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Abstract. Formal and informal Bayesian approaches havel Introduction

found widespread implementation and use in environmental

modeling to summarize parameter and predictive uncertaintyFormal and informal Bayesian methods have found
Successful implementation of these methods relies heavilwidespread application and use to summarize parameter and
on the availability of efficient sampling methods that ap- model predictive uncertainty in hydrologic modeling. These
proximate, as closely and consistently as possible the (evolvparameters generally represent model dynamics, but could
ing) posterior target distribution. Much of this work has fo- also include rainfall multipliersavetski et al.2006 Kucz-
cused on continuous variables that can take on any valuera et al. 2006 Vrugt et al, 2008, error model variables
within their prior defined ranges. Here, we introduce the- (Smith et al, 2008 Schoups and VrugR010, and calibra-

ory and concepts of a discrete sampling method that resolveion data measurement erro&ofooshian and Dracyup98Q

the parameter space at fixed points. This new code, entiSchaefli et al.2007 Vrugt et al, 2008. Monte Carlo meth-
tled DREAMp) uses the recently developed DREAM al- ods are admirably suited to generate samples from the pos-
gorithm (Vrugt et al, 2008 2009ab) as its main building terior parameter distribution, but generally inefficient when
block but implements two novel proposal distributions to confronted with complex, multimodal, and high-dimensional
help solve discrete and combinatorial optimization problems.model-data synthesis problems. This has stimulated the de-
This novel MCMC sampler maintains detailed balance andvelopment of Markov Chain Monte Carlo (MCMC) meth-
ergodicity, and is especially designed to resolve the emergeds that generate a random walk through the search (pa-
ing class of optimal experimental design problems. Threerameter) space and iteratively visit solutions with stable fre-
different case studies involving a Sudoku puzzle, soil waterquencies stemming from an invariant probability distribu-
retention curve, and rainfall — runoff model calibration prob- tion. If well designed, such MCMC methods should be
lem are used to benchmark the performance of DREAM  more efficient than brute force Monte Carlo or importance
The theory and concepts developed herein can be easily intessampling methods.

grated into other (adaptive) MCMC algorithms. To visit configurations with a stable frequency, an MCMC
algorithm generates trial moves from the current position of
the Markov chainx, to a new state. The earliest MCMC
approach is the random walk Metropolis (RWM) algorithm
(Metropolis et al. 1953. Assume that we have already sam-
pled points{xo,...,X,} this algorithms proceeds in the fol-

Correspondence tal. A. Vrugt lowing three steps. First, a candidate pamts sampled
BY (jlasper@uci.edu) from a proposal distribution(-) that depends on the present
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locationx,. Next, the candidate point is accepted with accep-difference of the states of randomly chosen pairs of chains of
tance probabilitye (z,x;) (Metropolis et al, 1953 Hastings X to the current state’ ;

1970: s 8
Z=x+1y+e)y6,d) (mem — foﬂ”)) +eq (3)

j=1 n=1

P2 q(Z— X;)
pX) g% —2)’

where p(-) represents the posterior density, anc, — z) wheres signifies the number of pairs used to generate the
(g(z— X)) denotes the conditional probability of the for- proposalx'1() andx"2 are randomly selected without re-
ward (backward) jump. This last ratio cancels out if a sym- placement from the populatiok,” (the population without
metric proposal distribution is used. Finally, if the proposal x); r1(j),r2(n) € {1,...,N} and  r1(j) #r2(n). The val-

is accepted the chain moves 1o otherwise the chain re- ues ofe; ande,; are drawn independently froi,; (—b,b)
mains at its current locatiox. Following a so called burn-in  andN, (0, »*) with, typically,b= 0.1 andb* small compared
period (of say/ steps), the chain approaches its stationaryto the width of the target distributiomy* = 1012 say. Not
distribution and the vectdix;+1,..., X+, } contains samples  all dimensions ok’ need to be updated in each step, so some
from 7 (-). The desired summary of the posterior distribu- dimensions o’ may be reset to those af. The value of
tion, (x) is then obtained from this sample @fpoints. In  the jump-sizey, depends od andd’, the number of dimen-
Bayesian applications;(-) is the distribution of partially un-  sions updated jointly in the step. By comparison with RWM,
known parameters given the data at hand, and is obtained by good choice foy = 2.4/4/28d’ (Roberts and Rosenthal
combining the prior distribution and the data likelihood. The 2001, Ter Braak 2006. This choice is expected, for Gaus-
dependence of (-) on any fixed data is assumed throughout. sian and Student target distributions, to yield an acceptance

The standard RWM algorithm has been designed to mainprobability of 0.44 ford’ = 1, 0.28 ford’ = 5 and 0.23 for
tain detailed balance with respects@-) at each individual larged’. Every 5th generatiop = 1.0 to facilitate jumping
step in the chain: between disconnected posterior modeésift et al, 2008.

The difference vector in Eq3J] contains the desired in-
formation about the scale and orientation of the target dis-
wherer (X;) (7 (z)) denotes the probability of finding the sys- tribution, z(x). By accepting each jump with the Metropo-
tem in statex,(z), andp(x, — 2) (p(z— X,)) denotes the lis ratio min{z(z') /7 (x'),1}, a Markov chain is obtained,
conditional probability to perform a trial move fror to z the stationary or limiting distribution of which is the poste-
(zto x;). The detailed balance condition essentially ensuregior distribution. The proof of this is given ifier Braak and
that the samples ofx;.1,...,X/1,} are exactly distributed Vrugt (2008 andVrugt et al.(2008 2009ab). Because the
according to the target distribution(x). joint pdf of the N chains factorizes ter(x}) x ... x w(x"),

Existing theory and experiments prove convergence ofthe statesct...x" of the individual chains are independent
well-constructed MCMC schemes to the appropriate limit-at any generation after DREAM has become independent
ing distribution under a variety of different conditions. In of its initial value. After this burn-in period, the conver-
practice, this convergence is often observed to be impractigence of DREAM can thus be monitored with tRestatistic
cally slow. This deficiency is frequently caused by an inap-of Gelman and Rubir{1992. This convergence diagnos-
propriate selection af (-) used to generate trial moves in the tic compares the within and in-between variances ofXhe
Markov Chain. This inspire¥rugt et al.(2008 2009ab) to different chains.
develop a simple adaptive RWM algorithm called Differen-  Although much progress has been made in the past decade
tial Evolution Adaptive Metropolis (DREAM) that runs mul- towards the application of Bayesian methods to quantify and
tiple chains simultaneously for global exploration, and au-analyze parameter, model structural, forcing, and calibration
tomatically tunes the scale and orientation of the proposabata uncertainty, virtually all this research involved continu-
distribution during the evolution to the posterior distribution. ous parameters that can take on any value within their prior
This scheme is an adaptation of the Shuffled Complex Evolu-defined ranges. Much less attention has been given hith-
tion Metropolis {/rugt et al, 2003 global optimization algo-  erto to posterior sampling problems involving discrete vari-
rithm and has the advantage of maintaining detailed balancables. Such non-continuous parameter estimation problems
and ergodicity while showing excellent efficiency on com- are not only of considerable theoretical interest, but also of
plex, highly nonlinear, and multimodal target distributions practical significance. For instance, contributions are begin-
(Vrugt et al, 2008 2009ab). ning to appear in the hydrologic literature that attempt to

In DREAM, N different Markov Chains are run simulta- discern optimal experimental design strategies that minimize
neously in parallel. If the state of a single chain is given by acost, parameter and model predictive uncertainty, or combi-
singled-dimensional vectox, then at each generation tNe  nations thereof. This involves selecting one or multiple dif-
chains in DREAM define a populatiot, which corresponds  ferent measurement locations in time and/or space amongst
to anN x d matrix, with each chain as a row. Jumps in each a discrete set of possibilities. Various algorithms have been
chaini ={1,...,N} are generated by adding a multiple of the proposed in the applied mathematics and computer science

a(Z,X)=1An

@)

T(X)p(X = 2) = (D) p(Z— %) 2
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literature that solve problems of this kind, yet their main fo- uncertainty. For example, within the context of the travel-
cus is on finding the optimal solution, without recourse to es-ing salesman problem many different routes will exist that
timating the underlying posterior uncertainty. This is of par- only deviate marginally from the optimal solution. Brute
ticular importance in experimental design problems, whereforce sampling of the search space can be used to assess all
one cannot convincingly claim that one set of measurementshese plausible routes, but this seems rather inefficient. In-
is significantly better than another plausible combination ofstead, a more intelligent search procedure is warranted that
observations. more efficiently samples the space of possible solutions. The
In this paper we present a discrete implementation ofgoal of this paper therefore is to introduce theory and con-
DREAM, that is especially designed to efficiently retrieve the cepts of DREAMp), a MCMC simulation algorithm that
posterior distribution of noncontinuous and combinatorial is especially designed to efficiently retrieve the posterior
search and optimization problems. This new code, hereaftedistribution of discrete and combinatorial search problems.
referred to as DREAM,) uses DREAM as its main build- Figure 1a illustrates the application of DREA# to the
ing block, and implements three novel proposal distributionstile puzzle considered herein. The left panel depicts the ini-
to explicitly recognize differences in topology between dis- tial guess, whereas the remaining three panels (Fig. 1b—d) il-
crete and Euclidean search spaces. This sampling methddstrate how DREANb, translates this random starting point
maintains detailed balance and ergodicity, and provides exinto the final position of the letters. The next sections de-
plicit information about the posterior uncertainty of the op- scribe the theory and concepts of DREMY and present
timal solution. Within the context of optimal experimental three different case studies.
design problems this would provide very valuable informa-
tion about which measurements are absolutely required, and
which data are of less importance. The width of the margina3 DREAM p) = DiffeRential Evolution Adaptive
posterior distribution essentially conveys this information. Metropolis with Discrete Sampling
The remainder of this paper is organized as follows. Sec- . _ .
tion 2 presents a short introduction to discrete optimizationWe now describe our new cgde, entitied DRE‘%M. Wh'?h
problems, followed by a detailed description of DREAYI uses DREAM as main pwldmg block. The algorithmic pa-
in Sect. 3. Section 4 demonstrates the performance Ofametgrs (with defaults in paretheses)]&r(a:l) the number
DREAMp, using three different case studies involving a of chains (1) the number of pairs used to generate the pro-
Sudoku puzzle, water retention curve and rainfall-runoff pqsa!,CR the_ crossover probability (see late;, (10.) the
model calibration problem. These results illustrate the abil-thlnnlng rate in storl_ng samp!es afilax (10°) the maximum
ity of DREAMp, to solve search and optimization prob- number _Of generations, typically so large that DRE.éM
lems involving discrete, combinatorial, and experimental de_automatlcally stops after convergence has been achieved.

sign problems. Finally, in Sect. 5 we summarize the theor Let X be aN x d-matrix with rowsx’, i =1,..., N, that
gn p - rnaty, ) . Yicontain the current states of theé different Markov chains
concepts and applications presented herein.

and that are iteratively updated in turn in the algorithm. The

initial X = [X;;t = 0] is obtained by drawingV samples

from p,(x), the prior distribution. Also, let be an exter-

2 Nonlinear optimization involving discrete variables nal archive that stores the elementsxoét regular intervals.
The initial population[X;;¢ = 0] is translated into a sam-

Discrete optimization problems are abundant in many fieldsple from the posterior target distribution using the following

of study, and have also started to begin to appear in the hypseudo code:

drologic literature Furman et a.2004 Harmancioglu et aJ. 1. Setr <1
2004 Perrin et al. 2008 Kleidorfer et al, 2008 Neuman et REPEATK times (POPULATION EVOLUTION)
al.,, 2011). Figure 1illustrates a simple discrete parameter es- FORi <« 1,...,N DO (CHAIN EVOLUTION)

timation problem involving a tile puzzle. Each tile contains

a different letter of the alphabet. The goal is to list the letters
in the appropriate order. The solution to this problem is obvi-
ous to a human, but not immediately clear to a computer. A

(a) Draw the number of dimensions to be updat#d from
the binomial distribution with total and probabilityC R.
If ' =0, setd’ < 1.

search algorithm is therefore required to solve this problem. (b) Generate a new proposal, for chaini,

If we assigh numbers to each letter, A=1, B=2 and so s s
forth, we could measure the distance from our initial guess Z=x+| 1 +ed>y(3*d’)(Zxrl('/)—ZX’Z(")) +ea| (4)
to the actual solution, and iteratively refine this solution by /=t =t d
sampling from a (discrete) proposal distribution. Many al- where the function - | ; rounds each elemejit=1,...,d
gorithms have been developed in the past decades to effi- of the jump vector to the nearest integer. The various
ciently resolve problems of this kind. Yet, the main trust symbols have been defined after Eg). (
of these algorithms is on finding a single optimum solu- (c) Sample without replacemend — 4’ numbers from
tion, without recourse to estimating the underlying posterior 1,...,d. Denote each selected number genericallyjby
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(A) (B) (©) (D)

H{B|P|N E/IB|C|D A/B|C|D A/B|C|D
G|M|O|D FIA|G|H FIE|G|H E|F|G|H
| |E|C|L | J|M|L 1 |J | K|L 1| J|K|L
K| A|F|]J K| O|N|P M{O|P|N M|{N| O| P

Fig. 1. A 4 x 4 square tile puzzle with 16 different letters. The goal is to list the letters in order of the alphabet. Each letter is assigned a

different integer value, and the resulting inverse problem is solved using DREAMhe left panela) presents the initial state, whereas
the remaining three graplfis—d) demonstrate how DREA iteratively solves this integer sampling problem.

and replace the corresponding proposal elemiebyx;'.. suffices to facilitate inference with DREAM,. If appro-
The proposat’ thus updates’ elements ok only. priate, a different transformation can be used for each in-
dividual parameter. An extreme case would simultaneously
involve discrete and continuous variables. This would con-
stitute some combination of jumps generated with DREAM
and DREAMp.

(d) Compute p(Z') and accept the candidate points with
Metropolis acceptance probability(x*,7"),

p(@)

Z x)y=1A"2
o ) pxt)

®)

) ) y 3.1 DREAMp) = detailed balance?
(e) If accepted, move the chain to the candidate poiht

Z', otherwise remain at the old locatiod, _ _ i
We are now left with a proof that DREA), yields an in-

END FOR (CHAIN EVOLUTION) variant distribution that is identical to the posterior target of
END REPEAT (POPULATION EVOLUTION) interest. For this we need to demonstrate that the transi-
2. AppendX to S. tion kernel of DREAM maintains detailed balance, and thus

results in a reversible Markov chain. In other words, the
forward p(x' — Z') and backwardgp(zZ' — x') jump should
have equal probability at every single step in the chain. This
is easy to proof for a standard RWM algorithm that uses a
fixed proposal distribution. Hence, the forward and back-
ward jump will exhibit equal probability. Yet, the jump dis-
tribution used in DREANb) continuously changes scale and

5. Summarize the posterior pdf usilgafter discarding the ini-  orientation en route to the posterior target distribution. This

tial and burn-in samples. adaptation significantly enhances search efficiency, but does

In words, DREAMp, runs multiple different chains in this also ensure reversibility of the sampled Markov chains?

parallel, and generates jumps in each individual chain using Previous manuscripts have provided formal proofs of con-
information from the location of the otheéf — 1 chains. The  vergence of DREAM VYrugt et al, 200§, DREAM(zs,
rounding operator]| - || in Eq. @) is used to enforce inte- (Vrugt et al, 20118, and MT-DREAMzs, (Laloy and
ger values and accommodate discrete search problems. ™rugt, 2011) to the appropriate limiting distribution. These
speed up convergence to the target distribution, DREAM  proofs appear rather simple, but might not be easy to under-
estimates a distribution @f R values during burn-in that fa-  stand for those that are not directly familiar with the underly-
vors large jumps over smaller ones in each of thehains.  ing statistics and mathematics. We therefore resort to a sim-
Details can be found in previous studié&fgt et al, 2008 ple hypothetical example. Lets consider a two-dimensional
2009ab, 20118. discrete sampling problem with' =5 different chains, and
The transition kernel of DREAM, is especially designed thusy =2.4/+/26d' =2.4//2x1x2=1.2. Without loss
for integer variables. This appears to be a major limita-of generality, lets further assume tidat 1, ande; =¢; =0;
tion as many discrete search problems involve non-integerj =1,...,2. We randomly sample each individual chain from
variables. For instance, consider the discrete variable the prior parameter distribution, and color code their ini-
[0,0.2,0.4,...,5]. We cannot sample this parameter with the tial position in Fig. 2. We now use the transition kernel of
proposal distribution presented in Ed).( A simple linear DREAM s, to generate candidate points. Lets assume that
transformation of the search spaee—=0.2j; j € {0,...,25} we select the blue and green chairrgandr; respectively.

3. Compute the Gelman-Rubin convergence diagnoéyc(GeI-
man and Rubin1992 for each dimension = 1,...,d using
the last 50 % of the samples &f

4. If ﬁj <1l2for j=1,...,d ort > Tmax Stop and go to step
5, otherwise set<« ¢+ K and go to POPULATION EVOLU-
TION.
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7 A final remark is appropriate. Theoretically, it is possible
N = 5 different chains that at least one of thé arguments of the rounding func-
6 tion, || - |l has a fractional part ab. In this case, convention

N = dictates to round down to the nearest integer. This directed
rounding introduces a possible bias in jumping direction and
5 ® thus strictly speaking violates detailed balance. The chance
that this happens in practice is virtually zero. If nothing else,
the stochastic nature &f; ~ U;(—b,b), ande; ~ N; (0, b*)
ry will eliminate this possibility. But, in the rare event that any
argument of| - || has a factional part o5 we implement
3 [ ] stochastic rounding to the nearest integer. This guarantees re-
versibility of the Markov chains generated with DREAM.

27 o 3.2 Combinatorial search problems: proposal
(9 distribution using position swapping

The parallel direction update of Eg4)(works well for a
range of discrete problems but is not necessary optimal
0 \ \ \ \ \ \ for combinatorial problems in which the values of the
0 1 2 3 4 5 6 7 final solution are known a-priori but not their order in the
X, parameter vector. The topology of such search problems
differs substantially from the Euclidean search problems
considered hitherto. We therefore introduce an alternative
Fig. 2. lllustration of detailed balance: two-dimensional parameter Jump distribution that creates candidate points by randomly
estimation problem with:q € [0,7] andx; € [0,7]. The color dots swapping two coordinates in each individual chain.
denote the starting points of thé =5 different chains. The red
square signifies the candidate point of the first chain and is create?ROPOSAL DISTRIBUTION: RANDOM SWAP
by selecting the blue chain ag and green chain as. One step FORi «1,...,N DO (CHAIN EVOLUTION)
later, after moving to the red square, the backward jump has equal 1. getzi — xi.
probability, as there is an equal chance of drawipfgreen) anad»
(blue) in reversed order.

2. Randomly select two numbersand k without replacement
from{1,...,d}.

3. Swap thejth andkth coordinates of'; y; =x} andy} =x§..

4. Computer (Z') and accept the candidate points with Metropo-
lis acceptance probabilitg,(x*,Z").

This proposal point is indicated in Fig. 2 with the red square. 5. |f accepted, move the chain to the candidate poifts 7/,

For the sake of this illustration, lets now assume that we ac-  otherwise remain at the old locatioxi,

cept this candidate point, and transition the first chain to this END FOR (CHAIN EVOLUTION)

new state. _ END RANDOM SWAP
We now need to demonstrate that the reverse jump has

equal probability. This backward jump can be obtained byln words, if the current state of théth chain is given

selecting thg blue and green chain in the opposite order frong)y i — [x,l x,x;{x‘,i] then the candidate point
the forward jump: J

. becomes 7z = [x’lx,’(x;xél] where j.k are
Z’=[16]+H1-2([51]—[44])H=[16]+H[1-2—3-5]H:[22] (7)  discrete uniformly sampled “fron{1,....d} without re-
This point is exactly similar to the initial state of chain one Placement. It is straightforward to see that this proposal
prior to the forward jump. Apparently, the rounding operator distribution satisfies detailed balance as the forward and
used to sample integer values does not destroy detailed balkackward jump have equal probability. )
ance. By sampling; andr from the remainingV — 1 chains A swap update is admirably suited to solve the tile

with a uniform random number generator enforces symmetr)}s)\:\(l):lirgr??usl:der;end dg:ﬁvéﬂlésgolmgt'géxl'&tegrt]heir%g?ﬂ?iif
of the proposal distribution. Indeed, the chance to select P y P y

hai hain four | | i about the topology of the solution encapsulated in the
as chain two, ang; as chain four is equal to drawing=4,  qition of the othenv — 1 chains. Essentially, each chain

andrz =2 in the reverse order. This also holds wiegnand  ayplves independently to the posterior target distribution.
€q are drawn from their respective symmetric probability dis- This appears rather inefficient, particularly for complicated
tributions, and whed > 1 andd > 2. We leave this up to the search problems. We therefore introduce a second and
reader. This concludes our proof of detailed balance. alternative swap rule that takes explicit information from

The candidate point of the first (purple) chain thus becomes:
7 =[22+|12([44-[51))| = [22+|[-1236]| =[26] (6)

www.hydrol-earth-syst-sci.net/15/3701/2011/ Hydrol. Earth Syst. Sci., 15, 3708-2011



3706

the dissimilarities in coordinates of the chains running in
parallel. We implement this idea as follows:

PROPOSAL DISTRIBUTION: DIRECTED SWAP
DO (CHAIN EVOLUTION)

1.

0o N O O b~ W

. Swap the elements af?; z;l =xt andzt =x"%

. Swap the elements af2; z;? =x2 andz;? =x'2.

Randomly select two chainX/1 andX"2 without replacement
from the populationX; "™*"2.

. Find those coordinates af! andx’2 that are dissimilar and

store these locations in

. Randomly permute; setj = ¢ andk = ¢o.
. CopyZ't =x"1 andz'2 = x'2.

J

J

. Computer (z't) andz (22) .

. Accept both candidate points with probability,(z't,z2)

J. A. Vrugt and C. J. F. Ter Braak: DREAM — discrete MCMC simulation

has become quite popular in the past 10 yr, and many news-
papers, journals, and magazines around the world publish
Sudokus for entertainment. This synthetic study illustrates
the ability of DREAMp, to help solve a relatively diffi-
cult and high-dimensional combinatorial optimization prob-
lem. The second study revisits a classical site characteriza-
tion problem in vadose zone hydrology and involves infer-
ence of the hydraulic properties of unsaturated soils from
laboratory or in situ measured water retention data. This
example demonstrates how DREAM can be utilized to
solve experimental design problems and guide measurement
collection. The third and final study resolves discrete pa-
rameters in a parsimonious lumped watershed model using
observed daily discharge data from the Guadalupe River in
Texas. The posterior distribution derived with DREfdlis
compared against its counterpart derived with DREAM as-
suming a continuous formulation of the model calibration

equal to the product of their respective Metropolis ratios, problem.

p(Z1,72) =a(X'1,ZV)a(x2,22).

points, X"l =zl andx’2 = z'2; otherwise remain at their old
location,x"t andx'2.

END FOR (CHAIN EVOLUTION)
END DIRECTED SWAP

This proposal distribution swaps locatignand £ within
two different chainsry,r2 € {1,..., N} from the differences

in their coordinates.

once. This requires that the number of chaiNs> 1 and

hence is easiest to implementnfis an even number. This
approach considerably improves sampling efficiency, as will

be illustrated later with a Sudoku puzzle.

The swap move is fully Markovian, that is, it uses only
information from the current time for proposal generation

and retains detailed balanced with respectrto) because

the reverse move is equally probable. If the swap is not fea
sible (less than two dissimilar coordinates), the current chai
is simply sampled again. This is necessary to avoid com

plications with unequal probabilities of move typd3efi-

This update needs to be carefull
implemented so that all different chains are updated only.

Yy

r_]grid is depicted at the left-hand side, whereas the final solu-

. If accepted, move both chains to their respective candidate®-1 The daily Sudoku

The first case study considers a Sudoku puzzle, a popular and
widely practised integer estimation problem. We use this ex-
ample to illustrate the ability of DREAN, to successfully

find the optimum of a discrete search problem. The objective
is to fill a 9x 9 grid with numbers so that each column, each
row, and each of the ninex33 sub-grids that make up the to-

tal square contains the values of 1 to 9. The same integer may
only appear once in each column and row of the®play-

ing board including in any of the ninex33 subregions. Each
puzzle starts with a partially completed grid, and typically
has a single (unique) solution. The puzzle was popularized
in 1986 by the Japanese puzzle company Nikoli, under the
name Sudoku, meaning single numbdayes 2006. Nowa-
days, Sudoku puzzles are very popular, and widely practised

" by many millions of people throughout the world.

_ We consider the Sudoku puzzle in Fig. 3, taken from
Wikipedia (ttp://en.wikipedia.org/wiki/SudoRu The initial

tion is presented at the right-hand side. In this particular puz-
zle, the solution at 29 different cells is known, leaving us with

son et al.2002); the same trick is applied in reversible jump ™ N :
MCMC (Green 1995. The restriction of the update to the d =81—29=>52 parameter values to be estimated. These

dissimilar coordinates does not destroy detailed balance irparameters can take on values between 1 to_9. Figure 4 il-
L . lustrates the sampled values of DREfdylat various stages
any way; it just selects a subspace to sample on the basis (#

. L . uring the search. A total aV = 20 different chains were
the current state. Coordinate swapping is especially power- -
. . i used to search the parameter space, and the initial sample was
ful for combinatorial problems. Based on some preliminary

studies, we use a 90/10 % mix of directed and random swap created using random permutation of the available numbers.
respect,ively S'This ensures that each value of 1 to 9 appears only nine times

in the grid. The log-likelihood function measures the sum of
the horizontal, vertical and subgrid constraint violation.

The first grid, on the left-hand side of Fig. 4 depicts the
starting solution of one of the different chains. This ini-
We now present three different case studies with increasingial state is randomly drawn from the prior distribution, and
complexity. The first study consists of a typical integer esti- appears rather poor. For example, the subregion at the bot-
mation problem, and involves a Sudoku puzzle. This puzzletom right hand corner contains three numbers eight, a severe

4 Case studies
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A ®)
5|3 7 5(3|4]16|7(8]9|1]|2
6 1/9|5 6|7|2]1]|9(5]3|4]|8
9|8 6 1(9]|8|3]|4]|2]5]|6|7
8 6 3 8[5|19]7|6(1]4|2]|3
4 8 3 1 412|618([5]|3]7]9|1
7 2 6 711]13]9]12]4]8]|5|6
6 2|8 9[6|1|5]|3[7]2|8]|4
41119 5 2(8[7]4]11]|9]6|3(5
8 719 3[4)15]2]|8[6]1[7]9

Fig. 3. The daily sudoku(A) initial solution, and(B) final solution. The black numbers were given, whereas the solution numbers are
marked in red.

(A) 5/3/1|71712|7]1|4 ®) 5/3/416[7|2]|9]1|7
6/4/2]1/9/5(14/8|3 6/712]11/9/5[1/5/8
119.8]16/4/3/9/6.2 19,813 4/ 81462
8/5(9]2/6/7[1]|5]|3 81191764523
417168531291 4 2/6|8|5/3]7/91
713151912 /118/416 715131912 118/416
916,715/2/1412/8|8 9167153171284
312|7]14/1/9]16|8]|5 2/3/8]4/1/9]6|3]|5
5/1/413 /816131719 1145128 613 719

© 5/3/2|6/7/8|9]1 |4 (®) 5/3/4]16/7/8|9|1 |2
6/7/411/9/5]3/2/8 6/7/2]1/9/5]6/48
119,813 /4/2|5/6.7 1.9,813/ 4/ 2|5/6.7
8/1/917|6/4]12|5]|3 8/5/9]17|6|1]14]12]|3
4. 2/6]18/5/3]7/9]1 4126|185 /3]7]/9]1
715/3]19/2/118/4.6 7.111319/2/4]18/516
9/6|1]|5|3]|7]2|8|4 9/6|1]5]|3]|7]2|8]|4
287141191635 218|714/1/9]16|3]|5
314/512 86111719 314512 86111719

Fig. 4. Sudoku puzzle: evolution of the DREAM, sampled parameter space to the posterior distribu(i@ntypical starting solution,
(B) intermediate solution(C) nearly final solution, an¢D) final solution.

violation of the constraints. Figure 4b displays the state of The results of this study inspire confidence in the ability of
the same chain after about 25000 function evaluations. Th&REAMp) to successfully locate the optimum solution of a
solution has improved considerably, but still contains sev-discrete search problem. This constitutes a necessary bench-
eral noticeable deviations from the actual solution. The thirdmark to inspire confidence in the search capabilities and con-
panel in Fig. 4c, derived after about 50000 Sudoku evalu-vergence properties of the algorithm. A branch and bound
ations is a further refinement of the solution presented inoptimization approach is about 2 orders of magnitude more
Fig. 4b. A few important swaps have been introduced thatefficient than DREAMp, in solving the Sudoku puzzle, but
further reduce the constraint violation. Finally, after about this method violates detailed balance, and hence cannot be
100000 samples, Fig. 4d illustrates that the puzzle has beensed to derive the posterior target distribution. This is the
successfully solved. main purpose of DREAM) and this ability will be high-
lighted in the remaining two case studies of this paper.
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If our sole interest is in finding the optimum solution of 35
a discrete search problem, then significant efficiency gains
can be achieved with DREA)) by relaxing the assump- 3L
tion of detailed balance of the sampled Markov chains. For
instance, if we modify the directed swap in DREAMSso  E ;|
that each candidate point is accepted/rejected based on its
own Metropolis ratio independently of the associated move:cj‘f )l
of the corresponding chain, then far fewer function evalua-2
tions would be needed to solve the Sudoku puzzle. The conZ
sequence of such non-Markovian adaptation, however is thaE“
the algorithm no longer adequately samples the underlying=
target distribution. &

4.2 Optimal experimental design for soil hydraulic 05}
characterization

I I I °
0 0.05 0.1 015 02 025 03 035

The second case study considers a common problem in va-

dose zone hydrology and involves characterization of the hy- Volumetric water content, € [em em= ]

draulic properties of variably saturated soils. This serves to

demonstrate the ability of DREA}M, to guide experimental o . .
data collection and help determine which soil water retentioni9- 5. Synthetic soil water retention curve of the sandy soil, and
measurements to collect. We assume the capillary pressurd?® effect of data error.

saturation relationship of/an Genuchtenl 980:

0(h) =0, + (05 —0,) [1+ (ah)"] " 8) N =10 different Markov chains in parallel to se_arch the di_s-
crete measurement space. About 10 000 function evaluations
whered (cmPcm~3) is the volumetric water content,(cm)  were required to reach convergence to a limiting distribution.
denotes the soil water pressure hegdp,) (cm*cm~3) sig- Figure 6 presents the results of our analysis and plots
nifies the saturated (residual) water contentcm—1) andn histograms of the DREAM,, derived posterior measure-
(-) are coefficients that determine the shape of the water rement samples after sorting each combination in increasing
tention function, andn = 1—1/n. A synthetic data set of order. The marginal posterior distributions appear clustered
water retention observations was created for a sandy soil byround distinctly different soil water pressure head values.
evaluating Eq. §) for a given set of pressure head values. This includes soil water pressure head measurements around
The soil water pressure head was discretized Mte- 501 (Fig. 6a)h =0, (Fig. 6b)h = —40, (Fig. 6¢c)h = —220, and
equidistant points betweén= 0 (saturation) and = —-1000  (Fig. 6d)s = —1000 cm respectively. Indeed, the most infor-
(cm), and the correspondirfifh) curve is plotted in Fig. 5 mative (h,6(h)) observations are found close to saturation,
with a solid black line. Then, the soil water pressure headaround the air-entry value of the sandy soil, at the inflec-
observations are corrupted with a normally distributed er-tion point of the water retention function, and in the very
ror, h < N(h,2) to represent the combined effect of mea- dry moisture range. The location of these most informa-
surement error and soil inhomogeneity. The final data set igive 6(2) measurements matches very well with our previ-
depicted with the circles in Fig. 5. ous findings Yrugt et al, 2002 and are in agreement with
From this data set oM =501 water retention measure- the dynamic behavior of the marginal sensitivity coefficients,
ments we now use DREAJ, to find those four(z,6(h)) 00/06,, 390/0c, 06/0n, and 80 /96, derived from the par-
observations that are most informative and best constrain th&al derivatives of Eq.&). A similar pattern is observed for
hydraulic propertiess = [6;,6,,«,n] of the sandy soil under loamy and clayey soils (not shown herein), but the second,
consideration. For each selected combination of four differ-third and last observation depicted in Fig. 4b—d move to-
ent (h,0(h)) measurements in DREAM, we estimate the wards lower soil water pressure head values, consistent with
corresponding values of by nonlinear minimization using the increased water holding capacity of these more fine tex-
the Nelder-Mead Simplex algorithm. The hydraulic param-tured soils. An accurate soil hydraulic characterization thus
eters obtained this way are then used to predict the waterequires water retention measurements that span the entire
retention curve for the entire range of pressure head valuesange of soil moisture values.
considered in Fig. 5. A standard squared-deviation likelihood It is interesting to observe the differences in the posterior
function is subsequently used to calculate) in step (d) of  spread of the four different histograms. Whereas the first
the pseudo code of DREAM, and summarize the informa- two pressure head observations in Fig. 4b—d are very well
tion content for each selected set of fqir6(h)) observa-  defined with relatively little dispersion, the other two mea-
tions. We use the standard settings of DREAMand run  surements are considerably less well defined symptomatic
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Fig. 6. Histograms of the posterior samples generated with DRE#AMThe most informative soil water pressure head measurements are
somewhat clustered at different moisture values that range from saturation (left plot) to the dry end (right ploaxihédexes the
observation$l, ...,501].

for a redundancy in information content. This is an in- Figure 7 presents histograms of the marginal distribu-
teresting finding, and explains why the parameterand  tion of a few selected hydrologic model parameters using
6, are often found to be highly correlated in the fitting of five years of observed daily discharge data. The top panel
water retention curves. The posterior spread derived withpresents the results of DREAN), whereas the bottom panel
DREAMp) is hence a useful byproduct to analyze measure{presents the results for a continuous parameter space. These
ment uniqueness, and determine the information content ohistograms were derived by separately running DREAM for

experimental data. the same data set and model. Notice the close agreement
between the histograms derived with both MCMC methods.
4.3 Watershed model calibration using discrete This is a testament to the ability of DREARM} to success-
parameter estimation fully solve discrete posterior parameter estimation problems.

The influence of gridding is hardly noticeable, but becomes

The third and final case study involves flood forecasting, andapparent if we use at least 25 bins to represent the marginal
consists of the calibration of a mildly complex lumped water- density (not shown herein)

shed model using historical data from the Guadalupe River at ) ] o

Spring Branch, Texas. This is the driest of the 12 MOPEX 10 better illustrate the effect of discretization, please con-
basins described in the study Buan et al.(200§. The sider Fig. 8 that presents two-dimensional scatter plots of the
model structure and hydrologic process representations argREAMp) derived posterior samples for a few selected pa-
found in Schoups and Vrug2010. The model transforms @meter pairs. The bottom panel shows similar plots but then
rainfall into runoff at the watershed outlet using explicit pro- 8SSUMing continuity of the parameter space. The effect of
cess descriptions of interception, throughfall, evaporationdridding is immediately apparent. Whereas the original bi-
runoff generation, percolation, and surface and subsurfac¥ariate scatter plots sample the parameter space in a (blood-
routing. Table 1 summarizes the seven different model paStain) spatter pattern, two-dimensional plots of the posterior
rameters, and their prior uncertainty ranges. Each parame3@mples derived with DREAW, exhibit an obvious grid

ter is discretized equidistantly in 250 intervals with respec-Pattermn with horizontally and vertically aligned points. The
tive step size listed in the last column at the right hand side POSterior samples take on discrete values with a distance be-
This gridding is necessary to create a non-continuous distween subsequent points that is similar to the intervals listed

crete, parameter estimation problem. Unlike the previous! Table 1. Despite this difference in sampling pattern, the

case study in which integer values are sampled only, this parshape of the DREAM and DREAM, derived bivariate scat-
ticular study (mostly) involves non-integer values. ter plots are very similar, commensurate with the covariance

Daily discharge, mean areal precipitation, and mean area?trupture 'of the posteﬁor dis.tribution. ."I'he results presented
potential evapotranspiration were derived fr@uan et al. N Fig. 7 inspire confidence in the ability of DREAM to
(2009 and used for model calibration. Details about the SOIV& noncontinuous posterior sampling problems.
basin, experimental data, and likelihood function can be The excellent correspondence of the posterior parameter
found there, and will not be discussed herein. The samalistributions derived with DREAM and DREAJY) results
model and data was used in a previous stusighpups and in marginal differences of the resulting streamflow predic-
Vrugt, 2010, and used to introduce a generalized likelihood tions. We therefore do not show any times series plots
function for heteroscedastic, non-Gaussian, and correlatedf model predictions, and corresponding 95 % uncertainty
(streamflow) prediction errors. ranges. Such plots can be found&choups and Vrud2010
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Table 1. Prior Uncertainty Ranges of Hydrologic and Error Model Parameters.

Parameter Symbol  Minimum  Maximum Units  Step size
Maximum interception Imax 0 10 mm 0.02
Soil water storage capacity Smax 10 1000 mm 1.98
Maximum percolation rate Omax 0 100 mmdl 0.20
Evaporation parameter op 0 100 - 0.20
Runoff parameter ap -10 10 - 0.04
Time constant, fast reservoir KFr 0 10 days 0.02
Time constant, slow reservoir Ks 0 150 days 0.30
Heteroscedasticity intercept 00 0 1 mmd?l 0.002
Heteroscedasticity slope o1 0 1 - 0.002
Autocorrelation coefficient 1 0 1 - 0.002
Kurtosis parameter B -1 1 - 0.004
(A) (B) (@)
0.3 0.3 0.3
2
S 0.2 0.2 0.2 >
S z
g c
Lo 01 0.1 0.1
0 2 4 6 40 60 80 0.84 086 0.88
(D) (B) (F)
0.3 0.3 0.3
2
& -
g A
TS 0.2 0.2 0.2 =
k) =
g
S o 0.1 0.1
0 2 4 6 40 60 80 0.84 086 0.88
Imax KS ¢1

Fig. 7. Histogram of the DREANp, derived marginal posterior distributions of t{#&) Imax, (B) K5, and(C) ¢, rainfall — runoff and error
model parameters (in red). For convenience, only a few parameters are plotted. To benchmark the results ofgy)REAddttom panel
illustrates the results for DREAM (in blue), with the common assumption of a continuous parameter space.

and details can be found in that publication. It is interest- To provide better insights into the efficiency of
ing to observe that the maximum log-likelihood value of 543 DREAMp,, Fig. 9a plots the evolution of th&-statistic
found with DREAMp, is somewhat larger than its coun- of Gelman and Rubirf1992 for each of the different pa-
terpart estimated with DREAM (540). This difference was rameters. To benchmark these results, the bottom panel
consistently observed for multiple different trials with both (Fig. 9b) illustrates the convergence results of DREAM as-
MCMC algorithms. suming a continuous parameter space. The presented trace
plots represent an average of 25 different MCMC trials. The
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Fig. 8. Two-dimensional scatter plots of the DREAf| derived posterior samples (top panel: red), and corresponding bivariate samples
estimated with DREAM (bottom panel: blue). Only a few parameter pairs are shown as this is sufficient to illustrate the similarity of the

sampled distributions.

R-statistic
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Fig. 9. Simulated traces of th&-statistic of Gelman and RubitGglman and Rubir1992) using the(A) DREAMp) (top panel)(discrete
sampling), andB) DREAM (bottom panel)(continuous sampling) MCMC algorithms. Each parameter is coded with a different color. A
similar convergence speed is observed for both algorithms.
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