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Abstract. Flood risk can be reduced by means of flood fore-
casting, warning and response systems (FFWRS). These sys-
tems include a forecasting sub-system which is imperfect,
meaning that inherent uncertainties in hydrological forecasts
may result in false alarms and missed events. This fore-
casting uncertainty decreases the potential reduction of flood
risk, but is seldom accounted for in estimates of the benefits
of FFWRSs. In the present paper, a method to estimate the
benefits of (imperfect) FFWRSs in reducing flood risk is pre-
sented. The method is based on a hydro-economic model of
expected annual damage (EAD) due to flooding, combined
with the concept of Relative Economic Value (REV). The es-
timated benefits include not only the reduction of flood losses
due to a warning response, but also consider the costs of the
warning response itself, as well as the costs associated with
forecasting uncertainty. The method allows for estimation of
the benefits of FFWRSs that use either deterministic or prob-
abilistic forecasts. Through application to a case study, it is
shown that FFWRSs using a probabilistic forecast have the
potential to realise higher benefits at all lead-times. However,
it is also shown that provision of warning at increasing lead-
time does not necessarily lead to an increasing reduction of
flood risk, but rather that an optimal lead-time at which warn-
ings are provided can be established as a function of forecast
uncertainty and the cost-loss ratio of the user receiving and
responding to the warning.
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1 Introduction

Floods are an act of God but flood damage is an act of Man
(White, 1942). For long though, flood management has pri-
marily focused on managing flood hazards, e.g. on reducing
the frequency of flooding, flood extent, depth and duration
and flow velocities. Recent years have seen an increased em-
phasis on the management of floodrisk, where risk is de-
fined as the combination of the probability of occurrence of
a flood event, and its consequences in terms of casualties
and economic damage (Merz et al., 2010). This shift from
flood hazard management to flood risk management has led
to an increased emphasis on non-structural measures includ-
ing, for example, spatial planning, raising flood awareness,
flood proofing and the use of flood forecasting, warning and
response systems (FFWRSs).

Of these flood risk management measures, flood warning
is regarded as being one of the most effective (UNISDR,
2004). Considerable attention has been given to the effec-
tiveness of these systems. These studies generally focus on
estimating flood losses, the potential reduction of these losses
through warning response and the relationship between flood
warning lead-time and loss reduction (e.g.Parker, 1991;
Carsell et al., 2004; Parker et al., 2008; Molinari and Hand-
mer, 2011).

Flood forecasts, which form an essential element in the
flood forecasting, warning and response process are, un-
fortunately, affected by inherent uncertainties. These per-
tain to the forecasting model structure, parameter values
and initial conditions, to meteorological forcing (especially
when this forcing is forecast rather than observed), and to
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measurements and interpolations of these measurements as
for example in deriving catchment average rainfall. This
forecasting uncertainty can be explicitly accounted for if
the forecasting sub-system of a FFWRS produces an esti-
mate of predictive uncertainty as in the case of probabilistic
forecasting.

Irrespective of the nature of the forecasting system, this
forecasting uncertainty can lead to “wrong” decisions: floods
that occur may not have been predicted in time, or floods that
are predicted may not occur. The costs associated with this
forecasting uncertainty can be considerable. An analysis of
the role of benefits of FFWRSs should therefore also include
these costs, consisting of an opportunity cost in the case of
a flood that was not predicted, and the cost of unnecessary
warning response in the case of a false alarm.

Flood risk can be defined as the expected value of flood re-
lated damage and costs. Floods are random events and there-
fore flood damage is a random event. Although the exact
amount of damage in any given year cannot be predicted, the
expected annual value of flood damage can be determined
if the probability distribution of flood damage, or damage-
frequency curve is known. This expected annual damage is
a measure of flood risk. Flood risk may be estimated using
a hydro-economic Expected Annual Damage (EAD) model
(USACE, 1994; Dingman, 2002; Loucks et al., 2005), which
uses three basic relationships to establish the probability dis-
tribution of flood damage: the flood frequency curve, the rat-
ing curve and the stage-damage curve.

To evaluate the benefit of measures taken to reduce flood
risk, the cost of these measures should be taken into account.
In the case of flood warning systems, such an analysis should
include the expected reduction of flood losses due to the pro-
vision of warning and subsequent response, as well as the
costs of operating such systems and the costs associated with
uncertainty. Whilst the first two of these can be readily incor-
porated in analysing the benefit of flood warning, the latter is
less straightforward.

In meteorological applications,Relative Economic Value
(e.g.Murphy, 1985; Zhu et al., 2002) is often used to estab-
lish the value of forecasting systems relative to two bench-
mark situations. These are the situations in which no warning
system is present, and the situation in which a perfect warn-
ing system is present. In the latter, forecasting uncertainty is
absent and hence no “wrong” decisions are ever made.

To the best of our knowledge, no flood risk analyses have
been published that include the damage mitigating effects of
flood warning, the costs of the warning system,and the costs
associated with forecasting uncertainty. In the present pa-
per, a method is proposed that can be used to estimate flood
risk in the presence of an imperfect FFWRS. The method
consists of combining the hydro-economic EAD model with
the theory of Relative Economic Value. This combines ex-
pected annual damage, loss reduction, cost of warning re-
sponseand the costs associated with forecasting uncertainty
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Lead time

Decision 
subsystem

Warning –
response subs.
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Fig. 1. Flood forecasting, warning and response system (FFWRS)
sub-systems. Adapted fromParker and Fordham(1996) andCarsell
et al.(2004).

into an estimate of the benefit of flood forecasting and warn-
ing in reducing flood risk.

This method allows for the comparison of the effect of
flood risk management measures of different nature. For ex-
ample, the flood risk reduction attained by the implementa-
tion of a flood warning system can be compared with that
attained by the raising of levees, installation of flood reten-
tion areas or increasing flow conveyance. Additionally, the
method allows for an intercomparison of FFWRSs. For ex-
ample, the benefit of systems based on deterministic forecast-
ing can be compared with those that are based on probabilis-
tic forecasting. This allows explicitly estimating the benefit
of probabilistic forecasting in terms of flood risk reduction,
which so far has only been described in terms of their poten-
tial for improved decision making in flood event management
(e.g.Krzysztofowicz, 2001; Todini, 2004).

In the next section, the proposed method is explained in
detail. In Sect.3, results of a case study are presented where
the method is demonstrated by application to a small basin.
The results are discussed in Sect.4. Finally, a summary and
brief conclusions are presented in Sect.5.

2 Materials and methods

2.1 Flood forecasting, warning and response systems

A properly working flood forecasting, warning and response
system (FFWRS) gives property owners, floodplain residents
and responsible authorities time to respond to a flood threat
before flooding occurs. FFWRSs usually consist of a num-
ber of sub-systems (Fig.1). The forecasting sub-system pro-
duces forecasts of hydrological variables such as water levels
or flow rates, either as a deterministic single value forecast or
as a probability distribution. Based on these forecasts, a deci-
sion is taken whether or not to initiate warning response. The
warning-response sub-system then consists of warning pro-
cedures and subsequent mitigation action that can be taken
to reduce flood losses.

Although in actual operational forecasting the decision to
warn will be taken by the forecaster using guidance from the
forecasting sub-system, in the present paper it is assumed
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that decisions are based on forecasts only. Depending on
the nature of the forecasting sub-system, the decision sub-
system is deterministic or probabilistic. In the case of de-
terministic forecasts, it is assumed that forecast water levels
that are higher than the flooding threshold will automatically
initiate a warning response. Essentially, this decision is then
taken implicitly by the forecaster. If the forecasting system
provides explicit estimates of predictive uncertainty, the de-
cision will have to be based on a probabilistic decision rule.
If the probability of forecast water levels exceeding the flood-
ing threshold is higher than a probability threshold, a warning
response will be initiated. This allows users to choose an op-
timal threshold (in terms of probability threshold) at which
mitigating action is initated (Krzysztofowicz, 2001), but it
is again assumed here that forecast probabilities higher than
the selected probability threshold will automatically initiate
a response.

The warning-response sub-system pertains to the damage-
mitigating actions that can be taken after a flood warning has
been issued. During the time between a flood warning and
the arrival of flood waters – the mitigation time – floodplain
residents can move themselves and/or their property out of
reach of the pending flood. Increasing the available mitiga-
tion time intuitively allows for increased loss reduction, and
therefore this mitigation time should be maximised (but note
that with increasing mitigation time, response costs may in-
crease as well). Forecasting lead-time and mitigation time
are different due to the time needed to produce and dissemi-
nate a forecast and to take a decision whether or not to initiate
a warning response (Fig.1) (Carsell et al., 2004). However,
in the context of the present paper the time taken in the de-
cision sub-system is negligible and lead-time and mitigation
time are used synonymously.

Maximum potential reduction of flood damage by flood
warning response is rarely attained as it is unlikely that all
floodplain residents will be notified in time, nor that all resi-
dents will heed the warnings and act effectively. To account
for this, Parker(1991) and Green and Herschy(1994) de-
fined the actual flood damage avoidedLa [GBP] as a prod-
uct of the maximum potential flood damage avoided with a
fully effective system (Lp [GBP]), the probability that a fore-
cast is made in time (R [−]), the fraction of residents avail-
able to respond to a warning (Pa [−]), the fraction of resi-
dents who will respond to a warning (Pr [−]) and the frac-
tion of households who respond effectively (Pe [−]). To-
gether, these probabilities and dimensionless factors, each
ranging from 0 to 1, represent the effectiveness of the re-
sponse:La =Lp × R × Pa× Pr × Pe. In the UK, the Depart-
ment for Environment, Food and Rural Affairs (DEFRA) in-
dicated the values for the factors and probabilities (R, Pa,
Pr, Pe) the Environment Agency seeks to achieve (DEFRA,
2004). These would result inLa = 0.5× Lp, which is the
value used in the present paper.

2.2 Expected annual flood damage

Flooding is a random process and therefore flood damage
is a random process. The expected value of annual direct,
tangible flood damage can be estimated from the probability
distribution of flood damage:

EAD =

∫ 1

0
D(P ) dP (1)

whereP is the annual probability of exceedence of a certain
flood level andD(P ) is the direct, tangible flood damage
caused by that flood event (e.g.USACE, 1994; Carsell et al.,
2004; de Bruijn, 2005; Loucks et al., 2005). To determine the
probability distribution of flood damage, the hydro-economic
EAD model (USACE, 1994; Davis et al., 2008; Dingman,
2002; Loucks et al., 2005) links the flood frequency distri-
bution through flood stages to flood damage. The model can
best be explained graphically (Fig.2). The starting point of
the analysis is the probability distribution of flow rates (or
flood frequency curve, bottom left panel). A rating curve
(top left panel) links flow rates to flood stages. Stages higher
than the flooding threshold will cause damage, described by
the stage – damage curve shown in the top right quadrant. By
linking the probability of each flood discharge to the stage in
the river to the damage occurring, the probability distribu-
tion of flood damageD(P ) can be established (bottom right
panel). The expected annual flood damage can then be easily
established as the area enveloped by the probability-damage
curve (Eq.1).

The effect of flood risk management measures can easily
be shown in the graphical model. Measures that reduce flood
frequencies push the flood frequency curve (bottom left) to-
wards the origin. Measures aimed at a reduction of flood
stage, e.g. by river bed deepening or widening, change the
rating curve (top left panel). The reduction of flood dam-
age, either by structural or by non-structural measures, re-
duce damage associated with flood stages (top right panel).
Ultimately, measures that are effective in reducing flood risk
will move the probability-damage curve towards the origin
(Dingman, 2002), thus reducing the expected annual damage.

Figure 2 shows an example of the effect of a flood risk
management measure. Here, a measure was implemented
that reduces flood damage. Such a measure could be, for ex-
ample, flood-proofing private properties. The measure does
not affect either the probability of flooding or the rating
curve, but does change the stage – damage relationship, with
a reduced damage expected at the same stage. This results
in a probability – damage relationship that lies closer to the
origin, with the expected annual damage being reduced.

2.3 Cost of flood warning response and cost-loss ratio

Flood forecasting, warning and response systems come at a
cost, consisting of initial costs for setting up the system, fixed
costs for operation and maintenance, and variable event costs
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Fig. 2. Schematic representation of the hydro-economic EAD-model. The bottom left panel shows the probability distribution of flow rates.
The stage-discharge relationship is shown in the top left panel, and flood damage curve in the top-right quadrant. These three relationships
yield the damage-probability curve (bottom right panel). The figure shows how a flood risk management measure affects flood risk, with the
ex-ante situation as a solid, and the ex-post as a dotted line.

for flood warning response; the latter are incurred every time
a warning is issued. The fixed costs can be included in the
EAD analysis by adding these to flood damage, and shifting
the stage-damage curve to the right. Strictly speaking, the
term “damage” is then incorrect as it also includes the cost
of measures. In this paper, it is assumed for simplicity that
the fixed costs are included in the event costs. Additionally,
the event costs are considered independent of the height of
the flood stage. This is considered reasonable as the cost of
response is incurred based on a forecast (probability) thresh-
old being exceeded, and therefore independent of the actual
height with which the threshold is exceeded. The cost-loss
ratio r in Eq. (2) can be used to express the costs of warn-
ing responseC as a fraction of the avoidable lossesLa. It
is clear that wherer > 1 there is no benefit in flood warning
response, whilst for a very lowC the ratior approaches 0.

r =
C

La
. (2)

2.4 Costs associated with forecasting uncertainty

2.4.1 Relative economic value

If a decision to initiate warning and response procedures
is solely based on an imperfect forecast, forecasting uncer-
tainty may lead to false alarms and missed events. Both false

alarms and missed events are instances of imperfect system
performance and adversely impact the potential reduction in
flood risk. Combining the hydro-economic EAD model with
the theory of Relative Economic Value (e.g.Murphy, 1985;
Zhu et al., 2002) offers a convenient way of incorporating the
costs associated with forecasting uncertainty in estimates of
expected annual damage.

Using the hydro-economic EAD model, flood risk can be
estimated for theNo Warningand for thePerfect Warning
cases.Zhu et al.(2002) define the Relative Economic Value
(REV) as a dimensionless factor to scale between these es-
timates. The maximum value of 1 is assigned to thePer-
fect Warningcase, while a warning system that has the same
skill as the climatology (here meaning the long-term average
frequency of flooding) is assigned 0. Given the low clima-
tological frequency of flood threshold exceedance, this can
be considered equivalent to the case withNo Warningbeing
present. The REV can be calculated based on the skill of the
FFWRS.

The performance of a FFWRS can be captured in a two-
by-two contingency table that shows forecast/observation
pairs for dichotomous events (Wilks, 2006). In this case, the
table shows in how many cases a flood warning was followed
by a flood event (Table1). A contingency table is based on a
record of forecasts and events and should be made for every
decision rule that is used.
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Table 1. Contingency table. The consequences of the items listed are in brackets.

Event observed Event NOT observed
∑

Warning issued hitsh(C +Lu) false alarmsf (C) w

Warning NOT issued missed eventsm(La+Lu) quiets/correct negativesq(−) w′∑
o o′ N

In the absence of a FFWRS, a user’s flood losses will be
determined by the climatological frequency of flooding and
consist of unmitigated losses, which is the sum of the losses
avoided through warning responseLa, and the losses that
cannot be avoidedLu for every flood event:

EADnowarn = o (La + Lu). (3)

If a FFWRS is based on perfect forecasts, a flood event is
always preceded by a warning and flood damage can always
be reduced by mitigating action. False alarms and missed
events do not occur. The expected damage then consists of
the sum of cost for warning response and unavoidable losses
for every flood event:

EADperfect = o (C + Lu). (4)

The performance of a FFWRS based on imperfect fore-
casts can be assessed using a contingency table. Missed
events result in unmitigated flood losses, which equal the
sum of avoidable and unavoidable lossesLa +Lu. Loss mit-
igation through warning response can only be achieved at a
costC. In case of false warnings, these are the only costs
incurred by a user. A user’s expected costs and losses consist
of those associated with hits, misses and false alarms:

EADFFWRS = h (C + Lu) + f C + m (La + Lu)

= o Lu + (h + f ) C + m La. (5)

The Relative Economic Value (V [−]) of an imperfect
warning system is defined as the value relative to the bench-
mark cases of No Warning (V = 0) and Perfect Forecasts
(V = 1):

V =
EADnowarn − EADFFWRS

EADnowarn − EADperfect
. (6)

Note that REV can be less than 0 if the cost of false alarms
is higher than the benefits attained by the warning system.

Substituting Eqs. (3), (4) and (5) in (6), subsequent divi-
sion byLa and substitution ofC/La by r (Eq.2) yields:

V =
o La − (h + f ) C − m La

o La − o C

=
o − (h + f ) r − m

o − o r
=

o − (h + f ) r − m

o (1 − r)
. (7)

This derivation of relative economic value slightly differs
from that of, for example,Zhu et al.(2002). The difference
is in the expected expense in the absence of a warning sys-
tem. Zhu et al. include an additional decision where, based
on a minimisation of cost, a user may decide either tonever,
or to alwaystake action. In the latter case, a single warning-
response action is assumed to have an impact that is unlim-
ited in time, leading to an expected expense ofC +oLu. In-
cluding this EADnowarn= min[o(La+Lu), C +oLu] in the
analysis would yield relative economic value as a function
of min(o, r) which is discontinuous atr =o. In the present
application, the climatological frequency of floodingo ap-
proaches 0 and most if not all users’ cost-loss ratior is
greater thano. For that reason, the present derivation may
be simplified. It may be noted that flood risk in the “always
take action” option may be estimated by using the hydro-
economic EAD-model.

2.4.2 Optimal warning rule

It is assumed that a decision to issue a warning will only be
taken if the expected value of the warning response is less
than the expected value ofnot issuing a warning. This yields
the optimal warning rule:

C + P × Lu < P × (La + Lu) (8)

P >
C

La

P > r

with P the predicted probability of flooding. Only if a
user applies the optimal warning rule to flood event decision
making, will the benefits of probability forecasting be fully
realised.

2.4.3 Combining expected annual damage with relative
economic value

Flood risk in the No Warning and Perfect Forecasts cases can
be calculated using the hydro-economic EAD-model. This
equally yields EADnowarn and EADperfect respectively. To
calculate EADFFWRS, REV is subsequently used to scale be-
tween the flood risk of benchmark cases using Eq. (6):

EADFFWRS = EADnowarn − V
(
EADnowarn − EADperfect

)
. (9)
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In words: the flood risk in case of a warning sys-
tem being present equals the flood risk in the absence of
such a system minus the avoidable risk, which is scaled
by the warning system performance. A perfect system
(where V = 1) brings the full benefits of a warning sys-
tem (EADFFWRS= EADperfect). A system that performs as
well as acting on climatological information (V = 0) does
not bring any additional benefits, and is equivalent to no
warning system being present: EADFFWRS= EADnowarn.
A system that brings benefits compared to the absence
of a warning system (0< V < 1) will result in an ex-
pected annual damage between that of the benchmark cases:
EADnowarn> EADFFWRS> EADperfect. If the warning sys-
tem performance is worse than that in the No Warning case
(V < 0), flood risk will increase to levels higher than that in
the No Warning case: EADFFWRS> EADnowarn. In that case,
there is no economic rationale for flood warning.

As the potential for loss mitigation increases with increas-
ing lead-time provided by the warning system, flood risk
in the presence of a FFWRS is different for different lead-
times: EADFFWRS=f (n) (wheren is lead-time). Addition-
ally, Eq. (7) shows that relative economic value is expressed
as a function of the users’ cost-loss ratios:V =f (r). Explic-
itly including these dependencies in Eq. (9) gives:

EADFFWRS(n, r) = EADnowarn − V (r)(
EADnowarn − EADperfect(n)

)
. (10)

The assumption that was made here is that flood forecast-
ing performance, as expressed byV , does not depend on the
height of the flood wave. This is considered a reasonable as-
sumption because the warning system performance is based
on the exceedence of a flooding threshold only, and not on
the prediction of the height of the flood wave.

2.5 Case study: White Cart Water

The combination of hydro-economic EAD model with rela-
tive economic value is used to estimate flood risk in a small
basin in Scotland. The White Cart Water is a river located in
the greater Glasgow area and a tributary of the river Clyde.
This case study focuses on Overlee gauging station, which is
where the White Cart Water enters the city of Glasgow, and
the nearby flood warning locations at which flood damage to
residential properties has been known to occur. The White
Cart Water at Overlee has an upstream area of 106 km2, with
an average flow in the order of 3.5 m3 s−1. The upper parts
of the catchment are mainly rural catchment, while the lower
catchment is predominantly urban. The White Cart is a very
fast responding catchment, with a time of concentration of
approximately 3 h. Flooding frequently occurs in the reaches
downstream of Overlee, where the river flows through dense
residential areas of southern Glasgow.

To mitigate the adverse consequences of flooding, a flood
warning scheme is in place. The forecasting and warning

system (Cranston et al., 2007; Werner et al., 2009) is operated
by the Scottish Environmental Protection Agency (SEPA). It
is a statutory requirement to SEPA to issue flood warnings
no less than three hours in advance (Werner and Cranston,
2009). The operational forecasting system includes one
source of forecast precipitation only (radar now/forecasts)
which has a maximum lead time of six hours. While this
does not allow the at risk community to take extensive miti-
gating action, some actions can - and indeed are - taken. Em-
pirical evidence suggests that the initial four hour warning
period is associated with the greatest savings (Parker, 1991;
Risk Frontiers - NHRC, 2002; Carsell et al., 2004).

Flood risk is estimated for four cases. The two bench-
mark cases – No Warning and Perfect Forecasts – are inves-
tigated first. Subsequently, two imperfect FFWRSs are in-
vestigated: one in which deterministic forecasts are used and
one in which probabilistic forecasts are used.

Re-forecasting analyses were carried out using an off-line
version of an existing forecast production system: FEWS
Scotland, which is based on the Delft-FEWS shell (Werner
et al., 2004). Deterministic hydrological forecasts for White
Cart at Overlee are produced using a sequence of a PDM
rainfall runoff model (Moore, 1985), a kinematic wave rout-
ing model and an ARMA error correction model (Moore
et al., 1990).

Predictive hydrological uncertainty was estimated using
Quantile Regression (QR) (Koenker and Bassett Jr, 1978;
Koenker and Hallock, 2001; Koenker, 2005; Weerts et al.,
2011). QR is a post-processing method that can be used
to characterise the relationship between water level forecasts
and water level observations in terms of quantiles, or proba-
bilities of (non-) exceedence. The use of a post-processor in
near real-time forecasting systems is attractive as the com-
putation time required is limited; in this case, the post-
processor takes less than ten seconds to estimate the predic-
tive distribution.

For the White Cart case study, QR was calibrated using a
five year period (1 April 1991 through 31 March 1996), and
subsequently validated on a period covering nearly eleven
years (1 April 1996 through 20 February 2007). For both
calibration and validation periods, records of deterministic
water level re-forecasts were constructed using FEWS Scot-
land. The hydrological model was forced using observed pre-
cipitation. While using so-called perfect forcing significantly
reduces uncertainty compared to a situation in which precip-
itation forecasts are used (Werner and Cranston, 2009), this
equally affects both probability forecasts and deterministic
forecasts. It does therefore not affect the demonstration of
the method presented in this paper.

Deterministic water level forecasts from the calibration pe-
riod were paired with observations and from these two time
series, the quantile regression relationshiphτ =f (s) was de-
termined for all quantilesτ ∈ (.01,.02, ..., .99). For the val-
idation period, a probabilistic re-forecast was established
through application of the quantile regression relationship to
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Fig. 3. Sample probability forecast as produced by the research version of the forecast production system FEWS Scotland. Two graphs are
shown: a discretised predictive probability distribution of water levels at quantilesτ ∈ (.01, .05, .10, .25, .50, .75, .90,.95, .99) (top panel) and
the probability of exceedence of the flooding threshold (bottom panel). In both graphs, the vertical red line indicates the forecast issue time
(t0). In this case, it was forecast that there was a 20 % probability of threshold exceedence att0 + 6 h . The posterior water level observation
(dotted blue line) showed that the threshold was exceeded at this time.

each deterministic forecast to derive water levels correspond-
ing to the 99 quantilesτ ∈ (.01, .02, ..., .99). From this dis-
cretised predictive probability distribution, the probability of
exceedence of the flooding threshold (local datum + 1.5 m)
was determined (Fig.3). This threshold coincides with the
water level at which flood damage starts to occur.

3 Case study results

3.1 Case 1: no warning

For Overlee gauging station, an 18-year record of 15-min
water level observations and a rating curve were available.
Observed water levels were rated and from this record the
flood duration curve was established. A stage-damage rela-
tion was not available and was established. First, the number
of properties affected as a function of flood stage at Overlee
was estimated. For simplicity it was assumed that inunda-
tion depth is linearly correlated with river stage at Overlee,
i.e. that an increase in river stage at Overlee leads to a simi-
lar increase in river stage at these properties. The damage to
individual properties as a function of inundation depth was
determined fromPenning-Rowsell et al.(2005). Combining
the number of properties affected as a result of a level at the
Overlee gauging station and the flood damage per individ-
ual property yields the flood damage as a function of stage at
Overlee. Using the hydro-economic EAD-model, the depth-
damage probability distribution was established (black line

in Fig 4). From this distribution, the expected annual flood
damage can be calculated. In this case, this expected damage
(EADnowarn) amounts to 394 695 GBP a−1.

3.2 Case 2: perfect forecasts

One of the primary aims of a FFWRS is to reduce flood
losses. Flood damage for individual properties can be con-
sidered as the sum of damage to building fabric and damage
to household inventory. It is assumed that in the White Cart
basin, given the relatively short time available for mitigat-
ing action, damage to building fabric cannot be avoided and
constitutes an unavoidable loss.Carsell et al.(2004) inves-
tigated which categories of household items may be saved
given a certain length of mitigation time. This informa-
tion was combined with the stage-damage relationships from
Penning-Rowsell et al.(2005), which is conveniently bro-
ken down into similar categories. This allows for estimat-
ing new stage-damage curves for single residential proper-
ties, conditional on the length of mitigation time available.
These can be used to determine new stage-damage curves
for the White Cart basin, which are subsequently used to plot
the probability-damage curves for the Perfect Forecasts case
(Fig. 4). Calculating the area below these curves yields the
expected annual flood damage, conditional on the presence
of a perfect warning system and given a certain mitigation
time. These amounts are listed in Table2. The1 EAD col-
umn shows the flood risk reduction (losses avoided) achieved
by the (perfect) warning system. The table shows that losses
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Fig. 4. Hydro-economic EAD model for the No Warning (black) and Perfect Forecasts (grey) cases. Reduced damage as a result of flood
warning response results in reduced expected damage; from right to left panels, grey lines show damage curves as a function of increasing
mitigation times from 1 to 6 h. Resulting flood risk is listed in Table2.

Table 2. Loss reduction in terms of expected annual damage (re-
sponse costs not included).

Case mitigation EAD 1 EAD 1 EAD
time [h] [GBP] [GBP] [%]

No Warning 394 695
Perfect forecasts 1 386 871 − 7824 −2 %
Perfect forecasts 2 384 640−10 055 −3 %
Perfect forecasts 3 384 129−10 566 −3 %
Perfect forecasts 4 359 473−35 221 −9 %
Perfect forecasts 5 349 913−44 782 −11 %
Perfect forecasts 6 349 913−44 782 −11 %

avoided increase with lead-time as expected, although the re-
lationship is not smooth due to increments in the categories
of items being potentially saved at increasing lead-times.

Loss reduction comes at a cost, namely that of flood warn-
ing response. In the hydro-economic EAD model, costs can
be added to flood damage in the stage – damage relationship
(top right quadrant of Fig.2). This leads to a changed prob-
ability – damage relationship, thus yielding new estimates of
flood risk which now includes the cost of warning response.
Assuming that the response cost may be expressed as a frac-
tion of avoidable losses (Eq.2), resulting flood risk (original
flood risk minus loss reduction plus response costs) may be
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Fig. 5. Flood risk in the Perfect Forecasts case, as a function of
cost-loss ratio and lead-times. This flood risk includes unavoidable
flood damage and the cost of flood warning response.

plotted as a function ofr (Fig. 5). This shows that for users
whose costs are negligible (which means thatr ≈ 0), the
maximum loss reduction is attained (i.e. that of the Perfect
Forecasts case), with an increase of losses avoided as lead-
time increases (Eq.2). Flood risk increases with cost-loss
ratio; if the cost of warning response approaches the amount
of potential loss reduction (r → 1), flood risk approaches
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Fig. 6. Relative economic value as a function of cost-loss ratio and
lead-time in the Deterministic Forecasts case.

original, No Warning levels. For values ofr > 1, where the
cost of response is larger than the losses avoided, the total
flood risk would increase when compared to the case of No
Warning. This is not considered here as it would then clearly
not be rational to employ a flood warning service. Note that
lines for 5- and 6-h lead-times coincide as the potential losses
avoided are equal.

3.3 Case 3: deterministic forecasts

In reality, the forecasting component of a FFWRS is un-
likely to be perfect and predictive uncertainty will result in
both missed events and false alarms occurring. For White
Cart, the frequency of these was determined using the re-
forecasting analysis. The available record of precipitation
observations (April 1996–January 2007) was used to force
the hydrological forecasting model for White Cart. Fore-
casts were produced four times daily with a maximum fore-
cast horizon of 6 h and paired with their corresponding
observations.

This information was subsequently used to create contin-
gency tables (one for every lead-time, Table3). This table
shows the number of occurrences of hitsh, missed eventsm,
false alarmsf and quietsq respectively, adding up to the
total number of decisions madeN . This is a high number
as the re-forecasting analysis covered almost 11 years with
a re-forecast being produced four times daily. While this re-
forecasting frequency seems high, it still causes some sam-
pling issues, as shown by the performance of the 3-h lead-
time re-forecasts versus that of the 5-h lead-time re-forecasts:
the latter has a better ratio of hits to false alarms than the
former.

The information from the contingency tables was used to
determine REV as a function of cost-loss ratio and lead-time
(Fig. 6). The figure shows that REV for the 1-h forecasts
is unaffected by false alarms as none were observed in the
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Fig. 7. Flood risk as a function of cost-loss ratio and lead-time in
the Deterministic Forecasts case.

re-forecasting period at this short lead-time. This results in
the REV being independent of the cost-loss ratio. As there
were misses at these short lead-times, the REV is lower than
that of the perfect forecast. Longer lead-times all show de-
clining REV with increasing cost-loss ratios. This is due to
false alarms which become increasingly expensive with in-
creasing values ofr. It can now be seen that the REV for
forecasts at 5- and 6-h lead-time no longer coincide – as the
uncertainty increases with lead-time, resulting in an increas-
ing number of false alarms and misses.

Flood risk in the present case can be calculated by scaling
the flood risk estimates from benchmark cases No Warning
and Perfect Forecasts with REV, using Eq. (10). This gives
EADFFWRS as a function of lead-time and of cost-loss ra-
tio. Flood risks for the Deterministic Forecasting case for
all lead-times and all users are shown in Fig.7. The figure
also shows the original flood risk (i.e. from the No Warn-
ing case). It can be seen that for users with a cost-loss ratio
0≤ r ≤ .8, issuing warnings with 5-h lead-time leads to the
lowest flood risk. Users with higher cost-loss ratios bene-
fit most from warnings based on a 1-h lead-time. For these
users, false alarms are costly and minimising forecasting un-
certainty yields more benefits than a longer mitigation time.

For all lead-times larger than 1 h, the resulting flood risk
increases beyond that of the case using No Warning for the
higher values ofr. This is again attributed to the increasing
expense of false warning-response. At 6-h lead-times a much
higher residual flood risk is found than at the 5-h lead-times,
meaning that considering 6-h lead-time forecasts in making
a decision to initiate a warning response is detrimental for
values ofr v 0.75. Clearly this is a result of the lack of addi-
tional potential of avoiding losses at this increased lead-time
(Table2), combined with the occurrence of fewer hits and
more misses and false alarms.
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Table 3. Performance of the FFWRS based on deterministic fore-
casts, expressed in the elements of a contingency table.

lead-time h m f q N

[h] [−] [−] [−] [−] [−]

1 10 2 0 15 860 15 872
2 10 4 2 15 856 15 872
3 6 9 2 15 855 15 872
4 7 7 2 15 856 15 872
5 8 6 2 15 856 15 872
6 6 9 3 15 854 15 872
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Fig. 8. Relative economic value as a function of cost-loss ratio for
decisions based on probabilistic forecasts with a 3-h lead-time. The
grey lines correspond to the values ofV for each of the decision
rulesP ≥ 0, 0.1, 0.2, ... , 1 (from top to bottom panels). The black
line is the envelope of these curves.

3.4 Case 4: probabilistic forecasts

For the forecasting sub-system based on probabilistic fore-
casts, users may choose their own decision rule. This means
that they may either raise or lower the probability threshold
at which a decision whether or not to initiate a warning re-
sponse is taken. While probabilistic forecasting and asso-
ciated decision rules do not affect flood losses that can be
avoided at different lead-times, it does affect probabilities of
detection and false alarm rates and therefore allows the user
to optimise residual flood risk by tuning the costs associated
with forecasting uncertainty.

In this case, a hindcast was made using the hydrologi-
cal model and the QR post-processor. The same hindcast-
ing period and forecasting frequencies as in the Determinis-
tic Forecasts case (Sect.3.3) were used. For every forecast,
the probability of exceeding the flooding threshold was de-
termined, and these were paired with the observed threshold
exceedences. From these pairs of forecasts and observations,
for every decision rule, the number of resulting hits, misses,
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Fig. 9. Flood risk as a function of cost-loss ratio for decisions based
on probabilistic forecasts with a 3-h lead-time. The grey lines cor-
respond to the values of flood risk for each of the decision rules
P ≥ 0, 0.1, 0.2, ... , 1 (from bottom upwards panels). The black line
is the envelope of these curves.

false alarms and quiets was determined. Table 4 shows these
numbers for forecasts with a 3-h leadtime. For the decision
rule “warn if forecasted event probability is equal to or higher
than 0 %” - i.e. always issue a warning – the number of hits is
equal to the number of observed events (h =o = 15) with the
number of false alarms being equal to the number of fore-
casts made, minus the number of hits (f =N − h = 15 857).
At the other extreme, the decision rule “warn if forecasted
event probability equals 100 %” results in zero hits, zero false
alarms and all events missed.

These in turn were used to determine REV as a function
of cost-loss ratio and lead-time. Figure8 shows the REV for
forecast with a lead-time of 3 h. Note that the figure shows
multiple REV-curves; one for every decision rule, where
probability of flooding exceeds 0, .1, .2, ..., .9, and 1. The
upper enveloping curve is printed in black, showing the op-
timal decision rule as a function of the cost-loss ratior. It
is assumed that every user will optimises the REV by choos-
ing the decision rule coinciding with their own cost-loss ra-
tio. The procedure to calculate flood risk is identical to that
used in the previous case. Figure9 shows the resulting flood
risk. For higher values ofr, the increasing cost of response to
false alarms reduce the benefit of flood warning, ultimately
resulting in a higher residual flood risk than in the No Warn-
ing case. The increasing number of false alarms for decision
rules with decreasing thresholds compounds this effect. The
decision rule with a probability threshold of 1 converges to
the same residual risk as for the No Warning case for allr,
with the added cost of operating the (useless) FFWRS.
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Table 4. Performance of a warning system based on probabilistic
forecasts, expressed in the elements of a contingency table. This
table pertains to decisions based on forecasts with a 3-h lead-time.

threshold h m f q N

[−] [−] [−] [−] [−] [−]

0 15 0 15 857 0 15 872
0.1 15 0 17 15 840 15 872
0.2 13 2 7 15 850 15 872
0.3 13 2 6 15 851 15 872
0.4 11 4 5 15 852 15 872
0.5 11 4 5 15 852 15 872
0.6 8 7 2 15855 15 872
0.7 6 9 2 15 855 15 872
0.8 3 12 1 15 856 15 872
0.9 3 12 1 15 856 15 872
1 0 15 0 15 857 15 872

3.5 Summary of results

The flood risk estimates for different scenarios are sum-
marised in Fig.10. The figure contains six plots, one for
each lead-time considered. All plots show results from the
four cases investigated. The No Warning case results in
flood risk values that are independent of either lead-time or

forecasting uncertainty and therefore constant for all users.
In case of a perfect FFWRS, increased lead-time results in
increased loss mitigation and decreasing flood risk. Maxi-
mum loss mitigation, i.e. minimum flood risk, is attained for
those users whose actions come at little or no cost (r ≈ 0).
For all other users, the costs of mitigating action increases
flood risk. If the cost of flood response equals the mitigated
losses (r → 1), flood risk is equal to that in the No Warning
situation.

Results of the imperfect FFWRS cases show that there is a
trade-off between the benefits of loss mitigation and the costs
associated with forecasting uncertainty. Both increase with
lead-time, while that benefit decreases with increasing cost-
loss ratio. In all cases, the envelope curve of the probabilistic
forecasts results in a lower residual risk than for the deter-
ministic forecast, irrespective of the lead-time and cost-loss
ratio of the user. As the cost-loss ratio approaches zero, the
probabilistic forecast converges to the perfect forecast sys-
tem. This is in a sense meaningless, as the low cost of re-
sponse results in probability thresholds being set to zero so
that the response decision is positive for every forecast made.
This artefact disappears with increasing response costs. For
users with high cost-loss ratios, the costs associated with
forecasting uncertainty can be so high that the resulting flood
risk is higher than it would be if no system were in place. It is
interesting to note that the cost-loss ratio at which this occurs
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is very similar for both the probabilistic and deterministic
forecasting sub-system.

4 Discussion

4.1 Probabilistic versus deterministic forecasting

The method presented allows for estimating the costs of fore-
casting uncertainty given different decision rules. Thus, de-
terministic forecasts and associated decision rules can be
compared with probabilistic forecasts and decisions. The
analysis shows that when optimising on long-term flood risk,
probabilistic forecasts yield higher flood risk reductions than
deterministic forecasts. This is due to the fact that a user can
choose a probabilistic decision rule that is befitting of the
user’s cost-loss ratio, thus optimising on expected costs and
benefits. In the case of deterministic forecast, this is not pos-
sible due to the absence of uncertainty information and there-
fore a lack of information for risk-based decision-making.

In the application of the method to the White Cart,ob-
servedprecipitation was used in the forecast re-analysis pe-
riod. Forecast uncertainty was estimated through Quantile
Regression, with the regressions derived based on the deter-
ministic model performance using these data. There is in-
terdependency between the two types of forecasts: the un-
certainties in the deterministic forecasts are made explicit in
the probabilistic forecast. The main difference, of course,
is that these uncertainties remain “hidden” in the case of
single value forecasting, thus preventing risk-based decision
making.

If the technique for producing probability forecasts would
depend on the use of different forcing data than that used
for producing deterministic forecasts, this interdependency
could well be different. It is not uncommon, for example, for
flood forecasting agencies to use a high-resolution determin-
istic meteorological forecast for a deterministic forecast, and
a meteorological ensemble product of lesser resolution for a
probability forecast. In that case, the uncertainties could be
different and the relative performance of the two cases could
be different also.

4.2 Limitations and assumptions

The hydro-economic EAD model and the theory of Relative
Economic Value are tools that value systems in terms of di-
rect, tangible damage only. Indirect and/or intangible flood
damage is not included in the flood risk estimates, nor in the
estimates of cost-loss ratios. Notably, there may be a wish
to estimate the number of flood casualties and the reduction
thereof by flood risk management measures (e.g.Molinari,
2011). Possibly, the model can be adapted to include casual-
ties and other types of flood damage but in the present paper,
no attempt to do that has been made as it was deemed to be
outside of its scope.

Another limitation to the hydro-economic EAD model is
the assumption that direct, tangible flood damage can be es-
timated as a function of flood depth only. This omits other
important determinants such as flow velocity, flood duration
and flood water quality.Merz et al.(2010) suggest that flood
depth is the most important indicator of flood damage, as
is considered here.Penning-Rowsell et al.(cited in Mess-
ner et al., 2007) propose a simple method to include addi-
tional parameters such as duration of flooding by increasing
the damage at a given depth. Other factors can equally be
incorporated to create a “compound” depth-damage curve.

In this paper, it was assumed that decisions are based on
forecasts only. In reality, forecasters will add an important el-
ement to the forecast model output: expert judgement. Very
likely, this expert judgement will introduce a probabilistic el-
ement to deterministic model outputs. Forecasters will only
issue a warning if they think there is a high probability of
flooding. In that sense, the deterministic system that is as-
sessed in this paper is a stereotype that may not be easily
found in reality.

Flood warning systems introduce costs, including initial
costs for designing and implementing a system, recurring
costs for operation and maintenance, and variable per-event
costs. The approach that is presented in this paper assumes
that these costs can all be included in the per-event costs.
Alternative attributions of costs may exist though. Possibly,
these alternative methods can be included in the method. For
example, recurring costs may be included in flood risk esti-
mates by shifting the stage – damage curve to the right. Ini-
tial costs can then be included in annually recurring costs.
This is in line with best practices on depreciation of assets,
where the investment in the warning system is allocated to its
expected useful life.

In calculating the benefits of the provision of warning, it
would seem that the reduction of losses in this case are mod-
est. These have been derived using only a rough estimate of
damage to inundation in the flood warning area downstream
of Overlee, and a more complete flood risk assessment would
be required to provide more reliable figures. When consid-
ering the possible benefits of flood warning, it is important
to consider the economy of scale. Operational costs for fore-
casting are incurred in FEWS Scotland at the national level
(Werner et al., 2009), which provides warnings across Scot-
land. Whilst the costs of modelling increase with every warn-
ing scheme considered, it is clear that many costs are shared
– thus increasing the relative benefit of flood warning.

4.3 Possible implications for policymakers

The present study shows that FFWRS that are based on
probabilistic forecasting bring higher benefits than FFWRS
that are based on deterministic forecasting. These bene-
fits can only be realised, of course, if forecasting authori-
ties include probability forecasting in their standard operat-
ing procedures. In England and Wales, such a move was
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recently suggested byPitt (2008). However, the Pitt Review
also suggested that “... the Met Office and the Environment
Agency should produce an assessment of the options for issu-
ing warnings against a lower threshold of probability”. The
present study, however, shows that this may not be a good
option forall forecast users.

Probabilistic forecasting allows for a decision maker to
choose a decision rule in terms of the required minimum
probability of threshold exceedence. This assumes that the
user is capable of optimal decision making in the presence of
uncertainty, but also that the cost-loss ratio is known. Espe-
cially the latter is not trivial and may be subject to consider-
able uncertainties. Also, a user’s cost loss ratio may change
over time and may depend on flood stage and lead-time.

The benefits of FFWRSs depend to a high degree on sys-
tem efficiency, which consists of a number of factors per-
taining to other elements of a FFWRS than its forecasting
component. Here, it was assumed that damage mitigation is
half of the potential damage mitigation (La = .5Lp). Note
that this affects all “with warning” cases equally. Increasing
system efficiency is outside of the scope of the present pa-
per but currently the topic of scientific research (e.g.Parker
et al., 2008; Molinari and Handmer, 2011).

The benefits of probabilistic forecasting can only be at-
tained if forecast users apply optimal decision rules, i.e. if
they are able tomanagepredictive hydrological uncertainty.
This may pose substantial requirements to decision makers.
Possibly, they will have to be trained in decision making.
Also, it is likely that a shift to probabilistic forecasting will
require forecasting procedures to be adjusted.

The approach that was presented may help a decision
maker in prioritising available flood risk management mea-
sures. The present paper shows that these may include mea-
sures aimed at reducing either the cost of warning response,
at increasing the potential loss reduction, or both. For exam-
ple, increasing the potential loss reduction may be achieved
by increasing the efficiency of flood warning (Sect.2.1)
through awareness raising or flood response exercises. The
flood risk analysis now allows for these non-structural mea-
sures to be compared with structural engineering measures.

4.4 Open questions and future research

Probabilistic forecasts used in the present study have not
been evaluated in terms of reliability or sharpness. Whereas
here, the envelope of multiple probabilistic forecasting risk
curves was used, it was not checked whether these coincide
with optimal decision rules. Should the probability forecasts
show poor calibration, this may not be the case. Additionally,
while it is known that the value of a FFWRS does not always
increase with forecasting accuracy (Murphy and Ehrendor-
fer, 1987), it is assumed that the value will increase with in-
creasing sharpness. It would be worthwhile to have a clearer
idea of what qualities of a forecast need to be improved for
maximisation of value.

The benefits of probability forecasting stem from the pos-
sibility of tuning a decision rule so that an optimal balance
between forecasting lead-time and forecasting uncertainty is
attained. This is assumed not be the case in deterministic
forecasting as only a single decision rule is deemed possible.
Theoretically however, this assumption may be relaxed and
warnings may be issued against a single value threshold dif-
ferent from the flood level. This calibration of deterministic
warnings may bring identical benefits.

In reality, FFWRS rarely use a single threshold only.
Often, a phased warning and response approach is used.
These phases may range from an increase in forecasting fre-
quency to evacuation of floodplain residents. In principle, a
phased approach will also benefit from a move to probabilis-
tic forecasting.

5 Conclusions

A method for estimating the benefits of flood forecasting and
warning, and comparing this against the benefit of other flood
risk reduction measures is presented. The method is based
on the established hydro-economic expected annual damage
(EAD) model. This model is extended with the concept of
Relative Economic Value (REV), which is a metric for veri-
fying probability forecasts in terms of economic benefits rel-
ative to scenarios where a forecasting system is either absent,
or perfect. This allows the cost of predictive uncertainty in
estimating the benefit of an uncertain (or imperfect) flood
warning to be considered. The method allows for compar-
ing the benefits of warning systems relying on determinis-
tic, single value forecasts with those using probability fore-
casts. In addition, the method may be used to estimate flood
risk reduction throughimprovingflood forecasts, e.g. by us-
ing more reliable forcings, better models, improved model
parametrisation and/or data assimilation.

In the probabilistic case, the probability threshold at which
a response is initiated can additionally be optimally chosen as
a function of the cost-loss ratio of the forecast user. As uncer-
tainty can be expected to increase with lead time, the method
allows an optimal forecast lead-time to be determined, based
on the minimisation of long-term flood risk

The method is applied in a case study to the White Cart
Water, a small catchment on the outskirts of Glasgow, Scot-
land. In this case study it is shown that:

– Using probability forecasts (in combination with the op-
timal warning rule) results in lower values of residual
flood risk when compared to using deterministic, single
value forecasts. This is noted throughout different lead
times and cost-loss ratios of the user of the forecast.

– The optimal lead-time for warning is not necessarily
equal to the longest lead-time that can be provided by
the forecasting system, but that it is a function of the
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cost-loss ratio of the user of the forecast, as well as the
uncertainty of the forecast.
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