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Abstract. Eddy covariance sites can experience data losses
as high as 30 to 45% on an annual basis. Artificial neural
networks (ANNs) have been identified as powerful tools for
gap filling, but their performance depends on the represen-
tativeness of data used to train the model. In this paper, we
develop a normalization method, which has similar perfor-
mance compared to conventional training approaches, but ex-
hibits differences in the timing of fluxes, indicating different
and previously unused information in the data record. Specif-
ically, the differences between half-hourly model fluxes, es-
pecially during summer months, indicate that the structure of
the information content in the data changes seasonally, diur-
nally and with the rate of data loss. Extracting more infor-
mation from data may not improve model performance and
indicates the need for improved data and models to address
flux behavior at critical times. We advise several approaches
to address these concerns, including use of separate models
for day and nighttime processes and the use of alternate data
streams at dawn, when eddy covariance may be particularly
ineffective due to the timing of the onset of turbulent mixing.

1 Introduction

Automated field data collection often produces discontinu-
ous data sets as a result of instrument malfunction, power
failure, or various other technical and non-technical prob-
lems. These discontinuities prove especially problematic for
micrometeorological measurements. The expanded use of
micrometeorological systems for ecological studies (Baldoc-
chi et al., 2001) has resulted in an increased interest in meth-
ods to interpolate values for missing data. Eddy covariance
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measures landscape-scale energy and mass fluxes in a wide
variety of ecosystems at high temporal resolution (generally
30 min accumulations). Towers are employed in a wide array
of geographic regions including agricultural lands, temperate
forests, tropical rainforests, and a range of arid and semi-arid
landscapes (Baldocchi et al., 2001; Kurc and Small, 2007;
Scott et al., 2006; Wohlfahrt et al., 2008), leading to impor-
tant insights into the nature of the soil-vegetation-atmosphere
system.

Data acquired using eddy covariance typically has signif-
icant gaps caused by insufficient turbulent mixing (Blanken
et al., 1998; Goulden et al., 1996), the sensitivity or failure of
equipment, as well as poorly identified source areas (Brown-
Mitic et al., 2007). Such factors can lead to violations of
the assumptions of the eddy covariance technique, resulting
in data being discarded during processing. These gaps are
often serially correlated to particular events or periods im-
portant for observation, such as extreme weather events or
nighttime carbon exchange (Falge et al., 2001) and transpi-
ration (Dawson et al., 2007; Fisher et al., 2007).

To develop daily, seasonal, and annual estimates of fluxes,
a method to fill gaps by approximating values for miss-
ing data is crucial. Gap-filled flux data is also applied in
land-surface modeling studies, which often require continu-
ous data streams for parameter identification. The method
used for gap filling should result in flux time series that pro-
vide realistic assessments of moisture flux, energy and car-
bon exchange. For example, carbon flux gap filling has been
shown to alter estimates of annual carbon exchange, includ-
ing changes in the source/sink behavior of the carbon flux
(Moffat et al., 2007), which presumably better reflects the
true behavior of the ecosystem.

Gap filling requires awareness of the nature of missing
data; i.e. the user should know what periods have missing
data, why those data are missing, and what relationships will
produce an appropriate estimate for that data. Gap-filling
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Fig. 1. The time series of latent heat flux used in this study shown
as the full record (upper plot) and highlighting in more detail the
concerns associated with gap filling, including properly identifying
the length of near-zero fluxes at night, and the timing and rate of
flux increase during the day (lower plot).

efforts should concentrate on times where flux records are
critical, e.g. periods when flux data are important for model-
ing physical processes, such as the breakup of the stable noc-
turnal boundary layer, or when values may alter annual flux
budgets, such as nocturnal fluxes. In all gap-filling scenar-
ios, the presence of some valid data during similar periods is
necessary to identify and model the appropriate relationships
to replicate expected values when data are lost. Of course, at
very high data loss rates, even a well-trained model may not
be sufficient to reproduce the true behavior of a system.

Gap filling requires the use of a model to estimate miss-
ing data from existing reference data – numerous models for
gap filling have been explored (Falge et al., 2001; Gove and
Hollinger, 2006; Hui et al., 2004; Knorr and Kattge, 2005;
Papale and Valentini, 2003). Analysis of several models by
Moffat et al. (2007) suggests that artificial neural network
(ANN) methods can provide substantial benefits for gap-
filling studies; they perform similarly to other methods with-
out requiring prior assumptions regarding model structure
and are computationally less expensive. Moffat et al. (2007)
also note in their conclusion the need to expand testing of gap
filling models to a variety of different ecosystems, includ-
ing arid sites. While arid sites may behave differently un-
der physically based models due to differences in energy and
water partitioning, ANNs should demonstrate similar model
performance levels in humid and arid regions.

Neural network methods identify input-output relation-
ships in a manner dependent on the information contained in
the input and output data sets (MacKay, 2003). For ANN
training, the use of data that maximize information about
the input-output relationship is key. Because most nighttime
eddy covariance data is filtered out, maximizing informa-
tion requires sampling the input-output pattern for any valid
nighttime data. Validity is often established by a criterion
such as friction velocity, which describes the degree of tur-
bulent mixing at the sensor (Blanken et al., 1998; Goulden et

al., 1996). Eddy covariance data filtering may include other
factors such as advection and stationarity of flow. By extract-
ing the maximum available information from data in condi-
tions near the filter threshold, we can improve the results of
gap filling. This study considers an approach to treating data
that modifies the distribution of data to extract information
from data near the filter threshold.

In brief, gaps in flux records pose problems for the devel-
opment of seasonal and annual estimates of evapotranspira-
tion at the landscape scale. These gaps also make it difficult
to conduct model-based investigations of forcing-response
relationships at the land surface. Here, we investigate the
use of an ANN framework to fill gaps in energy fluxes, with
a particular focus on the probability distributions of flux data
and the associated information applied during ANN model
training. We apply a standardization technique that converts
the probability density function of the flux data to an ap-
proximate normal distribution. This transformation moves
extreme events toward the central tendency while expanding
the region of near-zero fluxes where much of the sensitivity
in gap-filled flux records is found (Falge et al., 2001). By al-
tering the shape of the distribution, we can improve the abil-
ity of the ANN training algorithm to detect extreme events.

2 Methods

2.1 Data and model structure

Data used for this study were collected at a mesquite wood-
land site in southeastern Arizona, near Tombstone, AZ (Scott
et al., 2004). The data record spans three years (2001–2003)
– the tower was not operational during the winter of 2001–
2002. Data were filtered according to Scott et al. (Scott et
al., 2004). Time series of the latent heat flux (Fig. 1) con-
tain data gaps typical of eddy covariance records, with both
long (multiple-day to week) and short gaps (several hours
to individual 30-min intervals). Similar patterns of miss-
ing data have been found in flux tower records from mesic
and humid systems including a range of forest types (trop-
ical and temperate, broadleaf and needleleaf – Falge et al.,
2001; Moffat et al., 2007).

Fluxes were filtered prior to modeling for data spikes as
well as using a friction velocity (u∗) filter (Scott et al., 2006).
Fluxes were also corrected for density changes (Webb et al.,
1980). Data were tested for subsidence by analyzing the
probability density function of vertical wind speed at night.
While nearly 50% of the nighttime data had wind speeds
above 0.3 ms−1, the u∗ filter rate was above 70% as well.
Applying the remaining data had minimal effect on model
results. Nighttime data also show minimal bias for wind di-
rection (not shown).

The input-output structure was similar to simple equations
of evapotranspiration (e.g. Penman equation, Alavi et al.,
2006) as well as land-surface models (Pitman, 2003). Energy
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Fig. 2. Histograms of relative frequency of latent heat flux at the
flux tower site. Frequency of the raw data is shown in(a). Plot (b)
is the frequency of the LErsc (themapminmaxfunction of the Mat-
lab Neural Network Toolbox was used to perform scaling). Plot(c)
is a histogram of standardized LE as described in Data and Methods.
Note that themapminmaxretains the original distribution while the
standardization transforms the distribution to something near nor-
mal for ET.

balance, determined as the slope of a linear fit on turbulent
(latent and sensible heat) fluxes and net energy (net radiation
minus ground heat flux) was 59%. Energy balance at mid-
day was generally between 50% and 80%, while at night the
average was 45%.

The ANN models used in this study compute estimates of
latent and sensible heat fluxes based on inputs of precipita-
tion, relative humidity, wind speed, air pressure, net radiation
and temperature. Input meteorological data come from a site
less than 1 km from the tower and were gap-filled indepen-
dently using a mean diurnal value method. After running the
model, the latent heat fluxes were then converted into evapo-
transpiration (ET, mm/30-min) for ease of interpretation.

2.2 ANN training and information content

2.2.1 Approaches to ANN training data

When using ANNs, pre-processing methods are used to
transform input and output data onto the range±1 (e.g.
Matlab Neural Network Toolbox, MathWorks, Inc., Natick,
MA). This ensures that the model will predict outputs based
on the scaled variation in and among the data, rather than one
dominant data stream of large magnitude. As a way to assess
this scaling process, we examine the probability distribution
function of the output training data (the measured values of
ET) before applying the ANN for gap filling. Two different
scaling techniques are applied, the first a simple scaling, re-
ducing values to the range (−1 1) and the second making a
standardized distribution, which is described below.

In order to standardize the flux data, the raw data is as-
sumed to belong to a gamma distribution. The absolute value
of the minimum is added to each point in the raw data so
that the entire record is positive. After this shift, a gamma

distribution was fit using a maximum likelihood method in
the Matlab statistical functions (gampdfandgamcdf). These
statistical functions were used to transform the data to a nor-
mal distribution using a method similar to the standardized
precipitation index (SPI, after Mishra and Desai, 2006). The
normalization is achieved using an approximation for the
normal distribution; (see Mishra and Desai, 2006 for more
details):

Z = −

(
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c0+c1t+c2t
2

1+d1t+d2t
2+d3t

3

)
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2
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2+d3t

3

)
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(1)

where,Z is the standardized index. The term,t , is calculated
as:
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√
ln

(
1

(H(x))2

)
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t =

√
ln

(
1

(1−H(x))2

)
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(2)

whereH(x) is the cumulative gamma function, and the co-
efficients are:

c0 = 2.515517 c1 = 0.802853 c2 = 0.010308
d1 = 1.432788 d2 = 0.189269 d3 = 0.001308

The transformation alters the distribution of the latent heat
flux data applied to the model as shown in Fig. 2. The results
of this transformation are used directly as the training data
for the model. The subsequent output is then converted back
to values of latent heat flux using a third-order polynomial fit
(r2 = 0.98). By applying this transformation, we are able to
alter the sampling patterns used by the ANN during training,
and thus enhance the sampling from extreme values of latent
heat flux.

2.2.2 Information theory and ANN training

To quantify the effects of different methods of data scaling,
we consider the training data in terms of its information con-
tent, that is, the behavior “seen” by the model after it is sam-
pled for training. Maximizing the information extracted from
data should lead to the best possible model performance. We
use the Shannon index to quantify the information associated
with the frequency of certain values of latent heat flux. The
Shannon index (Shannon, 1948), quantifies the amount of in-
formation,h(x), characteristic of a value (or range),x, as a
function of its probabilityp(x), according to the expression:

h(x) = −p(x)ln(p(x)) (3)

and the total information content,H , for all values ofx in the
set,S:

H =

S∑
h(x) = −

S∑
p(x)ln(p(x)) (4)

As noted above, most implementations of ANNs, includ-
ing the default settings of most software packages, simply
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Table 1. Shannon information index (H) values of latent heat flux
used for training ANN models. Bins are identical to those used in
the histograms in Fig. 2.

ET (mm) Hrsc ET (mm) Hstd

< 10 0.2777 < −3.2 0.0009
10–38 0.1397 (−3.2)–(−1.2) 0.0019
38–66 0.092 (−1.2)–(−0.1) 0.0022
66–95 0.0792 (−0.1)–0.31 0.0758
95–123 0.0694 0.31–0.39 0.1042
123–151 0.0644 0.39–0.51 0.0476
151–179 0.0594 0.51–0.63 0.0287
179–207 0.0531 0.63–0.75 0.0123
207–235 0.0511 0.75–1.4 0.1153
235–264 0.0445 1.4–4.2 0.1172
264–292 0.0396 4.2–11 0.1191
292–320 0.0293 11–22 0.1193
320–348 0.021 22–40 0.1998
348–376 0.017 40–64 0.1921
376–404 0.0138 64–95 0.1198
404–432 0.0096 95–132 0.1094
432–461 0.007 132–176 0.1065
461–489 0.0033 176–227 0.104
489–517 0.0035 227–285 0.0879
517–545 0.0029 285–351 0.0554
545–573 0.0016 351–424 0.0317
573–601 0.0007 424–504 0.0133
601–630 0.0007 504–593 0.005
629–658 0.0002 593–689 0.0015
> 658 0.0002 > 689 0.0002

Total 1.08 Total 1.77

rescale the distribution of the raw data to an interval (−1 1)
(e.g. themapminmaxfunction in Matlab). Under this typi-
cal rescaling approach, the total Shannon index value of the
distribution shown in Fig. 2b is 1.08. To increase the infor-
mation extracted from extreme low and high values of latent
heat flux, the data were transformed from their original dis-
tribution into a (near) normal distribution, as described be-
low. The resulting transformation yielded a total Shannon
index of 1.77. Shannon values for individual bins in Fig. 2
are summarized in Table 1. At very low values of latent heat
flux (less than 95 W/m2, or 0.04 mm/d), the information con-
tent in the original distribution is 0.59 compared to 1.26 in
the standardized distribution. The demonstrable increase in
information is due to expanding the distribution of low flux
values across a greater number of bins.

We estimate the Shannon index, using Eqs. (3) and (4), in
the training record. These index values describe the infor-
mation content passed to the ANN during training. Equa-
tions (3) and (4) are not explicitly used to inform ANN train-
ing, but instead provide offline information about the charac-
teristics of the data applied to the model.

The two ANN models developed here were trained using
(1) the typical approach of rescaling the latent heat flux data,
referred to here as the “rescaled” model (similar to the “stan-
dard ANN” of Moffat et al., 2007) and (2) the new approach
which used a standardized approach, referred to as the “stan-
dardized” model. Both models were trained using MAE, as
noted above. Model training used data from the year 2003,
which represents the longest near-continuous subset of the
data that incorporates a full range of seasonal behavior. A
one-year data record is the shortest span which can repro-
duce seasonality without risk of overtraining at longer times
(Neal, 2008). From the year 2003 data, 80% of the data were
used for training and 20% were used for validation of the
model selected randomly. The validation data identify when
training is terminated, i.e. when model performance ceases
to improve.

Model training used the mean absolute error (MAE) to
account for the error structure of individual flux observa-
tions (Richardson et al., 2006). Training was performed on
the data from 2003, comprising the longest near-continuous
record in the data, and was validated on the 2001–2002 time
series. Gap filling performance was evaluated using existing
gaps in the data to assess the two models in a “real” gap fill-
ing application. Where past studies have used data sets with
artificial gaps (Moffat et al., 2007), generated by randomly
removing existing data, our aim here was to train models
with as much data as possible, rather than testing the sen-
sitivity of models to the structure of data loss. Here, model
performance on existing data is used to evaluate the predic-
tive capability of the model.

2.3 Marginal Distribution Sampling (MDS)

To provide a further basis of comparison for the two ANN
models employed here, we applied the marginal distribu-
tion sampling method (Moffat et al., 2007; Reichstein et al.,
2005). In short, this method samples flux values within a
variable window surrounding a missing data point. The miss-
ing data point is filled by the average value under similar me-
teorological conditions within a±14-day window. Similar
meteorological conditions are defined as net radiation within
50 Wm−2, vapor pressure deficit within 0.5 kPa, and temper-
ature within 2.5◦C. Thresholds were selected to ensure that
sufficient data were available to develop average values un-
der consistent meteorological conditions. Any missing data
without valid data points within the 14-day window were left
missing.

2.4 Model performance

After running the models, the output latent heat flux was con-
verted to evapotranspiration (ET) for ease of comparison be-
tween models and to conventional ET measurements from
other studies. Results are reported for the raw, unfilled data
set (ETraw), the rescaled model (ETrsc) and the standardized
model (ETstd).
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Table 2. Summary of model performance for both ANNs and MDS (ETMDS). Model training used mean absolute error (MAE) to identify
parameters.

Metric 2003 2001–2002
ETrsc ETstd ETMDS ETrsc ETstd ETMDS

MAE (mm) 0.0252 0.0329 0.024 0.0272 0.0348 0.0289
RMSE 30min (mm) 0.0403 0.0517 0.041 0.0413 0.0522 0.2273
RMSE daily (mm) 0.7395 0.9301 1.0331 1.0544 1.0876 1.3616
Rel RMSE (–) 0.0369 0.0475 0.0176 0.392 0.4954 0.4828
Correlation 0.8951 0.8326 0.9094 0.8638 0.7916 0.8079

Model performance was determined using several met-
rics: root mean squared error (RMSE), relative RMSE, MAE
and Pearson’s correlation. These metrics were calculated
for the training period (year 2003) as well as the remaining
data record (2001–2002). Model residuals were also used to
quantify model performance as a function of data loss. These
residuals were calculated for each half hour interval and aver-
aged for the entire record as well as seasonally (see below for
a description of season delineation). The fraction of missing
data for each half hour during these time periods was used to
characterize data loss.

For comparison, uncertainty bounds were determined for
the raw data during the training period. Because the tower
was only operating during the growing season of 2001 and
2002, uncertainty estimates were only calculated based on
the 2003 data. Uncertainty was determined for each 30-
min interval using the difference between flux values on days
of similar environmental conditions to identify the measure-
ment uncertainty (Richardson et al., 2006).

As noted above, patterns in model performance were an-
alyzed on daily and half-hourly time steps. Performance
was also examined based on seasonal behavior. Seasons
were defined as winter (December-January-February); mon-
soon, describing the North American Monsoon (Gochis et
al., 2006) and identified by a climatologically defined rainy
season (Kurc and Small, 2007) between late June and early
September; and pre- and post-monsoon, the remainder of the
year not contained in the other two seasons. These seasons
are effectively winter, summer and spring/fall, but we use the
climatologically defined monsoon to better identify moisture
availability during the wet season.

3 Results

Model training resulted in similar performance for both mod-
els (Table 2). While the rescaled neural network model
(ETrsc) has a slightly lower RMSE and a slightly higher cor-
relation, the difference in both is within the measurement
uncertainty for the data. At a daily level, the difference in
RMSE values for the two ANN models is lower than the half-
hourly RMSE, suggesting that the ANN model training may
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Fig. 3. Precipitation (P) and daily ET for(a) ETraw,(b) ETrsc, and
(c) ETstd for the year 2001. Sum of ET over the year is shown in
the box associated with each plot (sum of precipitation is 263 mm).

lead to compensation between under- and overestimation at
different times during the day.

The MDS method performed similarly to the ANN model
during 2003, in which data were available throughout the
year, with MAE values within 0.01 mm (Table 2). The MAE
and RMSE values for all methods approach the measurement
uncertainty of 0.023 mm. However, in 2001 and 2002, when
the flux tower was operating only during the growing season,
MDS performance is markedly worse than the ANN perfor-
mance, especially when measured by RMSE (Table 2). In
general, based on the objective metrics used here, the perfor-
mance of the two ANN models and MDS can be judged to
be approximately equivalent.

Time series of daily ET for the raw and model data during
the year 2001 follow an expected seasonal trend (Fig. 3). The
difference between the annual ET derived from the two neu-
ral network methods is approximately 50mm. Both of the
model methods (ETrsc, and ETstd) generally reproduce the
seasonal pattern of ET at the daily level, though they differ
in the magnitude of ET response to precipitation events, with
ETstd producing more ET following storms but regressing to
lower ET between storms.

Note that ET is greater than annual precipitation (253 mm
in 2001). This difference is likely due to the influence of
groundwater near the riparian corridor. Plant access to and
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use of groundwater at this site is discussed in several other
studies, and has been linked both to inputs from the aquifer
as well as bank storage following high flow events in the San
Pedro River (Scott et al., 2006; Scott et al., 2004; Scott et al.,
2008). The strong atmospheric demand on moisture from the
semi-arid climate suggests that the availability of groundwa-
ter will have little impact on the ability to model ET based
on meteorological variables. In terms of this study, omission
of a groundwater term is not likely to affect either model in
comparison to the other.

Comparing the two ANN models in terms of daily ET
(Fig. 4), the two models deviate from each other at daily ET
values around 2 mm/day. These periods (region 2 in Fig. 4)
correspond to the pre- and post-monsoon season. At high
values of daily ET, i.e. during the monsoon season, compar-
ing the two models shows a high degree of scatter around the
1:1 line. At low values of ET, which generally occur during
winter, the two models correspond well at the daily level.

Along with daily ET, the diurnal patterns of ET flux should
be reproduced by a gap-filling model. In the overall data set
as well as in each of the three seasons, data loss is high during
the nighttime and low, though still substantial around midday
(Fig. 5). Rates of data loss generally follow the pattern of
sunlight hours for each season. These rates of data loss, from
the entire data set and each season independently, are used to
estimate model performance as a function of data loss.

Applying the rate data loss as a predictor of model per-
formance, using several forms of the model residual, the two

ANN models appear relatively consistent (Fig. 6). Residuals
calculated include the absolute (ETmodel–ETraw) and relative
(as a fraction of ETraw) values as well as the residual nor-
malized by the standard deviation of the data and the Nash-
Sutcliffe efficiency. The models both show slight improve-
ment in the absolute value of residuals and worsening perfor-
mance in terms of relative residuals. Most notably, however,
the residuals from ETstd, which are much larger in magni-
tude than ETrsc at low rates of data loss, actually indicate
improved performance than ETrsc through intermediate lev-
els of data loss (between 40 and 70% loss, Fig. 6).

The diurnal pattern of model performance (Fig. 7) indi-
cates poor model results during dawn in all three seasons and
in the overall record. Errors during dawn and near-dawn pe-
riods are larger even than dusk and near-dusk times. Because
the near-dawn period is associated with the breakup of stable
nighttime air and the return of turbulent flux at the boundary
layer, poor model performance is related to this change in the
nature of the measured flux data.

4 Discussion and conclusions

At a qualitative level, the two ANN models both reproduce
the seasonal and event-based patterns in the data record.
Timing of peak ET events occurs at similar times in the daily
record when viewed on an annual level (Fig. 3). The over-
all performance of both models is similar, though the stan-
dardized model generally had greater error. When examined
more closely, the differences in model behavior become more
noticeable and indicate the shortcomings of both data and
models.

4.1 Model performance and information extraction

The standardized ANN model, with a higher Shannon index
value, should yield a trained model that better represent the
observed pattern of ET, especially at low flux magnitudes.
However, in terms of error metrics, the two ANN models
perform similarly (Table 2). The rescaled data appears to
be biased toward lower values of ET, while the standardized
model favors larger values of ET. In both cases, the perfor-
mance of each model does not fully replicate the distribution
of the raw data. However, the representativeness of any of
the three distributions is complicated by the frequent loss of
data, especially at low ET.

As shown here, ANNs as gap-filling tools are insensi-
tive to data treatment (rescaled or standardized). The differ-
ences in performance between the two models (Table 2) are
much smaller than the magnitude of the errors. Slight dif-
ferences between the two models suggest that problems with
model implementation, e.g. input data identification and/or
data loss, are more substantial than problems with informa-
tion extraction.
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Fig. 5. Diurnal plots from(a) pre- and post-monsoon seasons,(b) winter, (c) monsoon, and(d) the full time series. For each plot the
upper figure shows the two model results and the raw data. Lower plots show the rate of data loss during that period. Error bar on ETraw
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the full data record. Crosses indicate data between 05:30 and 08:00.

The problem of data loss is most noticeable when compar-
ing ANN and MDS results. Long gaps in the flux record dur-
ing 2001 and 2002 lead to periods when MDS is unable to
produce quality gap filled data because the 14-day window
contains little or no data. Long gaps may also bias MDS-
filled data at the edge of the gap, where the data sampled to
develop the replacement data value are consistently at one
end of the meteorological “window”. This bias at the start
and close of the growing season may explain the increased
RMSE in MDS during 2001 and 2002, while the relative
RMSE and MAE are at values similar to the ANN methods.
Overall, the inability of MDS to fill longer gaps makes it a
less-attractive option compared to ANN models.

Model residuals as a function of data loss further indicate
that the performance of ANNs is insensitive to the treatment
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Fig. 7. Diurnal plots of model residuals from the full time series.

applied to the training data. While the standardized method
showed slight improvement as a function of data loss, espe-
cially at intermediate levels of loss (Fig. 6), the range of er-
ror values under both treatments were similarly large and the
standard error estimates from both methods fully enveloped
those of the other model. Model performance cannot be dis-
criminated due to the large standard deviations of error based
on a diurnal pattern. Since both models yield similar er-
ror values for the full time series and similarly over/under-
estimate the ET, model improvement from data treatment
may be limited.

Our findings are contrary to our initial hypothesis, that
altering the data distribution would improve model perfor-
mance by making more information available during model
training. Changing the probability distribution of the data
should have improved the sampling rate of extreme events
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Table 3. Comparison of annual and seasonal sums of ET and the nighttime (ETn) to daytime (ETd ) ratios for the two ANN models and MDS
using the seasonal divisions described in Sect. 3. Data from winter 2001 and 2002 are not valid for ETMDS and ETraw due to limitations in
the MDS method (see Sect. 4.1) and tower inoperation, respectively.

ETstd ETrsc ETMDS
ET ETn/ETd ET ETn/ETd ET ETn/ETd ETraw

2001 Pre/Post 273 0.11 325 0.05 381 0.06 205
Winter 47 0.13 57 0.07 n/a n/a n/a
Monsoon 260 0.06 267 0.04 290 0.07 132
All 574 0.10 645 0.06 788 0.03 n/a

2002 Pre/Post 303 0.07 355 0.04 356 0.08 233
Winter 57 0.04 68 0.04 n/a n/a n/a
Monsoon 166 0.07 174 0.06 188 0.12 101
All 524 0.07 596 0.05 n/a n/a n/a

2003 Pre/Post 263 0.09 306 0.05 395 0.04 291
Winter 47 0.05 50 0.11 42 0.06 34
Monsoon 247 0.08 264 0.05 318 0.10 221
All 554 0.09 618 0.05 750 0.07 544

by narrowing the range of values in the standardized index
(Fig. 2). Based on the objective functions (Table 2) and the
wide variability of errors as a function of data loss (Fig. 6), it
appears that the hypothesis may not be true. This result sug-
gests either that the model structure may be flawed or that the
missing data presents a much greater obstacle than the trans-
formation can overcome. In such a case, alternative sources
of data must be applied not only for direct analysis but to
computational models as well.

4.2 Nocturnal evapotranspiration

One important result when comparing the two ANN mod-
els is the difference in nocturnal ET (Table 3). Both models
have reduced errors at night, and are similarly prone to over
and underestimation, especially when rates of data loss are
high (Fig. 6). In a diurnal sense, the standardized model has
a tendency to predict higher nighttime ET, especially around
dawn, when the model shifts into a mode of increasing ET
earlier than the rescaled model. The MDS gap-filled record
yields greater total ET in all seasons than the two ANN
models, but the ratio of nighttime to daytime ET is similar
(Table 3).

Several other studies have reported on ET at night from
deciduous forest sites in more humid regions (e.g. Novick et
al., 2009). Few have reported on nighttime activity in arid ri-
parian systems. At this site, nighttime ET is estimated at 0.06
and 0.09 fraction of daily ET based on the rescaled and stan-
dardized models, respectively. These fractions are similar
to those reported for humid forests, indicating that semi-arid
riparian species with persistent access to groundwater evap-
otranspire at similar rates as humid forests during the night.
Evaporative demand is dramatically reduced at night when

radiative forcing is absent and relative humidity rises, even
in arid locations.

Comparing nocturnal ET to estimated values of daytime
and nighttime evaporation (E) and transpiration (T), we find
that nighttime ET is a similar fraction of daytime ET as night-
time T to daytime T (∼0.5–0.1, – Fisher et al., 2007). This
suggests that plant transpiration scales directly with total ET
from day to night. Even under the different model treatments
proposed here, the ratio of nighttime to daytime ET are con-
sistent. As noted in the error analysis, the results of gap fill-
ing analysis using two different training data sets does not
dramatically alter predictions of the nighttime to daytime ET
ratio.

4.3 Near-dawn evapotranspiration

The poor model performance at and near dawn provides
strong evidence of the flaws associated with eddy covariance
data at those times. Conventional methods of eddy covari-
ance data filtering apply a u∗-filter or other methods based on
turbulence theory. However, the greater error at dawn com-
pared to other nighttime intervals, despite similar friction ve-
locities, indicates that the onset of turbulence is problematic
for both measurement and modeling. Because the theoretical
basis for eddy covariance is built on strong turbulent mix-
ing, measurements during and immediately following peri-
ods of high stability pose substantial difficulties that may not
be overcome in data-dependent regression models. Further
investigation into near-dawn energy and moisture fluxes will
provide insight into how ecosystems use water during this
critical period.

In the scope of model-data fusion approaches, the ques-
tion of eddy covariance data quality remains a problem for
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the research community. Model development and calibration
is dependent on continuous data records. However, the poor
quality and frequent loss of data, especially at night, may
require that model results are taken as the standard for com-
parison against data. The difficulty is in properly identifying
the source of the best information for nighttime fluxes. In
this study, we show that altering the sampling strategy may
not significantly improve model results. We postulate that,
in future studies, applying ancillary data streams (e.g. cham-
ber flux measurements or soil moisture data) or using alter-
nate model structures may have a greater effect on gap filling
results.

4.4 Implications of this study

Overall, this study points toward several areas for future
study in modeling land-atmosphere interactions and gap fill-
ing. We reinforce the conclusion of Moffat et al. (2007) that
most gap filling methods yield similar performance, although
ANNs may have slightly better results. When filling data
with lengthy gaps, the disadvantages of statistical methods
like MDS become apparent.

Principles of information theory can indicate what flux
values are the most informative for modeling applications.
Gap filling as a modeling exercise attempts to restore infor-
mation where it is lost. As shown here, increasing the in-
formation content of low flux values may not dramatically
improve overall model performance, but performance is not
dramatically reduced either. Other methods to extract greater
information from the data may prove more effective.

An information theory approach may not satisfy deficien-
cies inherent to the original data. The poor performance
of both ANN models during the near-dawn periods can be
linked to the timing of the onset of turbulent mixing as the
nocturnal boundary layer breaks up. In this study, both data
treatments lead to overestimation of fluxes between 05:30
and 08:00, when the stable nighttime air is becoming un-
stable due to surface warming. The meteorological vari-
ables used as model inputs indicate increasing fluxes ear-
lier than the actual data. Because this time period represents
the threshold of feasible data collection by eddy covariance,
other methods (e.g. leaf-level measurements of transpiration)
should be used to corroborate the data or develop indepen-
dent models.

Because of the differences in turbulent mixing between
nighttime and daytime periods, parallel gap filling models
may be an appropriate solution to the information extraction
problem identified here. Where most approaches use a sin-
gle model for nighttime and daytime, assuming that the flux
mechanisms and controlling variables are consistent through-
out, we propose using different models for night and day, fo-
cusing on identifying appropriate model structures for each.
Applying two models will also provide another avenue to ex-
plore filter criteria under less-than-ideal measurement condi-
tions (van Gorsel et al., 2008).

This study also points out one of the potential problems
with model training, that improved model performance un-
der certain conditions (here low flux values) may result in
poor performance under other conditions. The “black box”
nature of ANN model development means that these trade-
offs in model performance come without the ability to fully
trace model outcomes to changes in the model structure or
training. Comparing the diurnal plots for the two models, it
appears that the standardized model under-estimated midday
ET, which may have been ignored during training in favor
of improving ET performance at other times of the day. The
risk of this compensatory effect in model training suggests
that different models should be used for filling gaps at night
and during the day, especially in light of the different mi-
crometeorological conditions at work in those times. Using
separate models would allow one model to track patterns un-
der stable nighttime conditions, while another would follow
the flux behavior under turbulent mixing.
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