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Abstract. Formal and informal Bayesian approaches have
found widespread implementation and use in environmental
modeling to summarize parameter and predictive uncertainty.
Successful implementation of these methods relies heavily
on the availability of efficient sampling methods that ap-
proximate, as closely and consistently as possible the (evolv-
ing) posterior target distribution. Much of this work has fo-
cused on continuous variables that can take on any value
within their prior defined ranges. Here, we introduce the-
ory and concepts of a discrete sampling method that resolves
the parameter space at fixed points. This new code, enti-
tled DREAM(D) uses the recently developed DREAM al-
gorithm (Vrugt et al., 2008, 2009a,b) as its main building
block but implements two novel proposal distributions to
help solve discrete and combinatorial optimization problems.
This novel MCMC sampler maintains detailed balance and
ergodicity, and is especially designed to resolve the emerg-
ing class of optimal experimental design problems. Three
different case studies involving a Sudoku puzzle, soil water
retention curve, and rainfall – runoff model calibration prob-
lem are used to benchmark the performance of DREAM(D).
The theory and concepts developed herein can be easily inte-
grated into other (adaptive) MCMC algorithms.

Correspondence to:J. A. Vrugt
(jasper@uci.edu)

1 Introduction

Formal and informal Bayesian methods have found
widespread application and use to summarize parameter and
model predictive uncertainty in hydrologic modeling. These
parameters generally represent model dynamics, but could
also include rainfall multipliers (Kavetski et al., 2006; Kucz-
era et al., 2006; Vrugt et al., 2008), error model variables
(Smith et al., 2008; Schoups and Vrugt, 2010), and calibra-
tion data measurement errors (Sorooshian and Dracup, 1980;
Schaefli et al., 2007; Vrugt et al., 2008). Monte Carlo meth-
ods are admirably suited to generate samples from the pos-
terior parameter distribution, but generally inefficient when
confronted with complex, multimodal, and high-dimensional
model-data synthesis problems. This has stimulated the de-
velopment of Markov Chain Monte Carlo (MCMC) meth-
ods that generate a random walk through the search (pa-
rameter) space and iteratively visit solutions with stable fre-
quencies stemming from an invariant probability distribu-
tion. If well designed, such MCMC methods should be
more efficient than brute force Monte Carlo or importance
sampling methods.

To visit configurations with a stable frequency, an MCMC
algorithm generates trial moves from the current position of
the Markov chainxt to a new statez. The earliest MCMC
approach is the random walk Metropolis (RWM) algorithm
(Metropolis et al., 1953). Assume that we have already sam-
pled points{x0,...,xt } this algorithms proceeds in the fol-
lowing three steps. First, a candidate pointz is sampled
from a proposal distributionq(·) that depends on the present
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locationxt . Next, the candidate point is accepted with accep-
tance probability,α(z,xt ) (Metropolis et al., 1953; Hastings,
1970):

α(z,xt )=1∧
p(z)
p(xt )

q(z→ xt )

q(xt→ z)
, (1)

wherep(·) represents the posterior density, andq(xt→ z)
(q(z→ xt )) denotes the conditional probability of the for-
ward (backward) jump. This last ratio cancels out if a sym-
metric proposal distribution is used. Finally, if the proposal
is accepted the chain moves toz, otherwise the chain re-
mains at its current locationxt . Following a so called burn-in
period (of say,l steps), the chain approaches its stationary
distribution and the vector{xl+1,...,xl+m} contains samples
from π(·). The desired summary of the posterior distribu-
tion, π(x) is then obtained from this sample ofm points. In
Bayesian applications,π(·) is the distribution of partially un-
known parameters given the data at hand, and is obtained by
combining the prior distribution and the data likelihood. The
dependence ofπ(·) on any fixed data is assumed throughout.

The standard RWM algorithm has been designed to main-
tain detailed balance with respect toπ(·) at each individual
step in the chain:

π(xt )p(xt→ z)=π(z)p(z→ xt ) (2)

whereπ(xt ) (π(z)) denotes the probability of finding the sys-
tem in statext (z), andp(xt→ z) (p(z→ xt )) denotes the
conditional probability to perform a trial move fromxt to z
(z to xt ). The detailed balance condition essentially ensures
that the samples of{xl+1,...,xl+m} are exactly distributed
according to the target distribution,π(x).

Existing theory and experiments prove convergence of
well-constructed MCMC schemes to the appropriate limit-
ing distribution under a variety of different conditions. In
practice, this convergence is often observed to be impracti-
cally slow. This deficiency is frequently caused by an inap-
propriate selection ofq(·) used to generate trial moves in the
Markov Chain. This inspiredVrugt et al.(2008, 2009a,b) to
develop a simple adaptive RWM algorithm called Differen-
tial Evolution Adaptive Metropolis (DREAM) that runs mul-
tiple chains simultaneously for global exploration, and au-
tomatically tunes the scale and orientation of the proposal
distribution during the evolution to the posterior distribution.
This scheme is an adaptation of the Shuffled Complex Evolu-
tion Metropolis (Vrugt et al., 2003) global optimization algo-
rithm and has the advantage of maintaining detailed balance
and ergodicity while showing excellent efficiency on com-
plex, highly nonlinear, and multimodal target distributions
(Vrugt et al., 2008, 2009a,b).

In DREAM, N different Markov Chains are run simulta-
neously in parallel. If the state of a single chain is given by a
singled-dimensional vectorx, then at each generation theN
chains in DREAM define a populationX, which corresponds
to anN x d matrix, with each chain as a row. Jumps in each
chaini={1,...,N} are generated by adding a multiple of the

difference of the states of randomly chosen pairs of chains of
X to the current statexi :

zi
= xi
+(1d+ed)γ (δ,d ′)

(
δ∑

j=1

xr1(j)
−

δ∑
n=1

xr2(n)

)
+εd (3)

whereδ signifies the number of pairs used to generate the
proposal,xr1(j) andxr2(n) are randomly selected without re-
placement from the populationX−i

t (the population without
xi
t ); r1(j),r2(n) ∈ {1,...,N} and r1(j) 6= r2(n). The val-

ues ofed and εd are drawn independently fromUd(−b,b)

andNd(0,b∗) with, typically,b=0.1 andb∗ small compared
to the width of the target distribution,b∗ = 10−12 say. Not
all dimensions ofxi need to be updated in each step, so some
dimensions ofzi may be reset to those ofxi . The value of
the jump-size,γ , depends onδ andd ′, the number of dimen-
sions updated jointly in the step. By comparison with RWM,
a good choice forγ = 2.4/

√
2δd ′ (Roberts and Rosenthal,

2001; Ter Braak, 2006). This choice is expected, for Gaus-
sian and Student target distributions, to yield an acceptance
probability of 0.44 ford’ = 1, 0.28 ford’ = 5 and 0.23 for
larged’. Every 5th generationγ = 1.0 to facilitate jumping
between disconnected posterior modes (Vrugt et al., 2008).

The difference vector in Eq. (3) contains the desired in-
formation about the scale and orientation of the target dis-
tribution, π(x). By accepting each jump with the Metropo-
lis ratio min

{
π(zi)/π(xi),1

}
, a Markov chain is obtained,

the stationary or limiting distribution of which is the poste-
rior distribution. The proof of this is given inTer Braak and
Vrugt (2008) andVrugt et al.(2008, 2009a,b). Because the
joint pdf of theN chains factorizes toπ(x1)× ...×π(xN ),
the statesx1...xN of the individual chains are independent
at any generation after DREAM has become independent
of its initial value. After this burn-in period, the conver-
gence of DREAM can thus be monitored with theR̂-statistic
of Gelman and Rubin(1992). This convergence diagnos-
tic compares the within and in-between variances of theN

different chains.
Although much progress has been made in the past decade

towards the application of Bayesian methods to quantify and
analyze parameter, model structural, forcing, and calibration
data uncertainty, virtually all this research involved continu-
ous parameters that can take on any value within their prior
defined ranges. Much less attention has been given hith-
erto to posterior sampling problems involving discrete vari-
ables. Such non-continuous parameter estimation problems
are not only of considerable theoretical interest, but also of
practical significance. For instance, contributions are begin-
ning to appear in the hydrologic literature that attempt to
discern optimal experimental design strategies that minimize
cost, parameter and model predictive uncertainty, or combi-
nations thereof. This involves selecting one or multiple dif-
ferent measurement locations in time and/or space amongst
a discrete set of possibilities. Various algorithms have been
proposed in the applied mathematics and computer science

Hydrol. Earth Syst. Sci., 15, 3701–3713, 2011 www.hydrol-earth-syst-sci.net/15/3701/2011/



J. A. Vrugt and C. J. F. Ter Braak: DREAM(D)→ discrete MCMC simulation 3703

literature that solve problems of this kind, yet their main fo-
cus is on finding the optimal solution, without recourse to es-
timating the underlying posterior uncertainty. This is of par-
ticular importance in experimental design problems, where
one cannot convincingly claim that one set of measurements
is significantly better than another plausible combination of
observations.

In this paper we present a discrete implementation of
DREAM, that is especially designed to efficiently retrieve the
posterior distribution of noncontinuous and combinatorial
search and optimization problems. This new code, hereafter
referred to as DREAM(D) uses DREAM as its main build-
ing block, and implements three novel proposal distributions
to explicitly recognize differences in topology between dis-
crete and Euclidean search spaces. This sampling method
maintains detailed balance and ergodicity, and provides ex-
plicit information about the posterior uncertainty of the op-
timal solution. Within the context of optimal experimental
design problems this would provide very valuable informa-
tion about which measurements are absolutely required, and
which data are of less importance. The width of the marginal
posterior distribution essentially conveys this information.

The remainder of this paper is organized as follows. Sec-
tion 2 presents a short introduction to discrete optimization
problems, followed by a detailed description of DREAM(D)

in Sect. 3. Section 4 demonstrates the performance of
DREAM(D) using three different case studies involving a
Sudoku puzzle, water retention curve and rainfall-runoff
model calibration problem. These results illustrate the abil-
ity of DREAM(D) to solve search and optimization prob-
lems involving discrete, combinatorial, and experimental de-
sign problems. Finally, in Sect. 5 we summarize the theory,
concepts and applications presented herein.

2 Nonlinear optimization involving discrete variables

Discrete optimization problems are abundant in many fields
of study, and have also started to begin to appear in the hy-
drologic literature (Furman et al., 2004; Harmancioglu et al.,
2004; Perrin et al., 2008; Kleidorfer et al., 2008; Neuman et
al., 2011). Figure 1 illustrates a simple discrete parameter es-
timation problem involving a tile puzzle. Each tile contains
a different letter of the alphabet. The goal is to list the letters
in the appropriate order. The solution to this problem is obvi-
ous to a human, but not immediately clear to a computer. A
search algorithm is therefore required to solve this problem.

If we assign numbers to each letter, A = 1, B = 2 and so
forth, we could measure the distance from our initial guess
to the actual solution, and iteratively refine this solution by
sampling from a (discrete) proposal distribution. Many al-
gorithms have been developed in the past decades to effi-
ciently resolve problems of this kind. Yet, the main trust
of these algorithms is on finding a single optimum solu-
tion, without recourse to estimating the underlying posterior

uncertainty. For example, within the context of the travel-
ing salesman problem many different routes will exist that
only deviate marginally from the optimal solution. Brute
force sampling of the search space can be used to assess all
these plausible routes, but this seems rather inefficient. In-
stead, a more intelligent search procedure is warranted that
more efficiently samples the space of possible solutions. The
goal of this paper therefore is to introduce theory and con-
cepts of DREAM(D), a MCMC simulation algorithm that
is especially designed to efficiently retrieve the posterior
distribution of discrete and combinatorial search problems.

Figure 1a illustrates the application of DREAM(D) to the
tile puzzle considered herein. The left panel depicts the ini-
tial guess, whereas the remaining three panels (Fig. 1b–d) il-
lustrate how DREAM(D) translates this random starting point
into the final position of the letters. The next sections de-
scribe the theory and concepts of DREAM(D) and present
three different case studies.

3 DREAM (D)⇒ DiffeRential Evolution Adaptive
Metropolis with Discrete Sampling

We now describe our new code, entitled DREAM(D), which
uses DREAM as main building block. The algorithmic pa-
rameters (with defaults in parentheses) areN (d) the number
of chains,δ (1) the number of pairs used to generate the pro-
posal,CR the crossover probability (see later),K (10) the
thinning rate in storing samples andTmax (106) the maximum
number of generations, typically so large that DREAM(D)

automatically stops after convergence has been achieved.
Let X be aN ×d-matrix with rowsxi , i = 1,...,N , that

contain the current states of theN different Markov chains
and that are iteratively updated in turn in the algorithm. The
initial X = [Xt ;t = 0] is obtained by drawingN samples
from pd(x), the prior distribution. Also, letS be an exter-
nal archive that stores the elements ofX at regular intervals.
The initial population[Xt ;t = 0] is translated into a sam-
ple from the posterior target distribution using the following
pseudo code:

1. Sett←1
REPEATK times (POPULATION EVOLUTION)

FORi←1,...,N DO (CHAIN EVOLUTION)

(a) Draw the number of dimensions to be updated,d ′, from
the binomial distribution with totald and probabilityCR.
If d ′=0, setd ′←1.

(b) Generate a new proposal,zi , for chaini,

zi
= xi
+

∥∥∥∥∥∥(1d+ed )γ (δ,d ′)

 δ∑
j=1

Xr1(j)
−

δ∑
n=1

Xr2(n)

+εd

∥∥∥∥∥∥
d

(4)

where the function‖·‖d rounds each elementj =1,...,d

of the jump vector to the nearest integer. The various
symbols have been defined after Eq. (3).

(c) Sample without replacementd − d ′ numbers from
1,...,d. Denote each selected number generically byj
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Fig. 1. A 4×4 square tile puzzle with 16 different letters. The goal is to list the letters in order of the alphabet. Each letter is assigned a
different integer value, and the resulting inverse problem is solved using DREAM(D). The left panel(a) presents the initial state, whereas
the remaining three graphs(b–d) demonstrate how DREAM(D) iteratively solves this integer sampling problem.

and replace the corresponding proposal elementzi
j

byxi
j
.

The proposalzi thus updatesd ′ elements ofxi only.

(d) Computep(zi) and accept the candidate points with
Metropolis acceptance probability,α(xi ,zi),

α(zi ,xi)=1∧
p(zi)

p(xi)
(5)

(e) If accepted, move the chain to the candidate point,xi
=

zi , otherwise remain at the old location,xi .

END FOR (CHAIN EVOLUTION)
END REPEAT (POPULATION EVOLUTION)

2. AppendX to S.

3. Compute the Gelman-Rubin convergence diagnostic,R̂j (Gel-
man and Rubin, 1992) for each dimensionj = 1,...,d using
the last 50 % of the samples ofS.

4. If R̂j ≤ 1.2 for j = 1,...,d or t > Tmax, stop and go to step
5, otherwise sett← t+K and go to POPULATION EVOLU-
TION.

5. Summarize the posterior pdf usingS after discarding the ini-
tial and burn-in samples.

In words, DREAM(D) runs multiple different chains in
parallel, and generates jumps in each individual chain using
information from the location of the otherN−1 chains. The
rounding operator,‖ · ‖d in Eq. (4) is used to enforce inte-
ger values and accommodate discrete search problems. To
speed up convergence to the target distribution, DREAM(D)

estimates a distribution ofCR values during burn-in that fa-
vors large jumps over smaller ones in each of theN chains.
Details can be found in previous studies (Vrugt et al., 2008,
2009a,b, 2011b).

The transition kernel of DREAM(D) is especially designed
for integer variables. This appears to be a major limita-
tion as many discrete search problems involve non-integer
variables. For instance, consider the discrete variablex1 ∈

[0,0.2,0.4,...,5]. We cannot sample this parameter with the
proposal distribution presented in Eq. (4). A simple linear
transformation of the search space,x1= 0.2j ;j ∈ {0,...,25}

suffices to facilitate inference with DREAM(D). If appro-
priate, a different transformation can be used for each in-
dividual parameter. An extreme case would simultaneously
involve discrete and continuous variables. This would con-
stitute some combination of jumps generated with DREAM
and DREAM(D).

3.1 DREAM(D)⇒ detailed balance?

We are now left with a proof that DREAM(D) yields an in-
variant distribution that is identical to the posterior target of
interest. For this we need to demonstrate that the transi-
tion kernel of DREAM maintains detailed balance, and thus
results in a reversible Markov chain. In other words, the
forward p(xi

→ zi) and backwardp(zi
→ xi) jump should

have equal probability at every single step in the chain. This
is easy to proof for a standard RWM algorithm that uses a
fixed proposal distribution. Hence, the forward and back-
ward jump will exhibit equal probability. Yet, the jump dis-
tribution used in DREAM(D) continuously changes scale and
orientation en route to the posterior target distribution. This
adaptation significantly enhances search efficiency, but does
this also ensure reversibility of the sampled Markov chains?

Previous manuscripts have provided formal proofs of con-
vergence of DREAM (Vrugt et al., 2008), DREAM(ZS)

(Vrugt et al., 2011b), and MT-DREAM(ZS) (Laloy and
Vrugt, 2011) to the appropriate limiting distribution. These
proofs appear rather simple, but might not be easy to under-
stand for those that are not directly familiar with the underly-
ing statistics and mathematics. We therefore resort to a sim-
ple hypothetical example. Lets consider a two-dimensional
discrete sampling problem withN = 5 different chains, and
thusγ = 2.4/

√
2δd ′ = 2.4/

√
2×1×2= 1.2. Without loss

of generality, lets further assume thatδ= 1, andej = εj = 0;
j =1,...,2. We randomly sample each individual chain from
the prior parameter distribution, and color code their ini-
tial position in Fig. 2. We now use the transition kernel of
DREAM(ZS) to generate candidate points. Lets assume that
we select the blue and green chain asr1 andr2 respectively.
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Fig. 2. Illustration of detailed balance: two-dimensional parameter
estimation problem withx1 ∈ [0,7] andx2 ∈ [0,7]. The color dots
denote the starting points of theN = 5 different chains. The red
square signifies the candidate point of the first chain and is created
by selecting the blue chain asr1 and green chain asr2. One step
later, after moving to the red square, the backward jump has equal
probability, as there is an equal chance of drawingr1 (green) andr2
(blue) in reversed order.

The candidate point of the first (purple) chain thus becomes:

zi
=
[
2 2
]
+

∥∥∥1.2
([

4 4
]
−
[
5 1
])∥∥∥= [2 2

]
+

∥∥∥[−1.2 3.6
]∥∥∥= [1 6

]
(6)

This proposal point is indicated in Fig. 2 with the red square.
For the sake of this illustration, lets now assume that we ac-
cept this candidate point, and transition the first chain to this
new state.

We now need to demonstrate that the reverse jump has
equal probability. This backward jump can be obtained by
selecting the blue and green chain in the opposite order from
the forward jump:

zi
=
[
1 6
]
+

∥∥∥1.2
([

5 1
]
−
[
4 4
])∥∥∥= [1 6

]
+

∥∥∥[1.2−3.6
]∥∥∥= [2 2

]
(7)

This point is exactly similar to the initial state of chain one
prior to the forward jump. Apparently, the rounding operator
used to sample integer values does not destroy detailed bal-
ance. By samplingr1 andr2 from the remainingN−1 chains
with a uniform random number generator enforces symmetry
of the proposal distribution. Indeed, the chance to selectr1
as chain two, andr2 as chain four is equal to drawingr2=4,
andr2=2 in the reverse order. This also holds whened , and
εd are drawn from their respective symmetric probability dis-
tributions, and whenδ > 1 andd > 2. We leave this up to the
reader. This concludes our proof of detailed balance.

A final remark is appropriate. Theoretically, it is possible
that at least one of thed arguments of the rounding func-
tion, ‖·‖d has a fractional part of.5. In this case, convention
dictates to round down to the nearest integer. This directed
rounding introduces a possible bias in jumping direction and
thus strictly speaking violates detailed balance. The chance
that this happens in practice is virtually zero. If nothing else,
the stochastic nature ofed ∼Ud(−b,b), andεd ∼Nd(0,b∗)

will eliminate this possibility. But, in the rare event that any
argument of‖ · ‖d has a factional part of.5 we implement
stochastic rounding to the nearest integer. This guarantees re-
versibility of the Markov chains generated with DREAM(D).

3.2 Combinatorial search problems: proposal
distribution using position swapping

The parallel direction update of Eq. (4) works well for a
range of discrete problems but is not necessary optimal
for combinatorial problems in which the values of the
final solution are known a-priori but not their order in the
parameter vector. The topology of such search problems
differs substantially from the Euclidean search problems
considered hitherto. We therefore introduce an alternative
jump distribution that creates candidate points by randomly
swapping two coordinates in each individual chain.

PROPOSAL DISTRIBUTION: RANDOM SWAP
FORi←1,...,N DO (CHAIN EVOLUTION)

1. Setzi
= xi .

2. Randomly select two numbersj andk without replacement
from {1,...,d}.

3. Swap thej th andkth coordinates ofzi ; yi
j
= xi

k
andyi

k
= xi

j
.

4. Computeπ(zi) and accept the candidate points with Metropo-
lis acceptance probability,α(xi ,zi).

5. If accepted, move the chain to the candidate point,xi
= zi ,

otherwise remain at the old location,xi .

END FOR (CHAIN EVOLUTION)
END RANDOM SWAP

In words, if the current state of theith chain is given
by xi

=
[
xi

1,...,x
i
j ,...,x

i
k,...,x

i
d

]
then the candidate point

becomes zi
=
[
xi

1,...,x
i
k,...,x

i
j ,...,x

i
d

]
where j,k are

discrete uniformly sampled from{1,...,d} without re-
placement. It is straightforward to see that this proposal
distribution satisfies detailed balance as the forward and
backward jump have equal probability.

A swap update is admirably suited to solve the tile
problem considered previously in Fig. 1. Yet, the coordinate
swaps are fully random and do not exploit any information
about the topology of the solution encapsulated in the
position of the otherN −1 chains. Essentially, each chain
evolves independently to the posterior target distribution.
This appears rather inefficient, particularly for complicated
search problems. We therefore introduce a second and
alternative swap rule that takes explicit information from
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the dissimilarities in coordinates of theN chains running in
parallel. We implement this idea as follows:

PROPOSAL DISTRIBUTION: DIRECTED SWAP
DO (CHAIN EVOLUTION)

1. Randomly select two chains,Xr1 andXr2 without replacement
from the populationX−r1,r2

t .

2. Find those coordinates ofxr1 andxr2 that are dissimilar and
store these locations inζ .

3. Randomly permuteζ ; setj = ζ1 andk= ζ2.

4. Copyzr1 = xr1 andzr2 = xr2.

5. Swap the elements ofzr1; z
r1
j
= x

r1
k

andz
r1
k
= x

r1
j

.

6. Swap the elements ofzr2; z
r2
j
= x

r2
k

andz
r2
k
= x

r2
j

.

7. Computeπ(zr1) andπ(zr2) .

8. Accept both candidate points with probability,p(zr1,zr2)

equal to the product of their respective Metropolis ratios,
p(zr1,zr2)=α(xr1,zr1)α(xr2,zr2).

9. If accepted, move both chains to their respective candidate
points,xr1 = zr1 andxr2 = zr2; otherwise remain at their old
location,xr1 andxr2.

END FOR (CHAIN EVOLUTION)
END DIRECTED SWAP

This proposal distribution swaps locationj and k within
two different chains,r1,r2 ∈ {1,...,N} from the differences
in their coordinates. This update needs to be carefully
implemented so that all different chains are updated only
once. This requires that the number of chains,N > 1 and
hence is easiest to implement ifN is an even number. This
approach considerably improves sampling efficiency, as will
be illustrated later with a Sudoku puzzle.

The swap move is fully Markovian, that is, it uses only
information from the current time for proposal generation,
and retains detailed balanced with respect toπ(·) because
the reverse move is equally probable. If the swap is not fea-
sible (less than two dissimilar coordinates), the current chain
is simply sampled again. This is necessary to avoid com-
plications with unequal probabilities of move types (Deni-
son et al., 2002); the same trick is applied in reversible jump
MCMC (Green, 1995). The restriction of the update to the
dissimilar coordinates does not destroy detailed balance in
any way; it just selects a subspace to sample on the basis of
the current state. Coordinate swapping is especially power-
ful for combinatorial problems. Based on some preliminary
studies, we use a 90/10 % mix of directed and random swaps,
respectively.

4 Case studies

We now present three different case studies with increasing
complexity. The first study consists of a typical integer esti-
mation problem, and involves a Sudoku puzzle. This puzzle

has become quite popular in the past 10 yr, and many news-
papers, journals, and magazines around the world publish
Sudokus for entertainment. This synthetic study illustrates
the ability of DREAM(D) to help solve a relatively diffi-
cult and high-dimensional combinatorial optimization prob-
lem. The second study revisits a classical site characteriza-
tion problem in vadose zone hydrology and involves infer-
ence of the hydraulic properties of unsaturated soils from
laboratory or in situ measured water retention data. This
example demonstrates how DREAM(D) can be utilized to
solve experimental design problems and guide measurement
collection. The third and final study resolves discrete pa-
rameters in a parsimonious lumped watershed model using
observed daily discharge data from the Guadalupe River in
Texas. The posterior distribution derived with DREAM(D) is
compared against its counterpart derived with DREAM as-
suming a continuous formulation of the model calibration
problem.

4.1 The daily Sudoku

The first case study considers a Sudoku puzzle, a popular and
widely practised integer estimation problem. We use this ex-
ample to illustrate the ability of DREAM(D) to successfully
find the optimum of a discrete search problem. The objective
is to fill a 9×9 grid with numbers so that each column, each
row, and each of the nine 3×3 sub-grids that make up the to-
tal square contains the values of 1 to 9. The same integer may
only appear once in each column and row of the 9×9 play-
ing board including in any of the nine 3×3 subregions. Each
puzzle starts with a partially completed grid, and typically
has a single (unique) solution. The puzzle was popularized
in 1986 by the Japanese puzzle company Nikoli, under the
name Sudoku, meaning single number (Hayes, 2006). Nowa-
days, Sudoku puzzles are very popular, and widely practised
by many millions of people throughout the world.

We consider the Sudoku puzzle in Fig. 3, taken from
Wikipedia (http://en.wikipedia.org/wiki/Sudoku). The initial
grid is depicted at the left-hand side, whereas the final solu-
tion is presented at the right-hand side. In this particular puz-
zle, the solution at 29 different cells is known, leaving us with
d = 81−29= 52 parameter values to be estimated. These
parameters can take on values between 1 to 9. Figure 4 il-
lustrates the sampled values of DREAM(D) at various stages
during the search. A total ofN = 20 different chains were
used to search the parameter space, and the initial sample was
created using random permutation of the available numbers.
This ensures that each value of 1 to 9 appears only nine times
in the grid. The log-likelihood function measures the sum of
the horizontal, vertical and subgrid constraint violation.

The first grid, on the left-hand side of Fig. 4 depicts the
starting solution of one of the different chains. This ini-
tial state is randomly drawn from the prior distribution, and
appears rather poor. For example, the subregion at the bot-
tom right hand corner contains three numbers eight, a severe
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(A) (B)

From: Wikipedia

Fig. 3. The daily sudoku:(A) initial solution, and(B) final solution. The black numbers were given, whereas the solution numbers are
marked in red.
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Fig. 4. Sudoku puzzle: evolution of the DREAM(D) sampled parameter space to the posterior distribution:(A) typical starting solution,
(B) intermediate solution,(C) nearly final solution, and(D) final solution.

violation of the constraints. Figure 4b displays the state of
the same chain after about 25 000 function evaluations. The
solution has improved considerably, but still contains sev-
eral noticeable deviations from the actual solution. The third
panel in Fig. 4c, derived after about 50 000 Sudoku evalu-
ations is a further refinement of the solution presented in
Fig. 4b. A few important swaps have been introduced that
further reduce the constraint violation. Finally, after about
100 000 samples, Fig. 4d illustrates that the puzzle has been
successfully solved.

The results of this study inspire confidence in the ability of
DREAM(D) to successfully locate the optimum solution of a
discrete search problem. This constitutes a necessary bench-
mark to inspire confidence in the search capabilities and con-
vergence properties of the algorithm. A branch and bound
optimization approach is about 2 orders of magnitude more
efficient than DREAM(D) in solving the Sudoku puzzle, but
this method violates detailed balance, and hence cannot be
used to derive the posterior target distribution. This is the
main purpose of DREAM(D) and this ability will be high-
lighted in the remaining two case studies of this paper.
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If our sole interest is in finding the optimum solution of
a discrete search problem, then significant efficiency gains
can be achieved with DREAM(D) by relaxing the assump-
tion of detailed balance of the sampled Markov chains. For
instance, if we modify the directed swap in DREAM(D) so
that each candidate point is accepted/rejected based on its
own Metropolis ratio independently of the associated move
of the corresponding chain, then far fewer function evalua-
tions would be needed to solve the Sudoku puzzle. The con-
sequence of such non-Markovian adaptation, however is that
the algorithm no longer adequately samples the underlying
target distribution.

4.2 Optimal experimental design for soil hydraulic
characterization

The second case study considers a common problem in va-
dose zone hydrology and involves characterization of the hy-
draulic properties of variably saturated soils. This serves to
demonstrate the ability of DREAM(D) to guide experimental
data collection and help determine which soil water retention
measurements to collect. We assume the capillary pressure-
saturation relationship of (van Genuchten, 1980):

θ(h)= θr+(θs−θr)
[
1+(αh)n

]−m (8)

whereθ (cm3cm−3) is the volumetric water content,h (cm)
denotes the soil water pressure head,θs (θr ) (cm3cm−3) sig-
nifies the saturated (residual) water content,α (cm−1) andn

(-) are coefficients that determine the shape of the water re-
tention function, andm= 1−1/n. A synthetic data set of
water retention observations was created for a sandy soil by
evaluating Eq. (8) for a given set of pressure head values.
The soil water pressure head was discretized intoM = 501
equidistant points betweenh=0 (saturation) andh=−1000
(cm), and the correspondingθ(h) curve is plotted in Fig. 5
with a solid black line. Then, the soil water pressure head
observations are corrupted with a normally distributed er-
ror, h←N(h,2) to represent the combined effect of mea-
surement error and soil inhomogeneity. The final data set is
depicted with the circles in Fig. 5.

From this data set ofM = 501 water retention measure-
ments we now use DREAM(D) to find those four(h,θ(h))

observations that are most informative and best constrain the
hydraulic properties,x= [θs,θr ,α,n] of the sandy soil under
consideration. For each selected combination of four differ-
ent (h,θ(h)) measurements in DREAM(D) we estimate the
corresponding values ofx by nonlinear minimization using
the Nelder-Mead Simplex algorithm. The hydraulic param-
eters obtained this way are then used to predict the water
retention curve for the entire range of pressure head values
considered in Fig. 5. A standard squared-deviation likelihood
function is subsequently used to calculateπ(x) in step (d) of
the pseudo code of DREAM(D) and summarize the informa-
tion content for each selected set of four(h,θ(h)) observa-
tions. We use the standard settings of DREAM(D) and run
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Fig. 5. Synthetic soil water retention curve of the sandy soil, and
the effect of data error.

N = 10 different Markov chains in parallel to search the dis-
crete measurement space. About 10 000 function evaluations
were required to reach convergence to a limiting distribution.

Figure 6 presents the results of our analysis and plots
histograms of the DREAM(D) derived posterior measure-
ment samples after sorting each combination in increasing
order. The marginal posterior distributions appear clustered
around distinctly different soil water pressure head values.
This includes soil water pressure head measurements around
(Fig. 6a)h= 0, (Fig. 6b)h=−40, (Fig. 6c)h=−220, and
(Fig. 6d)h=−1000 cm respectively. Indeed, the most infor-
mative (h,θ(h)) observations are found close to saturation,
around the air-entry value of the sandy soil, at the inflec-
tion point of the water retention function, and in the very
dry moisture range. The location of these most informa-
tive θ(h) measurements matches very well with our previ-
ous findings (Vrugt et al., 2002) and are in agreement with
the dynamic behavior of the marginal sensitivity coefficients,
∂θ/∂θs , ∂θ/∂α, ∂θ/∂n, and∂θ/∂θr derived from the par-
tial derivatives of Eq. (8). A similar pattern is observed for
loamy and clayey soils (not shown herein), but the second,
third and last observation depicted in Fig. 4b–d move to-
wards lower soil water pressure head values, consistent with
the increased water holding capacity of these more fine tex-
tured soils. An accurate soil hydraulic characterization thus
requires water retention measurements that span the entire
range of soil moisture values.

It is interesting to observe the differences in the posterior
spread of the four different histograms. Whereas the first
two pressure head observations in Fig. 4b–d are very well
defined with relatively little dispersion, the other two mea-
surements are considerably less well defined symptomatic
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Fig. 6. Histograms of the posterior samples generated with DREAM(D). The most informative soil water pressure head measurements are
somewhat clustered at different moisture values that range from saturation (left plot) to the dry end (right plot). Thex-axis indexes the
observations[1,...,501].

for a redundancy in information content. This is an in-
teresting finding, and explains why the parametersn and
θr are often found to be highly correlated in the fitting of
water retention curves. The posterior spread derived with
DREAM(D) is hence a useful byproduct to analyze measure-
ment uniqueness, and determine the information content of
experimental data.

4.3 Watershed model calibration using discrete
parameter estimation

The third and final case study involves flood forecasting, and
consists of the calibration of a mildly complex lumped water-
shed model using historical data from the Guadalupe River at
Spring Branch, Texas. This is the driest of the 12 MOPEX
basins described in the study ofDuan et al.(2006). The
model structure and hydrologic process representations are
found in Schoups and Vrugt(2010). The model transforms
rainfall into runoff at the watershed outlet using explicit pro-
cess descriptions of interception, throughfall, evaporation,
runoff generation, percolation, and surface and subsurface
routing. Table 1 summarizes the seven different model pa-
rameters, and their prior uncertainty ranges. Each parame-
ter is discretized equidistantly in 250 intervals with respec-
tive step size listed in the last column at the right hand side.
This gridding is necessary to create a non-continuous, dis-
crete, parameter estimation problem. Unlike the previous
case study in which integer values are sampled only, this par-
ticular study (mostly) involves non-integer values.

Daily discharge, mean areal precipitation, and mean areal
potential evapotranspiration were derived fromDuan et al.
(2006) and used for model calibration. Details about the
basin, experimental data, and likelihood function can be
found there, and will not be discussed herein. The same
model and data was used in a previous study (Schoups and
Vrugt, 2010), and used to introduce a generalized likelihood
function for heteroscedastic, non-Gaussian, and correlated
(streamflow) prediction errors.

Figure 7 presents histograms of the marginal distribu-
tion of a few selected hydrologic model parameters using
five years of observed daily discharge data. The top panel
presents the results of DREAM(D), whereas the bottom panel
presents the results for a continuous parameter space. These
histograms were derived by separately running DREAM for
the same data set and model. Notice the close agreement
between the histograms derived with both MCMC methods.
This is a testament to the ability of DREAM(D) to success-
fully solve discrete posterior parameter estimation problems.
The influence of gridding is hardly noticeable, but becomes
apparent if we use at least 25 bins to represent the marginal
density (not shown herein).

To better illustrate the effect of discretization, please con-
sider Fig. 8 that presents two-dimensional scatter plots of the
DREAM(D) derived posterior samples for a few selected pa-
rameter pairs. The bottom panel shows similar plots but then
assuming continuity of the parameter space. The effect of
gridding is immediately apparent. Whereas the original bi-
variate scatter plots sample the parameter space in a (blood-
stain) spatter pattern, two-dimensional plots of the posterior
samples derived with DREAM(D) exhibit an obvious grid
pattern with horizontally and vertically aligned points. The
posterior samples take on discrete values with a distance be-
tween subsequent points that is similar to the intervals listed
in Table 1. Despite this difference in sampling pattern, the
shape of the DREAM and DREAM(D) derived bivariate scat-
ter plots are very similar, commensurate with the covariance
structure of the posterior distribution. The results presented
in Fig. 7 inspire confidence in the ability of DREAM(D) to
solve noncontinuous posterior sampling problems.

The excellent correspondence of the posterior parameter
distributions derived with DREAM and DREAM(D) results
in marginal differences of the resulting streamflow predic-
tions. We therefore do not show any times series plots
of model predictions, and corresponding 95 % uncertainty
ranges. Such plots can be found inSchoups and Vrugt(2010)
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Table 1. Prior Uncertainty Ranges of Hydrologic and Error Model Parameters.

Parameter Symbol Minimum Maximum Units Step size

Maximum interception Imax 0 10 mm 0.02
Soil water storage capacity Smax 10 1000 mm 1.98
Maximum percolation rate Qmax 0 100 mm d−1 0.20
Evaporation parameter αE 0 100 – 0.20
Runoff parameter αF −10 10 – 0.04
Time constant, fast reservoir KF 0 10 days 0.02
Time constant, slow reservoir KS 0 150 days 0.30

Heteroscedasticity intercept σ0 0 1 mm d−1 0.002
Heteroscedasticity slope σ1 0 1 – 0.002
Autocorrelation coefficient φ1 0 1 – 0.002
Kurtosis parameter β −1 1 – 0.004
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Fig. 7. Histogram of the DREAM(D) derived marginal posterior distributions of the(A) Imax, (B) KS , and(C) φ1 rainfall – runoff and error
model parameters (in red). For convenience, only a few parameters are plotted. To benchmark the results of DREAM(D) the bottom panel
illustrates the results for DREAM (in blue), with the common assumption of a continuous parameter space.

and details can be found in that publication. It is interest-
ing to observe that the maximum log-likelihood value of 543
found with DREAM(D) is somewhat larger than its coun-
terpart estimated with DREAM (540). This difference was
consistently observed for multiple different trials with both
MCMC algorithms.

To provide better insights into the efficiency of
DREAM(D), Fig. 9a plots the evolution of thêR-statistic
of Gelman and Rubin(1992) for each of the different pa-
rameters. To benchmark these results, the bottom panel
(Fig. 9b) illustrates the convergence results of DREAM as-
suming a continuous parameter space. The presented trace
plots represent an average of 25 different MCMC trials. The
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Fig. 8. Two-dimensional scatter plots of the DREAM(D) derived posterior samples (top panel: red), and corresponding bivariate samples
estimated with DREAM (bottom panel: blue). Only a few parameter pairs are shown as this is sufficient to illustrate the similarity of the
sampled distributions.
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Fig. 9. Simulated traces of thêR-statistic of Gelman and Rubin (Gelman and Rubin, 1992) using the(A) DREAM(D) (top panel)(discrete
sampling), and(B) DREAM (bottom panel)(continuous sampling) MCMC algorithms. Each parameter is coded with a different color. A
similar convergence speed is observed for both algorithms.
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convergence speed for both algorithms is strikingly similar.
Both MCMC methods require about 30 000 model evalua-
tions to converge to a limiting distribution. Although grid-
ding significantly reduces the size of the feasible parameter
space, an approximately similar number of function evalua-
tions remains necessary to explore the posterior target dis-
tribution. Our experience with models involving a much
higher parameter dimensionality demonstrate considerable
enhancements in efficiency (sometimes dramatically) when
sampling in the discretized rather than continuous space.
Discretization might therefore provide a practical solution to
speed up search efficiency for insensitive parameters. Further
research on this topic is warranted.

5 Conclusions

In the past decade much progress has been made in the devel-
opment of sampling algorithms for statistical inference of the
posterior parameter distribution. The typical assumption in
this work is that the parameters are continuous and can take
on any value within their upper and lower bounds. Unfor-
tunately, such algorithms typically do not work for discrete
parameter estimation problems. Such problems are abundant
in many fields of study, and therefore of considerable the-
oretical and practical interest. Examples include selecting
among different measurement locations in the design of op-
timal experimental strategies, finding the best members of an
ensemble of predictors, and more generally discrete model
calibration problems. Here, we have introduced a discrete
MCMC simulation algorithm that is especially designed to
solve non-continuous and combinatorial posterior sampling
problems. This method, entitled DREAM(D) uses DREAM
as its main building block, yet uses a modified proposal dis-
tribution to facilitate solve discrete sampling problems. The
DREAM(D) algorithm maintains detailed balance and ergod-
icity, and receives good performance across a range of prob-
lems involving a Sudoku puzzle, soil water retention function
and discrete rainfall - runoff model calibration problem.

The theory developed herein is easily implementable in
DREAM(ZS) (Vrugt et al., 2011b) and MT-DREAM(ZS)

(Laloy and Vrugt, 2011), which provides a venue to fur-
ther increase the efficiency of MCMC simulation. The
DREAM(D) code is written in MATLAB and is available
upon request (jasper@uci.edu).
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