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Abstract. We investigate the potential impact of account-
ing for seasonal variations in the climatic forcing and using
different methods to parameterize the soil water content at
field capacity on the water balance components computed
by a bucket model (BM). The single-layer BM of Guswa et
al. (2002) is employed, whereas the Richards equation (RE)
based Soil Water Atmosphere Plant (SWAP) model is used
as a benchmark model. The results are analyzed for two
differently-textured soils and for some synthetic runs under
real-like seasonal weather conditions, using stochastically-
generated daily rainfall data for a period of 100 years. Since
transient soil-moisture dynamics and climatic seasonality
play a key role in certain zones of the World, such as in
Mediterranean land areas, a specific feature of this study is
to test the prediction capability of the bucket model under
a condition where seasonal variations in rainfall are not in
phase with the variations in plant transpiration. Reference is
made to a hydrologic year in which we have a rainy period
(starting 1 November and lasting 151 days) where vegetation
is basically assumed in a dormant stage, followed by a drier
and rainless period with a vegetation regrowth phase. Bet-
ter agreement between BM and RE-SWAP intercomparison
results are obtained when BM is parameterized by a field ca-
pacity value determined through the drainage method pro-
posed by Romano and Santini (2002). Depending on the
vegetation regrowth or dormant seasons, rainfall variability
within a season results in transpiration regimes and soil mois-
ture fluctuations with distinctive features. During the vege-
tation regrowth season, transpiration exerts a key control on
soil water budget with respect to rainfall. During the dormant
season of vegetation, the precipitation regime becomes an
important climate forcing. Simulations also highlight the oc-
currence of bimodality in the probability distribution of soil
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moisture during the season when plants are dormant, reflect-
ing that soil, it being of coarser or finer texture, can be pref-
erentially in either wetter or drier states over this period.

1 Introduction

Progress has been achieved in advancing scientific knowl-
edge on the interactions within the soil-vegetation-
atmosphere (SVA) system and also in developing improved
monitoring and modeling technologies. However, there is
still little information transferred from the research world to
the tools used by public agencies, consultants, and stakehold-
ers responsible for managing land and water resources. On
the one hand, hydrologic models developed by scientists are
usually very complex and require large amounts of special-
ized input data that may not be directly available (Höllander
et al., 2009). On the other hand, simple models are easy to
use, but may be of inadequate accuracy or detail to answer
specific management questions, especially in cases of multi-
ple demands upon the SVA system.

With specific reference to soil-water/vegetation interac-
tions, the Richards equation (RE) offers a comprehensive,
physics-based description of water movement in the vadose
zone and associated hydrologic fluxes, including root water
uptake (Lee and Abriola, 1999; Feddes et al., 2001). This
model is a parabolic, partial differential equation whose pa-
rameters are the soil water retention,θ(h), and hydraulic con-
ductivity, K(h) [or, K(θ)], functions, the so-called soil hy-
draulic properties, that are relationships between matric suc-
tion head,h, soil water content,θ , and hydraulic conductiv-
ity, K (Kutı́lek and Nielsen, 1994). Solutions of the Richards
equation are difficult because of the strong nonlinearity of the
functionsθ(h) andK(h). One can achieve RE solutions in
analytical or semi-analytical terms only for particular types
of soils (e.g. linear soils) and specific boundary conditions,
instead one has to resort to numerical methods for solving
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accurately most of practical soil-water flow problems (Ro-
mano et al., 1998;̌Simůnek et al., 2008). Employing RE at
laboratory soil core or field plot scales can be done with con-
fidence (Sposito, 1986), but may become unmanageable for
hydrologic applications at the scales of hillslopes and catch-
ments chiefly because of the spatial, and sometimes also tem-
poral, variability exhibited by the soil hydraulic properties
(Sharma and Luxmoore, 1979; Braud, 1998; Settin et al.,
2007), and partly because of theoretical doubts that capillary
suction heads and hydraulic gradients are still the driving
forces of mass flow and momentum transfer in unsaturated
porous media at such larger scales (Beven, 1989; McDonnell
et al., 2007). Notwithstanding these limitations, RE is in-
creasingly being used in process-based distributed models of
hydrological cycle and is also used at the global scale in Land
Surface Models (Kowalczyk et al., 2006; Clark et al., 2008;
Manus et al., 2009; Oleson et al., 2010). Moreover, RE so-
lutions are anyhow considered as the best available reference
for comparisons to the performances of simplified models to
be categorized in terms of their complexity with respect to
the number of hydrologic processes employed (Guswa et al.,
2002).

The soil water balance bucket model (BM) of Manabe
(1969) is the classic example of a lumped model accounting
for a simplified description of the major processes evolving
in the hydrologic cycle, in which a single soil layer is concep-
tualized as a bucket receiving and retaining all incident water
until its storage capacity is filled. The latter assumption, for
example, saves one the need of describing infiltration rate
with respect to rainfall intensity through an analytical (usu-
ally, empirical) equation. This type of model is particularly
efficient to describe land surface processes and thus exten-
sively used when coupled with large scale atmospheric mod-
els, including General Circulation Models (GCMs), but may
experience problems due to its simple representation of veg-
etation and estimation of potential evapotranspiration fluxes
(Seneviratne et al., 2010). Since the valuable function of soil
to transfer water with different rates along the vertical profile
is virtually ignored and a direct feedback is described be-
tween soil water storage and evapotranspiration, BM is char-
acterized by a rather short soil water storage memory and can
hardly describe correctly the system response to rapid time
evolution in atmospheric forcing. Yet, in the last decades sev-
eral studies have shown that bucket models can be efficiently
employed for predicting some components of the soil water
budget, as they provide results similar to those observed in
the field or those simulated with models which are more de-
tailed in the description of the soil water dynamics, at least
in soils with specific climatic regimes (Milly, 1994; Guswa
et al., 2002; Farmer et al., 2003).

On the wave of studies gaining insights into the poten-
tial impacts that land use and climate changes may exert on
catchment scale hydrologic response, one challenging ques-
tion is to obtain efficient predictions while recognizing that
water transfer in the SVA continuum is controlled by several

non-linear and dynamic interacting processes (Blöschl and
Montanari, 2010). The efficiency of simplified models has
been tested in areas characterized by stationary condition of
the climatic forcing (Milly et al., 2008), which can be ob-
served only in limited zones of the World, such as in the sa-
vannas of South Africa (Porporato et al., 2002). Instead, tran-
sient soil-moisture dynamics and climatic seasonality play a
key role in other environments (Settin et al., 2007), such as
those characterized by Mediterranean climates, where rain-
fall shows an out-of-phase relationship with air temperature,
with an alternation of wet-cold and dry-warm periods. The
end of wet-cold period corresponds to the beginning of the
growing season, when water dynamics are mainly controlled
by the evapotranspiration processes, which induce a progres-
sive reduction of the water stored toward the dry-warm sea-
son. The soil-moisture dynamics during the growing season
is generally far from what can be predicted with the hypothe-
sis of stationarity. Nevertheless, under such complex climatic
variability during the year, linking the fluxes and vegetation
growth to the variations in soil water contents along the en-
tire soil profile can be a prerequisite to adequately simulate
fluctuations in evapotranspiration or other hydrologic fluxes.

A general objective of the present work is to assess the
validity of using a bucket model to simulate the local water
balance and associated fluxes assuming a rainfall regime and
vegetation characteristics representative of Mediterranean ar-
eas. Comparisons are carried out with respect to the re-
sults obtained under the same conditions through a RE-
based hydrologic model. Under climate, vegetation, and soil
conditions relevant to an African savannah site, Guswa et
al. (2002) have shown that an appropriate formulation of the
single-layer bucket model, with proper account of the rela-
tionship between transpiration,T , and degree of saturation in
soil, s, can provide results similar to those obtained by a more
comprehensive model based on the integration of the verti-
cally discretized Richards equation. At relatively larger time-
scale, namely an entire growing season of 200 days, Table 5
of this paper reports some more similarity among the wa-
ter fluxes as computed by the RE or BM models. However,
when moving to a smaller time-scale, namely the daily time-
scale, discrepancies between RE model results and those of
the BM of Guswa et al. (2002) were about 50 % for evap-
otranspiration flux, ET, and ranged from 50 % to 70 % over
a season for theT /ET ratio (see, for example, the traces of
daily transpiration depicted in Fig. 8 of that paper).

The soil water content at the condition of field capacity,θfc
(field capacity, for short), is a key parameter of a bucket-type
approach as it represents a threshold water content that con-
trols the processes of surface runoff generation and drainage
(leakage) out of the root zone (more precisely, out of the
lower boundary of the flow domain). The classic bucket ap-
proach is thus unable to manage an infiltration excess runoff
(the Hortonian mechanism of runoff generation) and subsur-
face flow, and handles only a saturation excess runoff (Dunne
mechanism). When soil water storage in the bucket exceeds
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field capacity, then this excess of water is routed to runoff
only, or to both runoff and drainage. Notwithstanding the
considerable importance of field capacity in a bucket-type
hydrologic approach, its value is still determined using sim-
plified, often very inaccurate techniques (Romano and San-
tini, 2002). In view of parameterizing a bucket model for
effectively computing the soil water budget under environ-
mental conditions representative of a Mediterranean area, a
specific objective of this study is to evaluate whether the de-
termination of the field capacity value with an appropriate
technique can lead to BM results more in agreement with
those offered by a more complex model based on RE.

2 Description of the models

2.1 The SWAP model

SWAP (Soil, Water, Atmosphere and Plant) is a widespread
used model in the soil hydrology community to simulate soil
water flow in the vadose zone at field scale and during entire
growing seasons (van Dam et al., 2008). The vertical soil-
water movement is described by the Richards equation with
a sink term accounting for the root water uptake, as follows:

C(h)
∂h(z, t)

∂ t
=

∂

∂ z

{
K(h)

[
∂h(z, t)

∂ z
−1

]}
−S(h) (1)

which is written here in its pressure-head form. In Eq. (1),
time, t , and vertical coordinate,z (taken positive downward),
are the independent variables, whereas suction pressure-
head,h, is the dependent variable. Model parameters are the
water capacity function,C(h) = dθ/dh, which can be read-
ily obtained from knowledge of the soil water retention func-
tion, θ(h), and the hydraulic conductivity function,K[θ(h)].
After having specified the appropriate initial and boundary
conditions, the SWAP model solves Eq. (1) numerically us-
ing a finite-difference approach.

The following van-Genuchten/Mualem analytical relation-
ships are used as soil hydraulic properties:
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whereθ0 is the volumetric water content ath = 0 (commonly
the saturated water content,θs), θr is the residual water con-
tent, namely the water contentθ for h at +∞, K0 is the hy-
draulic conductivity whenh = 0, αVG is a scale parameter,
whereasnVG, mVG = (1−1/nVG), andτVG are shape param-
eters. In principle, parameterθ0 should be viewed as distinct
from the saturated water content,θs, mainly because of pos-
sible air entrapment in the soil pores. The termse (0≤ se≤ 1)
is the effective degree of soil saturation (simply, effective sat-
uration).

Fig. 1. Root water uptake reduction function, as implemented in
SWAP, after van Dam et al. (2008).

In SWAP, the sink term,S(h), describes the extraction
of water by the root architecture at the point macroscopic
scale as a function of suction pressure head,h(z,t). Specif-
ically, root water uptake rate at a given soil depth,z, is de-
termined by the normalized root density distribution at this
depth, β(z,t), and the maximum transpiration rate,Tmax,
whereas reductions due to water stresses are described by
the uptake reduction function,α(h) (0 ≤ α ≤ 1), such that
S(h) = β(z,t) ·α(h) ·Tmax (Kroes and van Dam, 2003). Un-
der conditions of no stress, the sink term represents the max-
imum uptake rate as follows:Sp = β(z,t) ·Tmax.

For computing evapotranspiration fluxes, SWAP follows a
macroscopic approach and uses the Penman-Monteith equa-
tion with daily weather data such as air temperature, so-
lar radiation, wind speed and humidity; a minimum value
for canopy and aerodynamic resistance is applied. Maxi-
mum transpiration rates are computed taking also the evap-
oration rate of the water intercepted by the vegetation into
account. Actual evapotranspiration rates are computed using
a reduction factor based on root water uptake and a reduc-
tion factor due to maximum soil evaporation flux according
to Darcy’s law. The actual transpiration rate is then calcu-
lated on the basis of the actual soil water extraction rate over
the whole rooting depth. Further details on this module of the
model can be found in Kroes and van Dam (2003) and van
Dam et al. (2008). Of specific interest for this study is the
semi-empirical way with which the uptake reduction func-
tion, α(h), is modeled by SWAP (see Fig. 1). Not account-
ing for salinity problems, this reduction function can be basi-
cally split into three different parts of the diagram (see Eq. 3):
Part-I is forh1 ≤ h <h2 and represents air deficiency; Part-II
is for h2 ≤ h ≤ h3 and accounts for a conditions of no water
stress; finally, Part-III is forh3 < h ≤ h4 and reveals water
stress conditions. Matric suction headh4 is the well-known
permanent wilting point of the vegetation,hw.
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Fig. 2. Loss functionsE(s), T (s), andL(s) as average degree of
soil saturation,s, changes in the bucket model due to evaporation,
transpiration, and leakage (redrawn from Guswa et al., 2002).

α(h) =



0 , 0 ≤ h < h1
h − h1
h2 − h1

, h1 ≤ h < h2

1 , h2 ≤ h ≤ h3

1−
h−h3
h4−h3

, h3 < h ≤ h4

0 , h4 < h < +∞

(3)

According to the results by Denmead and Shaw (1962), the
value of h3 should depend on potential transpiration and
hence, strictly speaking, even the dimensionless parameter
α depends on the potential transpiration rate.

2.2 The Bucket model

In this work we have used the single-layer bucket model
proposed by Laio et al. (2001) and modified by Guswa et
al. (2002) that describes soil moisture dynamics at the daily
time-scale by assuming the soil as a reservoir to be intermit-
tently filled by rainfall events in the form of randomly dis-
tributed shots. Soil water storage capacity is emptied by sur-
face runoff, deep drainage, and evapotranspiration processes.
For this model, the water balance equation at a point scale for
the soil layer of depthZr (i.e. the control volume) can be cast
as follows:

n Zr

d s(t)

dt
= I [s (t), t ] −E [s (t)] −T [s (t)] −L[s (t)] (4)

wheren is soil porosity, ands (0 ≤ s ≤ 1) is the average
degree of soil saturation (i.e. the volumetric soil water con-
tent,θ , normalized by soil porosity,n) over the entire root-
ing zone. In this equation, incoming (positive) and outgoing
(negative) fluxes are the rate of rainfall infiltrating into the
soil, I , the actual evaporation rate,E, the actual transpira-
tion rate,T , and the drainage (leakage rate) from the bottom
end of the bucket,L, respectively. Note that evaporation,E,

transpiration,T , and leakage,L, rates are considered as func-
tion of average soil saturation,s, only. Losses due to surface
runoff are generated only when the bucket is completely full,
i.e. at the condition of full saturation in the soil. Only a frac-
tion of the incoming precipitation is able to infiltrate into the
soil when the rainfall depth exceeds the storage capacity of
the soil profile. Therefore, the relationshipI [s(t), t ]=min[r,
nZr(1− s)] accounts for the dependence of infiltration rate,
I , on rainfall depth,r, and the degree of soil saturation,s,
in the sense that rainfall infiltration is equal either to rainfall
depth or to soil storage capacity, whichever is less. Because
of a stochastic representation of precipitation,P(t), Eq. (4) is
a stochastic linear ordinary differential equation and should
be viewed as a probabilistic model of soil water budget.

Evapotranspiration is a fundamental hydrologic process
and most bucket models treat only implicitly the effect that
vegetation canopy exerts on evapotranspiration. An interest-
ing feature of the bucketing approach proposed by Guswa et
al. (2002) is the separation of soil surface evaporation from
transpiration by plants. Transpiration,T (s), and evaporation,
E(s), as a function of average soil saturation,s, are computed
through the following relations:

T (s) =


0 , s ≤ sw
s−sw
s∗−sw

·Tmax , sw < s < s∗

Tmax , s ≥ s∗

(5)

E(s) =


0 , s ≤ sh
s−sh
s∗−sh

· Emax , sh < s < s∗

Emax , s ≥ s∗

(6)

wheresw is the saturation at wilting condition, ands∗ is sat-
uration at incipient stomata closure; the termsh is the hygro-
scopic saturation, namely the average degree of saturation in
soil when soil suction at the soil-atmosphere interface is ex-
tremely low (this suction head is often set at a value ranging
from 150×103 cm to 500×103 cm) and evaporation ceases.

Depletion of soil water due to the uptake by the plant root
system is assumed to be governed by the two major mech-
anisms of atmospheric demand and supply of water in the
soil. The model does not account for plant characteristics
explicitly. Within this framework, a basic soil parameter is
the saturations* when soil water starts becoming a limit-
ing factor and plants are no longer able to transpire at the
full rate ETmax, as the sum of maximum daily evaporation,
Emax, and maximum daily transpiration,Tmax (see Fig. 2 and
Eqs. 5–6). When soil water supply is insufficient to meet the
atmospheric demand, namely whens is less thans*, the pro-
gressive leaf stomatal closure yields a reduction in root wa-
ter uptake and actual transpiration,T , start decreasing from
Tmax to reach the zero value at wilting point,sw, following
a linear pattern. Actual evaporation may not equal the evap-
oration rate under well-watered conditions,Emax, and also
decreases linearly fromEmax, ats = s*, to zero whens = sh.
The difference between the two threshold values ofsw and
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sh accounts for the fact that evaporation may proceed even
after transpiration has stopped at the wilting point of vegeta-
tion (Laio et al., 2001). Therefore, fors less thansw, tran-
spiration ceases and evaporation from soil surface remains
the sole active component of the evapotranspiration process.
Other features of the BM can be found in the paper by Guswa
et al. (2002).

3 Parameterization strategy for evapotranspiration and
field capacity

3.1 Homogenizing BM and SWAP evapotranspiration
functions

The bucket and SWAP models handle the calculation of evap-
otranspiration rates in different manner and a sort of equiva-
lence between them should be set in order to make compar-
isons between model outputs meaningful and more effective.

A first assumption is that the soil is almost completely cov-
ered by vegetative canopies so that soil evaporation can be
neglected. From a parametric perspective, this is equivalent
to assumesh = sw in the BM, while for SWAP soil cover frac-
tion, Fsc, is set at 1.0 and crop factor,κc, is also set at 1.0.
We basically consider that transpiration water losses follow
two stages, the constant and falling rate stages, but do not
distinguish between low or high transpiration demands. In
SWAP, the falling-rate phase of uptake, and hence of transpi-
ration, follows a nonlinear, concave-shaped depletion from
Tmax to zero (de Jong van Lier et al., 2009). In BM, tran-
spiration as a function of average soil saturation in the root
zone is modeled by piecewise linear segments as defined by
Eq. (5) and shown in Fig. 2. Therefore, to make evapotran-
spiration losses of the two models comparable, we impose:
β(z,t) = 1 (i.e. uniform root density distribution within the
root zone),sw = s(h4) (i.e. equivalence of the wilting points)
andh1 = h2 ≈ 0 (i.e. the effect of the air deficiency negligi-
ble). We also sets* such as:

s∗∫
sw

T (s) ·ds +Tmax
(
1−s∗

)
= Tmax

1∫
sw

α [h(s)] · ds (7)

whereT (s) is defined by Eq. (5), whileα(h) is defined by
Eq. (3). Equation (7) is equivalent to impose the same av-
erage transpiration rate in the soil moisture range from the
wilting point to the full saturation condition. Equation (7) is
verified if s* is defined as follows:

s∗
= 2

1−

1∫
sw

α [h(s)] · ds

−sw (8)

Figure 3 shows examples of BM and SWAP transpiration
functions after setting parameters* according to Eq. (8).

Fig. 3. BM transpiration function as compared with that of SWAP,
after imposing the condition expressed by Eq. (7).

3.2 Techniques for determining field capacity

Field capacity is defined as the volumetric water content
remaining in a uniform soil profile two or three days af-
ter having been completely wetted with water and after
free drainage beyond the root zone has become negligible
(Soil Sci. Soc. Am., 2008). The field capacity concept was
originally introduced for irrigation scheduling purposes un-
der a simplistic view of soil water movement in the SVA sys-
tem (Veihmeyer and Hendrickson, 1927). It was soon used
also by hydrologists who defined it as the maximum quantity
of water that can be permanently retained in the soil against
the pull of gravity (Horton, 1935). In catchment hydrol-
ogy, field capacity is thus considered as a critical threshold
parameter of the water-holding capacity of the soil that af-
fects both runoff generation mechanism and evapotranspira-
tion process. As pointed out by Farmer et al. (2003), the field
capacity concept is strictly applicable to the unsaturated zone
only and therefore the amount of water held at field capacity
will vary as the saturated portion of the soil profile increases
or decreases.

Apart from some subjectivity related to the definitions of
field capacity, further elements of uncertainty are introduced
by the commonly used practice to ascribe this parameter to a
specific point of the soil water retention characteristic. Field
capacity,θfc, is often estimated on a soil sample in the labora-
tory as the soil water content at the suction pressure of 1/3 bar
(about 3.3 m of suction head), regardless of the specific phys-
ical (especially soil texture) and chemical properties of the
soil sample. If one would take textural characteristics into
account, it is suggested to set the suction head approximately
at 1.0 m for coarser sandy soils and at 5.0 m for finer clayey
soils, whereas the suction head of 3.0 m (a kind of average
between the previous two suction heads) is mostly refereed
to medium-textured loamy soils. On the other hand, allow-
ing for the definition of field capacity, Meyer and Gee (1999)
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suggestedθfc should be related to the hydraulic conductiv-
ity function of a soil and determined from theK(θ)-curve
as the water content whenK takes on values ranging from
10−6 cm s−1 to 10−8 cm s−1. Some authors have proposed
relating the negligible drainage flux at field capacity,qfc, to
the daily evapotranspiration for the area of interest (Kutı́lek
and Nielsen, 1994), whereas Laio et al. (2001) defined the
field capacity point when drainage losses (Ks in practice, un-
der the unit hydraulic gradient assumption) are 10 % of the
maximum daily evapotranspiration losses, ETmax.

Whatever the pre-fixed points of theθ(h) or K(θ) func-
tions, soil water content at field capacity is certainly not an
inherent soil property, but rather is a process-dependent pa-
rameter that may represent only a rough attempt to summa-
rize a dynamic flow process through a single global static
coefficient (Romano and Santini, 2002). The redistribution
process in soil, and hence the field capacity value, depends
on the water content distribution established in the entire soil
profile at the end of the preceding infiltration phase, as well
as on the boundary conditions of the flow domain. In case of
coarser-textured soils with stable aggregates, the field capac-
ity concept is underpinned by experimental evidence since
for these types of soils the drainage process is relatively very
fast initially, but then its rates decrease drastically due to
the abrupt reduction in unsaturated hydraulic conductivities
as suction pressure head increases. Therefore, Romano and
Santini (2002) argued that a field drainage experiment is the
test to be preferred for determining the water content value
at field capacity, namely the condition when drainage fluxes
become virtually nil during a redistribution process started
from an initially saturated soil profile and with no flux from
the soil surface. Using the HYDRUS-1D software to simu-
late field drainage experiments for real soils retrieved from
different soil databases, Twarakavi et al. (2009) confirmed
the inaccuracy of determining field capacity from pre-fixed
points of the water retention curve. They also suggested that
the value of 0.01 cm day−1 can be considered as a negligible
drainage flux being imposed at the lower limit of the rooting
zone to meet the condition of field capacity for a wide range
of soils. Moreover, these authors developed an empirical an-
alytical relationship to estimateθfc from information about
the soil hydraulic properties.

Especially for practical applications, when judging on the
effectiveness of a method with respect to another (for exam-
ple, a simplified one) it is important not only to evaluate the
discrepancies among parameter values obtained from differ-
ent methods (parametric evaluation), but also to analyze the
outputs of a hydrologic model computed by using different
parameterization techniques (functional evaluation). Under
soil, vegetation, and climate conditions representative of a
Mediterranean area, a focus here is to compare, with respect
to the reference model output, the soil-water budget predic-
tions of BM when field capacity is estimated by using either a
standard pre-fixed point of theθ(h) curve or a field transient
drainage experiment.

Fig. 4. Scatter plots of field capacity,θfc drain, as determined by the
drain-method versus field capacity values obtained from the water
retention characteristics by thefix-method,θfc fix , for the three suc-
tion heads of 100 cm, 330 cm, and 500 cm. Data points refer to 1087
soil samples grouped according to different textural classes.

4 Soil, vegetation, and climatic characteristics

Analyses were carried out in this study using various
soil properties retrieved from the UNSODA database and
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Fig. 5. Ternary diagram of the soil texture triangle showing markers
whose color depends on the magnitude of variable1PAWSmax be-
ing the difference between the maximum plant-available soil-water
holding capacity when field capacity is alternatively determined us-
ing thedrain- or fix-method.

gathered from different zones of the World (Nemes et al.,
2001) as well as stored in the database of the Soil Hydrology
Laboratory of University of Naples Federico II and mainly
collected in various parts of Southern Italy (Ceres et al.,
2010). On the whole, we have processed data from 1087
soils. Synthetic transient drainage experiments (referred to
asdrain-method) have been performed to determine the av-
erage soil water content,θfc drain, in the soil profile when
the drainage rate isqdrain= 0.010 cm day−1 at the soil depth
zr = 1.0 m and imposing a zero flux boundary condition at
the soil surface (Romano and Santini, 2002). For the same
soils, field capacity (θfc fix) was also calculated from the re-
spective water retention functions (referred to asfix-method)
as the water content at the fixed suctions heads of 100 cm,
330 cm, and 500 cm (θfc fix−100, θfc fix−330, andθfc fix−500).

Using the entire available dataset and for different soil tex-
tural classes, the scatter plots of Fig. 4 provide a qualitative
assessment of correlations between variablesθfc drain (hor-
izontal axis) and the three different variablesθfc fix (verti-
cal axes). A 1:1 line is also drawn in each plot to make it
easier detecting possible better agreements among the vari-
ables. The scatter plots arranged along the principal di-
agonal of this kind of matrix diagram (i.e. from the top-
left corner to the bottom-right corner of Fig. 4) confirm the
higher degree of correlation ofθfc drain with θfc fix−100 for
coarser soils, withθfc fix−330 for medium-textured soils, and
with θfc fix−500 for finer soils, respectively (Ceres, 2009).
Let PAWSmax= (sfc − sw)×n×Zr be the maximum plant-
available soil-water holding capacity. Then, Fig. 5 illustrates
a ternary diagram with relative intensity of each colored dots
depending on the magnitude of the difference1PAWSmax=

PAWSmax drain− PAWSmax fix when using thesfc drain and

Fig. 6. Boxplots of variable1PAWSmax for the soils of the fine,
medium, and coarse soil texture classification according to the FAO-
HYPRES.

sfc fix values to compute variable PAWSmax. This diagram
provides a more quantitative evaluation of the differences
among the soils employed in this study and helps in find-
ing suitable representative soil samples for the subsequent
analyses being carried out in this study. To further proceed
in selecting representative soils, we have also grouped all of
the 1087 soils according to the classes of the FAO-HYPRES
soil textural triangle (Nemes et al., 1999) and computed the
boxplots of variable1PAWSmax for the soils pertaining to
the fine, medium, and coarse textural classes (see Fig. 6).
The boxplot for the coarse soil class shows a median approx-
imately of−4.3 cm, whereas that one for the fine soil class
shows a median approximately of +1.8 cm. With a view to
the general aim of this study and based on the results depicted
in Figs. 4 to 6, we have considered the soils of the Mediter-
ranean area of Southern Italy and selected a loamy-sand soil
as representative of coarse soils and a clay soil as representa-
tive of fine soils. The major characteristics of these two soil
types are presented in the following (see also Table 1).

The physical properties of the loamy-sand soil are as fol-
lows: bulk density of 1.198 g cm−3, and USDA percentages
of sand, silt, and clay content equal to 73.78 %, 23.27 %, and
2.95 %, respectively. For the clay soil, the physical proper-
ties are as follows: bulk density of 1.348 g cm−3, and USDA
percentages of sand, silt, and clay content equal to 21.20,
31.80, and 47.00, respectively. For these two differently tex-
tured soils, undisturbed soil cores were subjected to evap-
oration experiments to obtain the respective parameters of
the soil water retention,θ(h), and hydraulic conductivity,
K(se), through an optimization technique (Romano and San-
tini, 1999). The optimized hydraulic parameter values of
Eqs. (2) are reported in Table 1.

www.hydrol-earth-syst-sci.net/15/3877/2011/ Hydrol. Earth Syst. Sci., 15, 3877–3893, 2011



3884 N. Romano et al.: Parameterization of a bucket model for soil-vegetation-atmosphere modeling

Table 1. Parameters of the van Genuchten-Mualem soil hydraulic relations for the two differently-textured soils used in this study.

Soil texture θr θs αVG nVG K0 τVG
(–) (–) (cm−1) (–) (cm day−1) (–)

Loamy-sand, LS 0.036 0.447 0.025 1.391 86.8 −1.0
Clay, Cl 0.061 0.426 0.0050 1.226 8.81 −1.0

Table 2. BM hydrologic parameters.

Soil texture Vegetative sh = sw s∗ Zr ETmax λ η

phase (–) (–) (cm) (cm day−1) (day−1) (cm)

Loamy-sand, LS RVP 0.169 0.240 100 0.46 0.195 0.595
DVP 0.169 0.240 100 0.20 0.493 0.701

Clay, Cl RVP 0.460 0.590 100 0.46 0.195 0.595
DVP 0.460 0.590 100 0.20 0.493 0.701

Results from the simulation runs are as follows:
sfc drain,LS = 0.510 for the loamy-sand soil, andsfc drain,Cl =

0.830 for the clay soil. Instead, adopting the simplified
method (referred to asfix-method) of estimating the degree
of soil saturation at the field capacity from pre-fixed points
of the soil water retention function (see Table 1 for the wa-
ter retention parameters), we obtained the following values:
sfc fix,LS = 0.670 for the loamy-sand soil at the suction head
of 100 cm, andsfc fix,Cl = 0.790 for the clay soil at the suc-
tion head of 500 cm. The choice of these two suction heads
for computingsfc fix for the coarser soil and the finer soil
stems from the results we have presented in Fig. 4.

For both hydrologic models, the control volume is an ac-
tive soil profile with a depth of 1.00 m. Therefore, for the
bucket model the depth of rooting zone,Zr, is 1.00 m. The
porosity values arenLS = 0.447 for the loamy-sand soil and
nCl = 0.426 for the clay soil. The productnZr represents
the so-called active soil depth, which is the volume per unit
surface area available for water storage.

For the SWAP model, the lower limit of the root zone is
set at a depth of 1.00 m and the entire soil profile was split
in three portions accounting for the numerical discretization
of the flow domain: the first uppermost portion of 0.10 m
in thickness comprises 10 compartments; the second inter-
posed portion of 0.40 m in thickness comprises 8 compart-
ments, and the third lowermost portion of 0.50 m in thickness
comprises 5 compartments. The hydraulic properties of the
two different uniform soils are identified by the parameters
of Table 1.

Precipitation and transpiration from vegetation are usu-
ally out of phase in Mediterranean-type climates being char-
acterized by warm and dry summers, during which vege-
tation is often under stress conditions, followed by colder

and wet winters where precipitations are predominant and
air temperatures are relatively mild. With reference to a hy-
drologic year starting on 1 November, we assumed vege-
tation dormancy (Dormant Vegetation Phase, DVP) during
a wetter rainy period lasting 151 days (from 1 November
to 31 March), and the subsequent vegetation regrowth (Re-
growth Vegetation Phase, RVP) during a drier and rainless
period lasting 214 days (from 1 April to 31 October). During
the wetter season, rainfall volume exceeds evapotranspira-
tion losses, thus soil “bucket” tends to be filled close to the
field capacity. During the drier season, in spring vegetation
starts leafing out and exhausting soil water storage by tran-
spiration, and when summer is coming transpiration is reg-
ulated by the leaf stomatal closures as atmospheric demand
increases more and more.

Viola et al. (2008) suggested that in a Mediterranean
ecosystem soil moisture dynamics can be effectively in-
vestigated by representing the climatic forcing during the
year as a sequence of a wet and a dry period, each char-
acterized by a stationary rainfall regime. We considered
a Mediterranean woodland ecosystem comprising the fol-
lowing deciduous species:Quercus pubescensWilld., Acer
campestreL., and Fraxinus ornusL. For this woody area,
values of maximum evapotranspiration, ETmax, are set con-
stant during each season: at 0.46 cm day−1 during the RVP
season, and 0.20 cm day−1 during the DVP season (Pumo et
al., 2008).

To evaluate the impact of the seasonal evolution of rain-
fall intensity on soil moisture dynamics, the occurrence of
precipitation in time,P(t), has been probabilistically de-
scribed using a Poisson Rectangular Pulse (PRP) model on
a daily time scale with probability of occurrence equal to
λ(t)dt (dt = 1 day). The Poisson process of arrival rateλ
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Table 3. SWAP hydrologic parameters.

Soil texture Vegetative h1 = h2 h3 h4 = hw Zr ETmax Fsc κc
phase (cm) (cm) (cm) (cm) (cm day−1) (–) (–)

Loamy-sand, LS RVP 1.0 300 16 000 100 0.46 1.0 1.0
DVP 1.0 300 16 000 100 0.20 1.0 1.0

Clay, Cl RVP 1.0 1500 16 000 100 0.46 1.0 1.0
DVP 1.0 1500 16 000 100 0.20 1.0 1.0

Table 4. Relative soil moisture at field capacity,sfc, for BM and soil-water storage capacity, WSini , in the system at the start of the simulation
run.

Soil texture Method sfc (–) WSini (cm)

Loamy-sand, LS drain (drainage exp.) 0.510 22.80
fix (from Eq. 2a ath = 100 cm) 0.670 29.95

Clay, Cl drain (drainage exp.) 0.830 35.36
fix (from Eq. 2a ath = 500 cm) 0.790 33.65

(in number of storms per day) does not account for the tem-
poral structure within each rainfall event, whereas the distri-
bution of storm depth is exponential with a mean depth of
η (in cm per storm). Following Pumo et al. (2008), the se-
lected PRP parameter values are:λRVP = 0.195 day−1 and
ηRVP = 0.595 cm for the RVP period;λDVP = 0.493 day−1

andηDVP = 0.701 cm for the DVP period.

4.1 Overview of input parameters for BM and SWAP –
initial and boundary conditions

To summarize the parameterization strategy employed for the
bucket model and the Richards equation based SWAP model
discussed in the previous sections, Tables 2, 3, and 4 reports
the various parameter values selected for the two different
models (Tables 2 and 3, respectively) and for the two dif-
ferently textured soils (the loamy-sand soil and the clay soil,
respectively).

In view of one specific objective of the present study, Ta-
ble 4 reports the values of relative soil moisture at the con-
dition of field capacity for the loamy-sand and the clay soils
when adopting thedrain-method or thefix-method (Romano
and Santini, 2002).

Simulation runs have been carried out using one time-
series of synthetic daily rainfall records generated stochasti-
cally for a 100-year-long period, obtained by combining two
different Poisson Rectangular Pulse (PRP) models, for the
regrowth (RVP) and dormant vegetation (DVP) phases, re-
spectively. Table 2 reports the PRP parameters for the RVP
and DVP periods whereas, as an example, Fig. 7 shows for
a generic year the rainfall sequences generated with the PRP
model for these two seasons of the hydrologic year.

Fig. 7. Synthetic records of rainfall depth for a generic year. The red
line separates the hydrologic year into the RVP and DVP seasons.

In order for the SWAP lower boundary condition to be ir-
relevant or not to affect too much the simulated soil-water
balance in the first 1.0 m of rooting depth, the lower end of
the flow domain is set at a depth ofzbot = 2.0 m from soil
surface. The lower boundary condition is specified as the
Neumann condition of free drainage, namely the unit gradi-
ent of the total hydraulic head [i.e.∇(h−z) = −1] applied at
zbot. Field capacity can be a representative value for the soil
water content at the end of the wet season and, for both mod-
els, in the first year simulations start when the systems are at
the condition of field capacity in soil at the beginning of what
we assumed being the growing season (1 April). Therefore,
the starting condition is the degree of soil moisturesfc for
the bucket model, and the suction headhfc, corresponding to
θfc, for the SWAP model. In particular, for the BM model
the initial soil-water storage capacity, WSini = sfc ×n×Zr,
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represents a relatively wet condition for the soil-vegetation
system and the relevant values are reported in Table 4 for the
two soil types and the two different techniques to determine
soil moisture at field capacity. To lessen or remove the ef-
fects of the initial conditions on the intercomparison results,
the first year of simulation is taken as a sort of spin-up time
and removed from the subsequent analyses. Therefore, the
actual initial condition is the state of the system at the end
of this first year of preliminary simulation. Apart from other
forcing variables, a spin-up time for soil moisture varies with
the thickness of soil profile: the deeper the soil depth is, the
longer the soil moisture reaches its equilibrium state. By run-
ning several simulations with different initial conditions, we
observed that the results were independent from the initial
condition after the first year.

4.2 Performance measures

We have selected the mean error (ME) and the root-mean-
square error (RMSE) as performance measures, which are
computed using the following equations:

ME =

N∑
i=1

erri

N
(9)

RMSE=

√√√√√ N∑
i=1

(erri)2

N
(10)

whereN is the total number of data and erri = (vSWAP
i −

vBM
i ) represents the deviation between the generic variable,

vSWAP
i , computed by the RE-based SWAP model (assumed

as a reference) and the corresponding variable,vBM
i , com-

puted by the BM model. The ME statistic reveals the pres-
ence of biases (a positive value means that on average the
bucket model underestimates) and is a measure of accuracy.
The RMSE statistic is a commonly used measure of preci-
sion. Both ME and RMSE are dimensional indices and their
best values are zero. A feature of RMSE statistic is that it
tends to emphasize larger values in a series, whereas lower
values are virtually neglected.

5 Results of the numerical experiments and discussion

Using the parameterization strategy outlined in Sect. 3, for
the loamy-sand and the clay soils described in Sect. 2.3 we
have compared the BM’s hydrologic responses to those of
the RE-based SWAP model when in BM the degree of soil
saturation at field capacity,sfc, is either determined from a
field drainage experiment (drain-method) or estimated as a
prefixed point of the soil water retention characteristic (fix-
method).

Simulations refer to a well vegetated landscape, and there-
fore transpiration is assumed to be dominant to evaporation

within the evapotranspiration processes (i.e.Emax≈ 0). A
preliminary check was carried out to ensure that the gener-
ated daily rainfall rate,r, never exceeds the saturated hy-
draulic conductivity,Ks, so as to avoid that the occurrence
of surface runoff might have led to difficulties when compar-
ing the BM and RE-based SWAP performances, and hence to
have better similarity among the responses offered by these
two hydrologic models.

The selected performance indices are reported in Table 5
and show relatively good agreements between the BM and
RE outputs, with ME and RMSE absolute values ranging
around an order of some percent unit. The worst accuracy
(ME = 3.1 %) and precision (RMSE = 12.0 %) for the bucket
model occur when field capacity of the loamy-sand soil is
determined by the fix-method. Both these largest ME and
RMSE values refer to the simulation of leaching rates evolv-
ing during the dormant vegetation period and are indica-
tion of certain underestimations and wider spread of the loss
fluxes computed by BM. Based on the ME index, parameter-
izing sfc of the loamy-sand soil with thedrain-method (see
Table 5) leads almost always to the least biased responses.
This occurs not only for the entire hydrologic year, but also
for both RVP and DVP periods. The type of biases with re-
spect to the reference SWAP model depends on the type of
variable considered. BM systematically overestimates tran-
spiration rate and underestimates leaching rate. In the case
of soil moisture the bias behavior is different since there is
an underestimation for thedrain-method, but an overestima-
tion when thefix-method is used. Only for the DVP period
of soil moisture variable, the bias in absolute terms is more
favorable when thefix-method is used to estimate field ca-
pacity. In terms of RMSE (see Table 5), the determination
of sfc with the drain-method increases the precision of BM
responses significantly over the entire hydrologic year: for
the loamy-sand soil, there are reductions in RMSE values of
about 57.1 % for soil moisture, 33.3 % for transpiration rate,
and 44.6 % for draining rate. When splitting the hydrologic
year into the two different periods, the reductions in RMSE
values are still evident over the RVP period for all of the three
variables, but for the DVP period the advantage of thedrain-
method is much less evident for transpiration rate.

These comparisons among the index values help in under-
standing under what circumstances the different methods of
parameterization of field capacity can lead to better or poorer
performances of the bucket model. With respect to soil tex-
ture, overall the water balance in coarser soils feels more
the positive effect of determining the field capacity value
through a more rigorous method such as thedrain-method.
When considering seasonality, the dry season of vegetation
regrowth (RVP period) appears more sensitive than the wet
dormant season (DVP period) to thedrain-method of param-
eterizing field capacity soil moisture.

Probability density functions (PDFs) of relative soil mois-
ture,p(s), obtained using the two hydrologic models and for
the two sub-periods of the hydrologic year are depicted in
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Table 5. Performance indices for the loamy-sand (LS) and clay (Cl) soil.

Soil moisture Transpiration rate Leaching rate

Year RVP DVP Year RVP DVP Year RVP DVP

LS, drain-method

ME 1.0E−02 6.2E−03 1.7E−02 −6.7E−03 −1.0E−02 −2.1E−03 9.9E−03 8.7E−03 1.2E−02
RMSE 2.4E−02 2.2E−02 2.7E−02 4.8E−02 6.2E−02 1.1E−02 4.6E−02 2.4E−02 6.5E−02

LS, fix-method

ME −1.3E−02 −1.6E−02 −8.1E−03 −1.8E−02 −2.9E−02 −2.1E−03 1.8E−02 9.7E−03 3.1E−02
RMSE 5.6E−02 5.9E−02 5.2E−02 7.2E−02 9.4E−02 1.1E−02 8.3E−02 3.1E−02 1.2E−01

Cl, drain-method

ME 9.1E−03 7.1E−03 1.1E−02 −9.0E−04 −1.9E−04 −2.1E−03 8.3E−03 6.9E−03 9.0E−03
RMSE 1.9E−02 1.9E−02 2.0E−02 4.2E−02 5.2E−02 1.1E−02 3.9E−02 1.7E−02 5.8E−02

Cl, fix-method

ME 9.4E−03 7.2E−03 1.3E−02 −9.4E−04 −2.0E−04 −2.0E−03 8.4E−03 7.0E−03 1.0E−02
RMSE 2.0E−02 1.8E−02 2.2E−02 4.1E−02 5.3E−02 1.0E−02 4.1E−02 1.8E−02 5.9E−02

the Fig. 8. For the loamy-sand soil the top plots refer to the
RVP (panel a) and DVP (panel b) sub-periods of the hydro-
logic year, whereas the bottom plots refer again to the RVP
(panel c) and DVP (panel d) sub-periods but for the clay soil.
The shapes of thep(s) functions are clearly affected by the
climatic forcing imposed during the two different RVP and
DVP periods. Comparisons when moving horizontally on
Fig. 8 (i.e. from a to b, or from c to d) provide evidence of
the occurrence of different seasonal dynamics of the average
soil moisture in the active soil profile, with vegetation that
modulates interstorm soil moisture redistribution. Note that
thep(s) functions of Fig. 5c–d are shifted towards the higher
s values because of the hydraulic properties of the clay soil,
but the general shapes of the PDFs remain nearly unchanged
with respect to the effects of both seasonal changes (horizon-
tal comparisons) and field capacity parameterization (drain-
method vs.fix-method, i.e. blue solid lines vs. green dotted
lines).

Although soil moisture content is obviously bounded be-
tween the permanent wilting and porosity points of the spe-
cific soil type, the single-peakedp(s)RVP functions of the
drier RVP period (Fig. 5a or 5c) have the typical shape of
a system characterized by a relatively deep soil profile and
low mean rainfall rate (i.e. a low PRP parameterλ). These
p(s)RVP functions are positively skewed and narrow distribu-
tions, with relative soil moisture contents that vary in a small
range around the peak and show quite long tails starting soon
after the relative soil moisture points∗ of incipient stomata
closure. The modal value located close to the wilting point
corresponds to the preferred state over the main part of the
RVP, whereas the succeeding long tail located in the right

side of the plot is representative of the fast transition from a
wet state at the end of the dormant season toward a nearly
dry stationary state. During this vegetative (re-)growing pe-
riod, vegetation transpiration dominates the water balance
and controls soil moisture contents in the active soil zone,
which are consistently low. Consequently, leakage becomes
a negligible process. For the fraction of the hydrologic year
corresponding to the wetter DVP period (Fig. 5b and 5d), the
fluctuation of precipitation and storage capacity of soil are
perceived to dominate over the smaller amount of transpira-
tion and to exert a remarkable control on soil moisture vari-
ability over time. Most of the soil water stored in the system
results in unstressed evapotranspiration. The different pre-
cipitation regime and transpiration characteristics of this pe-
riod basically make thep(s)DVP functions to be broader than
those of the previous case and more concentrated arounds

values near the field capacity point,sfc.

To better frame the results depicted in Fig. 8, a quantita-
tive but simple analysis can be carry out for identifying under
which conditions the soil moisture at field capacity,sfc, can
play a more dominant role in the computation of soil water
balance. This analysis is particularly relevant to the objective
of the present study since this role can have different features
depending on the season (e.g. the RVP phase) of the entire
hydrologic year one is dealing with. In single-layer bucket-
type models, soil moisture depletes almost immediately due
to the evapotranspiration process and is replenished when
precipitation occurs. Allowing for seasonality, depletion and
replenishment of soil moisture can be faster or slower de-
pending on the specific exchanges between atmosphere and
soil during the considered period of the year. An evaluation

www.hydrol-earth-syst-sci.net/15/3877/2011/ Hydrol. Earth Syst. Sci., 15, 3877–3893, 2011



3888 N. Romano et al.: Parameterization of a bucket model for soil-vegetation-atmosphere modeling

Fig. 8. Probability density functions of relative soil moisture content,s, for the loamy-sand soil (5a and 5b) and for the clay soil (5c and 5d).
The plots on the left-hand-side refer to the RVP season, whereas the plots of the right-hand side refer to the DVP season. Red solid lines are
the SWAP model results used as a reference; blue solid lines refer to BM when field capacity is parameterized with thedrain-method; green
dotted lines refer to BM when field capacity is parameterized with thefix-method.

of the response timescales of soil moisture in the root zone
can help in gaining a better understanding of the model com-
parisons presented in this study.

The evolution of the dry RVP season depletes soil mois-
ture from the rooting zone as precipitation falls only over a
small fraction of this period. The depletion time indicates
how long it would take the maximum plant-available soil-
water holding capacity, PAWSmax= (sfc − sw)×n×Zr, of
the soil-vegetation system to dry out subject to the net out-
flow, Rd = ETmax−P , between maximum evapotranspiration
and mean precipitation rates (P = η·λ), that remains constant
and not considering other fluxes (Beljaars et al., 1996; Viola
et al., 2008). In a similar way, we can define a replenishment
timescale of the soil bucket during the DVP season assuming
that the termRr = P −ETmax remains constant throughout
that period. Accordingly, the depletion time,td, and the re-
plenishment time,tr, give an indication of average moisture
residence time in the soil and are calculated as follows:

td =
PAWSmax

Rd
, (11)

tr =
PAWSmax

Rr
. (12)

These two timescales are in Table 6, which also reports
the ratiosρd andρr that relate the depletion and replenish-
ment times to the durations of the RVP (214 days) and DVP
(151 days) seasons, respectively. The values of ratioρd are
fairly similar among them and show that depletion times are
approximately 25 % or 20 %, depending on the specific soil
type, of the total length of the dry RVP season and this situa-
tion, from the one hand, justifies the presence of the extended
tails in the soil moisture probability density functions,p(s)

(see Fig. 8a and b). On the other hand, however, it indirectly
suggests that the amount of water stored in soil is relatively
small for most of this dry period and hence field capacity be-
comes a parameter that can exert a more limited influence on
the computation of soil water balance.

Looking at the wet DVP season, theρr values clearly in-
dicates that now soil moisture stored in the bucket capacity
is high over periods commensurate to the length of the DVP
season. Therefore, one would expect that field capacity will
play a more relevant role when computing the soil water bal-
ance during a wetter season. Consequently, and in a way
consistent with the results depicted in Fig. 8, the greater the
discrepancies between field capacity values as determined by
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Table 6. Characteristic time scales of the bucket model during the DVP and RVP periods computed for the loamy-sand (L-S) and the clay
(Cl) soils.

Soil texture Method PAWSmax (cm) RVP (214 days,Rd = 0.344 cm d−1) DVP (151 days,Rr = 0.146 cm d−1)

td (days) ρd (%) tr (days) ρr (%)

LS draina 15.24 44.3 20.7 104.7 69.3
fixb 22.39 65.1 30.4 153.8 101.9

Cl draina 15.76 45.8 21.4 108.3 71.7
fixc 14.06 40.9 19.1 96.6 63.9

a drain= sfc defined by the drainage experiment;b fix= sfc from Eq. (2a) ath = 100cm; cfix= sfc from Eq. (2a) ath = 500cm.

thedrain-method or thefix-method (and this happens for the
loamy-sand soil; see plots 5a and 5b), the worse appear the
comparisons between the BM and RE-SWAP models. This
discussion provides a more quantitative perspective of our re-
sults and also reinforces the significance of the performance
indices reported in Table 5. By dwelling on relative soil
moisture over the DVP season, we have a reduction in RMSE
between the two methods of about 48.1 % for the loamy-
sand soil and of about 9.1 % for the clay soil. Instead, for
the leaching rates computed over the DVP season there are
RMSE reductions of about 45.8 % and 1.7 % for the LS and
Cl soils, respectively. As expected, transpiration rates over
the DVP season (but over the RVP season, too) as computed
by BM are less affected by the techniques used to determine
the value of soil moisture at field capacity,sfc.

It is worth noting that thep(s)DVP distributions clearly
show a propensity for a temporal bimodality. The DVP bi-
modal distribution is characterized by two preferential soil
moisture states: a more pronounced peak, to which higher
probability is attached, is at around the field capacity value,
while another peak is located in proximity tos∗ (depending
on soil texture). The occurrence of bimodality in the proba-
bility distribution of relative soil moisture has been observed
and discussed by several researchers (e.g. Kochendorfer and
Raḿırez, 2005; Daly et al., 2009; Vivoni et al., 2010), also
with different views. D’Odorico and Porporato (2004) rein-
forced previous ideas that a bimodal PDF of soil moisture
measurements over the summer season in the continental re-
gion of Illinois provided evidence of a soil moisture-rainfall
feedback mechanism. Instead, Teuling et al. (2005) argued
that an explanation of the soil moisture bimodality observed
in Illinois should be the seasonality in meteorological forcing
and the nonlinearity of the soil moisture loss function. The
data set used by Lee and Hornberger (2006) did not permit to
single out any of these hypotheses as the cause for bimodal-
ity, and these authors also warned about not making any
causality claim since that requires strong statistical support.
With specific reference to the stochastic generation of tem-
poral precipitation fields, Porporato and D’Odorico (2004)
have put forward the hypothesis that Poisson-type noises ap-
plied to a nonlinear system can induce, among other things,

a temporal persistence around preferential states and hence
a bimodality in the probability density function of relative
soil moisture time-series. In this case, the variability of pre-
cipitation imposed during the DVP season, and specifically
the frequency of storm occurrence, can result in the bimodal
shape of thep(s)DVP distributions depicted in Fig. 8. Over-
all, the soil moisture probability distributions in the plots 5b
and 5d show that during the DVP period the soil, it being
of coarser or finer texture, can preferentially be in either wet
states close to field capacity, or relatively drier states closer to
the incipient stomata closure. In other words, the bimodality
observed in the DVP is representative of two dominant states:
one during the transition stage from the dry season to the wet
season, when there is a rapid increase of the saturation degree
above the stress value threshold; the other corresponding to
a stationary wet state.

With respect to the two different methods to determine pa-
rametersfc, the soil moisture PDFs of Fig. 8 help in iden-
tifying under what circumstances might it be appropriate to
use thefix-method to parameterize the bucket model. Com-
pared to the SWAP reference model, the performances of the
bucket model are acceptable only when one refers to the RVP
period (plots 8a and 8c). It is interesting to note that this be-
havior occurs independently from the textural properties of
the soils considered, but this is also partly due to the narrow
shape of the soil moisture probability distributions over the
considered regrowing season. In accordance to the perfor-
mance indices of Tables 1 and 2 and as one would expect,
the larger discrepancies between SWAP and BM during the
RVP period occur for the loamy-sand soil and when adopting
thefix-method for estimatingsfc. Instead, the plots 5b and 5d
pertaining to the dormant and wetter season (DVP period)
overall show rather poor performances of the bucket model
especially whensfc is estimated by thefix-method and for the
coarser soil (Fig. 5b).

In general terms, determining the field capacity soil mois-
ture by the traditionally-proposed technique of a prefixed
point of the water retention function results in discrepancies
with respect to the reference RE-based SWAP model of dif-
ferent extents depending on the soil type and the period of
the hydrologic year. Errors become quite unacceptable when
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Fig. 9. Daily values of the 5th, 50th, and 95th quantiles for the loamy-sand soil over the entire hydrologic year as obtained from the 99 years
of simulation run. Red lines refer to the SWAP model used as a reference, while blue lines refer to BM when field capacity is parameterized
either with thedrain-method (plots on the left-hand side) or with thefix-method (plots on the right-hand side):(a) and(b) refer to relative
soil moisture content,s; (c) and(d) refer to daily transpiration fluxes,T ; (e)and(f) refer to daily drainage (leakage) fluxes,L.

one would capture soil moisture dynamics in coarser soils
and in the rainiest season of a Mediterranean climatic area.

All the above comments and discussions are also clearly
reflected in the representation of Fig. 9 showing the 5th, 50th,
and 95th quantiles of relative soil moisture content,s, over
the entire hydrologic year as obtained from the 99 years of
simulation run. The various plots of this figure pertain to

the loamy-sand soil only as all the results discussed before
have clearly shown that the main discrepancies when BM
is differently parameterized occur for coarser textured soils.
The left plots of Fig. 9 (namely 9a-c-e) depict the simula-
tion results when field capacity of BM is determined by the
drain-method; the right plots (9b-d-f) represent the simula-
tion results when field capacity of BM is estimated by the
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fix-method. In accordance to the performance indicators of
Tables 1 and 2, we observe that the loamy-sand soil of this
study is remarkably affected by the method used to deter-
mine the field capacity parameter,sfc, and that there is also a
change in the magnitude of bias in different parts of the hy-
drologic year. Specifically, when thefix-method is employed
to estimatesfc, the bucket model systematically underesti-
mates the simulated soil moisture during the first nearly 50–
60 days of the year, namely from beginning of April to ap-
proximately the end of June, as well as when approaching the
period February–March. In practice, when field capacity is
parameterized by thefix-method, BM is unable to reproduce
the reference storage capacity variations during the periods
characterized by highest relative soil moisture values. Bet-
ter agreements between the RE-SWAP and BM results are
observed for this coarser loamy-sand soil only when relative
soil moisture attains its lowest values and reaches the perma-
nent wilting point.

One should note that the impacts on relative soil moisture
of how to determine the BM parametersfc do not necessar-
ily imply similar impacts on water fluxes. Seasonal varia-
tions of simulated daily transpiration and drainage (leakage)
fluxes outgoing from the system are shown in Fig. 9c–d and
9e–f, respectively, when using either thedrain- or fix-method
to determine the field capacity parametersfc. Regardless of
the method employed to determinesfc (but also regardless
the soil types considered, although not shown as said be-
fore) the bucket model outputs are not able to capture the
temporal evolution of transpiration and leakage losses from
the Richards equation based model over both the RVP and
DVP seasons. Larger discrepancies between simulated BM
and RE-SWAP transpiration fluxes are observed during the
RVP season of the hydrologic year, especially at the highest
soil moisture contents, and this represents a visual evidence
of the performance indices of Table 5 as well as is in accor-
dance with the preceding discussion about the role of the field
capacity parameter in the computation of the seasonal water
balance by a single-layer bucket-type model. At the begin-
ning of the RVP season soil tends to be at the condition of
field capacity and the discrepancies of BM with respect to RE
are soon evident, especially whensfc is estimated through the
fix-method (see Fig. 9d during the first 60–70 days of simula-
tion). The RVP climate conditions induce a rapid soil mois-
ture depletion, as we have discussed before and shown in
Table 6, and this decrease ins as time increases starts earlier
and is somewhat more rapid for the bucket model as its mem-
ory capability is small (i.e. its response is fairly rapid to cli-
matic forcing) compared to that one offered by the Richards
model. This can be viewed as a major reason for the tem-
poral lags observed in Fig. 9c and d between the BM and
RE-SWAP models over the first stage of the RVP season.
Another explanation for the observed time-shift between BM
and RE-SWAP transpiration fluxes at the end of the wet sea-
son/beginning of dry season can of course be also attributed
to the differences in the transpiration functions,T (s), shown

in Fig. 3. In general, the time variations of transpiration
fluxes as computed by BM during RVP are in agreement with
those from the Richards equation only when soil moistures
start attaining lower values and close to the critical moisture
value s*: the drier are moisture conditions in this soil, the
better BM transpiration fluxes follow the time fluctuations
of the RE-computed fluxes. Overall, the discussed outcome
again reinforces the need and the importance of accounting
for local seasonal conditions to evaluate the effectiveness of
using one modeling scheme of a soil-vegetation system with
respect to another. Comparisons appear to be more satisfac-
tory during the DVP period even when the values ofs are rel-
atively low. As expected, larger deviations of the BM losses
from leakage occur for the loamy-sand soil and during the
colder and rainier season straddling over the end of the DVP
period and the beginning of the RVP period. The BM model-
ing scheme tends to underestimate leakage losses over both
the RVP and DVP seasons (see also the positive ME values
in Table 5 for this loamy-sand soil), with larger discrepan-
cies with respect to RE-SWAP occurring over the DVP sea-
son since leakage becomes important under highs-values.
It is worth mentioning again that DVP is a relatively wetter
season, with greater soil moisture values almost throughout
the period and hence more prone to failure in the model in-
tercomparison because of the differently estimated values for
the field capacity parameter.

6 Conclusions

Bucket models are widely used tools to represent land sur-
face hydrology, usually at regional scales, mainly because
they account for soil water changes in a relatively simple
way. However, since soil water is a key regulator of primary
hydrologic processes, a careful parameterization of these ca-
pacitance models is a crucial phase. We have shown that
the commonly used approach to estimate the field capacity
at a specific point of the water retention curve (usually as
the soil water content at the suction head of 3.3 m) might
lead in general to poorer predictions of the various terms
contributing to the soil-water budget, particularly for coarse-
textured soils. Allowing for the key role that field capacity
plays in bucket models, it is advisable that this parameter is
determined via a field drainage experiment (drain-method).
This suggestion is particularly relevant if one would employ
a bucketing approach for modeling soil water budget in ar-
eas with a climatic regime characterized by marked season-
ality. Our study has also emphasized the benefit of looking
at the parameterization problem also by carrying out func-
tional evaluations. Through numerical simulations and inter-
comparisons between the bucket model (BM) and Richards’
equation based SWAP model (RE-SWAP), one can see that
larger discrepancies should be expected when dealing with
coarser soils and field capacity for this soil type is parameter-
ized using the water retention curve (fix-method). Of specific
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interest and a novelty, as far as we are concerned, is the possi-
bility to further frame this outcome while considering a sea-
sonality in the input climatic forcing. At least for the cases
considered in this study, the bucket model with field capac-
ity as determined by thefix-method provides some relatively
good predictions preferably when considering finer textured
soils and when soil-water balance refers to a drier season of
the hydrologic year and vegetation is in under a regrowing
stage (RVP period). It is important to point out, however,
that the way with which we have parameterized both BM and
SWAP is such so as to make boundary conditions and tran-
spiration functions as similar as possible and to perform ef-
fective intercomparisons. Finally, analyses of the probability
density functions of relative soil moisture content have high-
lighted the possible occurrence of bimodality in the shape of
curves during the dormant vegetation phase as result of the
combination of a dry-to-wet transition and a wetter state in
the soil. A discussion on this bimodality is far from the pur-
pose of this paper and it can be the subject of a subsequent
study.

Appendix A

Abbreviations

BM, bucket model; RE, Richards’ equation; SWAP, Soil
Water Atmosphere Plant model; DVP, dormant vegetation
phase; RVP, regrowth vegetation phase; ME, mean error;
RMSE, root-mean-square error.
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Šimůnek, J.,Šejna,, M., Saito, H., Sakai, M., and van Genuchten,
M. T.: The Hydrus-1D Software Package for Simulating the
Movement of Water, Heat, and Multiple Solutes in Variably Sat-
urated Media, Version 4.0, HYDRUS Software Series 3, Depart-
ment of Environmental Sciences, University of California River-
side, Riverside, California, USA, 315 pp., 2008.

Soil Science Society of America: Glossary of soil science terms.
SSSA, 92 pp., Madison, WI, ISBN 978-0-89118-851-3, 2008.

Sposito, G.: The “physics” of soil water physics, Water Resour.
Res., 22, 83S–88S, 1986.

Teuling, A. J., Uijlenhoet, R., and Troch, P. A.: On bimodality in
warm season soil moisture observations, Geophys. Res. Lett., 32,
L05404,doi:10.1029/2005GL023223, 2005.

Twarakavi, N. K. C., Sakai, M., anďSimůnek, J.: An objective anal-
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