-
dard error, bias and the fraction of variance left unexplained,
using daily flux tower ET estimates as well as passive mi-
crowave derived soil moisture for the site (Liu et al., 2007).
The approaches are summarised and results shown in Fig. 6.

Prior model parameter estimates already appear to produce
quite good estimates of ET. For these sites, parameter es-
timation did not appear to provide much benefit compared
to using prior parameter estimates. A combination of pa-
rameter estimation and state updating led to a small (<6%)
improvements in some aspects of ET evaluation when com-
pared to using a priori parameter estimates. However it was
also about three orders of magnitude more computationally
intensive, as six parameters first needed to be simultaneously
optimised, and subsequently a 100-member ensemble prop-
agated. Parameter optimisation and Kalman filtering com-
bined also led to very small improvements in the agreement
with soil moisture (Van Dijk and Renzullo, 2009c). The qual-
ity of rainfall forcing was an important factor in the unex-
plained variance, which was confirmed in evaluation of off-
line AWRA-L model simulations against observations (Van
Dijk and Warren, 2010). It is noted that none of the sites
underwent disturbances during the one- to four-year analysis
period; assimilation would likely be more effective in areas
undergoing vegetation change unrelated to water availability.
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Opportunities and challenges

The operational uses and published experiments of data as-
similation emphasise that the greatest benefit can be expected
where the model does not simulate processes well and obser-
vations are of sufficient accuracy and relevance to improve
the analysis; that is, “good data can fix a bad model”. The
effectiveness of data assimilation hinges on the degree to
which the target variables are influenced by the processes im-
proved by assimilation. For example, satellite observations
of surface radiances may not help estimate hydrological pro-
cesses that occur within small areas below satellite resolution
(such as runoff from saturated zones) or that are more af-
fected by unknown precipitation characteristics (such as spa-
tial and temporal rainfall intensities in the case of infiltration
excess runoff) or forcing errors (such as rainfall in sparsely
gauged areas). Dominant runoff processes vary in response
to climate and catchment conditions, and this may partly ex-
plain the variable effectiveness of soil moisture assimilation
reported in literature. Similarly, because of the low impor-
tance of snow in Australia’s water resources, AWRA-L does
not simulate snow hydrological processes, nor would assimi-
lation of snow observations improve water balance estimates
except perhaps for a small fraction of the continent. On the-
oretical grounds (Budyko, 1974) the constraint imparted by
different satellite observations can be predicted to be a func-
tion of climate wetness: where ET is only limited by avail-
able energy, radiation and energy balance measures such as
albedo and surface roughness may be informative, although
precipitation uncertainty may well be the greatest source of
uncertainty in streamflow and recharge estimation. Where
ET is limited by water availability, observations of soil mois-
ture and vegetation are likely to be informative, and can pos-
sibly even be used to correct errors in precipitation estimates
(Crow et al., 2009; Crow and Ryu, 2009). The information
content of observations also varies as a function of transient
vegetation and soil moisture conditions. Experiments with
a precursor of AWRA-L indicated that microwave and TIR
observations only impart useful information under certain
conditions: microwave emissions are informative for topsoil
wetness in sparsely vegetated areas, whereas TIR can con-
strain root-zone water content over vegetated areas (Barrett
and Renzullo, 2009).

A second challenge is the observation model required to
assimilate “raw” observations (that is, radiances, brightness
temperatures and backscatter) rather than derived products.
While assimilation of these original observations is desirable
from a theoretical point of view, hydrological models typi-
cally require considerable extensions to produce forward es-
timates of these variables, with associated complexity, model
structural errors and parameter uncertainties. This approach
can also increase computational requirements and affect sys-
tem robustness, for example where observations in several
bands or polarisations simultaneously need to be assimilated.
Assimilation of derived hydrological products can be more

straightforward but tends to introduce errors through the poor
specification of observational errors required for assimila-
tion. A promising approach would be to use the product re-
trieval models to generate spatially and temporally explicit
uncertainty bounds.

A third challenge is the assimilation of satellite obser-
vations obtained at scales coarser than the model resolu-
tion. Given the resolution required for useful water resources
monitoring this is particularly the case for GRACE and pas-
sive microwave observations. Progress towards the develop-
ment of operational approaches has been made (Pan et al.,
2009; Zaitchik et al., 2008), but challenges remain, includ-
ing a accurate specification of the footprint, and in the case
of microwave observations, the development of methods to
account for the non-linearity in scaling and the variable in-
fluence of surface water on the soil moisture retrieval.

A fourth challenge for operational application is the com-
putational overheads that parameter optimisation and state
updating can introduce. In particular, multi-dimensional pa-
rameter optimisation can require a very large number of itera-
tions, and ensemble filtering approaches are computationally
intensive (see Van Dijk and Renzullo, 2009c for an example).

5 Conclusions

Spatial water resource monitoring systems (SWRMS) can
provide important benefits for water management. All ma-
jor technological obstacles have been overcome to facilitate
the development and operational deployment of such sys-
tems, and indeed some already exist, albeit as experimental
services with limited scope. The Australian water resources
assessment (AWRA) system is one such example and is in-
troduced in this paper. In addition, the current state of opera-
tional SWRMS is surveyed, with an emphasis on the way in
which satellite observations are used. The following conclu-
sions are drawn:

1. Most operational SWRMS focus on the landscape com-
ponent of the water cycle, in line with their heritage as
land surface models (LSMs) in large scale weather and
climate models. There is however convergence between
these LSMs and water resource models.

2. Developments required to extend the use of current
SWRMS approaches to a wider range of water manage-
ment purposes include (a) explicit description of water
redistribution and use in regulated and unregulated river
systems and groundwater systems; (b) a performance
against hydrometric observations that is equal or better
than existing water resources models; (c) optimal use of
these hydrometric observations to constrain estimates;
and (d) higher spatial resolution. These developments
require the coupling of landscape models with models
describing surface water and groundwater dynamics and
water use.
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3. Satellite observations of the atmosphere, vegetation,
snow, soil, surface water and groundwater have the po-
tential to improve the accuracy and spatial detail in
SWRMS, and can be derived from multi-spectral mea-
surements of reflectance, thermal and microwave emis-
sions, radar backscatter, altimetry, and gravity measure-
ments.

4. All existing SWRMS use some form of dynamic forc-
ing derived by blending satellite and on-ground obser-
vations, through interpolation approaches or by using
analysis outputs from NWPs. Opportunities exist to de-
velop and use more accurate and higher spatial and tem-
poral resolution precipitation products, but precipitation
scaling and the operational reliability of these products
need to be considered.

5. Satellite-derived land cover classification and vegeta-
tion dynamics are commonly used in SWRMS. Many
opportunities exist for greater use of remote sensing
products to provide a priori model parameter estimates
related to vegetation biomass, albedo, roughness and
conductance and soil hydraulic properties. This requires
good understanding of conceptual differences between
satellite products and their model equivalents.

6. Model evaluation against satellite observations provides
unique spatial information on model output uncertainty,
can help guide further improvement, and are a logical
precursor to the development of model-data assimila-
tion techniques. This does require a good quantitative
understanding of errors in satellite retrievals, however.

7. Assimilation of satellite observations can be achieved
through non-sequential techniques (such as parameter
calibration) and sequential techniques (i.e., state up-
dating). The utility of satellite observations through
data assimilation also depends on dominant hydrolog-
ical processes in the model domain and transient hydro-
logical conditions. Furthermore, hydrological models
are not always well equipped to assimilate “raw” satel-
lite observations. Assimilation of derived hydrologi-
cal variables may be more attractive but requires cor-
rect and detailed specification of retrieval error. Meth-
ods are also required to deal with the coarse resolution
of passive microwave and gravity observations when
compared to most SWRMS. Finally, the computational
implications of data assimilation techniques due to the
large number of modelling units and the potentially
large number of iterations required needs to be carefully
considered in operational implementation.
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Bartholoḿe, E. and Belward, A. S.: GLC2000: a new approach to
global land cover mapping from Earth observation data, Int. J.
Remote Sens., 26, 1959–1977, 2005.

Berendrecht, W., Weerts, A. H., Veldhuizen, A. A., and Kroon, T.:
An operational drought forecasting system using coupled mod-
els for groundwater, surface water and unsaturated zone, Model-
CARE 2009, Wuhan, China, 2009.

Beven, K.: Changing ideas in hydrology – The case of physically-
based models, J. Hydrol., 105, 157–172, 1989.

Beven, K. and Binley, A.: The future of distributed models: model
calibration and uncertainty prediction, Hydrol. Process., 6, 279–
298, 1992.

Biftu, G. and Gan, T.: Semi-distributed, physically based, hydro-
logic modeling of the Paddle River Basin, Alberta, using re-
motely sensed data, J. Hydrol., 244, 137–156, 2001.

Boegh, E., Thorsen, M., Butts, M. B., Hansen, S., Christiansen, J.
S., Abrahamsen, P., Hasager, C. B., Jensen, N. O., van der Keur,
P., Refsgaard, J. C., Schelde, K., Soegaard, H., and Thomsen, A.:
Incorporating remote sensing data in physically based distributed
agro-hydrological modelling, J. Hydrol., 287, 279–299, 2004.

Bouttier, F. and Courtier, P.: Data assimilation concepts and meth-
ods, ECMWF Meteorological Training Course Lecture Series,
14, 1999.

Budyko, M. I.: Climate and Life Academic Press, New York,
508 pp., 1974.

Bureau of Meteorology: Pilot National Water Account, Common-
wealth of Australia, Melbourne, 359, 2010.

Burnash, R. J. C., Ferral, R. L., and McGuire, R. A.: A general-
ized streamflow simulation system: conceptual models for digital
computers, J, Joint Federal-State River Forecast Center, Sacra-
mento, California, 1973.

Campo, L., Caparrini, F., and Castelli, F.: Use of multi-platform,
multi-temporal remote-sensing data for calibration of a dis-
tributed hydrological model: an application in the Arno basin,
Italy, Hydrol. Process., 20, 2693–2712, 2006.

Chiew, F.: Lumped Conceptual Rainfall-Runoff Models and Sim-
ple Water Balance Methods: Overview and Applications in Un-

www.hydrol-earth-syst-sci.net/15/39/2011/ Hydrol. Earth Syst. Sci., 15, 39–55, 2011



52 A. I. J. M. van Dijk and L. J. Renzullo: Water resource monitoring systems

gauged and Data Limited Regions, Geogr. Compass, 4, 206–225,
2010.

Cosgrove, B., Lohmann, D., Mitchell, K., Houser, P., Wood, E.,
Schaake, J., Robock, A., Marshall, C., Sheffield, J., and Duan,
Q.: Real-time and retrospective forcing in the North American
Land Data Assimilation System (NLDAS) project, J. Geophys.
Res., 108, 8842, 2003.

Crawford, N., and Linsley, R.: Digital simulation in hydrology:
Stanford watershed model IV, Dept. of Civil Engineering, Stan-
ford University, 1966.

Crow, W., Huffman, G., Bindlish, R., and Jackson, T.: Improving
satellite-based rainfall accumulation estimates using spaceborne
surface soil moisture retrievals, J. Hydrometeorol., 10, 199–212,
2009.

Crow, W. T. and Ryu, D.: A new data assimilation approach for
improving runoff prediction using remotely-sensed soil moisture
retrievals, Hydrol. Earth Syst. Sci., 13, 1–16, doi:10.5194/hess-
13-1-2009, 2009.

Crow, W. T., Bindlish, R., and Jackson, T. J.: The added value
of spaceborne passive microwave soil moisture retrievals for
forecasting rainfall-runoff partitioning, Geophys. Res. Lett., 32,
L18401, doi:10.1029/2005gl023543, 2005.

Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki,
N.: The Second Global Soil Wetness Project (GSWP-2): Multi-
model analysis and implications for our perception of the land
surface, B. Am. Meteorol. Soc., 87, 1381–1397, 2006.
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Parajka, J., Naeimi, V., Blöschl, G., and Komma, J.: Matching ERS
scatterometer based soil moisture patterns with simulations of
a conceptual dual layer hydrologic model over Austria, Hydrol.
Earth Syst. Sci., 13, 259–271, doi:10.5194/hess-13-259-2009,
2009.

Pathe, C., Wagner, W., Sabel, D., Bartalis, Z., Doubkova, M.,
and Naeimi, V.: Using ENVISAT ASAR Global Mode data for
surface soil moisture retrieval over Oklahoma, USA, IEEE T.
Geosci. Remote, 47, 468–480, 2009.

Pauwels, V. R. N., Hoeben, R., Verhoest, N. E. C., Troch, F. P. D.,
and Troch, P. A.: Improvement of TOPLATS-based discharge
predictions through assimilation of ERS-based remotely sensed
soil moisture values, Hydrol. Process., 16, 995–1013, 2002.

Pauwels, V. R. N., Balenzano, A., Satalino, G., Skriver, H., Ver-
hoest, N. E. C., and Mattia, F.: Optimization of Soil Hydraulic
Model Parameters Using Synthetic Aperture Radar Data: An In-
tegrated Multidisciplinary Approach, IEEE T. Geosci. Remote.,
47, 455–467, 2009.

Poli, P.: Assimilation of satellite observations of the atmosphere,
Comptes Rendus Geoscience, 342, 357–369, 2010.

Priestley, C. H. B. and Taylor, R. J.: On the assessment of surface
heat flux and evaporation using large-scale parameters, Mon.
Weather Rev., 100, 81–92, 1972.

Prigent, C., Tegen, I., Aires, F., Marticorena, B., and Zribi, M.: Es-
timation of the aerodynamic roughness length in arid and semi-
arid regions over the globe with the ERS scatterometer, J. Geo-
phys. Res, 110, D09205.1–D09205.12, 2005.

Qin, C., Jia, Y., Su, Z., Zhou, Z., Qiu, Y., and Suhui, S.: Integrat-
ing Remote Sensing Information Into A Distributed Hydrological
Model for Improving Water Budget Predictions in Large-scale
Basins through Data Assimilation, Sensors, 8, 4441–4465, 2008.

Ramamoorthi, A.: Snow-melt run-off studies using remote sensing
data, Sadhana, 6, 279–286, 1983.

Ramillien, G., Famiglietti, J. S., and Wahr, J.: Detection of conti-
nental hydrology and glaciology signals from GRACE: a review,
Surv. Geophys., 29, 361–374, 2008.

Rango, A. and Shalaby, A.: Operational applications of re-
mote sensing in hydrology: success, prospects and prob-
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