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Abstract. Seasonal hydrologic forecasts derive their skill
from knowledge of initial hydrologic conditions and climate
forecast skill associated with seasonal climate outlooks. De-
pending on the type of hydrological regime and the sea-
son, the relative contributions of initial hydrologic condi-
tions and climate forecast skill to seasonal hydrologic fore-
cast skill vary. We seek to quantify these contributions on
a relative basis across the Conterminous United States. We
constructed two experiments – Ensemble Streamflow Predic-
tion and reverse-Ensemble Streamflow Prediction – to par-
tition the contributions of the initial hydrologic conditions
and climate forecast skill to overall forecast skill. In en-
semble streamflow prediction (first experiment) hydrologic
forecast skill is derived solely from knowledge of initial hy-
drologic conditions, whereas in reverse-ensemble streamflow
prediction (second experiment), it is derived solely from at-
mospheric forcings (i.e. perfect climate forecast skill). Using
the ratios of root mean square error in predicting cumulative
runoff and mean monthly soil moisture of each experiment,
we identify the variability of the relative contributions of the
initial hydrologic conditions and climate forecast skill spa-
tially throughout the year. We conclude that the initial hy-
drologic conditions generally have the strongest influence on
the prediction of cumulative runoff and soil moisture at lead-
1 (first month of the forecast period), beyond which climate
forecast skill starts to have greater influence. Improvement
in climate forecast skill alone will lead to better seasonal hy-
drologic forecast skill in most parts of the Northeastern and
Southeastern US throughout the year and in the Western US
mainly during fall and winter months; whereas improvement
in knowledge of the initial hydrologic conditions can poten-
tially improve skill most in the Western US during spring and
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summer months. We also observed that at a short lead time
(i.e. lead-1) contribution of the initial hydrologic conditions
in soil moisture forecasts is more extensive than in cumula-
tive runoff forecasts across the Conterminous US.

1 Introduction

Accurate seasonal hydrologic forecast information is a key
aspect of drought mitigation (Hayes et al., 2005). Seasonal
hydrologic/drought prediction systems, such as the Climate
Prediction Center’s Seasonal Drought Outlook, the Univer-
sity of Washington’s Surface Water Monitor (SWM; Wood
and Lettenmaier, 2006; Wood, 2008) and Princeton Univer-
sity’s drought forecast system (Luo and Wood, 2007; Li et
al., 2008) provide information about the status of hydro-
logic conditions and their evolution across the Conterminous
United States (CONUS). However, primarily due to the lim-
ited skill of climate forecasts beyond the seasonal time scale,
seasonal hydrologic forecasts made with these systems are
currently limited to lead times of 1–3 months. Central to the
hydrologic forecasts made with these systems is the accurate
knowledge of hydrologic and/or soil moisture (SM) condi-
tions at the time of the forecast and accurate weather/climate
forecasts. For example, the Seasonal Drought Outlook
derives drought prediction skill from knowledge of initial
hydrologic conditions (IHCs) taken from the US Drought
Monitor (Svoboda et al., 2002) and from weather/climate
forecasts at various time scales ranging from 6–10 days to
3 months. Alternatively, SWM and the Princeton University
systems obtain the IHCs by forcing one or more land surface
models (LSMs) with observed gridded station data up to the
time of the forecasts, and then continue the LSM runs using
either gridded climate data randomly resampled from a ret-
rospective period (SWM) or seasonal climate forecasts over
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the forecast period downscaled for use by the LSMs (Prince-
ton University system). Hence, two key factors limiting the
seasonal hydrologic forecast skill in all of these systems are
(1) uncertainties in the IHCs, associated with uncertainties
in both the LSM’s prediction skill and forcings over the re-
cent past; and (2) climate forecast skill (FS) over the forecast
lead time. Thus, to make any significant improvements in
the current state of seasonal hydrologic forecast skill, the fo-
cus should be towards improving the controlling factors (the
IHCs or FS), which presumably vary depending on location,
forecast lead time, and time of year.

Numerous attempts have been made by the hydrologic and
climate communities to reduce the uncertainties associated
with the aforementioned factors. For example, various re-
searchers have investigated methods for assimilating snow
water equivalent (SWE) and/or SM data (Andreadis and Let-
tenmaier, 2006; Clark et al., 2006; McGuire et al., 2006) into
LSMs to improve the IHCs for seasonal hydrologic predic-
tion. Many attempts have also been made in parallel to im-
prove FS (Krishnamurti et al., 1999; Stefanova and Krishna-
murti, 2002).

The improvement in seasonal hydrologic forecast skill that
could result from these efforts during any season and loca-
tion depends on the relative contributions of the IHCs and
FS to the skill (Wood and Lettenmaier, 2008; Li et al., 2009).
For example, assimilating observed data to improve the IHCs
is valuable mainly for regions where, at least during the first
few months of a seasonal hydrologic forecast, the IHCs dom-
inate the prediction of SM and runoff. Likewise, improve-
ments in FS can most improve seasonal hydrologic forecasts
where atmospheric forcings play a more significant role in
influencing future SM and runoff than the IHCs. Depend-
ing on factors such as SM variability at the time of forecast
initialization, the seasonal cycle, and the variability of pre-
cipitation and topology of the hydrologic regime, the contri-
bution of IHCs and FS to seasonal hydrologic forecast skill
can vary significantly (Mahanama et al., 2011).

Previous studies have identified the major sources of hy-
drological predictability. Wood et al. (2002) assessed the role
of IHCs and FS in seasonal hydrological forecasts for the
Southeastern United States during the drought of 2000 and
found that dry IHCs dominated FS, whereas for the same
region in the case of El Niño conditions from December
1997 to February 1998, both IHCs and FS contributed to
hydrologic predictability. Maurer and Lettenmaier (2003)
evaluated the predictability of runoff throughout the Mis-
sissippi River basin spatially, by season and prediction lead
time using a multiple regression technique to relate runoff
and climate indices (El Niño-Southern Oscillation and the
Arctic Oscillation) and components of the IHCs (SM and
SWE). They found that initial SM was the dominant source
of runoff predictability at lead-1 in all seasons except in
June-July-August (JJA) in the western mountainous region,
where SWE was most important. Maurer et al. (2004) used
Principal Component Analysis to examine contributions to

North American runoff variability of climatic teleconnec-
tions, SM, and SWE for lead times up to a year. They con-
cluded that knowledge of IHCs, especially when forecast
initial conditions are dry, could provide useful predictabil-
ity that can augment predictions of climate anomalies up to
4.5 months of lead time. They found statistically significant
correlations between 1 March SWE and March-April-May
(MAM) runoff over parts of the Western US and Great Lakes
regions and between 1 March SWE and June-July-August
(JJA) runoff over the Pacific Northwest (PNW), the Far West,
and the Great Basin. According to Maurer et al. (2004),
even in regions where runoff variability is dominantly related
to climate, SM could be a valuable predictor for seasonal
lead times. Wood and Lettenmaier (2008) used an Ensem-
ble Streamflow Prediction (ESP)-based framework to con-
duct ESP and reverse-ESP experiments to partition the role
of the IHCs and FS in seasonal hydrologic prediction in two
Western US basins. They noted that the skill derived from
the IHCs is particularly high during the transition from wet
to dry seasons, and that climate forcings dominate most dur-
ing the transition from dry to wet seasons. Li et al. (2009)
used a similar approach to quantify the relative contributions
of IHCs and FS in the Ohio River basin and the Southeastern
US. They found that relative errors are primarily controlled
by the IHCs at a short lead time (∼1 month); however, at
longer lead times FS dominates.

In a recent study Koster et al. (2010) used a suite of LSMs
to evaluate the importance of model initialization (SWE and
SM) for seasonal hydrologic forecasts skill in 17 river basins,
mostly in the Western US. They concluded that SWE and SM
initialization on 1 January, individually contribute to March-
April-May-June-July streamflow forecast skill at a statisti-
cally significant level across a number of Western US river
basins. The contribution from SWE is especially important
in the Northwestern US, whereas SM tends to be important
in the southeast. Mahanama et al. (2011) expanded this work
to 23 basins across the CONUS, for multiple forecast initial-
ization dates, throughout the year. They observed that SWE
(mainly during the spring melt season) and SM (during the
fall and winter seasons) provide statistically significant skill
in streamfow forecast. Furthermore, they found the skill lev-
els to be related to the ratio of standard deviation of initial
total water storage to the standard deviation of forecast pe-
riod precipitation (which they termedκ see Sect. 2.5).

The studies reviewed above have used a variety of meth-
ods to assess the relative contributions of IHCs and FS to sea-
sonal hydrologic forecast skill. Aside from the work of Ma-
hanama et al. (2011), it is somewhat difficult to draw general
conclusions because the frameworks are somewhat inconsis-
tent as are the study domains. In this work, we use the ESP-
based framework outlined by Wood and Lettenmaier (2008).
This framework is applicable over large spatial scales (e.g.
continental) and is similar to operational seasonal hydrolog-
ical forecast approaches, hence we used it to address explic-
itly the relative contributions of IHCs and FS to hydrologic
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Table 1. List of USGS water-resources regions.

Region 01 New England (NE)
Region 02 Mid-Atlantic (MA)
Region 03 South Atlantic-Gulf (SAG)
Region 04 Great Lakes (GL)
Region 05 Ohio (OH)
Region 06 Tennessee (TN)
Region 07 Upper Mississippi (UM)
Region 08 Lower Mississippi (LM)
Region 09 Souris-Red-Rainy (SRR)
Region 10 Missouri (MO)
Region 11 Arkansas-White-Red (AR)
Region 12 Texas-Gulf (TX)
Region 13 Rio Grande (RG)
Region 14 Upper Colorado (UC)
Region 15 Lower Colorado (LC)
Region 16 Great Basin (GB)
Region 17 Pacific Northwest (PNW)
Region 18 California (CA)

forecast skill across the entire CONUS for forecast lead times
up to 6 months. Specifically, we seek in this study (1) to
quantify the contributions of IHCs and FS to seasonal predic-
tion of cumulative runoff (CR) and SM during each month
of the year, and (2) to identify the months and sub-regions
within CONUS, where improvement in simulating the IHCs
and/or FS can have the greatest impact on seasonal hydro-
logic forecast skill.

2 Approach

We conducted paired ESP and reverse-ESP experiments to
generate forecasts with up to 6 months lead time (i.e. up to
6 months beyond the forecast initialization date) for the 33 yr
reforecast period 1971–2003 over the CONUS. In ESP, an
LSM is run using observed forcings up to the forecast initial-
ization date to generate the IHC. During the forecast period,
an ensemble of forcings is created from the time series of
observations (gridded over the model domain, sampled from
n historical years) starting on the forecast initialization date,
and proceeding through the end of the forecast period (up to
6 months from the forecast initialization date for this analy-
sis), for each ofn historical years. In reverse-ESP, the IHCs
on the forecast date are taken from each of then historical
years of simulation, but during the forecast period, the model
is forced with the gridded observations for that year (essen-
tially a perfect climate forecast).

We used the Variable Infiltration Capacity (VIC) model; a
macroscale hydrology model (Liang et al., 1994; Cherkauer
et al., 2003) that has been extensively used over the CONUS
and globally (e.g. Maurer et al., 2001; Nijssen et al., 2001;
Adam et al., 2007; Wang et al., 2009). VIC was applied over
the CONUS at a spatial resolution of1/2 degree latitude and

longitude. We then spatially aggregated the forecasts gener-
ated by each experiment to the scale of 48 hydrologic sub-
regions across the CONUS (Table 1 and Fig. 1). These 48
sub-regions were created by merging the 221 US Geological
Survey (USGS) hydrologic sub-regions. Each sub-region is
named after the water resources region in which it is located
(Table 1). We compared the spatially aggregated forecasted
cumulative runoff (CR) and mean monthly SM with the cor-
responding observations (Sect. 2.2) for each sub-region and
lead time over the reforecast period. We then estimated a
forecast evaluation score (Sect. 2.4) and quantified the con-
tributions of the IHCs and FS to seasonal hydrologic forecast
skill.

2.1 Model implementation

The VIC model parameterizes the major surface, sub-
surface, and land-atmosphere hydrometeorological processes
and represents the role of sub-grid spatial heterogeneity in
SM, topography, and vegetation on runoff generation (Liang
et al., 1994). We ran the model in water balance mode, in
which the moisture budget is balanced at a daily time step and
model’s surface temperature is assumed to equal surface air
temperature for purposes of energy flux computations (e.g.,
those associated with evapotranspiration and snowmelt). The
model was run at a daily time step, except for the snow accu-
mulation and ablation algorithm, which was run at a 3 h time
step. The1/2 degree parameters (i.e. vegetation, soils, ele-
vation and snow band parameters) used in this study are the
same as in Andreadis et al. (2005), which were aggregated
from the North America Land Data Assimilation System pa-
rameters used in Maurer et al. (2002). The three VIC soil
layers had typical depths of∼0.10 m for the first layer, 0.2
to 2.3 m for the second layer, and 0.1 to 2.5 m for the third
layer. Additional details of the model setup are included in
Maurer et al. (2002) and Andreadis et al. (2005).

2.2 Synthetic truth data set

For purposes of evaluating forecast skill, we used a set of
baseline values of SM and CR, created by a VIC control
run with gridded observed forcings, as synthetic truth. We
constructed the standard set of VIC forcings (daily precipita-
tion, maximum and minimum temperatures, and wind speed)
using methods outlined in Maurer et al. (2002). Precipita-
tion and temperature forcings were generated using the In-
dex Station method (Wood and Lettenmaier, 2006; Tang et
al., 2009) which uses a high quality set of about 2100 pre-
cipitation and temperature stations across the CONUS that
have relatively little missing data over our period of analysis.
As in Maurer et al. (2002), we used surface wind from the
lowest level of the National Centers for Environmental Pro-
tection/National Center for Atmospheric Research reanalysis
(Kalnay et al., 1996). Other model forcing variables (down-
ward solar and longwave radiations, humidity) were derived
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Fig. 1. 48 hydrologic sub-regions of the CONUS as used in this study, based on aggregation of 221 USGS sub-regions.

from daily temperature and temperature range as in Maurer et
al. (2002). We first ran the model for the period 1916–1969
starting from a prescribed initial state and saved the IHCs
at the end of the simulation. Using those IHCs, generated
after 53 yr of spin-up, we initialized the control run simu-
lation over 1970–2003. The same IHCs were also used for
generating IHCs for the 1st day of each month during each
year of the reforecast period (1971–2003). We aggregated
the model’s CR (i.e. sum of surface runoff and baseflow) and
SM (i.e. sum of soil moisture of all three layers) to monthly
values and spatially aggregated them to the 48 hydrologic
sub-regions. These model-derived values served in lieu of
direct observations for the purposes of our analyses. Maurer
et al. (2002) and others have shown that when the VIC model
is forced with high quality observations, it is able to repro-
duce SM and streamflow well across the CONUS domain.

2.3 ESP and reverse-ESP implementation

In our implementation of ESP, we obtained the IHCs from a
control run simulation (Sect. 2.2). Given the IHCs on the
first day of each month from 1971–2003, we then forced
the model with 31 ensemble members of observed (gridded)
forcings (sampled from 1971–2001) starting on the forecast
date for a period of six months. For example, to start the
forecast on 01/01 (i.e. 1 January) of any yeari, we used IHC
at the 00:00 h of the dayi/01/01 and ran the model with forc-
ings fromj /01/01 toj /07/01 of each yearj between 1971–
2001. Figure 2b shows a schematic of the experimental de-
sign where “true” IHCs were used to initialize the model and
it was forced with resampled gridded observations.

The reverse-ESP experiments sampled 31 IHCs from the
retrospective IHCs for each forecast initialization date (day
1 of each month) from 1971–2001. For example, to start the
forecast on 01/01 of any yeari, we used IHC at the 00:00 h
of the dayj /01/01 of each yearj between 1971–2001, and
forced the model with gridded observations for the period
i/01/01 toi/07/01. As shown in Fig. 2c, in the reverse-ESP

Fig. 2. Schematic diagram of(a) Observational analysis(b) ESP
and(c) reverse-ESP.

experiment climatological IHCs (from the same simulation
run used to extract the IHCs for the ESP runs) were used to
initialize the model and it was forced with “true” observa-
tions during the forecast period. CR and SM were computed
as in the ESP experiment.

2.4 Forecast evaluation

The skill of both ESP and reverse-ESP forecasts was calcu-
lated based on the Root Mean Squared Error (RMSE) of fore-
casts of both CR and SM at lead times of 1 to 6 months for
each hydrologic sub-region. LetN be the total number of
IHC or forcing ensembles (1971–2001), andM be the num-
ber of years (1971–2003) for which the reforecasts were gen-
erated. We designateEijk as the CR or SM generated by the
ESP experiment using the IHC of yeari and forcing of yearj
at a lead timeκ. LetOik be the observed CR or SM obtained
from the baseline run as the synthetic truth for yeari and lead
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Fig. 3. Variation of RMSE ratio (RMSEESP/RMSErevESP) with lead time over 48 hydrologic sub-regions, for the CR forecasts at lead
1–6 months, initialized on the beginning of the each month. (DJF: blue, MAM: green, JJA: light brown and SON: red).

timeκ. RMSEESP is then:

RMSEESP=

√√√√ 1

M

[
M∑
i=1

1

N

N∑
j=1

(
Oik −Eijk

)2

]
(1)

Likewise letRijk be the CR or SM generated by the reverse-
ESP experiment using the IHC of yearj and forcing of year
i at a lead timeκ so RMSErevESPcan be estimated by:

RMSErevESP=

√√√√ 1

M

[
M∑
i=1

1

N

N∑
j=1

(
Oik −Rijk

)2

]
(2)

We then calculated, the ratio of RMSE of each experiment
(Eq. 3).

RMSE Ratio= RMSEESP/RMSErevESP (3)

Unless otherwise specified, we consider that if the ratio is
less than 1 then IHCs dominate (in a relative sense) the sea-
sonal hydrologic forecast skill and if it is greater than one
then FS dominates.

2.5 κ parameter

Mahanama et al. (2011) introduced a parameter,κ, which is
a ratio of the standard deviation of the initial SM+SWE (σw)
to the precipitation during the forecast period (σP) (Eq. 4).
High κ values correspond to high total moisture variability
at the time of forecast initialization relative to precipitation
variability during the forecast period and vice versa.κ is
basically a measure of the hydrologic predictability derived
solely from knowledge of the IHCs at the start of the forecast
period.

κ = σw/σP (4)

3 Results

In this section we examine the variation of relative contribu-
tions of the IHCs and FS in the CR and SM forecast with each
forecast initialization date (i.e. day 1 of each month) for lead
times of 1 to 6 months across the CONUS. We also highlight
the sub-regions and forecast periods for which improvement
in knowledge of IHCs or FS would most improve seasonal
hydrologic forecast skill.

3.1 Cumulative runoff forecasts

The variation of RMSE ratio for the forecast of CR at lead
1 to 6 months for each of the 48 hydrologic sub-regions is
shown in Fig. 3; where CR at lead-1 [lead-6] is the CR over
the first month [1 to 6 months] of the forecast period. RMSE
ratios below 1.0 indicate that the relative forecast error due
to uncertainties in the FS is lower than the error due to un-
certainties in the IHCs; which indicates the relatively high
contribution of the IHCs in the CR forecasts skill.

The variation of the RMSE ratio is much different across
sub-regions and forecast periods (Fig. 3). The IHCs strongly
dominate CR forecasts during winter and spring (March
and April mainly) months over GL, SRR, UM, and MO-
1 sub-regions. The dominance of the IHCs in CR pre-
diction over MO-1 sub-region, almost throughout the year
is an observation made by Maurer and Lettenmaier (2003)
as well. In the Western US, sub-regions such as PNW,
GB, LC, UC, CA, and RG-1, high skill due to the IHCs
in lead 1–6 months CR forecasts is mainly apparent during
spring (MAM) and summer (mainly June) months. Wood
and Lettenmaier (2008) also found dominance of the IHCs
in the seasonal runoff forecast during winter/spring tran-
sition months over two Western US basins. This finding
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Fig. 4. Plot of the maximum lead (in months) at which RMSE Ratio
is less than 1, for CR forecasts, initialized on the beginning of each
month.

suggests that runoff forecasts in the above-mentioned sub-
regions and forecast periods could benefit substantially from
improvements in knowledge of the IHCs. For sub-regions
in the Eastern US such as NE, MA, SAG-1 and -2, OH-
1 and -2, and UM, RMSE ratios are less than one for
lead 1–2 months, for CR forecasts initialized during win-
ter – (December-January-February (DJF) – and spring month
(March and April, mainly). This finding is in agreement with
Li et al. (2009) who noted that the IHCs dominate the stream-
flow (and SM) forecasts made during January and July, over
Ohio and Southeastern US sub-regions, up to lead 1 month.
These sub-regions as well could potentially benefit from im-
provements in estimates of the IHCs during these seasons.
Aside from those months and locations, FS dominates the
CR forecasts. Some sub-regions such as TN, LM, and SAG-
3 stand out because their RMSE ratios throughout the entire
year and for all lead times exceeds 1, which suggests that
in those sub-regions improved hydrologic forecasts must, for
the most part, await improvements in FS.

There is also a clear difference between the variations of
RMSE ratio initialized from wet vs dry IHCs. For example,
in most sub-regions across the CONUS, forecasts initialized
during summer months have RMSE ratios less than or equal
to 1 for lead-1 month CR forecasts (also shown by Wood and
Lettenmaier, 2008 and Li et al., 2009) for forecasts initial-
ized during summer months. Furthermore the rate of change
in the RMSE ratio for 1-month vs. 6-month forecasts is much
higher in forecasts initialized in the summer months than in
winter and spring months when the IHCs are generally wet.
This property is particularly significant for predictions dur-
ing droughts when the IHCs are dry. It potentially means
that during a drought event when the IHCs are dry, the sig-
nal from the IHCs may dominate even at lags for which the
RMSE ratio exceeds 1. Additionally, in climatologically wet

periods followed by dry initial conditions, FS may well be
important in improving seasonal hydrologic forecasts.

Figure 4 shows the maximum lead time (in months) at
which the RMSE ratio of CR forecasts is below 1; defining
the maximum lead time the IHCs can play a significant role
in CR forecasts relative to FS. Beyond this lead, FS dom-
inates the CR forecast skill; hence improvement in the FS
would lead to higher forecast skill. For the most part, the
sub-regions in Northeastern and Southeastern US would ben-
efit most from improvements in FS throughout the year be-
cause the IHCs dominate up to lead-2 only. In the mountain-
ous west and Pacific Coast sub-regions FS dominates mainly
during fall and winter. On the other hand, IHCs dominate
in those sub-regions during spring and summer for up to
6 months lead time. GL, SRR, and UM sub-regions over-
all would benefit most from improvement in knowledge of
IHCs during winter and spring months (mainly March) and
FS during summer months.

3.2 Soil moisture forecasts

SM is a key hydrologic state variable, and a natural indicator
of agricultural drought. Figure 5 show the RMSE ratios of
the mean monthly SM forecast, at lead-1 (i.e. mean monthly
SM of the first month) to 6 (i.e. mean monthly SM of the 6th
month of the forecast period) for forecasts initialized on the
beginning of each month. In contrast to forecasts of CR, the
RMSE ratio at lead-1 is almost always less than 1, across the
CONUS and for each forecast period, indicating the strong
dominance of IHCs for short lead forecasts. The ratio in-
creases for leads greater than 1.

In the NE, MA, SAG, OH, LM, and TN sub-regions the in-
fluence of IHCs beyond lead-1 is generally negligible, which
in turn means that improvement in FS will be required to
improve SM forecasts beyond lead-1. This pattern for SM
forecasts was also shown by Li et al. (2009) in the Ohio and
southeastern regions. Conversely, in the majority of the sub-
regions in the Midwestern US, such as GL-1, -2, -3; SRR,
UM, and the Western US show strong IHC influence for SM
forecasts up to lead-5, when the forecast is initialized in win-
ter or spring months. In snowmelt-dominated sub-regions
in the Western US, the skill of SM forecasts during spring
and summer months is especially high. In UC, LC, PNW,
GB, and CA sub-regions, useful skill in SM forecasts can
be derived from the IHCs for leads as long as 6 months for
forecasts initialized during the summer months.

Overall, the relative contributions of IHCs are greater for
forecasts of SM than for forecasts of CR at lead-1 month.
The contribution of IHCs is dominant over the Western US,
in particular during spring and summer months.

Following the same criterion as we used for CR forecasts,
Fig. 6 shows the maximum lead time at which the RMSE
ratio is below 1 for mean monthly SM forecasts. In general
most of the sub-regions have some SM forecasts skill derived
by the IHCs, at least up to lead-1 (including sub-regions in
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Fig. 5. Variation of RMSE ratio (i.e. RMSEESP/RMSErevESP) with lead time over 48 hydrologic sub-regions, for the SM forecasts at lead-1
to 6 months, initialized on the beginning of the each month. (DJF: blue, MAM: green, JJA: light brown and SON: red).

Fig. 6. Plot of the maximum lead (in months) at which RMSE Ratio
is less than 1, for mean monthly SM forecasts, initialized on the
beginning of each month.

Northeastern and Southeastern US). This means that the rela-
tive contribution of the IHCs in the SM forecasts is more ex-
tensive than in the CR forecasts during the first month of the
forecast period (i.e. lead-1). The spatial contrast between the
sub-regions and forecast periods with high and low values of
maximum lead time, where IHCs significantly influence the
SM forecasts skill, is similar to CR forecasts.

3.3 Controls on hydrologic forecast skill

Mahanama et al. (2011) found a first order relationship be-
tween IHC-based 3-month streamflow forecasts (that is, fore-
casts wherein CR was regressed on the IHCs) andκ. Fol-
lowing their analogy we expect a first order relationship be-

tween the inverse RMSE ratio (i.e. RMSErevESP/RMSEESP)
andκ. Namely, we expect that RMSEESPshould be smaller
for sub-regions and forecast periods with higherκ. Scatter of
the inverse RMSE ratio andκ are shown for forecast periods
of 1, 3, and 6 months in Fig. 7a–c, respectively. Red cir-
cles and blue circles show the inverse RMSE ratio estimated
across all the hydrologic sub-regions and forecast initializa-
tion dates for the forecast of CR and mean monthly SM at
lead-1, lead-3, and lead-6 (Fig. 7a–c, respectively). The val-
ues ofκ vary for different forecast periods, and in general,
the number of hydrologic sub-regions and forecast periods
with k > 1 decreases as the lead time increases. First order
relationships between the inverse RMSE ratio andκ clearly
exist at each lead time. The range of inverse RMSE ratios for
a givenκ value seems to be higher for CR at lead-1 than for
SM (Fig. 7a). Overall at lead-1, the inverse RMSE ratio is
higher for SM than for CR. The values of the inverse RMSE
ratio of SM and CR forecast is much more comparable in
lead-3 forecast (Fig. 7b). The inverse RMSE ratio for lead-6,
CR forecast is generally higher than its corresponding values
for SM forecasts at lead-6 (Fig. 7c).

4 Summary and conclusions

The two key factors influencing seasonal CR and SM forecast
skill are IHCs and FS. In order to improve seasonal hydro-
logic forecast skill in the CONUS, it is important to under-
stand the seasonal and spatial variability of relative contribu-
tions of these components. We performed two modeling ex-
periments – ESP and reverse-ESP – in which the hydrologic
prediction skill exploits knowledge of IHCs and FS respec-
tively to quantify the relative contributions of each factors
and to identify the sub-regions and forecast periods which
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Fig. 7. Inverse RMSE ratio (i.e. RMSErevESP/RMSEESP) of CR
and mean monthly SM forecasts at(a) lead-1(b) lead-3, and(c)
lead-6 plotted againstκ parameter of each forecast period (i.e. 1
month, 3 months, and 6 months, respectively).

can benefit most from improvements in the FS or knowledge
of the IHCs. Our key findings are:

1. IHCs generally have the strongest influence over CR
and SM forecasts at lead-1, beyond which their influ-
ence decays at rates that depend on location, lead time,
and forecast initialization date.

2. Beyond lead-1, IHCs primarily influence the CR and
SM forecasts during spring and summer months, mostly
over the Western US.

3. FS dominates CR and SM forecast skill beyond lead-
1 mainly over the Northeastern and Southeastern US
throughout the year. For the rest of the CONUS, FS
generally dominates CR and SM forecasts during fall
and early winter months.

4. The relative contributions of IHCs and FS have a first
order relationship with the ratio of initial total moisture
variability to the variability of precipitation during the
forecast period for the temporal scale of seasonal hy-
drologic prediction.

While the ESP-based framework used in this study allows
a consistent estimation of the contribution of the IHCs and
FS over large spatial scale (e.g. continental scale) and long
time period, it is important to understand the limitations of

the study design. The distribution of FS (in the ESP exper-
iment) and IHCs (in the reverse-ESP experiment) is uncon-
ditional (i.e. climatological distribution) and we assume that
IHCs (in the ESP experiment) and FS (in the reverse-ESP ex-
periment) are perfect, hence our results arguably provide an
upper bound on the contributions of the IHCs and FS to sea-
sonal hydrologic prediction skill. Furthermore since we do
not route the runoff through the stream network and rather
use spatially aggregated values, there will be some differ-
ence in the spatial extent and lead time of the contribution
of IHCs (mainly snow-melt) in streamflow based on the time
of concentration of a given basin, although this effect can be
expected to be limited, for the most part, to about a month.

We believe the findings of this study could have impor-
tant implications for the improvement of seasonal hydro-
logic and drought prediction in the CONUS. We identified
the sub-regions and forecast periods during which improve-
ment in the knowledge of IHCs and FS could result in the
most improvement in seasonal hydrologic prediction skill.
For those river basins and forecast periods which have a sub-
stantial contribution of IHCs to seasonal hydrologic predic-
tion skill, for instance, skill improvements might be derived
by improving the IHCs – for example through the assimila-
tion of ground based or remote sensing data. Another pos-
sible way of improving seasonal hydrologic forecasts with
relatively short leads may be to exploit the skill of medium
range weather forecasts over the first 1–2 weeks of the fore-
cast period.

Appendix A

Abbreviations used

AR Arkansas-White-Red
CA California
FS Climate Forecast Skill
CONUS Conterminous United States
CR Cumulative Runoff
DJF December-January-February
ESP Ensemble Streamflow Prediction
GB Great Basin
GL Great Lakes
IHC Initial Hydrologic Conditions
JJA June-July-August
LC Lower Colorado
LM Lower Mississippi
LSM Land Surface Model
MA Mid-Atlantic
MAM March-April-May
MO Missouri
NE New England
OH Ohio
PNW Pacific Northwest
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RG Rio Grande
RMSE Root Mean Square Error
SAG South Atlantic-Gulf
SM Soil Moisture
SON September-October-November
SRR Souris-Red-Rainy
SWE Snow Water Equivalent
SWM Surface Water Monitor
TN Tennessee
TX Texas-Gulf
UC Upper Colorado
UM Upper Mississippi
USGS United States Geological Survey
VIC Variable Infiltration Capacity
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