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Abstract. Catchment classification is an efficient method to number of model parameters can be related to observable
synthesize our understanding of how climate variability andlandscape features. However, several climate-model time
catchment characteristics interact to define hydrological resscales, and the associated dimensionless numbers, show scal-
sponse. One way to accomplish catchment classification isng relationships with respect to the investigated hydrologi-
to empirically relate climate and catchment characteristics tacal signatures (runoff coefficient, baseflow index, and slope
hydrologic behavior and to quantify the skill of predicting of the flow duration curve). Moreover, some dimensionless
hydrologic response based on the combination of climate andiumbers vary systematically across the climate gradient, pos-
catchment characteristics. Here we present results using asibly as a result of systematic co-variation of climate, vege-
alternative approach that uses our current level of hydrologtation and soil related time scales. If such co-variation can
ical understanding, expressed in the form of a process-basdok shown to be robust across many catchments along differ-
model, to interrogate how climate and catchment characterent climate gradients, it opens perspective for model param-
istics interact to produce observed hydrologic response. Theterization in ungauged catchments as well as prediction of
model uses topographic, geomorphologic, soil and vegetahydrologic response in a rapidly changing environment.
tion information at the catchment scale and conditions pa-
rameter values using readily available data on precipitation,
temperature and streamflow. It is applicable to a wide rangel Introduction
of catchments in different climate settings. We have devel-
oped a step-by-step procedu_r € to analyze the observed h)fiatchment classification is an efficient method to synthesize
drologic response and to assign parameter values related to : . -

our understanding of how climate variability and catchment

specific components of the model. We applied this PrOCe- 1 aracteristics (e.g. vegetation, soils, topography) interact to
dure to 12 catchments across a climate gradient east of th -g- Vey ' » fobography

Rocky Mountains, USA. We show that the model is CaloableSefme hydrological response (McDonnell and Woods, 2004;

of reproducing the observed hydrologic behavior measure(y\/agener et al., 2007). Itis also a crucial step in improv-

through hydrologic signatures chosen at different temporafg.g predictions in ungauged basms (Sivapalan et al., 2003).
. . ifferences between the hydrologic responses of catchments
scales. Next, we analyze the dominant time scales of catch-

ment response and their dimensionless ratios with respect tcan be quantified by means of specific signatures of catch-
. P ) P %ent behavior, such as the runoff coefficient, the flow dura-
climate and observable landscape features in an attempt

explain hydrologic partitioning. We find that only a limited tﬁ)on curve or the master recession curve. Ga_uged catchmepts
' can be clustered into separate groups with similar hydrologic

signatures and this provides information about similarity of

hydrologic responses (Sawicz et al., 2011). Such groups or

Correspondence td5. Carrillo classes can be regarded as a first step in catchment classifica-
BY (gustavoc@email.arizona.edu) tion, which offer a catalogue of hydrologic behavior within
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aregion. However, catchment classification is only completeThrough process-based modeling we can thus obtain esti-
if we understand why certain catchments belong to certairmates of hidden catchment characteristics that are not avail-
groups of hydrologic behavior, such that we have the meansble in the top-down approach, and ask questions about how
to classify ungauged catchments into their most likely groupthese catchment characteristics relate to climate gradients.
of behavior. Once a sufficient set of catchments across the climate-
One way to accomplish catchment classification is to em-landscape gradients of a specific region have been analyzed
pirically relate climate and catchment characteristics to hy-using this bottom-up approach, we can use the model pa-
drologic behavior and to quantify the uncertainty of pre- rameters to explain observed hydrologic similarity. Certain
dicting the hydrologic response based on a combination oimodel parameters can be prescribed based on observable
climate and catchment characteristics. Such a classificalandscape characteristics (e.g. mean catchment slope, dom-
tion system and the related prediction uncertainty will beinant vegetation type). Others cannot be determined a pri-
conditioned by the selection of hydrologic signatures andori and need to be selected during the hydrologic analysis
climate/catchment characteristics, and may result in differ-phase. Such hydrologic analysis should not be considered as
ent classifications depending on the objective of classificaan automated calibration procedure but rather as a step-by-
tion (e.g. water balance partitioning, ecological services). Instep methodology to distill relevant information about differ-
any case, we can call this approach the top-down approachnt catchment functions using appropriate forcing and output
since it is based on measurable hydrologic drivers/responsegariables (Boyle et al., 2000; Yilmaz et al., 2008). The ad-
and landscape features. The measure of uncertainty quantrantage of automated parameter calibration is that it is ob-
fies the probability of misclassification, and provides insight jective and does not require interaction of the hydrologist
about how much information is contained in the selected cli-with the optimization algorithm (Hogue et al., 2006). The
mate and catchment characteristics concerning hydrologidisadvantage is that typical objective functions used to opti-
response (Snelder et al., 2005; Oudin et al., 2010). Sincenize model performance cannot guarantee that inappropriate
there are important surface and subsurface properties thaiombinations of parameter values lead to sets of “behavioral”
cannot be readily measured or translated into hydrologicallymodels (Fenicia et al., 2007), and the functional role of spe-
relevant information, the uncertainty of classification reflectscific parameters is often not preserved (Wagener et al., 2003).
in part (the lack of) the amount of cross-correlation between It is the purpose of this paper to present a general method
observable landscape properties (e.g. vegetation type) anof hydrologic analysis by means of a process-based model to
unobservable landscape characteristics (e.g. rooting depth)develop a bottom-up catchment classification system that is
An alternative approach, that can partially alleviate thecompatible with and complementary to top-down classifica-
above-mentioned issue of observability, uses our currention methods developed elsewhere (Sawicz et al., 2011). In
level of hydrological understanding, expressed in the formSect. 2 we present the process-based model to analyze hy-
of a process-based model, to interrogate how climate andirologic response across many catchment in the USA. The
catchment characteristics interact to produce the observerhodel is built around the hillslope-storage Boussinesq (hsB)
hydrologic response (Sivakummar, 2008). Assuming an apequation developed by Troch et al. (2003). It uses geomor-
propriate process-based model can be constructed for a widghologic functions to describe hillslope and channel network
range of catchments, we can use it to analyze the relationtopology required to compute subsurface and surface rout-
ships between hydrologic response and catchment functioning. We have chosen this modeling approach because (1) it
ing (Samuel et al., 2008). A catchment can be considereds parsimonious and thus reduces the problem of equifinal-
as a filter that transforms the climate signal into a hydro-ity (Beven and Freer, 2001), and (2) it was shown that the
logic response by partitioning, storing and releasing incom-hsB equation accurately represents saturated subsurface flow
ing energy and water (Black, 1997; Wagener et al., 2007).and storage dynamics across complex landscapes (Paniconi
The different catchment stores (e.g. interception store, roott al., 2003). In Sect. 3 we describe a step-by-step proce-
zone store, aquifer store) interact with the different climatedure to analyze the observed hydrologic response and to as-
fluxes (e.g. rainfall intensity, maximum evapotranspiration) sign parameter values related to specific components of the
to produce specific time constants of hydrologic behaviormodel. It uses different parts of the catchment hydrograph
(e.g. time to empty root zone store through evapotranspirato separate processes in an attempt to reduce parameter un-
tion). The process-based model can thus be a very usefudertainty and to increase the probability to assign a reason-
instrument to analyze different portions of the hydrologic able range of parameter values to different components of the
response to identify the important time constants of catch-model. In Sect. 4 we apply our hydrologic analysis procedure
ment functioning. For instance, the recession part of a catchto 12 catchments selected from the MOPEX (Model Param-
ment’'s hydrograph during the dormant season can be useeter Experiment) database across a climate gradient in the
to inform us about the time constant of aquifer release byUSA, and present a comparison of hydrologic functioning as
matching modeled recession flows using lumped aquifer derevealed by our process-based model. In Sects. 5 and 6 we
scriptors, such as horizontal hydraulic conductivity or depthdiscuss our results and some shortcomings of the bottom-up
to bedrock (Brutsaert and Nieber, 1977; Kirchner, 2009).approach to catchment classification.
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2 Process-based model for hydrologic analysis whereS (= f Wn(x)h) [m?] is saturated storage at flow dis-
. o tancex from the hillslope outlet and at time Wh(x) [m] is
2.1 Modeling principles the hillslope width function at flow distance[m], h(x, t)

. . [m] is water depth measured perpendicular to the bedrock,
The model we developed for the purpose of this study is, is bedrock slope anglé]} kn [ms—] is the effective lat-

based on the following principles: (1) the model should o o/ saturated hydraulic conductivity antl [—] is drain-

be process-based such that we can use it to analyze catcgme porosity. The recharge ra(x, r) [ms-1] depends
ment behavior derived from routine hydro-meteorological 5, (oot zone hydrologic processes’ at flow distancand
observations at the catchment scale, such as daily disg s varies along the hillslope (see below). It was shown
charge, temperature and precipitation; (2) the model shoulg,y paniconi et al. (2003) that this model is an adequate
be as parsimonious as possible to avoid problems of overangy harsimonious representation of three-dimensional sat-
parameterization and equifinality (Beven and Freer, 2001y, r51eq subsurface flow along geometrically complex hill-
Wagener and Gupta, 2005) and reduce computer procesgjones. When saturated storage exceeds the local storage
ing time; and (3) the model shpuld be apphcak_)Ie to a,W'decapacitySC (= fWh(x)D, where D is maximum perched
range of catchments across climate and physiographic grayjiter depth) the model produces saturation excess overland
dients. In order to represent the dominant functions of agq, The partial differential equation is solved numerically

catchment we consider hillslopes and channel network agqr \yater table dynamics and outflow rate (see Troch et al.,
fundamental hydrologic units (Troch et al., 2003). Hillslope 543 for detalils).

land surfaces interact with the atmosphere and partition wa- ggme fraction of the total percolation from the root zone
ter and energy fluxes, and drain surface runoff and subsurfac&ee below) is assigned to enter a fractured bedrock aquifer
flow into the catchment channel network for routing towards pe|y the perched groundwater table. We assume the outflow
the outlet (i.e. point where discharge is measured). Instéag,m this bedrock aquifer to sustain drought flow at the out-

of representing individual hillslopes and how they are CON-jet, and the aquifer dynamics are represented with a lumped
nected to the channel network, we adopt the modeling aps,on-jinear storage model:

proach of Troch et al. (1994) and use the hillslope width b
function and the channel width function at the catchment@b = @ S @)
scale to represent the geomorphologic structure of the catchwhereQyp, [m®s~1] is baseflow from the deep aquifesy [m]
ment. Each catchment is thus characterized by a hillslopés deep aquifer storage andunits depend on value &) and
width function (probability density function of water enter- b [—] are aquifer parameters (with= 1 representing a linear
ing the catchment at a given flow distance from the channeteservoir).

network; see also Bogaart and Troch, 2006) and a channel Hillslope runoff (either infiltration excess or saturation ex-
width function (probability density function of surface and cess) draining into the channel network is routed by means of
subsurface flow entering the channel network at a given flowan analytical solution to the linearized de St.-Venant equation
distance from the outlet) that are derived from available dig-of open channel flow:

ital elevation models (DEMs). Important additional terrain 2

properties such as average hillslope/channel slope are alsg(x, 1) = ﬁ exp [_M} (3)
estimated from available DEMs. Other landscape properties, @2m)2 ded/ 2kt

such as land use-land cover and soils, ava.ilab'le.f'rom Vario“%hereqc(x, 1) [s~1] is specific discharge resulting from a
spatial databases are further used tq assign initial values g5 impulse input at flow distanceupstream, and

process parameters that control the different catchment func-

tions, such as infiltration and interception. c=0A+a)V

V3
2 2 2
2.2 Model structure and processes d° = 2 So F2 (1 —ag F ) 4)
2.2.1 Hillslope and channel routing The parameters [ms~1] andd? [m?s~1] are referred to as

the absolute celerity or drift velocity and the diffusion coef-
The semi-distributed hillslope-storage Boussinesq (hsBicient, respectivelyy [ms~1] is the flow velocity,So [—] is
model, developed by Troch et al. (2003), is used to modekhe channel bed slopé&, [—] is the flow’s Froude numbeg,
perched groundwater dynamics at the hillslope spatial scalefm s=2] is the acceleration of gravity ang [—] is an empiri-

as kn COSar 9 S /39S S oW cal constan§ depenqmg on the_frict.ion slope parameterization
f— = — [_ (— - — —)] (equals 2/3 if Manning’s equation is used).
ot fo9x LWh \ox  Wh ox The normalized channel width functiof/c(x) [m™1], is
3 defined as:
+ knsine — + f N Wy 1) 1
dx Welx) = T Ne(x) %)
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whereN¢(x) is the number of channel links at a given flow is bounded by [Owc]. The canopy storage capacity is re-
distance from the catchment outlet ablis the total channel lated to the leaf area index (LAI) of the catchment vegetation
length. Interpreting the normalized channel width function asaccording to Dickinson (1984j. = 0.0002x LAI.

the probability density function of receiving lateral inflow at ~ The infiltration capacity of the soil is modeled by
flow distancex from the outlet, the response of the channel means of the time compression approximation suggested by

network to an instantaneous unit input of water is: Milly (1986):
v 1 1 4i\v2] !
. Ic
fe(t) = /qcz(x, 1) We(x) dx 6) ic=gSky1+ [—l + (1 + 5k S—2> } (10)
S

0

with gc(x, 1) defined in Eq. (3). This parsimonious model wherek, [ms™] is the vertical hydraulic conductivityss
of channel routing can be used to compute discharge at thim s~%5] is the soil sorptivity andlc [m] is the cumulative
catchment outlet given lateral inflows through either infiltra- infiltration since start of rain/snow melt event.
tion or saturation excess overland flow (assumed to enter the The rate of capillary rise is modeled according to Gard-
channel network at time of generation). Shallow subsurfacener (1958) for steady upward flow from a water table:
flow above a confining soil/bedrock layer draining from the a
hillslope perched aquifer and deep fractured bedrock bases = e ————
flow are produced at the catchment outlet and thus do not (Z = Vo)
need to be routed through the channel network (see below).wherey. [m] is the depth of the capillary fringes. [—] is a
reduction factor that varies linearly with, between residual

2.2.2 Root zone water balance moisture content and saturated moisture content,qaadd

_ o _ b are parameters that are related to the Brooks-Corey soil
The hillslope perched aquifer interacts with the root zone and, ater retention parameters (Eagleson, 1978)[m] is the

exchanges recharge and capillary rise fluxes which depengen, (gistance) between the bottom of the root zone and the
on root zone moisture content and the depth between the rogf | \vater table. and thus varies along the hillslope.

zone and the local water tabiléx, ¢), called the transmission
zone. The root zone water balance is given by:

(11)

Percolation or recharge from the bottom of the root zone
is assumed to be solely gravity driven and is computed as:

d erz 2438

D =i -t — 7 — B
7 I+ cr r (7) =k 6z — 6\ B (12)
Os — 6

whereDy; [m] is depth of the root zon@,, [—] is volumetric

soil moisture content of the root zonigm s~ is infiltration ~ wheref; is residual moisture content afigis saturated mois-
rate at the land surface, [ms~1] is capillary rise flux from  ture content, and is the Brooks-Corey pore size distribution
the perched water table into the root zongms 1] is tran-  index.

spiration from the dry canopy andms1] is recharge rate The transmission zone between root zone and perched
from the root zone into the transmission zone. The root zoneaquifer transmits water received from the root zone towards
water balance is solved using a daily time step such that althe perched aquifer at a rate defined through Eq. (12) with

fluxes are daily averages. a transmission zone specific vertical hydraulic conductivity
The infiltration rate is given by: and moisture content. It also transmits capillary rise flux
from the perched aquifer to the root zone unaltered, with-

i = min[p, ic] (8)  out storage of water. The effective depth of the transmission

zone is dynamic and depends on the root zone and perched
aquifer storage dynamic¥ (decreases a$ increases). The
djifference between the recharge flux from the transmission
zone and the capillary rise flux;, defines the net recharge,

N, to the shallow aquifer.

where p; is throughfall rate and is infiltration capacity of
the soil. If throughfall rate exceeds the infiltration capacity
surface runoff is produced, which is instantaneously adde
to the lateral flow into the channel network. The throughfall
rate is computed as:

=06 w< w 2.2.3 Land surface energy balance

Evaporation from wet canopy and transpiration from veg-

pe=r @ =@ ©) etation are estimated by means of the land surface energy

wherew [m] is canopy storageyc is canopy storage capacity Pudget:

andp is p_reC|p|t§1t|on rate. The actual canopy storage is COM-p _E+H+G (13)
puted using a simple canopy water balance that accounts for

precipitation rate and evaporation from the wet canopy and
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with R, [Wm~2] net radiation,E [kg s~ m~2] vaporization =~ 2.2.4 Snow accumulation and melt

rate,» [Jkg~1] latent heat of vaporizatiord [W m—2] sen-

sible heat flux ands [Wm~2] soil heat flux. Net radiation ~We add a simple snow model for catchments with significant
is estimated from the surface radiation budget accounting fosnow days (see below). The snow model accumulates all in-
incoming and outgoing shortwave and longwave radiation,coming precipitation in a snow pack when the air temperature
depending on surface albedo and emissivity. Since outgols below a certain thresholfl,. When air temperature rises
ing longwave radiation depends on surface temperature, w@bove this threshold temperature, the snow melt rate is given
solve the energy budget iteratively and assume the surfacBY:

emissivity constant. The latent heat flux can be approximated
as (Brutsaert, 2005): Om = M (Ta = Tm) (1)

PCp
= et [es(Ts) — ed] (14)
wherep [kg m~3] is the density of the aigp [Jkg~1 K~1]is
the specific heat of the air at constant pressurf®a K] is 2.3 Model forcing
the psychrometric constamt, [s m~1] is the aerodynamic re-
sistances [s m~]is the canopy (stomatal) resistaneg(7s)  In this study, we run the model at daily time steps, even
[Pa] is saturated vapor pressure at surface temperdure though it can be run at shorter time steps (e.g. hourly). Re-
ande, [Pa] is the vapor pressure of the air. The aerodynamicquired model forcing are daily precipitation, air temperature,

with M [ms~1K~1] a melt coefficient. The daily melt vol-
ume is subsequently removed from the stored snow water
equivalent in the snow pack and added to the throughfall.

AE

resistance is given by: downward short- and longwave radiation, relative humidity,
2 atmospheric pressure and wind speed. Other required model
1 z—d . - . ) X )
ra= ——=1In (15)  inputsinclude time evolution of catchment-wide leaf area in-
u(z) k <0 dex (LAI) and albedo. We will discuss the different sources

with u(z) [ms~1] wind speed at height, k is von Karman’s ~ Of these input variables in Sect. 4. It should be noted that
constant (=0.41)d [m] is zero plane displacement height Since we use a semi-distributed version of the hsB-SM model

andzg [m] is the roughness length of the canopy. The sensi-the model forcing data is basin-averaged, and soil and vege-

ble heat flux is estimated from: tation type are effectively uniform, as in Woods (2003). This
cp no doubt will add to modeling uncertainty but is unavoid-
H = .y (Ts — Ta) (16)  able in order to keep the number of model parameters to a
minimum.

whereTj, [K] is air temperature.
We solve the land surface energy budget for surface tem2.4 Characteristic time scales and dimensionless
perature at daily time steps such that we can assume the net  numbers
ground heat flux to be zero. When the canopy is wet Q)
the canopy resistance is zero. Evaporation from wet canopy he different components of the process-based model, in
is then given by: combination with catchment-scale climate forcing, reveal
characteristic time scales of hydrologic response that are re-
ewe = owe B (re = 0) A7) Jated to catchment hydrologic functions of partitioning, stor-
andwy, is the areal fraction of wet canopy estimated from age, and release of water. Therefore, such characteristic time
Deardorff (1978): scales are important indicators of catchment behavior and
_ 2/3 can help to relate above and below ground landscape charac-
wwe = (@/we)™. (18) teristics to water balance dynamics. They can also be com-
The transpiration rate removing moisture from the root bined to form dimensionless numbers that can be related to
zone is given by (Teuling and Troch, 2005): hydrologic regimes through empirical or analytically derived

LA scaling relations (Berne et al., 2005; Harman and Sivapalan,
t = (1 — owe) VrF Bt (1 — e ) E (rsmin) (19)  2009).

where Virr [—] is the vegetation root fractiony [—] is the
vegetation light use efficiencys (rc min) [ms™] is the po-
tential vaporization rate using a minimal canopy resistanceThe time scale associated with filling up the canopy intercep-

2.4.1 Canopy time scales

B is the transpiration reduction coefficient, given by: tion storage capacityy, is given by:
. Orz — 6
Bt = max [o, min (1, u)} (20) 4= 2 (22)
Oc — Ow D

with 6, soil moisture content at wilting point argg the crit-
ical moisture content when transpiration reduction starts.

www.hydrol-earth-syst-sci.net/15/3411/2011/ Hydrol. Earth Syst. Sci., 15, 34B0-2011
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wherep is the average rainfall intensity when it rains. The where6rc is soil moisture content at field capacityjs the
time scale associated with emptying the interception storageverage recharge rate ani$ the average transpiration rate.
is given by: Different combinations of these time scales express com-
C petition between different processes affecting the water bal-
Tee = —— (23) ance dynamics. For instance, the ratio of the latter two re-
veals the competition in the catchment between baseflow

éwc

with ewc the average wet canopy evaporation. Obviously, . .

both the average r?iinfall intensFi)t); andpaverage wet Canoé)generat'on and vegetation water use.

evaporation vary throughout the year, such that the season@l

canopy time scales can be either larger or smaller than the’

annual averages defined above. In any case, the interceptios mentioned earlier, the depth of the transmission zone is
storage capacity is at most a few mm such that in most clitime variable as it depends on the soil moisture dynamics in
mates the canopy time scales are of the order of a few days ke root zone as well as on storage dynamics in the perched
maximum, and typically less than one day. The time scalequifer. Nevertheless, an average transmission zone storage
are also of same order of magnitude and thus their ratio, retapacity can be numerically derived from the model simula-
flecting the competition between filling and emptying the in- tjons and used to define the following time scales of trans-
terception storage, is close to 1. mission zone filling and emptying:

4.4 Transmission zone time scales

2.4.2 Snow pack time scales Z (6s — 0)
T = ——————
The characteristic time scale of snowmelt can be defined as:

7

A
= E_m 24) g = Z (957 OFc) _
t
wheres is the average maximum snow accumulation, and _
On is the average snow melt rate during snow melt season!n EQ. (28),Z is average transmission zone depkfis satu-
This time scale is important to define what type of runoff gen- ated moisture content of the transmission zenis,average
eration mechanism is likely to dominate (saturation excesdnoisture content andandr; are average recharge rate from
vs. shallow subsurface flow) during snow melt by comparingf00t zone and transmission zone, respectively.

it with characteristic time scales of root zone and perched L
aquifer processes (see below). 2.4.5 Perched aquifer time scales

Tm

(28)

2.4.3 Root zone time scales Much work has been done on defining characteristic time
scales of shallow aquifer dynamics (Brutsaert, 1994; Troch et
The time scale related to filling the root zone storage by rain-al., 2004; Berne et al., 2005; Harman and Sivapalan, 2009).

fall is defined as: The characteristic time scale of advection-driven (kinematic)
Dy, (65 — 6) flow in perched aquifers is given by (Berne et al., 2005; Har-
Trfr = % (25) man and Sivapalan, 2009):
Pt
Lf

whereg is the average soil moisture content of the root zonery =
andp; is the average throughfall rate whé&p> Ty, Simi-

larly, the time scale related to filling the root zone by snow \hereL is hillslope length (maximum flow distance between

melt is given by: divide and nearest channefp)D is average saturated thick-

Dy, (65 — 0) ness, andi is the rate of con/divergence of the hillslope

- S (26)  width function. Likewise, the characteristic time scale of
Om + Py diffusion-driven flow is given by:

It is possible to specify different average soil moisture con-

tents during the rainy season and the snow melt season to re- _ L2 f

flect different wetness conditions, if necessary. Time scales® ~ 4 kp, pD cosa

related to emptying the root zone storage in the absence of . . , : .
capillary rise are: Their ratio, 7k /Ty, defines the hillslope &let numberRe

Berne et al., 2005) and high values of Pe indicate that shallow

29
2 kp (Sina — ac pD cosa) (29)

Trfs =

(30)

Trer = Drz (95__ OFc) subsurface flow is mainly dominated by gravity drainage.
r Harman and Sivapalan (2009) extended the similarity
Drz (6 — 6w) framework of Berne et al. (2005) to account for the respon-
Tret = ———=——— (27)  siveness of the hillslope subsurface flow to temporal variabil-

t ;
ity of the recharge events, as well as for the effects of lower
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boundary condition of hillslope drainage. They used the con-of partitioning, storage and release of incoming water and en-
cept of hydrologic regimes of Robinson and Sivapalan (1997)ergy fluxes. During different parts of the hydrologic response

to develop a hillslope subsurface flow classification systemnot all components of the model are equally active, such that
based on the Pe number and the dimensionless characteristime can link parameter values to specific storage dynamics

time of recharge events: to avoid unwanted parameter interactions often encountered
T in automatic calibration procedures. In the following we de-

T = — (31) scribe a step-by-step procedure of linking model parameters
hc

to specific hydrologic responses generated by the proposed
wheret; is the average storm duration amgl is the con-  model. This procedure can easily be modified when other
centration time of the hillslope. Either the advection or the process-based models are used.

diffusion time scale defined above can be used to estimate

the hillslope concentration time. Their classification system3.1.1 Dormant vs. growing season

defines slow/fast, advection/diffusion dominated subsurface o ) ) )

flow, depending on the numerical value of Pe (below 1: dif- First. we divide the hydrologic year into two periods: one
fusion: above 1: advection) and (below 1: slow; above 1: When the vegetation is dormant and one when the vegeta-
fast, although the separation between fast and slow flow ifion iS active (growing season). This decision is based on
the diffusion dominated case depends on the boundary cor@N@lyzing the average leaf area index (LAI) curve derived

dition assumed: fixed (small) flow depth vs. kinematic). from several years of remote sensing observations at the
catchment scale. In this study we use MODIS (Moderate
2.4.6 Fractured bedrock time scales Resolution Imaging Spectroradiometditp://modis-land.

gsfc.nasa.gov/lai.htindata and more specifically the LAl
Time scales for non-linear reservoirs representing baseflovproduct available atttps:/Ipdaac.usgs.gov/lpdaac/products/
dynamics have been proposed by Woods (2003). In manynodisproductstable from 2000 to 2008. From the annual
cases, the master baseflow recession curve of a given catchignals of LAl the average LAI curve is derived and subse-
ment converges to a straight sloping line in semi-logarithmicquently rescaled using the minimum and maximum average
plots of In(Q,,) versus time, indicating that most deep aquifer LAI. The hydrologic year is then separated into the dormant
dynamics are best represented by a linear reservoir equaticseason and growing season using the time instances when the
with »=1. In that case, the characteristic time scale of deepgescaled LAl curve crosses the 50 % cut-off level (Fig. 1).
(fractured bedrock) aquifer dynamics is given by,lthe  This method is similar to the phenology model for monitor-

reservoir time constant. ing vegetation responses developed by White et al. (1997),
and seems to be able to capture the inflexion points of the
2.4.7 Channel network time scales average LAl curve well.

The advective characteristic time scale of channel flow is3.1.2 Step 1: baseflow recession and aquifer dynamics
given by:
An obvious starting point for hydrologic analysis of catch-

o = 2 (32) ment response is when the catchment is non-driven and re-

14 laxes from previous hydro-meteorological fluxes that have
whereL. is flow length along the channel network from the replenished some/all stores. In order to isolate several possi-
centroid to the outlet and is average flow velocity. Ob- ble release fluxes from the catchment it is best to start focus-
viously, the channel flow Froude number is an appropriatel"d on baseflow recessions during the dormant season. Such

dimensionless number to characterize the flow regime. recession hydrographs will be minimally affected by root wa-
ter uptake and subsequent transpiration losses and thus can

be considered mainly controlled by aquifer properties. Our

3 Model identification procedure process-based model considers two separate aquifer stores:
the near-surface perched aquifer that develops during wet
3.1 Linking parameter values to dominant process period above a confining layer (i.e. fractured bedrock with
behavior reduced vertical hydraulic conductivity), and a deep aquifer

] ) ) that receives a fraction of all percolation water from the root
The above-described hydrologic model is one of many alter-qne (je. a fractured bedrock aquifer). To relate baseflow

native process-based models that can be formulated 0 dggcessions to these aquifer stores we perform a baseflow sep-
scribe different surface and subsurface stores and their intetz. .tion as follows:
actions that generate streamflow (Jothityangkoon and Siva-

palan, 2009; Clark et al., 2008). Within the context of such Ob(t) = eQp(t — 1) + 1-¢ [0() — Ot — 1] (33)
models, routine hydro-meteorological observations can be 2

analyzed to inform us about the different catchment functions
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Fig. 1. lllustration of average leaf area index (LAI) curve derived from 9 years of MODIS observations over Tygart River Valley catchment.
A cut-off level of 50 % of the rescaled LAI curve is used to separate the dormant and the growing season.
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Fig. 2. lllustration of derivation of the master recession curve (MRC) for San Marcos, TX catchment and the separation of recession flow
derived from the perched and the bedrock aquifer. The inset shows a Brutsaert-Nieber plot of recession rates versus baseflow. The lower en
reveals the linear reservoir response of the deep aquifer whereas the upper end shows the non-linear recession characteristics against whi
the hillslope-storage Boussinesq equation is calibrated.

with Q(z) total streamflow at time, Qp the computed of all observed recession curves. According to our concep-
baseflow contribution to total streamflowpf < Q), ande tual model of baseflow generation, we can consider the early
a low-pass filter parameter (Arnold and Allen, 1999; Eck- part of the MRC as being composed of both perched and deep
hardt, 2005). The filter parameteiis set for all catchments aquifer contributions while the late part of the MRC is solely
at 0.925. Since the purpose of the study is to address hyeomposed of deep aquifer contributions. Therefore, starting
drologic similarity across a climate gradient, the selection offrom the low flow end of the MRC, the deep aquifer parame-
a different cut-off level would not change the relative dif- ters are estimated to match that part of the MRC. In all appli-
ferences between the catchments (a desired characteristic o&tions of the model to our study sites (see Sect. 4) we have
the data manipulation), but obviously will affect to some de- observed that the lower end of the MRC can be approximated
gree the absolute values. Next, all recession periods duringy means of a linear reservoir model, characterized by a time
the dormant season are selected for recession curve analgenstant of storage release given by the reciprocal value of
sis (Fig. 2). The catchment master recession curve (MRC}he slope of the linear regression line through the lower end
is constructed by time shifting individual recession curvesof the MRC (Fig. 2). Parameter values are estimated us-
to match the lower end of the baseflow values, and pro-ing the downhill Simplex method (Nelder and Mead, 1965)
gresses from low to high baseflow values. This procedurewith least square error objective function. The inset of Fig. 2
is described in more detail in Posavec et al. (2006). Subseshows a Brutsaert-Nieber plot of recession rates versus base-
quently, the MRC is defined as the smoothed lower envelopdlow of binned observations and MRC. The lower end reveals
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the linear reservoir response of the deep aquifer whereasormalized residuals between modeled and observed base-
the upper end shows the non-linear recession characteristidtow, direct runoff, and total streamflow volumes. In this
against which the hillslope-storage Boussinesq equation isvay we select infiltration and percolation parameters that
calibrated. match all runoff generation mechanisms active in the catch-
Using the deep aquifer model we can now identify mentduring the dormant season. Parameters that control root
the perched aquifer contributions to the early part of thewater uptake are set to typical values from look-up tables as-
MRC. Once isolated from the deep aquifer contributions, sociated with dominant vegetation type.
the perched aquifer recession curve is used to estimate Once reasonable parameter values for the hydraulic prop-
the parameters controlling release from the hillslope-storageerties of the root zone soil are obtained, other critical pro-
Boussinesq model (viz. horizontal hydraulic conductivify, = cesses such as deep aquifer percolation and snow melt, are
and drainable porosityf). The maximum perched aquifer added to the list of parameters to be optimized. The fraction
baseflow contribution is used to define the steady-statef total percolation that enters the deep aquifer will control
recharge rate required to generate this amount of drainagéate time recession dynamics. Snowmelt during the dormant
This recharge rate is then applied to the hsB model to bringseason may or may not be an active process, depending on
it to steady-state, after which recharge is set to zero and théhe climate of the basin. In any case, we test whether better
model parameters are estimated such that the time historgnodeling performance can be achieved by adding these three
of relaxation from the maximum baseflow matches the ob-parameters (fraction of total percolation rate, melt rate
served recession. Since these parameters also define the togald threshold temperatuf@,). Since we use basin-average
storage during steady state, this procedure is repeated uniind daily averaged temperature to force the snow melt model,
no further improvements, measured by means of least squatéie value of the temperature threshold and melt rate should
error, are obtained using the downhill Simplex parameter esbe interpreted with care.
timation algorithm (Nelder and Mead, 1965). The maximum
water table depth during steady state is next used to defind-1.4 Step 3: streamflow generation during growing
the upper boundary of perched aquifer storage capacity, ex- season
pressed as maximum perched aquifer depth,

Other conceptualizations of observed baseflow dynamicdUring the growing season, parameters that control root wa-
could have been proposed to capture the early-time nongeruptake and vegetation transpiration will have an important

linear behavior, such as the transmissivity feedback mech&fféct on hydrological partitioning of incoming water and en-
anism (Bishop, 1991). Given the size of the selected catch®'9Y fluxes. These parameters include soil anq vegetation pa-
ments and the lack of biogeochemical data it is very difficult "'@Meters such as critical moisture contelgt, wilting point

to unambiguously decide which subsurface flow mechanisn{l©iStureé contenti, vegetation root fractionygr, vegeta-

is responsible for the observed baseflow dynamics and botHO" light use efficiencyy., as well as aerodynamic parame-

conceptualizations (the one used in this study and the onlf’S: Such as zero plane displacement heighand rough-
based on transmissivity feedback) are equally likely. ness lengthzo. These aerodynamic parameters are related to
the vegetation height through (Brutsaert, 2005):

3.1.3 Step 2: streamflow generation during dormant d = 0.67 H,
season

= 0.123H 34
The total amount of baseflow produced by our model doesZO Y (34)

not depend on the parameters assigned during the previoug,q therefore vegetation heiglfiy, is used during the pa-
step, but on the total amount of infiltrated water that perco-rameter estimation procedure. The five parameters are esti-
lates down to the perched water table and the deep aquifemated using the same procedure as described above (down-
Likewise, total streamflow generated by our model duringpjj Simplex). Once reasonable parameter values are ob-
the dormant season will include direct runoff produced eithertained, the snowmelt parameters are revisited to investigate

through infiltration excess or saturation excess. The next steg petter model performance can be obtained by means of
therefore is to assign values to parameters controlling the inp, o dified values from previous iterations.

filtration and percolation processes in the root zone. From

available soil databases, such as STATSGO and SURGG(B.1.5 Step 4: channel network routing

we select the dominant soil type within a given catchment.

From this soil type we assign values of total porosity and The next step takes the daily-generated surface runoff (both
residual porosityds and6d;, using look-up tables from Clapp infiltration excess and saturation excess) and uses Eq. (6) to
and Hornberger (1978). Other soil hydraulic parameters, vizroute these volumes to the catchment outlet. These routed
sorptivity and vertical hydraulic conductivity, are estimated volumes are added to the daily subsurface flow from the

by means of the downhill Simplex algorithm using a multi- perched aquifer and fractured bedrock aquifer. The two rout-

objective function that accounts for the absolute values ofing parameters¢ and F, are estimated by maximizing the
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Fig. 3. Location of study sites and their aridity index and runoff coefficient for the period 1990-1999. Snow catchments are indicated with
an*.

Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) measured4 Study sites and model identification results

for streamflow values.
4.1 Study sites across climate gradient

3.2 Matching hydrologic signatures

We applied the above described hydrologic analysis proce-
The final step in our model identification procedure is to dure to 12 MOPEX catchment east of the Rocky Moun-
compare modeled and observed hydrologic signatures, sudains, USA. These catchments were previously used in van
as the annual runoff coefficient, annual baseflow index andNerkhoven et al. (2008) to study SAC-SMA (Sacramento
the slope of the flow duration curve (Gupta et al., 2008; Yil- Soil Moisture Accounting) model parameter sensitivities
maz et al., 2008). The annual runoff coefficient for any givenacross a hydroclimate gradient using multiple time periods

hydrologic year is defined as: between 1980-1989.
365 As_c_an be_see_n from the listed wetness indices and run_off
Rop = @) (35) coefficients in Fig. 3, these catchments represent a wide
Q — P range of climate and hydrologic regimes. Table 1 lists some

_ . _ catchment characteristics of our 12 study sites. Catchment
wherer is day in hydrologic year (1 October—30 September). area ranges from 1000 Ko 4500 kn?. Mean catchment

Similarly, the annual baseflow index is defined as: elevation ranges from about 100 to 800 ma.s.l. The mean
365 annual precipitation ranges from 750 mm to 1500 mm, and
Ob(®) i irati
Igr = Z ) (36) the mean annual potential evapotranspiration ranges from
=~ 0@ 1500 mm to 700 mm.

al., 2007; Sawicz et al., 2011):

Sene = IN (Q33%) — In (Qs6%)
FDC =

4.2.1 Forcing data

37

0.66 — 0.33 57 The model uses the following eight variables as input
where Q339 and Qggo, are the flow values exceeded 33% time series: precipitation, land surface albedo, air tem-
and 66 % of the time, respectively. Discrepancies betweerperature, long and short wave downward radiation, atmo-
modeled and observed hydrologic signatures are used to repheric pressure, actual vapor pressure and wind speed.
peat the parameter estimation procedure after Step 1 untiPaily precipitation data is provided through the MOPEX
no further improvements in reproducing these signatures ar#ebsite {tp:/hydrology.nws.noaa.gov/pub/gcip/mopex/US
obtained. Data) (Duan et al., 2006). The other seven variables are
derived from the 3-h, 1/8 degree hydroclimate data set de-
veloped by Maurer et al. (2002), and availablehdtp://
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Table 1. Watershed characteristics.

River Outlet location ID Area Mean Mean Mean Mean
(km?) Elevation AnnualP Annual PE  Annual RC
(m) (mm) (mm) Q/P)
Guadalupe Spring Branch, TX GUA 3406 542 765 1528 0.15
San Marcos Luling, TX SAN 2170 295 827 1449 0.22
English Kalona, 1A ENG 1484 254 893 994 0.30
Spring Waco, MO SPR 3015 329 1076 1094 0.28
Rappahannock Fredericksburg, VA RAP 4134 204 1030 920 0.37
Monocacy Frederick, MD MON 2116 194 1041 896 0.40
East Fork White Columbus, IN EAS 4421 268 1015 855 0.37
S. Branch Potomac  Springfield, WV POT 3810 651 1042 761 0.33
Bluestone Pipestem, WV BLU 1021 787 1018 741 0.41
Amite Denham Springs, LA AMI 3315 77 1564 1073 0.39
Tygart Valley Philip, WV TYG 2372 709 1166 711 0.63
French Broad Ashville, NC FRE 2448 819 1383 819 0.58
1.0 1.0
[l Observed [l Observed
Esimulated il O simulated
2 0.8 % 0.8
2 k-]
9 £
& 0.6 HT
g 2
J Y
et % 0.4
c a
=
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Fig. 4. Observed versus simulated runoff coefficients for all 12 Fig. 5. Observed versus simulated baseflow indices for all 12 catch-
catchments for the period 1990-1999. The error bars repregsent ments for the period 1990-1999. The error bars represérstan-
standard deviation of the observed and modeled annual runoff coefdard deviation of the observed and modeled annual baseflow in-
ficients, respectively. dices, respectively.

www.hydro.washington.eduThe 3-h data are converted to 4.3 Modeling results

daily averages and then spatially averaged over the catch-

ments using a weighted averaging procedure that accountsigure 4 compares observed and modeled average runoff co-
for complete or partial coverage of data grid and catchmengfficient for the period 1990-1999 for all 12 catchments. We

boundaries. used 1990-1994 to calibrate the model and ran the calibrated
model for 1990-1999. As can be seen, the model has cap-
4.2.2 A priori parameter assignments tured very well the average annual water balance, and sim-

ilar results were obtained for the inter-annual variability of
For _each basin, the MOPEX database providgs fractionahydr0|ogiC partitioning (not shown). From Fig. 5 we can
spatial coverage of each of the 16 USDA soil types, assee that the model also captured very well the fraction of
well as the fractional spatial coverage of vegetation type acota| streamflow that is generated as baseflow. The observed
cording to the University of Maryland vegetation classifi- paseflow indices in Fig. 5 are computed after baseflow sep-
cation system (see alsotp://www.geog.umd.edu/landcover/ aration, as described in Sect. 3, while the modeled baseflow
global-cover.html From this information, the dominant soil jndices are computed from the generated baseflow volumes
type and vegetation type is selected and typical parametefiom the perched and deep aquifer in the model. There is a
values are selected from Clapp and Hornberger (1978) for tog|ight tendency to underestimate the baseflow contribution to
tal soil porosity, and from the North American Land Data As- streamflow but the differences between observed and mod-

similation System —NLDASHttp://ldas.gsfc.nasa.gov/nldas/ e|ed average baseflow index are not statistically significant.
NLDASmapveg.phpdatabase for initial values of root zone

depth and vegetation height.
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Fig. 6. Observed (solid line) versus simulated (dashed line) flow duration curves for all 12 catchments for the period 1990-1999. The inset
shows the Nash-Sutcliffe efficiency (NSE), the Nash-Sutcliffe efficiency after log-transforming streamflow (NSE-Log) and the mean absolute
error between observed and modeled ordinates of the FDC (Mean AE; intHmd

In order to evaluate the model performance at daily time5 Discussion
steps, Fig. 6 shows the observed and modeled flow duration
curves for the period 1990-1999 for all catchments. Even5.1 Model parameters and time scales
though the model efficiency to reproduce observed hydro-
graphs is moderate (see inset values of Nash-Sutcliffe effiTable 2 lists all model parameters for all 12 catchments, to-
ciencies in Fig. 6), the match with observed flow duration gether with catchment characteristics derived from available
curves is remarkable at all flow levels (with a few excep- geographic information, such as drainage area, mean catch-
tions). This suggests that the model captures the dynamigment slope and mean channel slope. Total porosity was se-
transformation of climate forcing into streamflow rather well lected from look-up tables (Clapp and Hornberger, 1978)
but that timing of individual storm events may not be mod- based on dominant soil type. All other parameters were ob-
eled accurately. For the purpose of this study we consider itained using the methods described in Sect. 3. From these
more important to be able to reproduce the different modesnodel parameters we have computed the different time scales
of response (in terms of frequencies of low, medium anddiscussed in Sect. 2.4 (see Table 3). Many different dimen-
high flow) given certain climate forcing than to match/over- sionless numbers can now be formulated as ratios of time
parameterize the model to fit hydrographs. scales. In the next section we relate these time scales and di-

Figure 7 compares the monthly regime curves of precipi-mensionless numbers to hydrologic signatures to reveal scal-
tation, evapotranspiration and discharge for two catchmenténg relationships that could be used to determine hydrologic
in different climate settings. San Marcos catchment in Texassimilarity between different catchments.
(left panel of Fig. 7) is a water-limited catchment, whereas An attempt to perform an automated parameter sensitivity
Amite catchment in Louisiana (right panel of Fig. 7) is a analysis failed due to the highly coupled and non-linear char-
more energy-limited catchment. The model reproduces theacter of the model equations, which caused instabilities in the
discharge regime curve for both catchments remarkably wellnumerical solution of Eq. (1). In future work we will refor-
illustrating that the model is capable of filtering different mulate the presented model and replace the dynamic ground-
climate signals in ways that are comparable with the realwater equation with derived storage-discharge relationships.
catchment filters. Similar results were obtained for the otherThis will remove most of the issues of numerical stability and
10 catchments (not shown). will allow testing of the parameter uncertainty and sensitivity
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Fig. 7. Observed and simulated regime curves of monthly precipita-F19- 8- Significant ( < 0.05;* indicatesp < 0.01) linear regres-
tion, evapotranspiration and discharge. Potential evapotranspiratiofion relationships between catchment characteristics (minimum and
is computed from the model using minimal stomatal resistance. -Maximum LAl, mean elevation and mean catchment slope) and dif-
Left panel = San Marcos, TX — Right panel = Amite, LA — Vertical ferent model parameters for 6 no-snow dominated catchments.

lines aret1 standard deviation.

while catchment slope defines vegetation height. The latter
required to assess how representative the listed parameteslationship is most likely caused by the a priori choice of
values in Table 2 are. vegetation height from land cover databases that show a sim-
ilar relation between vegetation height and catchment slope
(K. Sawicz, personal communication, 2010). However, these
regressions are mainly the result of our hydrograph analy-
We regressed all readily available catchment characteristicssis to inform model parameters rather than from regression
such as drainage area and mean catchment slope, to the difatchment characteristics and hydrologic response. Obvi-
ferent model parameters, in an attempt to reveal regionalizaously more work is needed to define the robustness of these
tion patterns. Not many linear regressions between catchrelationships, their physical meaning (why is hydraulic con-
ment characteristics and model parameters were statisticallgluctivity of the transmission zone related to mean eleva-
significant at 95% confidence limits. Table 4 shows all tion?), as well as answering the question why no significant
regression relationships that were significant witk: 0.05 relationships showed up for the snow dominated catchments.
(some were significant at < 0.01, indicated by). Figure 8  Itis possible that the soil parameters defined during the dor-
shows some of these statistically significant relationships formant season are affected during the snow accumulation pe-
the no-snow dominated catchments. Only very few signifi-riod while in fact most partitioning processes controlled by
cant relationships showed up for all 12 catchments or for thethese soil parameters are inactive. Another possible explana-
6 snow dominated catchments, indicating that the parameteréon is that different parameters of the model control differ-
of the snow dominated catchments were not related to catchent runoff generation mechanisms in different climates (van
ment characteristics and therefore could not be regionalizederkhoven et al., 2008). We will address this issue in our
The remaining regression relations for the 6 no-snow catchon-going research.
ments appear to be rather strong. In particular, information of Next, we regress the model time scales to hydrologic sig-
minimum and maximum LAI can be translated to root zone natures (runoff coefficient, baseflow index and slope of the
and vegetation parameters in the model quite reliably. Mearflow duration curve; Table 5). Figure 9 shows some of
elevation of the 6 catchments seems to be strongly related tthese regression relationships. Even though our initial re-
the saturated hydraulic conductivity of the transmission zonegression analysis is based on simple linear regression, some

5.2 Regionalization and scaling relationships
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Fig. 10. Significant linear and non-linear regression relations be-
Fig. 9. Linear and non-linear regression relationships, significant attween the runoff coefficient and different dimensionless numbers:
p <0.05 (¢ indicatesp < 0.01), between hydrologic signatures and left panel: aridity index; right panel: three dimensionless numbers

model time scales. Triangles indicate no snow catchments and dotélated to different time scales in the models (2: canopy emptying;
represent snow catchments. 6: root zone emptying by drainage; 8: transmission zone filling;

9: transmission zone emptying). Triangles indicate no-snow catch-
ments and dots represent snow catchments.

regression functions were altered when non-linear relations

were apparent from the data trends. Again, no strong regres-

sion relationships showed up for the snow-dominated catchof) feedback between subsurface moisture storage and ET
ments, so Fig. 9 shows only significant relationships for nothrough capillary fluxes.

snow catchments. It should be kept in mind that the reported Baseflow index is strongly and linearly related to the time
R? values apply to the initial linear regression analysis (asscale associated with filling up the root zone by rainfall.
well as the significance levels), even though after inspectionVhen that time scale is short, less water will leave the catch-
of the data trends it was clear that non-linear (power law)ment as baseflow and more as surface runoff. This does not
regressions better represent the patterns. The runoff coeffiseem to be affected much by climate, since even in our most
cient is related to 3 time scales of the models: the time scal@rid catchments the baseflow index can be high (e.g. GUA
related to emptying the canopy store (function of potentialwhich is a karst dominated catchment).

evaporation, and thus strongly related to climate), the time The only relationship that holds for all 12 catchments is
scale associated with emptying the root zone by transpirabetween the slope of the FDC and the time scale of the deep
tion (a function of actual evapotranspiration and thus part ofaquifer. This relationship is especially robust because of the
the competition between ET and drainage), the time scalghysical link between short time scales of the linear reser-
related to emptying the transmission zone through drainagaoir behavior and the release of water from the catchment, as
(clearly defining the generation of slow flow at the expensecaptured by the slope of the FDC.

of ET). RC is clearly also affected by the mean storm dura- Finally, we regressed hydrologic signatures with different
tion, a climate time scale and not a model time scale. Zoom-dimensionless numbers, created as ratios of the model time
ing in on the latter two model time scales and how they re-scales. We used-; to indicate the dimensionless number
late to RC, it is interesting to note that RC increases when itcreated by time scaleover time scalg, withi and; indices
takes longer for the root zone to be emptied by ET, indicat-referring to time scales listed in Table 3. For instangeg

ing that in such situations water can move through the roots defined by the ratio of the time scale to empty canopy stor-
zone to become baseflow or is more likely to generate quickage by potential ET and the time scale of the perched aquifer
flow. Likewise, RC is higher when it takes less time to empty advection. It is clear from Fig. 10 that the aridity index is a
the transmission zone through drainage, indicating the (lackstrong control on the runoff coefficient, for all 12 catchments
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Table 2. Model parameters.
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Parameter GUA SAN ENG SPR RAP MON EAS POT BLU AMI TYG FRE

Area (kmz) 3406 2170 1484 3015 4134 2116 4421 3810 1021 3315 2367 2448
Mean catchment slope- 0.093 0.063 0.057 0.025 0.116 0.073 0.018 0.276 0.235 0.029 0.239 0.243
Mean channel slope~) 0.0017 0.0022 0.0016 0.0012 0.0013 0.0028 0.0007 0.0027 0.0011 0.0010 0.0044 0.0016
Soil type ct clt clt sil2 sil2 sil2 sc 14 14 scP 14 s

Moisture content at saturation 0.476 0.476 0.476 0.485 0.485 0.485 0.420 0.451 0.451 0.420 0.451 0.435
Wilting point 0.214 0.2856 0.062 0.146 0.146 0.034 0.042 0.045 0.135 0.042 0.032 0.044
Critical moisture content 0.286 0.333 0.381 0.412 0.364 0.340 0.399 0.446 0.361 0.378 0.446 0.431
Infiltration hydraulic conductivity (cm 111) 5.0 5.0 2.0 7.0 2.0 1.70 5.0 2.0 0.9 2.7 1.0 2.8

Soil sorptivity (cm d 0-9) 5.0 9.0 25 7.0 2.0 1.75 1.0 2.0 1.0 3.0 0.3 2.0

Root zone depth (m) 0.30 0.30 0.70 0.50 0.50 0.40 0.40 0.70 0.30 0.75 0.40 0.90
Depth to bedrock (m) 3.75 4.00 3.00 3.00 3.50 3.00 2.00 2.00 1.50 3.50 2.00 2.50
Root zone hydraulic conductivity (cnd) 8.0 15.0 30.0 0.5 20.0 25.0 5.0 1.0 5.0 5.0 5.0 20.0
Transmission zone hydraulic conductivity (cmjd 70 60 50 60 50 250 100 150 50 30 175 90
Drainable porosity{) 0.05 0.055 0.15 0.10 0.35 0.20 0.01 0.15 0.15 0.10 0.20 0.15
Horizontal hydraulic conductivity (mt) 259 147 69 86 86 346 173 104 432 173 259 104
Recharge fraction to deep aquifer (%) 0% 70% 50% 10% 5% 90 % 15% 70% 90% 80% 10% 30%
Deep aquifer parameter(&) - 0.013 0.053 0.035 0.034 0.032 0.019 0.029 0.039 0.012 0.053 0.019
Vegetation height (m) 6 3.75 0.5 14 10 15 4 8 5 3 3 10
Vegetation root fraction (%) 60 % 65 % 70% 75% 50 % 62 % 60 % 40% 35% 35% 50 % 40 %
Light use efficiency (%) 60 % 60 % 70% 90 % 50 % 62 % 50 % 40% 40% 40 % 60 % 50%
Minimum leaf area index-{) 0.4 0.3 0.2 0.4 0.6 0.3 0.2 0.5 0.5 0.9 0.3 0.7
Maximum leaf area index<) 1.3 1.3 25 2.3 4.0 4.0 2.6 4.2 4.2 3.9 4.0 4.0
Channel network velocity (m*sl) 0.053 0.57 0.15 0.27 0.031 0.020 0.13 0.37 0.16 0.24 0.24 0.078
Snow temperature threshold (C) - - 2 - - 1 0.5 1 3 - 0.5 -

Snow melting rate (mmdt Cc—1) - - 0.5 - - 15 5 10 15 - 1 -

1 cl=clay; 2sil = silt; 3scl = sandy clay*l = loam; >s| = sandy loam

(but somehow more strong for the no-snow catchments)(R2 =0.86;p < 0.0001) between14-9 andmp-g. Catchments
This is no surprise since the left panels of Fig. 10 are nothingwith low values of these two dimensionless numbers have cli-

but the Budyko curve for our catchments. However, for the
no-snow catchments, a dimensionless number defined by th

mates characterized by high PET and short storm durations,
leave low canopy storage capacity (low LAI), slowly drain

time scale to empty the canopy storage (linked to PET) andhe root zone and transmission zone, and have low perched
the diffusion time scale of perched aquifer drainage (linkedaquifer storage capacity and hence high transmission zone

to catchment early-stage drainage), does equally well to ex
plain the observed variance compared to the aridity iné&x (
of 0.935 atp < 0.01 vs. 0.926 ap < 0.05, respectively).

storage capacity. The opposite is true for catchments with
high values for these 2 dimensionless numbers. The data
suggest either a linear trend between those two extremes or a

Figure 11 suggests that the same dimensionless numberon-linear (sigmoid) trend. The latter has a lower mean abso-

(m15-12: ratio of interstorm duration to deep aquifer time
constant) explains both the baseflow index and the slope o

lute error regarding the data points. All this indicates that cli-
mate, vegetation and subsurface characteristics of root zone,

the FDC for all 12 catchments, even though stronger relatransmission zone and perched aquifer somehow co-evolve
tionships are possible when separating snow from no-snovalong the climate gradient.

catchments and when using different dimensionless num

- To test whether the observed trend can be explained solely

bers. In any case, the time scales of aquifer drainage alwayBy trends in mean storm duration (time scale 14 in y-axis)
play an important role to explain these hydrologic signaturesand mean potential evapotranspiration (denominator of time
indicating that subsurface catchment characteristics are corscale 2 in x-axis), we plotted these two climate variables

trolling release of water stored in the saturated zone.

5.3 Co-variation of climate, vegetation and soil time
scales

Finally, we investigated how different ratios of time scales
are related to each other. If significant (linear or non-linear)

against each other in the bottom panel of Fig. 12. Itis clear
that the trend of the top panel cannot be explained by cli-
mate only, and that we have to take vegetation and subsur-
face characteristics identified through our process-based hy-
drograph analysis into account. This reinforces the notion
that climate, vegetation and subsurface storage and release
properties of these basins co-vary systematically across the

relationships exist between different dimensionless n“mberﬁlimate gradient.
characterizing the catchments, this could indicate that dif-
ferent time scales interact to create systematic emerging

patterns of hydrologic partitioning across the climate gradi-

ent. For example, Fig. 12 shows a strong linear relationship
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Table 3. Time scales.

G. Carrillo et al.

: Hydrological analysis of catchment behavior through process-based modeling

No. Time Scale (days) GUA SAN ENG SPR RAP MON EAS POT BLU AMI TYG FRE
1 Canopy filling 0.07 0.07v 0.12 0.10 0.19 0.19 0.14 0.29 0.24 012 0.19 0.15
2 Canopy emptying 0.04 005 0.22 0.15 0.23 0.29 0.19 0.29 030 0.20 0.33 0.27
3 Snow melting - - 227 - - 19.6 26.7 33.7 8.0 - 20.7 -
4 Root zone filling by 13.1 125 227 55 15.3 15.3 3.8 13.5 9.7 2.3 8.9 18.9
rainfall
5 Root zone filling by - - 436 - - 41.2 23.1 50.7 7.6 - 19.7 -
melting
6 Root zone emptyingby 59.5 316 259 621 354 234 25.2 428 75.2 426 155 69.4
drainage
7 Root zone emptyingby 206 214 53.8 450 48.6 42.8 20.0 76.1 31.7 238 409 94.5
transpiration
8 Transmission zone 833 411 110 298 167 169 108 121 310 104 74 125
filling
9 Transmission zone 742 424 112 370 248 175 126 122 372 198 77 193
emptying
10 Boussinesq aquifer 0.8 13 9.3 25.8 13.6 21 112 15 0.8 4.6 0.9 15
advective
11 Boussinesq aquifer 9.4 6.7 68.4 1414 1983 17.1 44,4 59.2 65.6 15.0 315 37.7
diffusion
12 Deep aquifer - 80.0 18.8 28.6 29.4 31.3 526 34.5 256 83.3 18.9 52.6
13 Channel flow 2.7 2.0 4.2 2.8 3.0 3.0 6.9 4.3 4.0 4.1 3.3 9.1
14 Mean Storm Duration 5,09 585 488 524 7.05 6.06 741 1168 7.14 6.40 11.24 9.02
15 Mean InterStorm 286 288 249 243 2.24 2.17 191 1.70 199 244 1.76 2.11
Duration
Table 4. Linear correlation coefficients between catchment characteristics and model parameters.
Parameter Catchments without snow Catchments with snow
Area Catchment Channel Mean s LAl LAl Area Catchment Channel Mean Os LAI LAl
slope slope elevation min max slope slope elevation min max
Wilting point —0.19 —0.34 075 —-011 075 —-0.90 -0.86 —0.59 028 —053 048 —0.05 052 0.9
Critical point -0.21 031 -0.46 0.18 —0.38 048 067 0.53 0.53 0.48 0.48-0.47 014 011
Infiltration K -0.36 —0.49 0.23 0.06 052 —0.76 —0.77 0.77 -0.66 —056 —0.56 -0.62 —059 —0.70
Sorptivity -0.54 -0.55 057 -017 049 -082 -0.85 —0.09 -030 -028 -050 056 —0.04 -0.30
Root zone depth —0.09 051 -051 027 -0.80 0.85 0.84 0.19 0.01 006 —020 026 -0.03 -028
Depth to bedrock 0.15 —0.59 039 -058 035 —041 -0.58 —-0.18 —0.62 013 081 074 -055 -0.39
Root zonek —0.05 0.77 0.43 0.36 —0.01 013 035 —0.49 -0.63 —-0.07 -073 079 —-051 -0.42
Transmission zon&  —0.47 0.77 051 097 013 -0.34 -018 0.22 0.04 068 -020 034 000 047
Drainable porosity 0.65 031 -036 -0.17 018 036 0.68 —0.63 0.49 0.74 029 078 039 065
Horizontal K 0.04 -0.20 0.25 0.06 —0.12 -0.17 -0.54 —0.49 0.22 0.03 033 010 038 059
Fraction to deep Aq. —0.49 —0.26 011 -039 -062 034 009 —047 020 -0.19 006 057 062 050
Deep aquifer param. —0.49 —-0.18 033 -020 -061 020 —0.20 0.81 -040 -051  -0.34 -065 -020 -0.29
Vegetation height 0.26 0.86 0.12 049 —0.05 028 049 0.48 0.68 —0.04 0.64 —053 074 050
Root fraction —0.17 —0.44 035 —0.04 084 -091 —0.77 0.03 -0.87 —0.09 091 033 —-091 -0.76
Light use efficiency ~ —0.18 —-0.35 0.05 0.08 065 —0.70 —0.53 —-0.31 —0.58 027 —-063 057 —0.75 —0.49
Channel velocity -0.67 -0.49 047 -035 008 —041 -0.49 -0.10 -046 -013  —-048 029 -0.14 014
Snow temp. treshold - - - - - - - -0.76 0.18 -0.48 0.29 0.28 0.44 0.11
Melting rate - - - - - - - -017 021 -0.20 014 020 064 063

Bold prints are significant at 95 % CLt;indicates significance at 99 % CL.
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Table 5. Linear correlation coefficients between hydrologic signatures and model time scales.
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Time Scale Runoff coefficient Baseflow index Slope FDC

Al No-Snow  Snow All' No-Snow  Snow All' No-Snow  Snow
Canopy filling 0.46 0.72 0.03 0.08 0.34 0.49 0.26 -0.31 -0.19
Canopy emptying 0.80¢ 0.92¢ 0.65 —0.02 0.31 0.07 0.25 —-0.38 -0.12
Snow melting —0.29 - -0.29 0.47 - 0.47 —0.28 - -0.28
Root zone filling by rainfall -0.01 0.29 -0.44 0.30 0.87 -0.49 0.21 —0.26 0.60
Root zone filling by melting —-0.54 - —0.54 0.23 - 0.23 —0.03 - -0.03
Root zone emptying by drainage ~ —0.11 0.30 -0.27 0.18 0.11 0.00 -0.07 0.28 0.29
Root zone emptying by transpiration 0.45 0.85 -0.30 0.45 0.65 0.09 —0.02 -0.29 0.22
Transmission zone filling —0.68 -0.81 -0.17 0.01 -0.17 -0.04 —0.03 0.51 0.15
Transmission zone emptying —0.66 -0.84 -0.14 0.02 —-0.23 -0.06 -0.11 0.57 0.16
Boussinesq aquifer advective -0.23 —0.06 -0.48 —0.38 -0.59 -0.18 0.17 0.69 0.15
Boussinesq aquifer diffusion -0.03 0.13 -0.53 —0.15 -0.21 -0.43 0.19 0.44 0.78
Deep aquifer -0.23 —-0.09 -0.34 0.39 0.11 0.73 —-0.77 -0.72 -0.65
Channel flow —0.18 —-0.18 -0.08 0.25 0.12 0.40 —0.22 0.26 -0.57
Mean Storm Duration 0.65 0.94 0.50 0.33 0.80 0.42 —0.05 -0.71 -0.31
Mean InterStorm Duration —0.70 —-0.89 -0.47 —0.07 —-0.29 -0.62 —0.22 0.24 0.54

Bold prints are significant at 95 % CI:;indicates significance at 99 % CL.
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Fig. 11. Significant linear relationships between baseflow index

to model time scales (4: root zone filling by rain; 9: transmission

Apparently, our hydrograph analysis with the aid of the
process-based model resulted in a systematic variation of
subsurface properties, expressed as time scales related to the
root zone and transmission zone, between dry less vegetated
and wet more vegetated catchments. At the far left in Fig. 12
appear the catchments situated in Texas (GUA and SAN) and
Missouri (SPR) and at the far right are catchments situated in
West Virginia (POT and TYG). If such relationship between
climate, vegetation and soil time scales can be shown to hold
for other catchments along similar climate gradients, it can
provide guidance for catchment model parameterization that
would apply to ungauged basins. Obviously more research is
required to support this conclusion.

5.4 Limitation of bottom-up modeling approach to
explain hydrologic similarity

There are a number of disadvantages associated with the pro-
cedure outlined in this paper. First, model construction is to
some degree subjective and different hydrologists will de-
velop different generic catchment models with the same pur-
pose of capturing hydrologic response. Therefore, model
time scales derived from individual model components are
not universal and will depend on the model construction.

(J}/Iodel inter-comparison is needed to check to what degree

different model formulations will lead to different conclu-

zone emptying; 11: Boussinesq aquifer diffusion; 12: deep aquiferSions about the cause of hydrologic similarity. The observed
15: mean inter-storm duration). Triangles indicate no snow catch-Scaling relations between model time scales and hydrologic
ments and dots represent snow catchments.

www.hydrol-earth-syst-sci.net/15/3411/2011/

signatures presented in this study should therefore be inter-
preted with care, as they are probably unique to the modeling
procedure used in this study, and more work is needed to test
their robustness.
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Fig. 12. Left panel: relationship between two dimensionless humbers characterizing co-variation between climate forcing, canopy storage
and belowground storage and release characteristics of the 12 catchments. The data suggest either a linear or a sigmoid functional relatior
ship, with MAE (mean absolute error) smallest for the latter; right panel: lack of significant relationship between mean storm duration and
potential evapotranspiration illustrating that trend in top panel is not due to climate gradient only.

Second, the described hydrograph analysis to select appranodel time scales of partitioning, storage and release of wa-
priate model parameters is time consuming. Some of the hyter at the catchment scale. These model time scales can be
drograph analysis can be performed with the aid of computegrouped as dimensionless numbers that serve as similarity
scripts, but still requires supervision of a skilled hydrologist. indices to explain specific hydrologic behavior.

Applying our procedure to all 280 catchments used by Saw- \We applied this procedure to 12 catchments across a cli-
icz et al. (2011) is therefore beyond the scope of this work,mate gradient in the eastern US. The process-based model is
but will ultimately be required to test the robustness of our capable of representing accurately observed hydrologic re-
preliminary results. sponses at annual, seasonal and daily time scales. Some

Third, our method requires daily observations of precipi- model parameters are related to specific catchment proper-
tation, temperature, streamflow, and other hydrometeorologities, which offer potential for regionalization. At the same
cal variables. These are, by definition, not all available in un-time, we show that inter-catchment variability of three hydro-
gauged basins. Even though several model parameters can lsgic signatures (runoff coefficient, baseflow index and slope
selected a priori from available databases and remote sensingf the flow duration curve) can be explained by variability in
products, it is unclear whether this can lead to the construcmodel time scales and their dimensionless ratios.
tion of behavioral models that can guide catchment classifi- Perhaps the most intriguing result of our study is shown
cation methods in ungauged basins. However, the observegh Fig. 12. Figure 12 suggests that climate, vegetation and
co-variation between model time scales along a climate grasoil storage and conductivity co-vary predictably across a
dient is an encouraging result for application in ungaugedclimate gradient. Apparently, available energy and storm
basins. characteristics interact with catchment properties, such as

vegetation cover and belowground water storage and re-

lease capacity, and result in specific water balance partition-
6 Conclusions ing. It is well known that local vegetation and soil prop-

erties vary systematically along climate gradients in simi-
In this study, we developed a parsimonious process-baseldr geologic settings (Rasmussen et al., 2011; Anderson and
modeling procedure to investigate hydrologic similarity Goulden, 2011). It stands to reason that co-evolution of cli-
across catchments. The basic idea behind this approach mate, vegetation and soils is also present at larger scales,
that we use the model to interrogate hydrologic behaviorand that such co-evolution of catchment properties manifest
manifested in streamflow dynamics that are the result of howitself in how catchments partition incoming water and en-
catchment properties, such as soils, aquifers, geomorphokrgy fluxes. Obviously, at regional scales the initial condi-
ogy and vegetation filter available water and energy fluxestions set by geology and tectonics can strongly control evo-
Different parts of the hydrograph reflect different catchmentlutionary trajectories and can result in complicated patterns
functions (e.g. baseflow recession during dormant seasorthat are difficult to unravel. Our preliminary results sug-
that can be captured in individual model components throughgest that such co-evolution of catchment properties can be
parameter selection informed by careful hydrograph anal+evealed through process-based model interrogation of ob-
ysis. The resulting parameter values reveal characteristiserved hydrologic behavior, confirming a similar experience
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els can be expected to perform in the future. If we go fur- 1978.
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came about, how it is manifested in hydrologic response, and Yrugt. J. A., Gupta, H. V., Wagener, T, and Hay, L. E.:
how it is affected by geologic and tectonic processes, we can TYSE: A modular framework to diagnose differences be-

kei tant : bility t dict hvdroloai tween hydrological models. Water Resour. Res., 44, W00B02,
make important progress in our ability to predict hydrologic .1 1959/2007WR006738008.

response in ungauged basins as well as in our abi.“ty 10 Prepeardorfff, J. W.: Efficient prediction of ground surface temper-
dict how hydrologic systems will evolve in a changing envi-  4ire and moisture, with inclusion of a layer of vegetation, J.
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