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Abstract. Projecting how future climatic change might im-
pact streamflow is an important challenge for hydrologic sci-
ence. The common approach to solve this problem is by forc-
ing a hydrologic model, calibrated on historical data or using
a priori parameter estimates, with future scenarios of pre-
cipitation and temperature. However, several recent studies
suggest that the climatic regime of the calibration period is
reflected in the resulting parameter estimates and model per-
formance can be negatively impacted if the climate for which
projections are made is significantly different from that dur-
ing calibration. So how can we calibrate a hydrologic model
for historically unobserved climatic conditions? To address
this issue, we propose a new trading-space-for-time frame-
work that utilizes the similarity between the predictions un-
der change (PUC) and predictions in ungauged basins (PUB)
problems. In this new framework we first regionalize climate
dependent streamflow characteristics using 394 US water-
sheds. We then assume that this spatial relationship between
climate and streamflow characteristics is similar to the one
we would observe between climate and streamflow over long
time periods at a single location. This assumption is what we
refer to as trading-space-for-time. Therefore, we change the
limits for extrapolation to future climatic situations from the
restricted locally observed historical variability to the vari-
ability observed across all watersheds used to derive the re-
gression relationships. A typical watershed model is subse-
quently calibrated (conditioned) on the predicted signatures
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for any future climate scenario to account for the impact of
climate on model parameters within a Bayesian framework.
As a result, we can obtain ensemble predictions of continu-
ous streamflow at both gauged and ungauged locations. The
new method is tested in five US watersheds located in his-
torically different climates using synthetic climate scenarios
generated by increasing mean temperature by up to 8◦C and
changing mean precipitation by−30 % to +40 % from their
historical values. Depending on the aridity of the water-
shed, streamflow projections using adjusted parameters be-
came significantly different from those using historically cal-
ibrated parameters if precipitation change exceeded−10 %
or +20 %. In general, the trading-space-for-time approach
resulted in a stronger watershed response to climate change
for both high and low flow conditions.

1 Introduction

Hydrologic models are necessary to estimate how streamflow
and other hydrologic variables might change under a chang-
ing climate and under changing land use at scales relevant
for decision-making (Wagener et al., 2010). These models
are operationally applied in risk analysis to assess how hy-
drologic hazard frequencies (droughts and floods) might be
altered, in water management to derive strategies for the sus-
tainable use of available resources, or to assess what ecosys-
tem services might be available in the future (e.g. Weiskel et
al., 2007; Richter et al., 1996, 2003; Poff et al., 2006, 2007;
Arthington et al., 2006; Milly et al., 2008). Sustainable man-
agement of water resources and robust risk assessment will
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require modeling tools that provide scientifically sound and
credible estimates of relevant water indicators under different
scenarios (Mahmoud et al., 2009). Currently available hy-
drologic models have generally been found to require some
degree of calibration to historical observations of the hydro-
logic variable of interest at the location of study to provide
such robust and reliable simulations. The a priori parame-
terization of hydrologic models – from directly observable
watershed characteristics such as soils and vegetation – is
possible and widely used, but it is generally found that pa-
rameters derived from observable static characteristics of the
watershed under study, are inferior to calibrated models (e.g.
Duan et.al, 2006; van Werkhoven et al., 2009; Kapangaziwiri
and Hughes, 2009). Calibration of the model on historical
observations is therefore the most common method for iden-
tifying model parameters when sufficient streamflow data is
available.

An acknowledged major problem in the use of such mod-
els is therefore the uncertainty in prediction at ungauged lo-
cations (Sivapalan et al., 2003). The regionalization of model
parameters is the most widely used strategy to overcome this
lack of local observations, next to the use of a priori param-
eter estimates. In this approach, the parameters of a hy-
drologic model, calibrated to many gauged watersheds, are
regressed with the physical/climatic characteristics to iden-
tify a regional relationship to predict the parameters at un-
gauged locations. Many variants of this idea have been tried
and its limitations are discussed elsewhere (e.g. Wagener and
Wheater, 2006). More recently a different strategy has been
promoted in which streamflow characteristics are regional-
ized and used to condition a hydrologic model (Bardossy,
2007; Yadav et al. 2007; Zhang et al., 2008; Bulygina et al.,
2009, 2011; Wagener and Montanari, 2011). This strategy
is reducing some of the problems identified in parameter re-
gionalization such as the often-observed lack of correlation
between model parameters and landscape characteristics.

We postulate that there is significant similarity between
the predictions in ungauged basins problem discussed above
and the task of simulating the watershed response under a
potential future climate. Similar strategies might therefore
be applicable to both tasks. Even if calibration on historical
records provides us with reliable estimates of model param-
eters for current conditions, there is the potential that param-
eters estimated in such a manner are not reflective of the wa-
tershed behavior in a different climate (Wagener, 2007; Peel
and Bloeschl, 2011). The more the potential future climate
differs from the observed past, the more biased our calibrated
model parameters might be.

Several recent studies have established corroborating ev-
idence for a link between climate conditions and calibrated
model parameters. Van Werkhoven et al. (2008) found that
the sensitivity of the parameters of a medium complexity
lumped watershed model varied with climatic conditions for
different watersheds across the eastern US. Merz et al. (2011)
showed that parameters of the HBV model, especially those

reflecting near surface processes, varied when re-calibrating
the model for data periods with different mean temperatures
and precipitation. In their study, the maximum soil mois-
ture storage parameter, FC, changed from 150 mm to 250 mm
over a period of three decades which was attributed to a rise
in temperature of around 2◦C. They hypothesized that this
is reflecting the higher storage potential of a drier soil. Vaze
et al. (2010) found that model performance declined when
historically calibrated parameters were used for significantly
different climatic conditions in the same watershed. They
concluded that lumped conceptual runoff models calibrated
over average or wet climatic periods are unsuitable for simu-
lating runoff over dry periods of one decade when the differ-
ence in mean rainfall exceeded 15 percent. Also, they found
that models calibrated over average or wet periods are suit-
able for simulating runoff over wet periods of one decade
only when the difference in mean rainfall is less than 20 per-
cent. A similar study by Bastola et al. (2011) shows that pa-
rameters calibrated over wet (dry) climates have a tendency
to produce less (more) runoff in dry (wet) periods. Rosero
et al. (2010) demonstrated that even for a physically-based
model, the NOAH land surface model, behavioral parame-
ters could be related to the climatic variability between the
locations to which the model was applied.

These studies point towards the need for a new modeling
strategy, one that can consider the observed relationship of
parameters with climate, without which most of our predic-
tions might be biased. One could of course argue that the
uncertainty in climate change projections is so large that any
uncertainty or bias in the hydrologic model and its param-
eters might not matter (e.g. Buytaert et al., 2009; Maurer
et al., 2005; Ghosh et al., 2009). However, the question to
be addressed is rather, given perfect knowledge of a future
climate trajectory, could we reliably estimate streamflow (or
other hydrologic variables)? Unlikely, given the evidence of
the studies just described. It is also important to stress that
the search for an alternative parameter estimation strategy,
similar to the need to calibrate hydrologic models in the first
place, is simply a reflection of the limitations of our mod-
els. Ultimately, the development of better models is the solu-
tion we should strive for, rather than a new calibration strat-
egy (Wagener et al., 2010). Therefore, this study provides a
crutch for the time being, and it might, through its results,
also provide guidance how current hydrologic models could
be improved.

One way to approach the problem of climate dependence
of model parameters is by utilizing the similarity between
extrapolation of models in space (regionalization) and the
extrapolation in time, i.e. trading-space-for-time. Yadav et
al. (2007) introduced a model-independent method to pre-
dict streamflow in ungauged basins by developing empiri-
cal relationships between watershed response characteristics
(termed signatures) such as the runoff ratio (long term ra-
tio of streamflow to precipitation) and climatic and physi-
cal characteristics. These signatures are regionalized in an
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Fig. 1. The four step procedure for deriving probability distributions of streamflow for climate scenarios. In Step 2,S a signature and PS is
the probability associated with a signature value. In Step 3,Ś and Ṕ

S
correspond to the distribution based on historical climate andŜ and

P
Ŝ

correspond to the distribution based on changed climate. In Step 4,θ represents the model parameters,Qs1...N represents the model
simulations,S∗ is the expected value of the signature derived from the regionalized relationship andSθ is the value of the signature for the
parameterθ .

uncertainty framework to predict expected streamflow sig-
natures including their uncertainty in ungauged watersheds.
These uncertain predictions can then be assimilated into any
hydrologic model. A significant reduction in predictive un-
certainty due to this additional source of information was ob-
served (Yadav et al., 2007). This strategy is based on spa-
tial gradients in signatures and it should provide useful in-
formation to be assimilated as long as the ungauged basin
does not have physical or climatic characteristics outside of
the range of observed characteristics used to derive the re-
gional signature relationships. If we assume that these spa-
tial gradients can act as a proxy for temporal gradients (Hun-
decha and Bardossy, 2004), then we can trade-space-for-time
and use the regression relationships developed over the spa-
tial gradient to provide a first-order estimate of signatures at
(gauged and ungauged) watersheds under potential future cli-
mate regimes. Specifically, Yadav et al. (2007) found strong
regional predictive capability for climate-dependent indices
such as runoff ratio, which suggests that these indices can
be predicted with a certain degree of reliability for potential
future climate.

We propose to utilize a trading-space-for-time strategy to
account for the climate dependence of behavioral parame-
ters. In essence we are adjusting a strategy previously used to
constrain hydrologic ensemble predictions at ungauged loca-
tions, i.e. those where no long-term observations of stream-
flow are available, to extrapolate in time. The approach ac-
counts for uncertainty in the procedure by deriving ensem-
ble predictions due to the uncertainty in model parameteriza-
tion. This strategy is tested on five climatically different US
watersheds to understand the effect of adjusting parameter
sets with changing climate, i.e. whether impacts of climate
change on streamflow are larger or smaller than without con-
sidering the dependence of behavioral parameters on climate.

2 Method

The basic idea propagated in this paper is that there is a sig-
nificant similarity between the problems of predictions in un-
gauged basins (PUB) and the prediction of change (climate
or land use) and this similarity can be explored (see also
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the discussion in Peel and Bloeschl, 2011). Here we alter
a strategy for PUB so that it allows us to consider how the re-
sponse of a particular watershed might change in a different
climate (or potentially under altered land use). Signatures
are response indices that represent the functional behavior
of a watershed and can be derived from observations of hy-
drologic variables such as streamflow and precipitation. As
mentioned earlier, Yadav et al. (2007) (also, Zhang et al.,
2008) introduced a strategy in which signatures (incl. their
uncertainties) are regionalized and then assimilated into a
hydrological model. Uncertainty was included in this anal-
ysis by assigning prediction limits to the regionalized signa-
ture values. These limits are used to constrain the parameter
space of a hydrologic model. If the simulated response for a
value of a particular model parameter,θ , lies within the range
predicted by the regionalization, it is accepted. A drawback
of this strategy is that all accepted parameter values end up
having equal probability of occurrence whether or not they
are closer to the expected value of the signature, and all re-
jected parameters are assigned a zero probability of occur-
rence. Bulygina et al. (2009, 2011) overcame this limitation
by using a Bayesian framework such that the posterior prob-
ability distribution for model parameters,θ , can be obtained
within a regionalization framework.

In this study, we use regionalized relationships to quantify
the dependence of model parameters on the climate of the
watershed by assuming that spatial gradients established in
the regionalized relationship will act as a proxy for tempo-
ral gradients that the watershed will undergo under climate
change. A regression relationship is developed across a large
spatial gradient to estimate the chosen watershed signatures
as a function of the watershed physical and climatic char-
acteristics. For a given watershed, climate indices are cal-
culated for each future climate scenario. These indices are
then used to predict climatically controlled signatures using
the spatial regression equation. This is where the concept
of trading-space-for-time is applied. The predicted signa-
tures are subsequently used to condition a hydrologic model,
thus considering the expected change in watershed behav-
ior through adjusted parameter values. A similar Bayesian
method to the one by Bulygina et al. (2009) is adopted to
account for the uncertainty in the regionalized relationships
and posterior probability distributions for model parameters
are derived as a function of climate. The resulting strat-
egy therefore addresses both the PUB and the predictions of
change impacts problem, which allows it to be applied any-
where where predictions are required. The methodology is
also independent of the watershed model used.

We provide a holistic approach to quantify the change
in parameters with climate while estimating parameter
uncertainty by following the steps described here (see
Fig. 1) : (Step 1) Empirical regression relationships between
signatures,S, and watershed physical/climatic characteristics
are developed using spatial variability. (Step 2) The prob-
ability distribution of the signatures predicted from the re-

gression equations is derived around their expected value,S∗,
with the variance of the distribution being equal to the vari-
ance of the residuals of the predicted value. Here we assume
that the residuals can be described using a normal distribu-
tion (similar to Bulygina et al., 2009, 2010). In case more
than one signature is used, the joint probability density func-
tion is found by combining the probabilities from the differ-
ent signature distributions. Here we assume independence
of the signature so that they can be sequentially assimilated
into the watershed model (Wagener and Montanari, 2011).
(Step 3) In Step 2, the likelihood function for the signatures
is derived as a function of the physical and climatic charac-
teristics of the watershed, therefore, a change in climate of a
watershed translates into a corresponding change in the sig-
nature and its probability density function. Substituting the
spatial gradients as temporal gradients gives us two likeli-
hood functions that can be assimilated into the model – one
based on the historical climate, which is analogous to the ap-
proach of keeping model parameters fixed with climate and
another based on changed climate, wherein the dependence
of model parameters on climate is quantified. (Step 4) In the
assimilation step, Bayes theorem is used to combine the like-
lihood associated with a signature with the prior information
about the model parameters to estimate their posterior distri-
bution (Liu and Gupta, 2007). The posterior distribution of a
model parameter can be given as (Bulygina et al., 2009),

p(θ) ∝ L(S∗|Sθ ) ·po (θ) (1)

Where,po(θ) is a priori parameter distribution, a uniform
distribution in this case;L(S∗|Sθ ) is the likelihood ofS = S∗

given the model estimateS = Sθ . This likelihood function is
derived in step 2. Using uniform random sampling, 10 000
parameter sets are generated for the hydrologic model and
corresponding value of signatures is calculated. These values
are used in Eq. (1) as the model estimate Sθ For every change
in watershed physical/climatic characteristics, we will obtain
different posterior distribution for the model parameter sets
depending on how strongly the signature depends on climate.
These posterior distributions of parameters are then used to
predict the probability distribution of streamflow for a given
climate. Thus we can predict the cumulative distribution of
streamflow using the likelihood of signatures based on his-
torical climate, termed Type H predictions or the likelihood
based on changing climate, termed Type C predictions. In the
case study shown below, we compare the Type H and Type
C streamflow predictions for 5 study watersheds across the
United States.

The regionalized signature relationships (the spatial mod-
els), which are used to derive the posteriors for model pa-
rameters are developed for the base period of 1958–1968.
Streamflow predictions are derived from the framework in-
troduced for two types of climate change scenarios: 72 syn-
thetic climate change scenarios and for 4 test periods: 1948–
1958, 1968–1978, 1978–1988, and 1988–1996. The climate
of the base period serves as the historical climate, which is
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used to derive the likelihood that gives Type H projections.
The climate in the test periods and the synthetic climate sce-
narios are used to derive the likelihood based on changed
climate, Type C projections. Finally, Type H and Type C
projections are derived and compared across the different cli-
mate scenarios. The test periods are used as a validation step
in order to assess the performance of Type C and Type H
projections within the observed records. Predictions for syn-
thetic climatic scenarios are used to explore the difference
between the two methods in terms of severity of streamflow
response, response of streamflow indices, differences in pre-
dictive uncertainty etc.

3 Model, data, and climate change ranges analyzed

3.1 Model

The model used for demonstration of the methodology is
a parsimonious lumped conceptual watershed model that is
widely used (e.g. Boyle et al., 2000; Wagener et al., 2001).
It is a derivative of the probability-distributed model (PDM)
introduced by Moore (2007). The model is divided into three
modules. The precipitation first enters a degree-day snow
module that accounts for snow storage and melt (DeWalle
and Rango, 2008). Following this is the soil moisture ac-
counting module that describes the available storage in the
watershed as a distribution of buckets with varying depth de-
scribed by a Pareto distribution (Moore, 2007). The effective
rainfall generated from the soil moisture accounting mod-
ule through overflow of the buckets is routed (after splitting,
using a split parameter) through a parallel routing module,
which consists of a quick flow and slow flow linear reser-
voirs. The model has a total of 8 parameters and runs at a
daily time step to account for snow accumulation and melt.

3.2 Data

A total of 394 watersheds from the MOPEX study (Duan et
al., 2006) with around 50 yr of daily data were used in this
study for regionalization. Other characteristics of the water-
sheds required for regression of signatures (such as elevation,
soil types etc.) was derived from the Falcone database (Fal-
cone et al., 2010). Watershed sizes ranged from 66.5 km2 to
10 425 km2. Potential evaporation is calculated from temper-
ature using Hargreaves’ equation (Shuttleworth, 1993). The
baseline historical period chosen for this study was 1958-
68 on the basis of data availability across all 394 water-
sheds, and because no significant (wide spread) trends in
streamflow were detected in this period in the US (McCabe
and Wolock, 2002). The five study watersheds are selected
from different climatic regions (Fig. 2), i.e. from the energy-
limited zone (long term precipitation,P , exceeds long-term
average potential evapotranspiration, PE), the water-limited
zone (P <PE) and the intermediate-zone whereP and PE

are roughly even. A detailed description of these watersheds
is given in Table 1.

3.3 Climate change ranges

The International Panel on Climate Change (IPCC) provides
estimates of expected changes in precipitation and tempera-
ture for the United States (Christensen et al., 2007). Guided
by the expected extremes discussed in the IPCC report, we
chose a matrix of temperature and precipitation change; with
precipitation change steps of 10 % and temperature increase
steps of 1◦C. Total ranges were−30 % to 40 % for precipi-
tation and 0◦C to 8◦C for temperature. Time-series to drive
the model for these different change scenarios were obtained
by changing the mean of the precipitation and mean of the
temperature for the ten-year base period of 1958–1968. We
assumed that the standard deviation of precipitation and tem-
perature remained the same, though it would be straightfor-
ward to relax this assumption. This approach to deriving syn-
thetic climate scenarios is similar to many previous studies
that assessed watershed sensitivity to climate change includ-
ing those by Nash and Gleick (1991), Jones et al. (2006) or
Jiang et al. (2007). The methodology proposed here could
also be run with downscaled climate projections.

4 Results

4.1 Derivation of response indices

Initial tests and experience in previous studies (Yadav et al.,
2007; Zhang et al., 2008) resulted in the selection of two sig-
natures that control different aspects of watershed hydrology,
runoff ratio (RR) – the long-term ratio of streamflow to pre-
cipitation - and baseflow index (BFI) – the long-term ratio
of baseflow to total streamflow. Zhang et al. (2008) found
that RR was an effective constraint on soil moisture account-
ing parameters, while BFI constrained the effective rainfall
split and routing parameters. Both signatures can be calcu-
lated directly from the observed data for the baseline histori-
cal period.

Baseflow index is calculated using a one-parameter single
pass digital filter method (DFM) (Arnold et al., 1995). The
mean of the baseflow index for the baseline period (1958–
1968) is taken as the expected value and uncertainty for the
baseline period is modeled as a normal distribution for which
the standard deviation is estimated from the variability in the
annual values of BFI for the period 1958–1968. Spearman
rank correlation values (Spearman, 1904) were calculated be-
tween the BFI estimate and available climatic catchment de-
scriptors, including aridity index, to ensure that there is no
linear or non-linear relationship between climate and base-
flow index. No significant correlation between climate and
BFI was found. Therefore the probability distribution of the
baseflow index was not changed with climate in this study.
Although baseflow index did not show strong dependence on
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Table 1. Description of validation watersheds for the base period 1958–1968.

Watershed Lochsa Lower Androscoggin Escambia Meramec Yampa
State Idaho/Montana Maine/New Hampshire Alabama/Florida Missouri Colorado
USGS ID 13337000 1055500 2375500 7019000 9251000
Size [km2] 3051 438 9886 9811 8832
Mean Basin Elevation [m] 1584 190 95 279 2364
Climate Regime Energy Limited Energy Limited Even Slightly Water Limited Water Limited
Aridity Index [ −] 0.64 0.86 1.04 1.37 1.81
Precipitation as Snow [%]* 56.0 29.5 0.42 7.5 48.9
Mean Annual P [mm yr −1] 1314 1018 1407 905 556
Mean Annual Q [mm yr −1] 911 541 525 214 132
Mean Annual PE [mm/yr] 841 878 1464 1238 1007
Monthly NSE** [ −] 0.93 0.87 0.85 0.81 0.80

∗ This value is calculated for a threshold temperature of snow formation of 2◦C.
∗∗ Nash Sutcliffe Efficiency for base period (1958–1968).

Fig. 2. The Budyo curve with the five study watersheds (394 water-
sheds are shown as grey dots) highlighted. The black curve shown
is a fitted Schreiber model. AE, PE andP are the long term actual
evapotranspiration, potential evapotranspiration, and precipitation
respectively. AE/P is equal to 1-runoff ratio and PE/P is the aridity
index.

climate, it was a necessary constraint on the behavioral pa-
rameter space, and hence was included as a signature.

RR on the other hand is to a very large extent climate
controlled (e.g. Sankarasubramanian and Vogel, 2003). RR
is therefore regionalized utilizing its correlation with cli-
matic gradients. Budyko (1974) was the first to empirically
derive a relationship between aridity index (ratio between
long-term mean potential evapotranspiration and mean pre-
cipitation) and evaporative index (ratio between long-term
mean actual evapotranspiration and precipitation, which is
equal to 1-RR). Several empirical relationships between the
two ratios have been developed since, out of which we tested

the Schreiber relationship, the Ol’dekop relationship and the
Turc-Pike relationship (Dooge, 1992) for the baseline period
1958–1968. The best regression relationship was obtained
using Schreiber’s equation, resulting in anR2 value of 0.69:

AE

P
= 1.07−1.34·exp

(
−

PE

P

)
(2)

where, AE is the actual evapotranspiration, PE is the poten-
tial evapotranspiration andP is the precipitation, AE/P is
the evaporative index, and PE/P is the aridity index for the
period 1958–1968. The uncertainty in the runoff ratio was
modeled based on an assumed normal distribution with stan-
dard deviation equal to that of the residuals of the regressed
relationship. We used this relationship developed over the
spatial gradient across 394 watersheds in US to trade space-
for-time and predict the future runoff ratio distribution for the
5 study watersheds for changing climate scenarios.

The combination of the two probability distributions, re-
gionalized RR and local BFI, results in a joint PDF that rep-
resents the likelihood equivalent that can now be assimilated
into any hydrologic model (Eq. 1). The expected value of
RR and its probability distribution will change with a chang-
ing climate, and so will the joint PDF. It was assumed that
RR and BFI are uncorrelated and the two distributions were
combined sequentially.

4.2 Validation analysis on test periods

Figure 3 shows a comparison of Type H and Type C stream-
flow projections. Using the cumulative distribution of the
predicted streamflow, the most probable flow and the 90 %
prediction limits for Type H and Type C predictions were
derived and plotted for the 4 test periods in each of the 5 wa-
tersheds, resulting in 20 possible data points for assessment.
Along with the projections, the actual observed flow values
are also plotted for comparison. All flows are shown as a
ratio of the flow in the base period.
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Across the 5 watersheds, precipitation varied from−10 %
to 23 %, mean temperature varied from−0.86◦C to 0.86◦C,
and total potential evapotranspiration varied from−5 % to
2 % of the base period value. Figure 3 compares the two
types of predictions for changes in streamflow but does
not assess their performance with changing climate directly.
However, we found that the change in climate of validation
period from base period is related to a corresponding change
in streamflow. The linear correlation between the change in
the climate of a watershed, measured as change in aridity in-
dex, and the change in the observed streamflow was found
to be−0.76 across all watersheds, implying that the change
in streamflow can be used as a proxy for change in the cli-
mate. The negative value of the correlation indicates that an
increase in aridity index leads to a decrease in the stream-
flow and vice versa. Figure 3 shows that Type C predictions
are closer to the observed values as the percentage change in
streamflow increases. The mean distance of the most proba-
ble flow to the observed flow for Type C and Type H is 0.122
and 0.128 respectively implying that for the test periods, both
methods perform equally well in general. However, when the
change in flow is within 25 % of the base period flow, the dis-
tance for Type H and Type C predictions are 0.127 (H) and
0.136 (C); for 25 %–50 % they are 0.091 (H) and 0.076 (C)
and for 50 % change they are 0.187 (H) and 0.070 (C), re-
spectively. This suggests that historical calibration will be
better if the climate change is small, but changed parameters
will improve performance if change is above 25 %.

The 90 % prediction limits for Type H and Type C are
smaller and similar to each other for the first three water-
sheds. But as we move towards drier watersheds, the limits
become wider and different from each other. This indicates
that for dry watersheds, the difference between the two types
is more evident even for historical climate variability.

4.3 Predictions for synthetic climate scenarios

Streamflow projections were calculated for the synthetic cli-
matic scenarios discussed in Sect. 3. A total of 72 combina-
tions of different climate scenarios that resulted from chang-
ing precipitation and temperature from base period (histori-
cal) time series were modeled to derive Type H (historical)
and Type C (changed) projections. Figure 4 compares the
projections from these two methodologies. The figure shows
colored contours generated from the most probable estimates
of flow for the synthetic climate scenarios for Type H and
Type C predictions as a function of change in precipitation
and temperature for the 5 study watersheds. Additional infor-
mation on uncertainty resulting from the projected stream-
flow ranges using the watershed model is included in the
background grey contours. Prediction uncertainty is calcu-
lated for every climate scenario as the difference between
the 90 % lower and upper prediction limits. All values are
normalized with respect to the values during the base period
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Fig. 3. Validation plot showing the ratio of validation period stream-
flow (Qv) to base period streamflow (Qb) for the 5 study watersheds
sorted by increasing aridity index (PE/P ) ((a) Lochsa,(b) Lower
Androscoggin,(c) Escambia,(d) Meramec,(e) Yampa). Validation
periods are 1: 1948–1958, 2: 1958–1968 (base period), 3: 1968–
1978, 4: 1978–1988, 5: 1988–1996. Dashed and continuous lines
show the 90 % prediction limits for historical conditioning and con-
ditioning based on changing climate respectively.

(the 0-0 coordinate) climate and the watersheds are arranged
in order of increasing aridity index.

First, the colored contours of most probable flow are dis-
cussed followed by the discussion on grey background con-
tours. In case of colored contours, for any particular con-
tour plot, as we move from left to right, the effect of in-
creasing precipitation is seen in the most probable flow es-
timates as parallel contours with increasing values. Along
the y-axis, as the temperature increases, the contours bend
away to the right due to decrease in predicted flow as a result
of both increase in temperature and potential evapotranspi-
ration. The angle of the contour lines for most of the plots
is greater than 45◦, indicating that the streamflow is more
sensitive to changes in precipitation than to changes in tem-
perature. Comparing the contours across all the watersheds
for Type H and Type C projections, the main observation is
that Type C projections are more sensitive to changes in cli-
mate. The contour lines are closer to each other for Type C
implying higher sensitivity to precipitation and the angle that
the contour lines make with the x-axis is greater for Type C
predictions implying higher sensitivity to temperature. The
further the future scenarios depart from the historical period
(the 0-0 coordinate, which results in aQc/Qh ratio of 1), the
greater is the difference between the two projections.

As we move from wet to dry watersheds, the contours for
both types become more closely spaced indicating the in-
creased sensitivity of the dry watersheds. Not only this, the
sensitivity to temperature is higher for the two driest water-
sheds, Meramec and Yampa, as indicated by the increased
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Fig. 4. . Contours of most probable streamflow (Qp) in colored lines
normalized by the most probable flow for the historical or base pe-
riod (Qb). The background grey variation shows the uncertainty in
the predictions normalized with respect to the uncertainty predicted
for historical flows for: (a) Lochsa,(b) Lower Androscoggin,(c)
Escambia,(d) Meramec,(e) Yampa. Watersheds are arranged in
order of increasing aridity index.

angle of the contour lines with the x-axis. This change is
not seen in the three wetter watersheds – Lochsa, Lower
Androscoggin and Escambia, where the sensitivity to tem-
perature remains more or less constant across all three water-
sheds. Another important feature of the plots is that the Type

H contours are a linear function of climate whereas increas-
ingly non-linear behavior is observed in the Type C contours
as the watersheds get drier. This is a direct consequence of
varying the posterior distribution of the parameters with cli-
mate. In case of Type H predictions the posterior signature
distributions (runoff ratios) for the climate remain the same
and only the input to the model changes in a linear manner,
leading to the linear behavior of the contours. For Type C
predictions however, the model is forced to reproduce the
expected distribution in the signature for the changed climate
leading to a more non-linearity in the contours. From these
observations, it can be concluded that drier watersheds are
more sensitive to climate change and also, that the impact
of changing parameters with climate will be higher on these.
Note that these results are valid for the most probable flow
only which is modeled after the expected value of the runoff
ratio.

We now examine the impact of changing parameters with
climate on the difference between 90 % predicted upper and
lower ranges of streamflow, which is assumed to be a typi-
cal uncertainty range for projections. The background grey
contours show that in Type H predictions, the uncertainty
is higher in wet and hot regimes than for wet to intermedi-
ate watersheds, whereas, for dry watersheds, it is highest in
wet regimes irrespective of temperature increase. For Type C
predictions, the uncertainty is highest in hot regimes for the
wettest watershed while it shows no sensitivity to precipita-
tion change. As we move to watersheds with higher aridity
index, the impact of precipitation on the uncertainty grows
to an extent where, for the driest watershed, uncertainty is
highest for the greatest changes in precipitation and does not
show much dependence on temperature. This trend is be-
cause wetter catchments are more likely to be energy limited
(PE/P <1) and drier catchments are more likely to be mois-
ture limited (PE/P >1). Therefore it is likely that changes to
the limiting variable for these catchments will have a larger
impact on the simulation than if the non-limiting variable is
changed. Across both Type H and Type C predictions, un-
certainty is lower for the drier catchments if precipitation de-
creases and higher in the drier catchments if precipitation in-
creases.

In order to assess the difference in the projected hydro-
graphs in more detail, Fig. 5a shows 90 % prediction limits
for monthly time series of predicted flow for a climate change
scenario of decrease in precipitation of 20 % and increase in
temperature of 2◦C for the Escambia watershed as an ex-
ample. The flow has been log transformed to accentuate the
difference between low flows since the predictions are for a
scenario with drier climate. One can see that the lower lim-
its of projections for Type C are in general below Type H.
On the other hand, the upper limits of the flow estimates are
similar to each other, being different only in their extremes,
with Type H being higher than Type C. This result suggests
that it will be important to test the new approach proposed
here for the estimation of flood and low flow frequencies in
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Fig. 5. (a)Monthly time series of predicted flow for a climate sce-
nario of 20 % decrease in precipitation and 2◦C increase in tem-
perature for the Escambia watershed. Dashed and continuous lines
show the 90 % prediction limits for Type H and Type C respectively.
The flow has been log transformed to accentuate the difference be-
tween low flows. The first year of simulated flows is the warm up
period and is not plotted.(b) Cumulative probability of 7 day low
flow with a return period of 10 yr (7Q10) calculated for the Escam-
bia watershed for identical climate scenario for Type H and Type C
predictions.

a changing climate. It was also found that in case of wetter
climates Type C prediction are higher than Type H.

These continuous time streamflow projections can now be
used to derive any streamflow-based indicator of interest.
This is very relevant since many ecological and water re-
sources indicators are of great interest for a wide range of
applications (e.g. Weiskel et al. 2007; Richter et al., 1996,
2003; Poff et al. 2006, 2007; Arthington et al., 2006; Milly
et al., 2008; Wagener et al., 2011). One such index that is cal-
culated in this study just as an example is the 7-day low flow
with a return period of 10 yr (7Q10) (Chapra, 1997). The in-
dex is calculated using both Type H and Type C projections
for the above climate scenario (which is at the lower end of
climate change strength) and its cumulative probability for
Escambia watershed is plotted in Fig. 5b. It is observed that
values of 7Q10 based on Type C predictions are always lower
than Type H predictions. It reinforces the fact that using pa-
rameters that are fixed with climate (Type H) can lead to un-
derestimation of droughts.

5 Discussion

This study showed again that dry watersheds are more sensi-
tive to climate change than wet watersheds, and also, that the
impact of using changing parameters was more pronounced
in them. Dooge (1992) showed that all empirical (spatial)
models agree on watershed runoff being more sensitive to
variation in average precipitation and average potential evap-

otranspiration for more arid environments (PE/P >1). The
fact that drier watersheds also yield greater difference be-
tween the Type H and Type C projections can be related to
the use of Schreiber’s model for which the sensitivity of long-
term runoff to changes in long-term precipitation and long-
term potential evapotranspiration is derived (Dooge, 1992):

9 = 1+PE/P (3)

where,9 is the sensitivity of the long-term runoff and PE/P

is the long-term aridity index. According to this equation,
the sensitivity of runoff ratio increases as the aridity index
increases. Since the posteriors for Type C predictions are
modeled after Schreiber’s equation in this study, similar ef-
fects are seen in the result obtained. There is of course a
question about whether behavior of the watershed as it is sim-
ulated is the long-term behavior after the transition period or
is a transition behavior and how long a new climate regime
would have to be there for a watershed to respond differently.
Sankarasubramanian and Vogel (2003), found that arid and
semi-arid basins exhibit greater precipitation elasticity than
humid basins in the US. They also find that the relationship
between precipitation and runoff is generally non-linear due
to the influence of storage processes within the basins. Us-
ing both Type H and Type C predictions yielded non-linear
relationship between precipitation and runoff indicating that
these projections are realistic. Furthermore, Type C predic-
tions displayed increasing non-linearity in their response as
the watersheds became drier.

Determining the range of climate change within which a
watershed performs satisfactorily on historically conditioned
parameters is important for assessing the reliability of pro-
jections derived through different strategies. We calculated
these thresholds for the watersheds in this study and found
interesting results. The thresholds of temperature and pre-
cipitation change after which the two methods, Type H and
Type C, became significantly different were found to vary
across watersheds (Fig. 6). In case of predictions for the
most probable flow, the threshold values are smaller for wa-
tersheds with high aridity index (PE/P >1). In addition, for
Yampa, a dry and snow dominated watershed, the two meth-
ods differ by 25 % in their predictions of most probable flow
(calculated as a percentage of the most probable flow pre-
dicted for historical period) for a decrease in precipitation as
low as−10 % of the historical precipitation, whereas they
differ by less than 5 % in their predictions of most proba-
ble flow for precipitation change up to +20 % of the histor-
ical value. Thus, Yampa shows greater difference between
the two methods in dry climates. For watersheds with low
and intermediate aridity index (PE/P <∼1), a precipitation
change of± 20 % leads to a 5 %–10 % difference in predic-
tions. The temperature thresholds also vary across the water-
sheds. In snow dominated watersheds (a, b, e), the two meth-
ods perform differently for Type H and Type C distributions
even with slight increase in temperature. On the other hand,
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Fig. 6. Contour plots to illustrate the difference in Type H and Type C predictions. The difference between the 90 % upper limits, most
probable flow, and the 90 % lower limits is calculated as a percentage of the prediction for the historical climate for:(a) Lochsa,(b) Lower
Androscoggin,(c) Escambia,(d) Meramec,(e)Yampa.

non-snow dominated watersheds (c and d) show similar pre-
dictions for flow when temperature increases up to 2◦C for
constant precipitation. While comparing the 90 % prediction
limits, it was found that for watersheds with high aridity in-
dex, the 90 % lower limits of the flow also become signifi-
cantly different. The 90 % upper limits are not significantly
different using the two methods across all the watersheds.
Therefore uncertainty limits for Type H and Type C projec-
tions deviate from each other as the watershed gets drier. The
fact that the uncertainty ranges are relatively constant for hu-
mid watersheds demonstrates the robustness GLUE method
(Beven and Freer, 2001) for the uncertainty estimation for
humid watersheds but as we move towards drier watersheds,
the results will become increasingly different.

Vaze et al. (2010) found that the hydrologic model param-
eters calibrated on historical streamflow regimes proved to
be inferior (to parameters calibrated on new climatic condi-
tions) if changes from historical conditions exceeded± 2◦

change in temperature and± 20 % change in precipitation.
In this study we found that these ranges are a function of the
watershed itself, i.e. of its historical climatic regime. Also,
any attempt to validate the framework developed here on ac-
tual observations requires a significant degree of change in
the climate of the watershed within the available data set.
Analysis of the study watersheds showed, that the historical
decadal variability allowed for some points of validation for
the new methodology. The greater the change in flow from
the base period, the more reliable was the method of condi-
tioning on changed climate as was discussed with respect to
Fig. 3.

Risbey and Entekhabi (1996) produced contour plots of
the watershed streamflow response to changes in precipita-
tion and temperature for the Sacramento River basin using
the PRMS model. They found that the streamflow has a much
higher sensitivity to precipitation change than to temperature
change. This result is similar to the one found here, where
changes in precipitation generally cause a stronger stream-
flow response than changes in temperature. However, the
impact of temperature becomes more significant for Type C
predictions.

As mentioned earlier, Merz et al. (2010) show that
some parameters of their model change with climate.
They found that the degree day factor decreased by about
0.2 mm◦C day−1, the snow correction factor decreased by
0.2, the maximum soil moisture storage, FC, increased from
150 mm to 250 mm, and the non-linearity parameter for
runoff generation (B) changed from 3 to 5, over a period of
1976–2006, which was marked by a temperature increase of
around 2◦C while precipitation has slightly increased over
the three decades. They attribute the increase of storage to
the higher capacity of soils to store moisture due to contin-
uous evaporation of incoming moisture. The model used by
Merz et al. (2010) is the HBV model, which is similar to the
model used in this study though a bit more complex. We
found that the storage calculated from the parameters of the
soil moisture accounting module (cmax and b) in our study
was higher for drier and hotter climates. 90 % upper and
lower limits of storage along with the most probable values
were calculated and spearman rank correlation analysis was
carried out with the aridity index for the 72 climate scenarios
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across all 5 watersheds. The spearman rank correlation val-
ues (Spearman, 1904) for upper limits across all the water-
sheds for all climate scenarios was of the order of 0.99, for
lower limits it varied between 0.62–0.99 and for the most
probable storage the range was 0.25–0.82. Thus showing that
the storage parameter values increase with increasing dry-
ness. This result corroborates Merz et al.’s (2010) finding,
which was similar for historical climate change.

Another important aspect of this study was the impact
of the sampling method used on the results. While con-
straining for climate change, the number of parameter sets
within the 90 % prediction intervals decreased substantially
from around 8000 (out of 10 000 initially sampled) to as low
as 1000 for extremely dry climates with high aridity index.
There can be (at least) two possible explanations for this be-
havior – either the model used is not sufficient for simulating
the processes in highly arid climates since fewer parameter
combinations are able to capture the expected signature dy-
namics, or, the method of uniform random sampling being
used in this study is not able to generate parameter sets in the
feasible space. Zhang et al. (2008) used a multi-objective
optimization algorithm to determine the feasible solutions
that satisfied the regionalization constraints. They found that
using a multi-objective evolutionary algorithm increased the
number of solutions found as compared to the uniform ran-
dom sampling. The future scope of this work will include
the introduction of a more efficient algorithm to search the
parameter space.

6 Conclusions

In this paper, we develop a novel probabilistic uncertainty
framework based on a trading-space-for-time idea to account
for the problem that behavioral parameter will change with
changing climate. We show how this approach can be used
to derive probabilistic streamflow predictions under different
climatic scenarios from which a wide range of streamflow in-
dicators can be derived. The approach is independent of the
particular watershed model used and can be applied to both
gauged and ungauged basins. Results for five test watersheds
indicate that the performance of predictions based on chang-
ing parameter with climate become more reliable as the cli-
mate deviates significantly from historical observations when
comparing simulations within historical variability. This im-
plies that while validation of the strategy is difficult given
the limited climatic variability over the available data period,
results suggest an improvement of projections if changing
parameters are considered. It was found that the thresholds
of temperature and precipitation change after which the con-
ditioning on historical climate differs significantly from the
conditioning on changing climate vary with the climate in
which the watershed is initially located. Some general obser-
vations were that for dry watersheds, in the case of decreas-

ing precipitation, the two methods’ results were significantly
different even for small changes in precipitation. Also, pre-
dictions for snow dominated watersheds differ significantly
even for small changes in temperature. For non-snow dom-
inated watersheds, the performance of Type H and Type C
predictions is similar for a temperature increase up to 2◦C. In
wet to intermediate watersheds the two methods give similar
predictions for a precipitation change up to± 20 %, which
means that calibration on historical observations will be a
good strategy within a certain range of climatic variability.

There are of course several simplifications in this study
that in the future should be improved. One of the limitations
of this study is that the model used for deriving the Budyko
curve is the simple, two-parameter, Schreiber model. Other
studies have explored the relationship between aridity index
and evaporation ratio (Milly, 1994; Sankarasubramanian and
Vogel, 2003) and tried to develop a theoretical relationship
for the two indices by considering storage variability be-
tween watersheds. Using a more sophisticated approach in
modeling the relationship between aridity index and evapo-
ration ratio might reduce the scatter of the model residuals.
Another limitation is that only two signatures have been used
in this study for constraining the hydrologic model. The use
of more signatures is likely to capture more characteristics
of the streamflow and therefore improving the accuracy of
the predictions by reducing the uncertainty ranges (e.g. Ya-
dav et al., 2007). Thirdly, guided sampling techniques such
as multi-objective evolutionary algorithms can improve the
efficiency and effectiveness of finding behavioral parameter
sets in the parameters space (Zhang et al., 2008).
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Merz, R., Parajka, J., and Blöschl, G.: Time stability of catchment
model parameters: Implications for climate impact analyses,
Water Resour. Res., 47, W02531,doi:10.1029/2010WR009505,
2010.

Milly, P. C. D.: Climate, soil water storage, and the average
annual water balance, Water Resour. Res., 30, 2143–2156,
doi:10.1029/94WR00586, 1994.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M.,
Kundzewicz, Z. W., Lettenmaierand, D. P., Stouffer, R. J.: Sta-
tionarity Is Dead: Whither Water Management?, Science, 319-,
573–574,doi:10.1126/science.1151915, 2008.

Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst.
Sci., 11, 483–499,doi:10.5194/hess-11-483-2007, 2007.

Nash, L. L. and Gleick, P. H.: Sensitivity of stream?ow in the
Colorado basin to climatic changes, J. Hydrol., 125, 221–241,
doi:10.1016/0022-1694(91)90030-L, 1991.

Peel, M. C. and Bloeschl, G.: Hydrological modeling in a changing
world, Prog. Phys. Geog., 35, 249–261, 2011.

Poff, N. L., Bledsoe, B. D., and Cuhaciyan, C. O.: Hydrologic vari-
ation with land use across the contiguous United States: geomor-
phic and ecological consequences for stream ecosystems, Geo-
morphology, 79, 264–285, 2006.

Poff, N. L., Olden, J. D., Merritt, D., and Pepin, D.: Homoge-
nization of regional river dynamics by dams and global biodi-
versity implications, Proceedings of the National Academcy of
Sciences, 104, 5732–5737, 2007.

Richter, B. D., Baumgartner, J. V., Powell, J., and Braun, D. P.:
A method for assessing hydrologic alteration within ecosystems,
Conserv. Biol., 10, 1–12, 1996.

Richter, B. D., Matthews, R., Harrison, D. L., and Wigington,
R.: Ecologically sustainable water management: managing river
flows for river integrity, Ecol. Appl., 13, 206–224, 2003.

Hydrol. Earth Syst. Sci., 15, 3591–3603, 2011 www.hydrol-earth-syst-sci.net/15/3591/2011/

http://dx.doi.org/10.1016/S0022-1694(01)00421-8
http://dx.doi.org/10.1029/2000WR900207
http://dx.doi.org/10.5194/hess-13-893-2009
http://dx.doi.org/10.1029/2010WR009240
http://dx.doi.org/10.1029/2008GL037048
http://dx.doi.org/10.1175/1520-0477(1992)073
http://dx.doi.org/10.1016/j.jhydrol. 2005.07.031
http://dx.doi.org/10.1029/2008JD011648
http://dx.doi.org/10.1016/j.jhydrol.2004.01.002
http://dx.doi.org/10.1016/j.jhydrol.2007.01.010
http://dx.doi.org/10.1016/j.advwatres.2005.11.001
http://dx.doi.org/10.1029/2006WR005756
http://dx.doi.org/10.1016/j.ensoft.2008.11.010
http://dx.doi.org/10.1029/2004GL021462
http://dx.doi.org/10.1029/2002GL015999
http://dx.doi.org/10.1029/2010WR009505
http://dx.doi.org/10.1029/94WR00586
http://dx.doi.org/10.1126/science.1151915
http://dx.doi.org/10.5194/hess-11-483-2007
http://dx.doi.org/10.1016/0022-1694(91)90030-L


R. Singh et al.: A trading-space-for-time approach to streamflow predictions in a changing climate 3603

Risbey, J. S. and Entekhabi, D.: Observed Sacramento Basin
stream-flow response to precipitation and temperature changes
and its relevance to climate impacts studies, J. Hydrol., 184, 209–
223,doi:10.1016/0022-1694(95)02984-2, 1996.

Rosero, E., Yang, Z.-L., Wagener, T., Gulden, L. E., Yatheen-
dradas, S., and Niu, G.-Y.: Quantifying parameter sensitiv-
ity, interaction, and transferability in hydrologically enhanced
versions of the Noah land surface model over transition zones
during the warm season, J. Geophys. Res., 115, D03106,
doi:10.1029/2009JD012035, 2010.

Sankarasubramanian, A. and Vogel , R. M.: Hydroclimatology of
the continental United States, Geophys. Res. Lett., 30, 1363,
doi:10.1029/2002GL015937, 2003.

Shuttleworth, W. J.: Evaporation, in: Handbook of Hydrology,
edited by: Maidment, D. R., 4 pp., 18, Mcgraw-Hill, 1993

Spearman, C.: The proof and measurement of association between
two things, Am. J. Psychol., 15, 72–101, 1904.

Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karam-
biri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo, E.
M., O’Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer, D., Uh-
lenbrook, S., and Zehe, E.: IAHS Decade on Predictions in Un-
gauged Basins (PUB), 2003–2012: Shaping an exciting future
for the hydrological sciences, Hydrolog. Sci. J., 48, 857–880,
2003.

Van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.:
Characterization of watershed model behavior across a hy-
droclimatic gradient, Water Resour. Res., 44, W01429,
doi:10.1029/2007WR006271, 2008.

Van Werkhoven, K., Wagener, T., Reed, P., and Tang, Y.:
Sensitivity-guided reduction of parametric dimensionality for
multi-objective calibration of watershed models, Adv. Water Re-
sour., 32, 1154–1169, 2009.

Vaze, J., Post, D., Chiew, F., Perraud, J.-M, Viney, N., and Teng,
J.:Climate non-stationarity - Validity of calibrated rainfall-runoff
models for use in climate change studies, J. Hydrol., 394, 447–
457,doi:10.1016/j.jhydrol.2010.09.018, 2010.

Wagener, T.: Can we model the hydrologic implications of
environmental change?, Hydrol. Process., 21, 3233–3236.
doi:10.1002/hyp.6873, 2007.

Wagener, T. and Wheater, H. S.: Parameter estimation and region-
alization for continuous rainfall-runoff models including uncer-
tainty, J. Hydrol., 320, 132–154, 2006.

Wagener, T. and Montanari, A.: Convergence of approaches toward
reducing uncertainty in predictions in ungauged basins, Water
Resour. Res., 47, W06301,doi:10.1029/2010WR009469, 2011.

Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V.,
and Sorooshian, S.: A framework for development and applica-
tion of hydrological models, Hydrol. Earth Syst. Sci., 5, 13–26,
doi:10.5194/hess-5-13-2001, 2001.

Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Har-
man, C. J., Gupta, H. V., Kumar, P., Rao, P. S. C., Basu, N.
B., and Wilson, J. S.: The future of hydrology: An evolving
science for a changing world, Water Resour. Res., 46, W05301,
doi:10.1029/2009WR008906, 2010.

Weiskel, P. K., Vogel, R. M., Steeves, P. A., Zarriello, P. J., DeSi-
mone, L. A., and Ries III, K. G.: Water use regimes: Character-
izing direct human interaction with hydrologic systems, Water
Resour. Res.,43, W04402,doi:10.1029/2006WR005062, 2007.

Yadav, M., Wagenerm, T., and Gupta, H.: Regionalization of con-
straints on expected watershed response behavior for improved
predictions in ungauged basins, Adv. Water Resour., 30, 1756–
1774,doi:10.1016/j.advwatres.2007.01.005, 2007.

Zhang, Z., Wagener, T., Reed, P., and Bushan, R.: Ensemble stream-
flow predictions in ungauged basins combining hydrologic in-
dices regionalization and multiobjective optimization, Water Re-
sour. Res., 44, W00B04,doi:10.1029/2008WR006833, 2008.

www.hydrol-earth-syst-sci.net/15/3591/2011/ Hydrol. Earth Syst. Sci., 15, 3591–3603, 2011

http://dx.doi.org/10.1016/0022-1694(95)02984-2
http://dx.doi.org/10.1029/2009JD012035
http://dx.doi.org/10.1029/2002GL015937
http://dx.doi.org/10.1029/2007WR006271
http://dx.doi.org/10.1016/j.jhydrol.2010.09.018
http://dx.doi.org/10.1002/hyp.6873
http://dx.doi.org/10.1029/2010WR009469
http://dx.doi.org/10.5194/hess-5-13-2001
http://dx.doi.org/10.1029/2009WR008906
http://dx.doi.org/10.1029/2006WR005062
http://dx.doi.org/10.1016/j.advwatres.2007.01.005
http://dx.doi.org/10.1029/2008WR006833

