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1 Desalination

Desalination is realised mostly by using distillation and membrane technology. Large amounts of de-

salinated water are being consumed in the Middle East and North Africa (the MENA region), where

over 70% of the global desalination capacity is installed (World Water Assessment Programme,

2003) and people receive only 1% of the global runoff (Vörösmarty et al., 2005). Although energy5

and economic costs to process sea water to produce purified water is still much higher than conven-

tional water supply measures such as irrigation supply and groundwater pumping (The 2030 Water

Resources Group, 2009), the amount of desalinated water use has been rising since the 1990s and

reached 4.41 km3 yr−1 in 2000. Table S2 gives past desalinated water use from 1960 to 2000.

The amount of desalinated water use is generally small (see Table S2) compared to total water10

demand in most of countries in the world but has a large impact on WSI in some countries in the

Middle East. Figure S1 shows simulated WSI with and without inclusion of desalinated water use

for Kuwait, Qatar, Saudi Arabia and United Arab Emirates. In Kuwait, the amount of desalinated

water use has been increasing since 1960 and it satisfies nearly half of total water demand for 2000.

In Qatar and United Arab Emirates, desalinated water meets one-third and quarter of total water15

demand, respectively. Although Saudi Arabia uses the largest amount of desalinated water in the

Middle East, the impact on simulated WSI is less compared to the other countries due to the much

larger demand.

2 Groundwater abstraction

Table S3 shows data and model based estimates of the global groundwater abstraction. The data20

based estimates are mainly based on country statistics and have a fairly good agreement, falling into

a range of 600 to 800 km3 yr−1. On the other hand, the model based estimates vary significantly

among the studies. Wisser et al. (2010) estimate total groundwater abstraction to be 1708 km3 yr−1

which is twice as large as the data based estimates. Döll (2009) estimates that to be 1100 km3 yr−1

based on a fraction of groundwater to total water withdrawals per country multiplied with grid cell25

estimates of total water withdrawals computed by WaterGAP (Alcamo et al., 2003). Vörösmarty

et al. (2005), Rost et al. (2008), Wisser et al. (2010), Hanasaki et al. (2010) and Pokhrel et al. (2011)

implicitly quantified the amount of non-renewable groundwater abstraction based on the amount of

water demand exceeding locally accessible supplies of blue water. As a result, their estimates are

sensitive to estimated water demand (1206-3557 km3 yr−1) and simulated blue water availability30

(36,921-41,820 km3 yr−1) and the uncertainties are large.
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Alcamo, J., Döll, P., Henrichs, T., Kaspar, K., Lehner, B., Rsch, T., and Siebert, S.: Development and testing of

the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 48, 317–338, 2003.

Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten, D., Reichstein, M., and35

Smith, B.: Modelling the role of agriculture for the 20th century, Global Change Biol., 13, 679–706, doi:

10.1111/j.1365-2486.2006.01305.x, 2007.
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Table S1: Previous global studies to estimate irrigation water demand.

Previous

studies
Climate input

Reference

evapotranspiration
Irrigated area Crop Crop calendar

Additional

components

Gross/Net demand

(km3 yr−1)
Year

Spatial

resolution

Döll and

Siebert

(2002)

CRU TS 1.0 (New

et al., 2000)

Priestley and

Taylor

Döll and Siebert

(2000)

Paddy

Non-paddy
Optimal growth

Irrigation efficiency

Cropping intensity
2452/1091.5

Avg.

1961-1990
0.5◦

Hanasaki

et al. (2006)

ISLSCP (Meeson

et al., 1995)

FAO

Penman-Monteith

Döll and Siebert

(2000)

Paddy

Non-paddy
Optimal growth Irrigation efficiency 2254/1127

Avg.

1987-1988
0.5◦

Rost et al.

(2008)

CRU TS 2.1

(Mitchell and Jones,

2005)

Gerten et al.

(2007): Priestley

and Taylor

Siebert et al.

(2007) Evans

(1997)

11 crops

pasture

Simulate

vegetation/crop

growth by LPJmL

(Bondeau et al.,

2007)

IPOT and ILIM

Green water use

Irrigation efficiency

2555/1364IPOT

1161/636ILIM

Avg.

1971-2000
0.5◦

Wisser et al.

(2008)

CRU TS 2.1CRU

NCEP/NCARNCEP

Kalnay et al. (1996)

FAO

Penman-Monteith

Siebert et al.

(2005, 2007)FAO

Thenkabail et al.

(2006)IWMI

Monfreda

et al. (2008)
Optimal growth

Irrigation efficiency

Flooding applied to

paddy irrigation

3000-3400CRU FAO

3700-4100CRU IWMI

2000-2400NCEP FAO

2500-3000NCEP IWMI

Avg.

1963-2002
0.5◦

Siebert and

Döll (2010)
CRU TS 2.1

FAO Penman-

MonteithPM

Priestley and

TaylorPT

Portmann et al.

(2008)
26 crops

Portmann et al.

(2008)
Green water use

2099/1180PM

2404/1448PT

Avg.

1998-2002
0.5◦

Hanasaki

et al. (2010)

NCC-NCEP/NCAR

reanalysis CRU

corr. (Ngo-Duc

et al., 2005)

Bulk formula

(Robock et al.,

1995)

Siebert et al.

(2005)

Monfreda

et al. (2008)

Simulate a

cropping calendar

by H08 (Hanasaki

et al., 2008b)

Irrigation efficiency

Virtual water flow
2380/1530

Avg.

1985-1999
0.5◦

Sulser et al.

(2010)
CRU TS 2.1

Priestley and

Taylor

Siebert et al.

(2007)

20 crops

(You et al.,

2006)

FAO CROPWAT

with some

adjustments

Future scenarios

(TechnoGarden,

SRES B2 HadCM3

climate)

3128/14232000

4060/16032025

4396/17852050

2000 2025

2050

281 Food

Producting

Units

Wada et al.

(2011)
CRU TS 2.1

FAO

Penman-Monteith

Portmann et al.

(2008)
26 crops

Portmann et al.

(2008) Siebert and

Döll (2008)

Green water use

Irrigation efficiency
2057/1176

Avg.

1958-2001
0.5◦

Pokhrel et al.

(2011)

JRA-25 Reanalysis

(Kim et al., 2009;

Onogi et al., 2007)

FAO

Penman-Monteith

Siebert et al.

(2007) and

Freydank and

Siebert (2008)

18 crops

Leff et al.

(2004)

SWIM model

(Krysanova et al.,

1998)

Energy balance Soil

moisture deficit

Preplanting irrigation

2158(±134)/906(±62)a

2462(±130)/1021(±55)b

Avg. 1983-

2007a

2000b

1.0◦
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Table S2: Past desalinated water use with the largest user (%) from 1960 to 2000 based on the FAO

AQUASTAT data base.

1960 1970 1980 1990 2000

Globe (km3 yr−1)

0.26 0.42 0.94 2.74 4.41

Largest user

Saudi Arabia

(62%)

Saudi Arabia

(55%)

Saudi Arabia

(40%)

Saudi Arabia

(25%)

Kazakhstan

(31%)
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Table S3: Global estimates of groundwater abstraction.

km3 yr−1 Total/Non-renewable Year Gross/Net Runoff/Recharge Sources

Data based estiamtes

Postel (1999) NA/around 200 NA – – Based on various literature and statistics

IGRAC-GGIS 734/NA 2000 – – Based on various literature and country statistics

Shah et al. (2000) 750-800/NA
Contemporary

conditions
– –

FAO AQUASTAT, Llamas et al. (1992), Takeuchi and Murthy

(1994)

Zektser and Everett

(2004)
600-700/NA

Contemporary

conditions
– – Based on various country statistics

Model based estiamtes

Vörösmarty et al.

(2005)
NA/389Irr.-830Total

Average of

1995-2000
3557Total/1206Irr. 39,294/NA

Implicitly simulated by WBM (0.5◦) (Vörösmarty et al., 2000,

2005; Fekete et al., 2002)

Rost et al. (2008) NA/730
Average of

1971-2000

2534-2566

/1353-1375
36,921/NA

Implicitly simulated by LPJmL (0.5◦) with four different

precipitation inputs

Döll (2009) 1100/NA 2000 4020/1300 38,800/NA
Implicitly calculated based on water withdrawals and a fraction

of groundwater to water withdrawals

Wisser et al. (2010) 1708/1199
Contemporary

conditions
2997/NA 37,401/NA Implicitly simulated by WBMplus (0.5◦)

Hanasaki et al. (2010) NA/703
Average of

1985-1999
NA/1690 41,820/NA Implicitly simulated by H08 (1.0◦) (Hanasaki et al., 2008a,b)

Siebert et al. (2010) 545/NA 2000 NA/1277 39,549/12,600
Based on statistics of 15,038 national or sub-national

administrative units for irrigation purpose only

Wada et al. (2010) 734(±82)/283(±40) 2000 NA/NA 36,200/15,200
Explicitly calculated based on IGRAC-GGIS data and

simulated groundwater recharge (0.5◦)

Pokhrel et al. (2011) NA/455(±42) 2000
2462(±130)/

1021(±55)
NA/NA

Unsustainable water use simulated by MATSIRO (1.0◦) with

five different precipitation inputs
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Table S4: Correlation between computed gross water demand and reported water withdrawal from

the FAO AQUASTAT data base and between computed gross and net water demand and estimated

water withdrawal and water consumption of Shiklomanov (2000a,b) per country. R2 and α denote

the coefficient-of-determination and the slope of regression line, respectively.

FAO AQUASTAT

Sector 1970 1975 1980 1985 1990 1995 2000

Agriculture
R2 0.98 0.98 0.96 0.97 0.97 0.99 0.98

α 0.88 0.90 1.00 1.05 0.99 1.10 0.98

Industry
R2 0.98 0.99 0.98 0.97 0.97 0.92 0.98

α 0.96 0.94 0.80 0.99 0.99 0.80 0.90

Domestic
R2 0.97 0.98 0.95 0.97 0.98 0.96 0.95

α 1.15 0.98 1.01 0.90 1.10 0.90 1.06

Total
R2 0.96 0.98 0.99 0.96 0.96 0.98 0.96

α 1.12 0.90 1.10 1.02 0.99 1.08 0.99

Shiklomanov (2000a,b)

Sector 1960 1970 1980 1990 1995 2000

Total (gross)
R2 0.92 0.91 0.94 0.97 0.95 0.95

α 1.11 1.10 1.08 0.99 0.94 0.94

Total (net)
R2 0.96 0.97 0.96 0.97 0.95 0.94

α 1.16 1.15 1.10 1.12 1.05 0.99
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Fig. S1: Comparisons of simulated country-averaged monthly water scarcity index (WSI; y-

coordinate; dimensionless) between that with the inclusion of desalinated water use and that without

desalinated water use for a) Kuwait (1960-2001), b) Qatar (2000), c) Saudi Arabia (2000) and d)

United Arab Emirates (2000).
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Fig. S2: Long-term mean (1960-2001) of annual country averaged water scarcity index (dimension-

less) and that for each season (clockwise from top-left; DJF: December-January-February, MAM:

March-April-May, JJA: June-July-August, SON: September-October-November)
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