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Abstract. The performance of a hydrologic model depends
on the rainfall input data, both spatially and temporally. As
the spatial distribution of rainfall exerts a great influence
on both runoff volumes and peak flows, the use of a dis-
tributed hydrologic model can improve the results in the
case of convective rainfall in a basin where the storm area
is smaller than the basin area. The aim of this study was
to perform a sensitivity analysis of the rainfall time reso-
lution on the results of a distributed hydrologic model in a
flash-flood prone basin. Within such a catchment, floods are
produced by heavy rainfall events with a large convective
component. A second objective of the current paper is the
proposal of a methodology that improves the radar rainfall
estimation at a higher spatial and temporal resolution. Com-
posite radar data from a network of three C-band radars with
6-min temporal and 2× 2 km2 spatial resolution were used
to feed the RIBS distributed hydrological model. A modifi-
cation of the Window Probability Matching Method (gauge-
adjustment method) was applied to four cases of heavy rain-
fall to improve the observed rainfall sub-estimation by com-
puting new Z/R relationships for both convective and strati-
form reflectivities. An advection correction technique based
on the cross-correlation between two consecutive images was
introduced to obtain several time resolutions from 1 min to
30 min. The RIBS hydrologic model was calibrated using a
probabilistic approach based on a multiobjective methodol-
ogy for each time resolution. A sensitivity analysis of rainfall
time resolution was conducted to find the resolution that best
represents the hydrological basin behaviour.
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(atencia@am.ub.es)

1 Introduction

Accurate flash flood hydrological modelling requires both a
suitable hydrologic model and rainfall data of proper spatial
and temporal resolution. The spatial variability of rainfall
exerts great influence on basin processes (Winchell et al.,
1998). This, especially holds for convective precipitation
events, as the storm area is usually smaller than the basin
area (Bell and Moore, 2000). The spatial distribution of rain-
fall can influence runoff volumes, peak flows and the lag time
of hydrographs (Krajewski et al., 1991; Arnaud et al., 2002).
Therefore, a distributed model can improve the simulation of
flash floods events compared to using a lumped model, as the
former takes the spatial variability of rainfall into account.
Furthermore, a more recent study byCarpenter and Geor-
gakakos(2006) has shown that distributed model simulations
are statistically distinguishable from the lumped model sim-
ulations for basin areas around 1000 km2.

The success of hydrological models is usually constrained
by the rainfall data they use (Berne et al., 2004). Such input
data can be obtained from rain gauge networks, and deter-
ministic or even probabilistic meteorological models. These
data sources usually present serious disadvantages for mid-
size and small basins with irregular spatial rainfall distribu-
tions. Surface rain gauge networks with the appropriate res-
olution for accurate hydrological modelling are rare, and it is
not so easy to implement a meteorological model with a suf-
ficiently high grid resolution due to data and computational
requirements. Meteorological radar can solve this problem
thanks to indirect rainfall estimations at higher spatial and
temporal resolutions.

However, this indirect estimation presents different
sources of errors, from ground clutter or beam overshooting
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(Sánchez-Diezma et al., 2001), to radar calibration or atten-
uation (Delrieu et al., 2000). These errors can be reduced
by removing static radar echoes, periodic maintenance or se-
lecting the highest reflectivity value from each of the radars
of which the network is composed. Once these errors have
been partially removed and the reflectivity has been interpo-
lated into different levels called the Constant Altitude Plan
Position Indicator (CAPPI), the rainfall intensity can be ob-
tained by applying a Z/R relationship to the lowest CAPPI
reflectivity value. The literature shows many Z/R relations,
from the classicalMarshall and Palmer(1948) to more recent
ones for different climate types, rain regimes and climatic
seasons (Lee and Zawadzki, 2005; Sánchez-Diezma et al.,
2000; Steiner et al., 1995; Haddad et al., 1997, to name just
a few contributions).

The choice of one or another Z/R relation could alter the
rainfall intensity obtained. Several methods have been devel-
oped in recent years over the Mediterranean area to obtain a
suitable QPE, although they are strongly dependent on case
studies. Apart from Z/R relations, there are other methods for
obtaining a suitable rainfall field. Some of the latest meth-
ods are related to the direct correction of rainfall maps using
multi-linear regression (Morin and Gabella, 2007), merging
rain gauge and radar data by means of non-parametric spatial
models (Velasco-Forero et al., 2004), studying the Vertical
Profile of Reflectivity (Franco et al., 2008), making use of
the measured attenuation (Bouilloud et al., 2010) or the use
of disdrometer data (Hazenberg et al., 2011). Matching the
unconditional probabilities of rainfall intensity obtained from
rain gauges and reflectivity (Rosenfeld et al., 1994) is another
approach to this problem. This method, which is known as
Window Probabilistic Matching Method (WPMM), will be
applied in this paper.

Another problem is that the rainfall intensity, especially
for the convective type, continuously varies due to flux ad-
vection or mountainous enhancement. According toFabry
et al.(1994), sampling errors can be large, but they are easily
avoidable given the computing power available today. The
current paper corrects for sampling errors using an advec-
tion correction scheme based on a cross-correlation tech-
nique (Rinehart and Garvey, 1978). In order to avoid this
sampling error, an intensity variation between images based
on temporal interpolation (Anagnostou and Krajewski, 1999)
has been applied in the present study. However, in the current
paper this shape morphology transformation is conducted by
means of using temporal dependent weights based on a more
complex shape transformation (Turk and O’Brien, 2005).

The Real-time Interactive Basin Simulator (RIBS) is a
topography-based, rainfall-runoff model that can be used for
real-time flood forecasting in mid-size and large basins (Gar-
rote and Bras, 1995a). Once the rainfall is well estimated and
a suitable hydrological model is applied, the key factor is the
calibration of the hydrological model. Non-linear features
of distributed models can amplify the intrinsic rainfall errors
(Smith et al., 2004). For this reason, distributed models may

be optimised for real-time flood simulations and some phys-
ical processes parameterised. The parameterisation of these
physical processes requires the calibration of some variables.
In an early work about parameterisation in distributed models
(Refsgaard, 1997), it was demonstrated that the lack of field
data means that the calibrated parameters lose their physi-
cal basis. Although the losing of their physical meaning,
these parameters maintain their inherent variability causing
that the best way to estimate their value is, according toMad-
sen(2003), to use multiple objective functions. In previous
works (Mediero et al., 2007, 2011; Garrote et al., 2007), a
probabilistic calibration was proposed for distributed models
used in flood forecasting. This calibration technique, and the
consequent simulated discharge, is dependent on spatial and
temporal rainfall resolutions. The optimal horizontal reso-
lution is determined by small scale hydrological processes,
such as hillslope processes (Robinson et al., 1996) or catch-
ment processes (Yang et al., 2000), and mesoscale factors
associated to convective precipitation which shows a great
spatial variability (Barnolas et al., 2010; Marchi et al., 2010).
Because of this, it could be concluded that the best horizon-
tal rainfall resolution is the highest one. Temporal variability
exhibits a different hydrological behaviour. Some authors
have determined a characteristic time scale for hydrological
response (Morin et al., 2001), from minutes to hours, while
others have found a strong relationship between basin size
and the minimum required rainfall spatial and temporal res-
olutions (Berne et al., 2004). These early studies and more
recent ones (Nicótina et al., 2008; Sangati et al., 2009; An-
quetin et al., 2010) focused on the temporal-spatial variabil-
ity relation. However, the main objective of the present work
is to study its temporal variability. This variability could be
related to concentration time or flow propagation processes.
Therefore, discover the optimal rainfall time resolution for
a probabilistically calibrated distributed model would be ex-
tremely useful to determine the best input rainfall time step
for operational purposes.

The goal of this study was to perform a sensitivity analy-
sis of the rainfall time resolution on the results of the RIBS
hydrologic distributed model. For this purpose, the WPMM
methodology is applied to obtain the best Z/R relation. The
advection correction scheme allows for the downscaling of
radar imagery from several minutes to one minute and is si-
multaneously used to improve the rainfall estimation. The
RIBS model is calibrated for the Besòs River Basin for dif-
ferent time resolutions, and a sensitivity analysis of the rain-
fall time resolution is performed.

2 RIBS hydrologic model

The Real-time Interactive Basin Simulator (RIBS) is a
topography-based, rainfall-runoff model that can be used for
real-time flood forecasting in midsize and large basins (Gar-
rote and Bras, 1995a,b). The use of this model is especially
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attractive when spatially distributed rainfall is available, e.g.
rainfall observed by a weather radar or from meteorological
forecasts of spatial rainfall.

The RIBS model is largely based on the detailed topo-
graphical information provided by digital elevation models
(DEM). Basin representation adopts the rectangular grid of
the DEM and other soil properties. Input data and state
variables are also represented as data layers using the same
scheme. The basic objective is to map the topographically
driven evolution of saturated areas as the storm progresses.
Two modes of runoff generation are simulated: infiltration
excess runoff and saturation excess surface runoff. RIBS ap-
plies a kinematic model of infiltration to evaluate local runoff
generation at each grid element and also accounts for lateral
moisture flow between elements in a simplified manner.

Saturated hydraulic conductivity is assumed to increase
with depth, following the relation

KSy (y) = K0n ·e−fy (1)

whereK0n [mm h−1
] is the saturated hydraulic conductiv-

ity at the surface in the direction normal to the surface,y

[mm] is the depth in the direction normal to the surface
and f [mm−1

] is a parameter that controls the reduction
of saturated hydraulic conductivity with depth. There is an
anisotropy between the hydraulic conductivity in the direc-
tions that are normal and parallel to the soil surface described
by the anisotropy ratioα:

α =
K0p

K0n

(2)

whereK0p [mm h−1
] is the saturated hydraulic conductivity

at the surface in the direction parallel to the surface.
Flow propagation to the basin outlet is computed through a

distributed convolution using a Dirac delta function as an in-
stantaneous response function for each element, with a delay
equal to the time of travel from the location of the element to
the basin outlet.

To obtain the travel time to the basin outlet, the velocities
for the hillslope (vh) and stream (vs) must be defined. Stream
velocity is assumed to depend on the discharge at the basin
outlet:

vs(t) = Cv

(
Q(t)

Qref

)r

(3)

wherevs(t) [m s−1] is the stream velocity at timet , Qref is a
reference flow rate [m3 s−1], Q(t) is the discharge [m3 s−1]
at the basin outlet and timet andCv [m h−1] and r are pa-
rameters. If ther parameter is taken equal to zero,vs pa-
rameter is constant throughout the simulation. Forr > 0 and
Q(t) >Qref, the channel velocity is greater than the parame-
terCv.

The hillslope velocity is related to the stream velocity
through the parameterKv:

Kv =
vs(t)

vh(t)
(4)

Fig. 1. Location map of Catalonia with superimposed relief and
boundary information, together with SAIH (ACA) and XEMA
(SMC) raingauge networks.

wherevh(t) [m s−1] is the hillslope velocity at timet andKv
is a parameter.

The model captures the main features of runoff generation
processes in a watershed, while maintaining computational
efficiency for real-time use.

3 Case studies and data

Catalonia is a region situated in the northeast corner of the
Iberian Peninsula. Due to its proximity to the warm Mediter-
ranean Sea and its complex orography, with several mountain
ranges parallel to the coastline (Fig.1), the presence of at-
mospheric instability usually produces intense precipitation
events during the summer and autumn seasons (Llasat et al.,
2003). These heavy rainfall phenomena caused 217 floods
over Catalonia from 1901 to 2000, of which more than 59 %
were flash flood events (Barnolas and Llasat, 2007). The hy-
drologic timescale of most watersheds is on the order of a
few hours, and flash floods develop rapidly during the early
autumn season and suddenly inundate urban streams, putting
citizens at high risk.

One of the most prone basins in Catalonia is the Besòs
Basin (Fig.1). The Bes̀os catchment (1020 km2) is located
to the north of Barcelona over one of the most densely pop-
ulated watersheds in Catalonia, with more than two million
people living in the area. It is a typical example of a com-
plex Mediterranean catchment, possessing great heterogene-
ity, from mountains over 1000 m high, to rural plains that
have been undergoing a continuous urbanisation process over
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Fig. 2. Location of the river gauging stations within the Besos
basin: 1-Garriga; 2-Lliça; 3-Mogent; 4-Mogoda; 5-Montcada; 6-
Gramenet.

recent decades. After two catastrophic floods in Spain in
1982, considerable investment was devoted to monitoring
the catchments for hydrological purposes. It is now instru-
mented by several telemetered rain and streamflow gauges
from SAIH (Automatic System of Hydrological Information)
of the Catalan Water Agency (ACA, hereinafter) to a river
park built in the river mouth to mitigate flood impacts.

The present work analyses four flash flood events with
great social impact (Llasat et al., 2008) that were studied
within the framework of the FLASH project (Price et al.,
2011). The most relevant rainfall amounts for these cases
are detailed in Table1. For each case, rainfall amounts over
the Bes̀os Basin higher than 46 mm were recorded. The peak
5-min intensities during these events range from 80 mm h−1

to 135 mm h−1.
The available ground rainfall data come from two differ-

ent networks. The SAIH rain gauge network of the ACA is
composed of 126 tipping-bucket automatic rain gauges cov-
ering an area of about 16 000 km2 called the Internal Basins
of Catalonia (IBS) (Fig.1). The precipitation is accumu-
lated and recorded every 5 min. In this study, all of the 5-
min series were subject to data quality control (Ceperuelo
and Llasat, 2004). The second network, called XEMA (Au-
tomatic Weather Station Network) is supported by the Cata-
lan Meteorological Service (SMC, hereinafter) and is com-
posed of 158 rain gauges and covers all of Catalonia (around

Table 1. Rainfall amount and intensity for the four study events
over the entire domain of Catalonia and over the Besòs Basin.

Max. rainfall Max. rainfall
amount (mm) intensity (mm/h)

Data Catalonia Bes̀os Catalonia Bes̀os

2/08/2005 57.1 55.0 117.6 117.6
11–13/10/2005 348.2 81.7 129.6 108.0
13–15/11/2005 148.1 46.4 118.8 80.4
12–14/09/2006 266.1 117.6 249.6 135.6

32 114 km2). This network records the precipitation in two
different temporal intervals. There are 47 stations that accu-
mulate the precipitation every 30 min, while the remaining
111 stations have one-hour temporal resolution.

An straightforward merging of both networks produces a
loss in temporal resolution (1 h) and a density of about 1 rain
gauge per 100 km2, which is insufficient to reproduce the
spatial pattern of most storms (Corral et al., 2001). Con-
sequently, radar information is essential to simulate flash
floods. In this work, the ACA network was used to com-
pute the new Z/R relationship, whereas the SMC network
was used to verify the results.

The radar rainfall estimation was implemented using data
from the SMC radar network, which covers an area of
53 000 km2 over Catalonia and its surroundings. This net-
work is made up of three C-band Doppler radars; a new radar
was inaugurated in September 2008 but was not used in this
study. The most important characteristics of the composed
CAPPI imagery are the spatial resolution (2× 2 km2), time
resolution (6 min) and vertical resolution (1 km) from 1 km
to 10 km of altitude (10 levels). The CAPPI are calculated
by means of the IRIS program, which is based on the linear
interpolation of the range to the selected heights in spheri-
cal coordinates, with a correction for the Earth curvature to
preserve data quality. The radar imagery was corrected using
SMC by first passing a filter to remove ground clutter (Bech
et al., 2003). A second filter was applied to remove the inter-
ference between radars (no data in radar location) and from
other non moving targets, such as a wind power plant.

The hydrological data were taken from a stream-flow
gauge network composed of 100 stations from which six are
located in the Bes̀os Basin (Fig.2). The catchment is well
covered by the SMC radar (overlap of three radar domains).
Other necessary data for the hydrological model include the
digital elevation model and soil type, which have been pro-
vided by the Cartographic Institute of Catalonia (ICC) with a
200 m× 200 m resolution. The function of this geomorpho-
logic data will be explained in the Methodology section.
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4 Methodology

The proposed methodology was used to perform a sensitiv-
ity analysis of the rainfall time resolution, on the results of
a hydrologic model in a flash-flood prone basin. As a dis-
tributed hydrologic model is selected to better incorporate
spatial variations of rainfall in time, spatially distributed rain-
fall maps for different time resolutions were obtained from
the 6-min weather radar data. The calibrated hydrologic
model was run taking these estimated rainfall maps as in-
put to determine the time resolution that best represents the
hydrological behaviour of the basin.

The methodology is divided into two parts. The first part
involves the estimation of the radar rainfall maps for different
time resolutions. The second part concerns the probabilistic
calibration of the RIBS hydrologic model and the sensitivity
analysis of the rainfall time resolution to the results of the
calibrated RIBS model.

4.1 Radar rainfall estimation

4.1.1 Method to calculate Z/R relation

In a previous work (Atencia et al., 2008), a large number
of Z/R relations were tested for four selected heavy rainfall
events. That study showed that radar-based rainfall data un-
derestimated by approximately 18 % (56 mm), as compared
to rain gauge measurements. Consequently, the results were
not suitable for hydrological purposes.

To address the issue of QPE, a Z/R relation was obtained
by applying the WPMM. This method (Rosenfeld et al.,
1994) is based on matching the unconditional probabilities
of rainfall and reflectivity. Obviously, point measures from
radar and rain gauges are plagued by timing and spatial er-
rors. Many of the timing and geometrical errors can be
eliminated by applying the probability matching method us-
ing synchronous time series (Rosenfeld et al., 1993). This
is achieved by matching rain-gauge intensities to radar re-
flectivities taken only from small windows centred over the
gauges in time and space.Zawadzki(1975) has shown that
both the window area (A), in km2, and the spread of the rain-
gauge measurement in time (T ), in h, are related as follows:

T =
1

3
·
A

1
2

V
(5)

whereV [km h−1] represents the horizontal velocity of the
rainfall/storm-cell system. Atlas et al. (1990) and Rigo
(2004) reported a climatic horizontal velocity of convective
rainfall area of about 20 km h−1. Thus, a rain gauge time
concentration of 6 min is obtained by applying this formulae
(Eq.5) for a 3× 3 pixel window. In this study, the SAIH rain
gauge data has a time resolution of 5 min. To ensure an op-
timal correlation between both radar and rain gauge rainfall
measurements (Rosenfeld et al., 1994), the solution is work
with a temporal window of 30 min, which is a time interval

Fig. 3. Radar window example. Square window of 3×3 pixel di-
mension is centered over a rain gauge (red cross).

that is greater than the optimal value. To solve this problem
the following procedure has been applied:

– First, a radar window (3× 3 pixels) around the rain
gauge is built (Fig.3).

– Second, each reflectivity’s independent window for ev-
ery period of 30 min is taken from every pixel (45 in
total) coming from five radar windows of each 6-min
radar image (Fig.4b)

– Third, 5-min rainfall intensity for each rain gauge is ac-
cumulated in order to obtain rain gauge window for each
period of 30 min (Fig.4a)

Once the overall dataset of the independent windows has
been built, the Z/R relation can be calculated from a random
sub-sample of those data. To reproduce the original method
(Rosenfeld et al., 1994), which was used to compute the
Z/R relationship by comparing quantiles, a non-parametric
technique should be used. To avoid problems of tail stabil-
ity found in the empirical probability distribution function
(Kaplan and Meier, 1958), a technique based on a kernel
smoothing density function (Parzen, 1962) is applied. To
test another smoothed relation, different parametric proba-
bility density functions (pdf) were fitted for both rainfall and
reflectivity distributions. The ones that maximise the likeli-
hood were exponential functions for rain gauges, whereas the
pdf of the reflectivity values was well fitted by a gamma dis-
tribution. In Fig.5, a random sub-sample of 25 % of the over-
all population of windows is plotted. Although, the distribu-
tion does not fit well for reflectivity values below 19 dBZ, the
contribution of this precipitation (less than 0.1 mm h−1) can
be ignored in comparison with the heavy rainfall recorded.
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(a) Example of an independent rainfall window dataset: Evolu-
tion of 5-min rainfall rate for a period of 30 min.

(b) Example of a single independent reflectivity window
dataset: 6-min reflectivities for a period of 30 min (5 radar im-
ages) and for the nine pixels comprising a window.

Fig. 4. Examples of a rain gauge(a) and weather radar reflectivity(b) independent window.

(a) (b)

Fig. 5. The left picture(a) shows a density histogram of a random sub-sample of 25 % of the overall population of rain gauge data and the
Exponential pdf fit. The right one(b) shows density histogram for radar data window and Gamma pdf fit.

Adapting the Z/R relationship to different rain types within
a given storm or event seems to be a promising way to
improve radar QPE (Lee and Zawadzki, 2005). Rosenfeld
et al. (1995) improved the accuracy of WPMM-estimated
rainfall by means of objective classification criteria based
on parameters such as freezing level or bright-band frac-
tion. In the present work, the classification criteria developed
by Biggerstaff and Listemaa(2000) were performed within
a 3-D scheme, to recognise convective/stratiform areas (see
alsoSteiner et al., 1995). This algorithm distinguishes be-
tween convective and stratiform areas according to reflectiv-
ity thresholds and gradients between different CAPPI lev-
els, which were regionalised to Catalonia byRigo and Llasat
(2004). According to this methodology, in the present study,
each different subset of every window was counted in differ-
ent groups. Therefore, for the same rain gauge intensity win-

dow, two radar reflectivity windows are set. This approach to
the classification criteria results in an ambiguous rain gauge
probability distribution function. The ambiguous relation be-
tween the intensity and rain type should be subsequently cal-
culated as two independent unambiguous datasets.

Using both parametric and non-parametric techniques, the
derivation of the Z/R relation is very simple and straightfor-
ward. A randomisation process is applied by selecting differ-
ent sizes of sub-samples to ensure the minimisation of spatial
and geometric errors. This process also provides probabilis-
tic information about the convergence of the population to a
final relationship. In this way, the standard deviation (SD) is
used to evaluate the consistency of the new relation and the
range over which the final relation is absolutely sound.
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(a) Division of the first image into templates (solid lines) and
search area (dashed line) corresponding to the central template.

(b) Vector indicating where in the second image the centre of
the window (dotted line) closest to the original template (solid
line) lies.

Fig. 6. Example of templates in the second image for the cross-correlation technique and the displacement vector obtained. Both pictures,
(a) and(b), are extracted fromDransfeld et al.(2006).

Fig. 7. Real example of radar rainfall disaggregation. In the above example 3×3 templates are shown in each image. The original resolution
is 6 min and the cross-correlation advection results in a 1 min resolution.

4.1.2 Advection correction

The temporal sampling effect of radar observations can lead
to significant errors in the estimated accumulated rainfall as
shown in several studies (Liu and Krajewski, 1996; Fabry
et al., 1994). To correct for this source of error,Anagnos-
tou and Krajewski(1999) proposed an advection correction
method based on cross-correlation maximisation (Rinehart
and Garvey, 1978). This procedure can be applied not only to
correct for these type of sampling errors, but also to increase
the time resolution. For this reason, instead of calculating
the cross-correlation coefficient between the two whole im-
ages, the first image is divided into a number of template
tiles (Fig. 6a). Each template window will be searched for
in the second image using a search window (dashed line in
Fig. 6a and6b), whose size depends on the maximum storm
speed that is expected between two sequential images. In the

present work, this technique was used to obtain the advective
displacement vector (vector in Fig.6b). This displacement
(p,q) indicates a storm or cell movement (Dransfeld et al.,
2006).

Once the advective displacement vector has been obtained
by this method, a shape morphology transformation is per-
formed by means of temporal weights based on a more com-
plex shape transformation (Turk and O’Brien, 2005). Both
the first,A(x,y), and second rainfall fields,B(x,y), are inter-
polated by means of the computed velocity to the same tem-
poral interval. Then, the value of rainfall at location(x,y)

and timet , R(x,y,t), is calculated as the temporal-weighted
sum of the two images as shown in the next function:

R(x,y,t) =
1

T 2
·

∑{
(T − t) · Ã(t)+ t · B̃(t)

}
(6)
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Fig. 8. Superposition of radar pixels over DEM grid over a small
domain of areaA2. The highlighted grey DEM grid pixel is used as
example of mismatching between the two grids.

where the transformed fields̃A(x,y,t) andB̃(x,y,t) are cal-
culated by the functions

Ã(x,y,t) = A
[
x −

t

T
·c ·cosθ,y −

t

T
·c ·sinθ

]
(7)

B̃(x,y,t) = B
[
x +

T − t

T
·c ·cosθ,y +

T − t

T
·c ·sinθ

]
(8)

whereA andB are consecutive radar rainfall fields.c is the
advective velocity [km h−1] andθ is the displacement angle.
T [h] represents the original time resolution of radar andt

[h] is time within the time intervalT .
The template size selected is 10× 8 pixels, whereas the

search window for the second image is 16× 14 pixels.
This size was calculated by assuming a maximum storm
movement lower than 140 km h−1, following the works of
Steinacker et al.(2000) andRigo (2004). Figure7 shows the
downscaling from 6 min to 1 min.

4.1.3 Rainfall data into RIBS hydrological model

The RIBS model requires that rainfall input data be mapped
to the rectangular grid of the DEM. As radar images and

DEM resolutions are different and may correspond to dif-
ferent projections, a preliminary treatment of radar images is
required.

The main step is an interpolation to downscale the
radar resolution grid (2 km× 2 km) to the DEM resolution
(200 m× 200 m). The easiest and quickest way is to perform
an ordinary linear interpolation, but this methodology does
not exactly preserve the total amount of precipitation over the
whole domain due to mismatching grids (Fig.8). To avoid
this, another procedure was developed in the present work.
As shown in Fig.8, some DEM grid cells are divided into
two different reflectivity parts (grey cell). The main purpose
of the new procedure is to preserve the total areal precipita-
tion amount, which is achieved by an area-weighted interpo-
lation. This could be formulated in a general way as follows:

RDj =

∑
i∈Ij

Si
jRi∑

i∈Ij

Si
j

(9)

where RDj is rainfall intensity in DEM cellj , Ri is rainfall
intensity in radar celli, Ij is the set of radar cells that cover
DEM cell j andSi

j is the area of DEM cellj covered by
radar celli.

Once rain rated for every cell of the whole domain has
been calculated by this area-weighted interpolation, the
Bes̀os Basin shape is cut out from the high resolution rainfall
image.

4.1.4 Radar rainfall validation

To evaluate the accuracy of the radar rainfall estimation,
three error indexes are calculated. The first one is the log
ratio bias (Eq.10), which is a relative error and provides in-
formation about the total amount of precipitation:

logratiobias= log·

∑
Ri∑
Pi

(10)

The second is the Root Mean Square Error (RMSER; Eq.11)
[mm], which determines the accuracy of the estimation for
each individual rain gauge.

RMSER =

√∑
(Ri −Pi)2

n
(11)

The third is the Mean Error (MER; Eq.12) [mm], which de-
fines whether the rainfall is under/over-estimated.

MER =

∑
(Ri −Pi)

n
(12)

Here, Ri and Pi are the rainfall amount at locationi de-
rived from the radar and registered by SMC rain gauges, re-
spectively. The valuen represents the total number of valid
points.
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4.2 Hydrological modeling

4.2.1 Selection of rainfall time resolutions

Spatially distributed precipitation maps can be constructed
for each event by summing the new advected 1-min radar
rainfall maps to a given resolution. A set of time resolutions
must be selected to perform the analysis.

The required minimum time resolution of rainfall for
Mediterranean regions can be estimated as a function of the
basin area (Eq.13), taking into account that time resolu-
tions higher than 3 min only become relevant for basin areas
smaller than 100 ha (1 km2) (Berne et al., 2004).

1t = 0.75·S0.3 (13)

where1t is the required minimum time resolution [min], and
S is the basin area [ha].

4.2.2 Probabilistic calibration

The distributed RIBS model was calibrated using a prob-
abilistic approach based on a multiobjective calibration
methodology, since both different aspects of the hydrograph
and the uncertainty in the hydrologic model estimations may
be taken into account. The calibration result is a pdf for each
calibrated model parameter (Mediero et al., 2011).

The probabilistic calibration methodology can be sum-
marised as follows. First, a sensitivity analysis was per-
formed over the global parameters of the RIBS model, since
the local parameters, asK0n, were estimated from the soil
types in the basin prior to the calibration. As model input ob-
served rainfall data in the first event at a 15 min time resolu-
tion was used, and model parameter values were randomised
from uniform distributions. A modification of the Gener-
alised Sensitivity Analysis (GSA) methodology proposed by
Freer et al.(1996) was applied. This analysis showed that
the most influential parameters in the model output are as
follows: the rate of variation of the hydraulic conductivity
in depth (f ), the soil anisotropy coefficient (α), the ratio of
hillslope flow velocity to channel flow velocity (Kv) and the
coefficient of the law that relates hillslope flow velocity to
discharge in the basin outlet (Cv).

Second, the proper calibration methodology was per-
formed over the first three recorded events for each rain-
fall time resolution. A large set of synthetic hydrographs
was generated by repetitive simulations of the RIBS model;
these simulations generated randomised sets of values for the
most influential model parameters, which were identified in
the first step. Hydrological model outputs highly depend
on the initial basin conditions. Therefore, the antecedent
moisture content in the basin is an input of the RIBS model
and it was estimated from rainfall and temperature data in
the days before the beginning of each flood event. As the
model utilisation is the prediction of flash floods, the Root
Mean Square Error (RMSE; Eq.14), Mean Absolute Er-
ror (MAE; Eq.16) and Nash-Sutcliffe Efficiency Coefficient

(NSE; Eq.17) were selected as objective functions to con-
duct the multiobjective calibration.

RMSE=

√√√√ 1

Ts

Ts∑
t=1

(
Qt

o−Qt
s

)2 (14)

MEH =

Ts∑
t=1

(
Qt

o−Qt
s

)
(15)

MAE =

Ts∑
t=1

|
(
Qt

o−Qt
s

)
| (16)

NSE= 1−

Ts∑
t=1

[Qt
o−Qs]

2

Ts∑
t=1

[Qt
o−Qo]

2

(17)

whereQt
o is the observed discharge at timet , Qt

s is the sim-
ulated discharge at timet , Qo is the mean of observed dis-
charges,Qs is the mean of simulated discharges andTs is the
total number of time steps.

In a multiobjective calibration, no single solution can min-
imise all of the objective functions at the same time (Gupta
et al., 1998). Therefore, the Pareto solutions were identified
to determine the set of non-inferior solutions (Yapo et al.,
1998). Each calibrated model parameter was represented by
a pdf fitted from the set of Pareto solutions for the three
calibration events. The distribution functions that best fit
the variability of each parameter were identified by means
of traditional goodness-of-fit tests, i.e. Chi-Squared test and
Kolmogorov-Smirnov test.

4.2.3 Sensitivity analysis of the rainfall time resolution

The result of the probabilistic calibration of the RIBS model
is a pdf for each parameter, which represents the parameter’s
variability. Therefore, the result of the model calibration is
not a single hydrograph, but an ensemble distribution hydro-
graphs. This ensemble is obtained by the randomisation of
the model parameter values based on the calibration results.
The number of hydrographs used to analyse the importance
of time resolution must be large enough to reach the stabilisa-
tion of the model results. The required number of simulations
was defined through a sensitivity analysis, which established
that 200 model simulations were required to obtain reliable
results.

A sensitivity analysis of the rainfall time resolution was
performed for the last observed event. Differences between
the simulated set of hydrographs and the observed hydro-
graph were quantified by four measures. RMSE and Mean
Error (MEH ) were selected to measure the accuracy of the
simulations (Eq.14–15).

Two other measures were added to improve the assess-
ment. The estimation bias was quantified by a modification
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Table 2. Validation results for the eight Z/R relationships in each of the four study cases. The numbers in the second row represent the pdf
fitting method, being 1 exponential-Gamma and 2 for the Kernel smoothing density function.

Validation August 2005 October 2005 November 2005 September 2006

Calibration 1 2 1 2 1 2 1 2

BIAS 0.28 0.13 0.07 −0.17 0.03 −0.19 −0.09 −0.30
August 05 MER 6.89 3.28 4.78 −21.99 17.96 −5.61 −17.90 −45.30

RMSER 1.64 1.30 1.89 2.39 4.78 4.03 3.38 4.29

BIAS 0.33 0.32 0.02 −0.09 −0.03 −0.13 −0.12 −0.19
October 05 MER 10.09 12.64 −1.83 −12.81 7.92 3.51 −21.30 −30.58

RMSER 1.88 2.35 1.73 1.98 4.10 4.64 3.28 3.57

BIAS 0.21 0.19 −0.09 −0.19 −0.14 −0.23 −0.23 −0.31
November 05 MER 4.19 4.94 −16.85 −25.12 −9.34 −12.65 −39.10 −46.58

RMSER 1.12 1.26 2.09 2.40 3.26 3.72 3.88 4.22

BIAS 0.45 0.41 0.17 0.02 0.13 −0.02 0.02 −0.09
September 06 MER 17.06 19.67 24.09 3.62 36.84 25.67 6.84−11.37

RMSER 2.84 3.52 2.28 2.04 6.43 6.64 3.33 3.34

of the Nash-Sutcliffe global efficiency index (R2 (MQ0.5);
Eq.18), which measures the utility of the median, instead of
the mean, as a forecast (Xiong and O’Connor, 2008).

R2(MQ0.5) = 1.0−

Ts∑
t=1

[Qt
o−MQt

0.5]
2

Ts∑
t=1

[Qt
o−Qo]

(18)

where MQt
0.5 is the median of simulated discharges at timet .

The predictive capability of the calibrated model was
quantified by the Containing Ratio (CR; Eq.19), which mea-
sures the number of observations that fall within the predic-
tion interval linked to a given confidence level (Montanari,
2005).

CR(α) =

∑
I [Qt

o]

Ts
(19)

whereI [Qt
o] is equal to 1 if the observed discharge at time

t holds between the confidence interval, andα is the confi-
dence level, which was set at 10 %.

5 Results

5.1 WPMM methodology

The four selected heavy rainfall events were produced by
very different meteorological events. For this reason, the cal-
ibration method previously presented was applied for each
case such that eight Z/R relations were obtained: two fitting
methods for each of the four case studies. In Table2, er-
ror indices are presented for the eight functions, which are
compared for every case using the total event amount in the
comparison.

Regarding the comparison of both methodologies, it can
be observed that a parametric fit (exponential-Gamma) im-
proves results compared to a non-parametric fit (Fig.9). The
left box plot for a given fitting methodology, represents the
results for the Z/R obtained for the same study case, whereas
the right box plot shows the Z/R results computed for the
three other case studies. The log ratio bias and the RMSER

show better results for both box plot regarding the mean and
the interquartile range. It can be observed that, in general,
best results are obtained for the left box plots. Nevertheless,
as the results show, also for the other three events calibrated
fits achieve accurate precipitation estimations.

A comparison between both methodologies shows that the
parametric fit improves the range of applicability of the new
Z/R relationship. It can be observed in Fig.10 that the SD
is higher for the tails of the non-parametric Z/R relation
(Fig. 10a) than for the parametric Z/R relation (Fig.10b).
This is caused by the scarcity of values in the tails of the
probability distribution function for the reflectivity and high
intensity rainfall values. The parametric fit does not have this
problem because it has only two parameters to compute, and
this computation gives more weight to the central values of
the distribution.

5.2 Advection correction

Table3 shows the results of applying the advection technique
to the best rainfall estimation method. The use of a cross-
correlation technique to interpolate the rain improved the re-
sults previously obtained for the root mean square error and
mean error for all of the cases; however, it did not change
the total radar rainfall field as can be observed for the BIAS
values.
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Table 3. Comparison of results before and after applying the advec-
tion correction.

Best previous results Advection results

Index BIAS MER RMSER BIAS MER RMSER

Aug 05 −0.04 −1.1 1.00 0.002 −0.59 0.92
Oct 05 0.02 −1.83 1.73 0.02 −1.50 1.70
Nov 05 −0.13 3.51 3.26 −0.14 3.06 3.23
Sep 06 0.02 6.84 3.33 0.02 4.20 2.99

Table 4. Basin area (km2), length of the main watercourse (km),
slope between maximum and minimum elevation (m/m), time of
concentration by the Kirpich formula (h) and required minimum
time resolution of rainfall in Mediterranean regions (min) of Besòs
basin stations.

Station Area (km2) L (km) S(m/m) tc (h) 1tmin [min]

Mogoda 111 31.83 0.026 3.87 12.3
Lliça 146 38.71 0.023 4.73 13.3
Garriga 151 26.41 0.026 3.36 13.5
Mogent 182 36.66 0.032 3.99 14.2
Montcada 221 43.24 0.015 6.15 15.1
Gramenet 1012 63.45 0.015 8.26 23.8

The impact of the advection can be observed in Fig.11.
The maximum values and the shape of the rainfall field has
changed for this specific example. Regarding the improve-
ment in the hourly accumulated rainfall, Fig.12 compares
the log ratio bias and the RMSER of the QPE before and af-
ter applying the advection correction technique.

5.2.1 Selection of rainfall time resolutions

The minimum time resolution for the gauging stations in the
Bes̀os Basin calculated using Eq. (13) are included in Ta-
ble4. It can be seen that they are within 12 to 24 min. There-
fore, the calibration of the RIBS model was performed for six
time resolutions: 30, 24, 18, 15, 12 and 6 min. Resolutions
higher than 6 min were not considered because this greatly
increases the computation time of the RIBS model. More-
over, these time resolutions are not relevant for the basin ar-
eas considered in the Besòs Basin.

5.3 Hydrologic model calibration

The distributed RIBS model was calibrated in the Besòs
Basin with the first three observed events. The basin shape
and the locations of the gauging stations are shown in Fig.2,
and their basic properties are presented in Table4. The model
was calibrated using data from the Gramenet station, very
near the basin outlet. Spatially distributed precipitation maps
were constructed for each event by summing the new ad-
vected radar rainfall estimation for 30, 24, 18, 15, 12 and
6 min. The antecedent moisture content was used as an input

Fig. 9. Box-plot of both fitting techniques (parametric and non-
parametric) for the log ratio bias and the RMSER . The left box-
plot for a given fitting methodology represents the results for the
Z/R obtained for the same study case whereas the right box plot is
the results obtained for the Z/R computed by the three other case
studies.

in the RIBS model from rainfall and temperature data in the
days before the flood event.

The calibration methodology was conducted for each rain-
fall time resolution to take into account the fact that some
hydrological parameters may be dependent on the time scale.
The calibration results are summarised by the main statistics
of the distribution of parameter values for each time resolu-
tion (Table5).

5.4 Sensitivity to precipitation time resolution

A sensitivity analysis of the rainfall time resolution was car-
ried out for the last event, at each of the six gauging stations:
Lliça station on the Tenas River, Montcada Station on the
Ripoll River, just upstream of its confluence with the Besòs
River, Gramenet Station on the Besòs River, very near the
basin outlet, Garriga Station on the Congost River, Mogent
Station on the Mogent River and Mogoda Station on the Cal-
das River (Fig.2).

A set of 200 simulated hydrographs was generated for
each time resolution. These simulated hydrographs were
compared with the observed flows for each gauge as de-
scribed in Sect.4.2.3; the results obtained are presented in
Table6 and Figs.13and14.

The predictive capability of the peak discharge with a sig-
nificance level of 10 % is presented as a function of rainfall
time resolution in Fig.13. The range between confidence
limits is represented by the length of the error bars. Most sta-
tions show smallest variability and best fit between the me-
dian simulated and the observed value for time resolutions

www.hydrol-earth-syst-sci.net/15/3809/2011/ Hydrol. Earth Syst. Sci., 15, 3809–3827, 2011



3820 A. Atencia et al.: Effect time resolution

(a) Non-parametric (b) Parametric

Fig. 10. The new Z/R relation (solid middle line), as obtained from WPMM for the full dataset. The broken lines represent plus and minus
one standard deviations from the Z/R when calculated by population from 1 % to 25 % sub-samples. The left example(a) is the new Z/R
relation obtained by non-parametric fitting whereas the right one(b) correspond to the parametric fit.

(a) Before advection correction (b) After advection correction

Fig. 11. Comparison between non-advected(a) and advected(b) accumulated rainfall field.

of 12, 15 and 18 min. In general, both the width of the con-
fidence intervals and the distances between the median and
the observed peak increase as the rainfall time resolution de-
viates from these values, reaching the maximum at the most
extreme time resolutions, i.e. 6 and 30 min. The largest devi-
ations of the median from the observed peak at most stations
are also at 6 and 30 min.

The results obtained for the four validation measures are
shown in Fig.14. To allow for the comparison among
gauges, RMSE and MEH were standardised by the observed
peak discharge. As shown in Fig.14a, the minimum RMSE
is reached at all stations for 15 min resolution, except for the
Mogoda station. The model performance is maintained for
time resolutions below 12 min but decreases sharply for time

resolutions above 18 min in the case of the smaller stations,
Mogoda, Lliça and Garriga. This finding shows that time res-
olutions coarser than 15 min worsen the hydrological results
for the basins with smaller areas.

The absolute value of the bias reaches a minimum for time
resolutions of 12 and 15 min, the differences between these
two time resolutions being small. The bias shows the same
trend as the RMSE for the smaller basins, as it decreases the
model performance when time resolution decreases. This
finding indicates that time resolutions higher than 15 min
worsen the hydrological results for Mogoda, Lliça and Gar-
riga basins. Although Fig.14b presents the absolute value of
the bias, in general, the bias is positive for time resolutions
smaller than 15 min and negative for the rest.
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Fig. 12. Validation results for the September 2006 event before and after applying the advection correction.

Fig. 13. Validation results for the peak discharge as a function of time resolution, at all station locations. The observed peak discharge is
plotted as a solid circle, 5 % and 95 % percentiles are plotted as vertical bars and the median is plotted as a horizontal dash.

Gramenet, Montcada and Mogent Stations clearly reach
the bestR2(MQ0.5) for a time resolution of 15 min. Mogoda
and Lliça Stations reach the maximum for 15 min, but there
are no large differences from the result for 12 min. Garriga
reaches the maximum for 12 min. These results indicate that
the larger basins produce better results for a time resolution

of 15 min and that the smaller basins produce better results
for a higher time resolution closer to 12 min.

The behaviour of CR shows that most stations reach the
maximum for 15 min, except for Lliça, where the maximum
corresponds to 12 min. The larger basins (Mogent, Montcada
and Gramenet) show a sharp decrease in model performance
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(a) (b)

(c) (d)

Fig. 14. Validation measures plotted versus rainfall time resolution for all stations.(a) Root Mean Square Error (RMSE), standardized by
observed peak discharge(b); absolute value of Bias (ME), standardized by observed peak discharge.(c) ash-Sutcliffe global efficiency index
R2(MQ0.5). (d) Containing Ratio for a confidence level of 10 %[CR(10 %)].

Table 5. Summary of calibration results for each parameter for all time resolutions. Table shows mean value (µ) and standard deviation (σ )
of the parameter distribution.

Parameter

Time resolution log10(f ) [mm−1
] α[−] Kv[−] Cv [m h−1

]

(min) µ σ µ σ µ σ µ σ

6 −3.05 0.92 41.6 25.8 10.1 2.82 4680 1654
12 −2.15 0.71 48.6 28.9 10.9 1.80 4643 1220
15 −2.63 0.68 53.4 27.1 11.3 2.15 4397 1313
18 −2.30 0.51 48.9 30.6 10.7 1.75 4563 1818
24 −2.32 0.29 44.0 28.8 10.1 1.95 4593 1655
30 −2.65 0.69 50.6 24.4 11.1 2.77 3415 1439

as the time resolution increases. The best results are achieved
at 15 min resolution, but the results for 12 min are worse than
those for 18 min. This finding indicates that the results for
the larger basins give worse results at time resolutions higher
than 15 min. In the case of smaller basins, there are not
relevant differences between the results of time resolutions
within 12 and 15 min.

It seems that the decrease in model performance with a
decrease in time resolution may depend on the maximum
time resolution required to characterise the rainfall variabil-
ity in time. The decrease in model performance for time res-
olutions higher than 15 min could be due to the minimum
time resolution required for the hydrological model to char-
acterise the runoff processes. This resolution seems to be
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Table 6. Validation results for the selected river gauging stations.

Time resolution

Gauge station Measure 30 min 24 min 18 min 15 min 12 min 6 min

Lliça

RMSE 16.212 11.546 7.577 3.586 3.911 4.142
Bias −12.072 −8.843 −5.939 −1.143 0.325 1.568
R2(MQ0.5) 0.315 0.333 0.392 0.416 0.387 0.360
CR (10 %) 0.254 0.319 0.337 0.365 0.440 0.312

Montcada

RMSE 24.398 19.708 16.718 13.993 14.893 16.003
Bias −13.842 −8.157 −5.891 0.548 2.744 5.747
R2(MQ0.5) 0.330 0.376 0.474 0.528 0.474 0.391
CR (10 %) 0.522 0.616 0.693 0.789 0.614 0.523

Gramenet

RMSE 85.530 71.237 68.725 60.656 64.435 68.516
Bias −43.843 −25.817 −14.795 10.658 15.365 25.131
R2(MQ0.5) 0.398 0.421 0.438 0.521 0.432 0.356
CR (10 %) 0.498 0.520 0.539 0.686 0.592 0.504

Garriga

RMSE 9.726 8.003 7.278 3.108 3.736 4.741
Bias −6.669 −5.142 −3.385 0.005 1.049 1.644
R2(MQ0.5) 0.290 0.307 0.321 0.347 0.382 0.316
CR (10 %) 0.284 0.308 0.381 0.490 0.395 0.201

Mogent

RMSE 24.586 21.422 15.130 14.257 15.020 16.460
Bias −7.331 −4.393 −2.524 −1.789 0.214 4.803
R2(MQ0.5) 0.208 0.375 0.472 0.545 0.443 0.346
CR (10 %) 0.304 0.389 0.482 0.614 0.589 0.485

Mogoda

RMSE 11.192 7.138 6.234 5.206 4.505 6.213
Bias 7.599 4.100 3.295 2.201 −0.049 3.310
R2(MQ0.5) 0.243 0.388 0.419 0.443 0.438 0.373
CR (10 %) 0.284 0.341 0.424 0.543 0.468 0.435

a threshold for a basin area of 150 km2. Basins with areas
below this threshold produce better results with a time reso-
lution of 12 min, causing the model performance to decrease
sharply as the time resolution decreases. Basins with areas
higher than 150 km2 achieve better results with a time reso-
lution of 15 min.

These results indicate that 15 min is the best rainfall time
resolution for basins larger than 150 km2 in the Bes̀os Basin
and 12 min is the best resolution for basins smaller than
150 km2. These time resolutions provide a good represen-
tation of the rainfall characteristics of the Besòs River basin
as well as allow for a good simulation of the hydrological
processes that occur in the area.

6 Discussion

Distributed hydrological models improve the simulation of
convective rainfall events, as they can accept spatially dis-
tributed rainfall maps as input data. In this study, an effort
was made to couple radar data with a distributed hydrologic
model to simulate flash-flood events recorded in Catalonia.

This contribution provides a good example of the numer-
ous problems that exist in QPE. First, the traditional Z/R
power-law relationships have not worked well when applied
to the selected cases. It is difficult to determine with certainty
whether this problem might be associated with poor calibra-
tion or maintenance of the radar network, or with the atten-
uation caused by heavy precipitation. To obtain a suitable
QPE, a Window Probability Matching Method (WPMM) and
an advection correction were applied in this work.

Despite the dependence of the WPMM on the selected
probability distribution fitting function, it has been shown
that rainfall estimation improves with the two tested func-
tions. Accordingly, it is interesting that the minimum root
mean square error is obtained by fitting parametric func-
tions. Initially, the empirical pdf was tested to reproduce ex-
actly the original WPMM technique. However, the results –
not only in the lower tail of the distribution, but also in the
higher reflectivity tail – show poor stability over the SD test.
For this reason, a smooth non-parametric technique (Kernel
smooth pdf) was tested. The results improve slightly, but
the stability is not sufficiently high. For this reason, several
parametric functions were tested.The best-fitting parametric
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functions used were a gamma function for reflectivity and an
exponential function for rainfall intensity. Comparing both
methodologies, the parametric function provides an increase
in lower reflectivity values and a decrease in higher values,
whereas the non-parametric methodology produces a similar
shape, though it is displaced to the right, which causes the
rainfall intensity to increase for all reflectivity values. The
second correction made by WPMM non-parametric method-
ology could be related to the underestimation of the reflectiv-
ity due to the power parameter calibration or attenuation due
to heavy rainfall.

Taking into account the improvement that involves a con-
vective/stratiform distinction, two Z/R relations are obtained.
This new QPE method produces better results for the log
ratio bias, which indicates a more accurate reproduction of
the total rainfall recorded. Furthermore, the new WPMM
Z/R relation shape is less convex than the previous one. Ac-
cordingly, this approach should be useful for obtaining better
QPE results if more in-depth rain regime research was per-
formed.

After that, an advection correction was applied to correct
the rainfall amount. This correction was based on the hy-
pothesis that rainfall intensities continuously vary in space.
This method is applied by several meteorological services to
accumulate rainfall over a period of one hour. In the present
work, this technique was applied to every six radar rainfall
fields with two objectives. The first was to improve the total
rainfall estimation; the second was to increase the temporal
resolution to feed the hydrological model. By applying this
method, the root mean square error decreased, although the
bias did not show this behaviour. The cause of this could be
the significance of each improvement. The root mean square
error is more closely related with point errors, whereas the
bias is mainly related to the entire rainfall field.

Comparing the results obtained in the literature for the Z/R
relations (Atencia et al., 2008) with the results of the com-
bined application of both methodologies, the RMSER has
been reduced by up to 40 % and log ratio bias between 75 %
and 95 %. These accurate results allow us to map the radar
rainfall information to the rectangular grid of the DEM by an
area-weighted interpolation.

Once a more accurate rainfall field was obtained for each
6-min interval, it was taken as input data for the hydrologic
model. Due to the fact that the calibration of distributed hy-
drological models is strongly dependent on the time resolu-
tion of rainfall data, the advection correction method based
on a cross-correlation technique was applied to implement a
temporal disaggregation at several time resolutions (30, 24,
18, 15, 12, 6 and 2 min). Time resolutions higher than 6 min
lead to both unaffordable computation times for operational
hydrological forecasting and irrelevant time resolutions for
the gauging stations in the Besòs River Basin. Accordingly,
only the six highest time resolutions were compared.

A probabilistic calibration methodology was applied to
three flood events to obtain the pdf that best represent the

variability of each model parameter. A sensitivity analysis of
the rainfall time resolution was performed for the last event.
This sensitivity analysis showed that basins with areas be-
low 150 km2 provide better results with a time resolution of
12 min, and basins with areas higher than 150 km2 achieve
better results with 15 min of time resolution. This result may
be influenced by the fact that the model was only calibrated
for the global outlet at Gramenet. An individual calibration
of each of the smaller basins might lead to better overall
model performance and would probably yield a lower opti-
mum time resolution in smaller basins. The selected rainfall
time resolutions compare well with the results presented by
(Berne et al., 2004), who studied urban basins up to 100 km2

and found a strong relationship between basin size and the
minimum required rainfall spatial and temporal resolutions,
suggesting a rainfall minimum temporal resolution of 12 min.

For the optimum time resolution of 15 min, an RMSE av-
erage improvement of 16 % was obtained for all sub-basins
analysed when compared to the 6 min time resolution case,
which produced values larger than 10 % for all individual
basins. The results for other basins could vary across the
Mediterranean due to the dependence of the basin response
on other characteristics not analysed in this work, such as
geomorphology, geology and vegetation.

7 Conclusions

The goal of this study was to perform a sensitivity analy-
sis of rainfall time resolution on coupling radar data with a
distributed hydrologic model to simulate flash-flood events
recorded in Catalonia.

The first step was to obtain a methodology that improves
the radar rainfall estimation. The results shows that the appli-
cation of a WPMM, to compute a new Z/R relation, together
with an advection correction, represents a good improvement
in radar rainfall estimation.

The advection correction technique was applied to imple-
ment a temporal disaggregation at several rainfall time reso-
lutions (from 30 to 6 min). After a probabilistic calibration of
the hydrological model, a sensitivity analysis of these rainfall
time resolutions was performed.

The basins analysed in this work range from 100 to
1000 km2 and present an optimum time resolution between
12 and 15 min. This result proves that the highest available
rainfall time resolution does not necessarily provide the best
result in terms of the predictability of peak flow when the
radar system is coupled with a distributed hydrologic model.

Acknowledgements.This research is supported by the Sixth
Framework Programme European Commission FLASH project
(no. 036852). It is also included in the framework of the Spanish
Severus project (CGL2006-13372-CO2-02). The authors thank
Meteocat (Catalan Meteorological Service) for the rainfall data
from the XAC and XMET networks and the radar data from the
XRAD network. The authors also thank ACA (Catalan Agency

Hydrol. Earth Syst. Sci., 15, 3809–3827, 2011 www.hydrol-earth-syst-sci.net/15/3809/2011/



A. Atencia et al.: Effect time resolution 3825

of Water) for the rainfall and stream flow data from the SAIH
network. Additionally, the authors would like to thank CLABSA
for the Bes̀os Basin information.

Edited by: R. Uijlenhoet

References

Anagnostou, E. and Krajewski, W.: Real-time radar rainfall esti-
mation. Part I: Algorithm formulation, Journal of Atmospheric
and Oceanic Technology, 16, 189–197,doi:10.1175/1520-
0426(1999)016<0189:RTRREP>2.0.CO;2, 1999.

Anquetin, S., Braud, I., Vannier, O., Viallet, P., Boudevillain, B.,
Creutin, J., and Manus, C.: Sensitivity of the hydrological re-
sponse to the variability of rainfall fields and soils for the Gard
2002 flash-flood event, J. Hydrol., 394, 134–147, 2010.

Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence
of rainfall spatial variability on flood prediction, J. Hydrol., 260,
216–230,doi:10.1016/S0022-1694(01)00611-4, 2002.

Atencia, A., Ceperuelo, M., Llasat, M., and Vilaclara, E.: A new
non power-law Z/R relation in western Mediterranean area for
flash-flood events, in: Proceedings of Fifth European Confer-
ence on Radar in Meteorology and Hidrology (ERAD)., p. 14,
Helsinki, Finland, 7, 2008.

Atlas, D., Rosenfeld, D., Wolff, D., Aeronautics, N., and Space Ad-
ministration. Goddard Space Flight Center, Greenbelt, M.: Cli-
matologically tuned reflectivity-rain rate relations and links to
area-time integrals, J. Appl. Meteorol., 29, 1120–1135, 1990.

Barnolas, M. and Llasat, M. C.: A flood geodatabase and its clima-
tological applications: the case of Catalonia for the last century,
Nat. Hazards Earth Syst. Sci., 7, 271–281,doi:10.5194/nhess-7-
271-2007, 2007.

Barnolas, M., Rigo, T., and Llasat, M. C.: Characteristics of 2-D
convective structures in Catalonia (NE Spain): an analysis us-
ing radar data and GIS, Hydrol. Earth Syst. Sci., 14, 129–139,
doi:10.5194/hess-14-129-2010, 2010.

Bech, J., Codina, B., Lorente, J., and Bebbington, D.: The
sensitivity of single polarization weather radar beam block-
age correction to variability in the vertical refractivity gradient,
J. Atmos. Oceanic Technol., 20, 845–855,doi:10.1175/1520-
0426(2003)020<0845:TSOSPW>2.0.CO;2, 2003.

Bell, V. A. and Moore, R. J.: The sensitivity of catchment runoff
models to rainfall data at different spatial scales, Hydrol. Earth
Syst. Sci., 4, 653–667,doi:10.5194/hess-4-653-2000, 2000.

Berne, A., Delrieu, G., Creutin, J., and Obled, C.: Temporal and
spatial resolution of rainfall measurements required for urban hy-
drology, J. Hydrology, 299, 166–179, 2004.

Biggerstaff, M. and Listemaa, S.: An improved scheme for
convective/stratiform echo classification using radar reflectiv-
ity, J. Appl. Meteorol., 39, 2129–2150,doi:10.1175/1520-
0450(2001)040<2129:AISFCS>2.0.CO;2, 2000.

Bouilloud, L., Delrieu, G., Boudevillain, B., and Kirstetter, P.:
Radar rainfall estimation in the context of post-event analysis of
flash-flood events, J. Hydrol., 394, 17–27, 2010.

Carpenter, T. and Georgakakos, K.: Intercomparison of lumped
versus distributed hydrologic model ensemble simulations
on operational forecast scales, J. Hydrol., 329, 174–185,
doi:10.1016/j.jhydrol.2006.02.013, 2006.

Ceperuelo, M. and Llasat, M.: La Precipitacion Convectiva en las
Cuencas Internas de Catalunya, Revista del Aficionado a la Me-
teorologıa, 23, 2004.

Corral, C., Sempere-Torres, D., and Berenguer, M.: A distributed
rainfall runoff model to use in Mediterranean basins with radar
rainfall estimates, in: 30 Conf. on Radar Meteor, pp. 6–8, 2001.

Delrieu, G., Andrieu, H., and Creutin, J.: Quantification of path-
integrated attenuation for X-and C-band weather radar systems
operating in Mediterranean heavy rainfall, J. Appl. Meteorol.,
39, 840–850, 2000.

Dransfeld, S., Larnicol, G., and Le Traon, P.: The Potential of
the Maximum Cross-Correlation Technique to Estimate Surface
Currents From Thermal AVHRR Global Area Coverage Data,
IEEE Geoscience and Remote Sensing Letters, 3, 508–511,
doi:10.1109/LGRS.2006.878439, 2006.

Fabry, F., Bellon, A., Duncan, M., and Austin, G.: High resolution
rainfall measurements by radar for very small basins: the sam-
pling problem reexamined, J. Hydrol., 161, 415–428, 1994.
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Llasat, M. C., Ĺopez, L., Barnolas, M., and Llasat-Botija,
M.: Flash-floods in Catalonia: the social perception in a
context of changing vulnerability, Adv. Geosci., 17, 63–70,
doi:10.5194/adgeo-17-63-2008, 2008.

Madsen, H.: Parameter estimation in distributed hydrological catch-
ment modelling using automatic calibration with multiple ob-
jectives, Adv. Water Resour., 26, 205–216,doi:10.1016/S0309-
1708(02)00092-1, 2003.

Marchi, L., Borga, M., Preciso, E., and Gaume, E.: Characterisation
of selected extreme flash floods in Europe and implications for
flood risk management, J. Hydrol., 394, 118–133, 2010.

Marshall, J. and Palmer, W.: The distribution of raindrops
with size, J. Atmos. Sci., 5, 165–166,doi:10.1175/1520-
0469(1948)005<0165:TDORWS>2.0.CO;2, 1948.

Mediero, L., Garrote, L., and Martin-Carrasco, F.: A probabilis-
tic model to support reservoir operation decisions during flash
floods/Un modele probabiliste d’aide a la decision pour la ges-
tion d’un reservoir lors de crues eclairs, Hydrol. Sci. J., 52, 523–
537,doi:10.1623/hysj.52.3.523, 2007.

Mediero, L., Garrote, L., and Martı́n-Carrasco, F.: Probabilistic cal-
ibration of a distributed hydrological model for flood forecasting,
Hydrol. Sci. J., 56, 1129–1149, 2011.

Montanari, A.: Large sample behaviors of the generalized likeli-
hood uncertainty estimation (GLUE) in assessing the uncertainty
of rainfall-runoff simulations, Water Resour. Res., 41, W08406,
doi:10.1029/2004WR003826, 2005.

Morin, E. and Gabella, M.: Radar-based quantitative pre-
cipitation estimation over Mediterranean and dry climate
regimes, J. Geophys. Res.-Atmospheres, 112, D20108,
doi:10.1029/2006JD008206, 2007.

Morin, E., Enzel, Y., Shamir, U., and Garti, R.: The characteris-
tic time scale for basin hydrological response using radar data,
J. Hydrol., 252, 85–99,doi:10.1016/S0022-1694(01)00451-6,
2001.
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