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Abstract. Calculating return periods and design quantiles While in the univariate case the design quantile is usu-
in a multivariate environment is a difficult problem: this pa- ally identified without ambiguity — and widely used in the
per tries to make the issue clear. First, we outline a possiblengineering practiceQhow et al, 1988 — in the multi-
way to introduce a consistent theoretical framework for thevariate one this is not so. Indeed, the identification prob-
calculation of the return period in a multi-dimensional envi- lem of design events in a multivariate context is of funda-
ronment, based on Copulas and the Kendall's measure. Secaental importance, but of troublesome nature. Recently,
ondly, we introduce several approaches for the identificatiorseveral efforts have been spent on the issues of multivari-
of suitable design events: these latter quantities are of utmosdte design and quantiles (see, &grfling 2002 Belzunce
importance in practical applications, but their calculation is et al, 2007 Chebana and Ouard2009 2011k Chaouch
yet limited, due to the lack of an adequate theoretical envi-and Goga201Q and references therein; for a methodology
ronment where to embed the problem. Throughout the papeto identify multivariate extremes by using depth functions see
a case study involving the behavior of a dam is used to illus-Chebana and Ouard20113. Here we address the following
trate the new concepts outlined in this work. crucial question: “How is it possible to calculate the critical
design event(s) in the multivariate case?” Below, we outline
a suitable approach in order to provide consistent answers.
1 Introduction As we shall show later, the calculation of the RP is strictly
related to the notion of Copula. The use of copulas in envi-
The notion of Return Period (hereinafter, RP) is frequentlyronmental sciences is recent and rapidly growing. Shortly, a
used in hydrology (as well as in water resources and civilmultivariate copulaC is a joint distribution on/ =[0, 1}
engineering, and more generally in geophysical and environwith Uniform margins. The link between a multivariate dis-
mental sciences) for the identification of dangerous eventsribution F and the associated-dimensional copuleC is
and provides a means for rational decision making (for a re-given by the functional identity stated by Sklar's Theorem

view, seeSingh et al, 2007, and references therein). (Sklar, 1959:
The traditional definition of the RP is as “the average time
elapsing between two successive realizations of a prescribell (X1, - Xa) = C(F1 (x1), ..., Fa(xa)) (1)

even_t , Which clearly has a St?tlsncal b_ase. Equally_ 'mpor for all x € R?, where theF;’s are the univariate margins &f.
tant is the related concept désign quantileusually defined ) . . . :
w . o If all the F;’s are continuous, the@ is unique. Most impor-
as “the value of the variable(s) characterizing the event asso- L .
) . . " . : . . tantly, theF;’s in Eq. (1) only play the role of (geometrically)
ciated with a given RP”. In engineering practice, the choice ) 2
. re-mapping the probabilities induced Byon the subsets of
of the RP depends upon the importance of the structure, ang ; PR : :
. . onto suitable subsets @, without changing their val-
the consequences of its failure. For example, the RP ofadarﬂes_ viz., the dependence structure modeledCbplays a
design quantile is usually 1000 years or maosidttomme : " b y

etal, 2001, while for a sewer it is about 5-10 yeaBriere, central role in tuning the pr_obab|I|t|_e_s of joint ocqurrerc}ces.
1999, In fact, under weak regularity conditions, any paing R

can be uniquely re-mapped onice ¢ (and vice-versa) via
the Probability Integral Transform:
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For a thorough theoretical introduction to copulas 3ee  maximum water level is at 782.5ma.s.l., and the dam crest
(1997; Nelsen(2006; for a practical approach s&alvadori  level is at 784 ma.s.l. The dam has an uncontrolled spill-
etal.(2007); Jaworski et al(2010. In order to avoid trouble- way (84 m long) at 780.75ma.s.l.,, and also intermediate
some situations, hereinafter we shall assumefhatcontin-  and bottom outlets (the latter ones are obstructed by river
uous (but not necessarily absolutely continuous), and strictlysediments).
increasing in each marginal: these regularity constraints are In De Michele et al.(2009, “undisturbed” flood hydro-
rather weak, and satisfied by the majority of the distributionsgraphs incoming the reservoir were fixed by using the inverse
used in applications. Clearly, also pathological cases can beeservoir routing, the water levels in the reservoir, and the
carried out, but they require suitable techniques that go beeperations on the controlled outlets. Then, maximum annual
yond the scope of this work. flood peaksQ and volumesV were identified and selected
Later we shall use thikendall’s distribution(or measurg  for 49 years, from 1937 to 1994. As a result of a thorough
function K¢ : I — I (Genest and Rivesi993 200]) given investigation, almost all of the occurrence dates of @hig

by and theV'’s were the same: i.e. they happened during the
same flood event.
Kc(t) =P(W < t) = P(C(Uy, ..., Ug) < 1), 3) As an improvement oveDe Michele et al(2009, beyond

the pair Q, V), also the initial water level in the reservoir
before the flood eventd, V) is considered in this work, in
order to analyse the triple), V, L) of practical interest: in
fact, on the one hand represents the starting state of the
dam; on the other hand(, V) is the hydrologic “forcing”

. . i to the structure. Clearly, there are physical reasons to assume
Ity C(u) <1~ see als@enest and Rive¢2001); Nappo and thatL is independent of@, V) — see also below. The sample

Spizzichino(2009. Thus, as we shall sedc turns out to mean ofL is about 780.44 m a.s.|., with a sample standard de-
be a fundamental tool for calculating a copula-based RP for . . S .

L viation of about 1 m. The small variability df with respect
multivariate events.

Unfortunately, at present no general analytical expression%0 its range (here [774.75, 780.75] is the regulation range),

) : mainl to the management poli f the reservoir: th
of K¢ are known — except for special cases, like the one ofIS ainly due to the management policy of the reservo ©

oharte Externe Vae copulaGou: e i 1969, a2 0 € 127 Tnager s e eop 8 ot e
some Archimedean copulabi¢Neil and Nelehow, 2009 9 9 P

—and it is necessary to resort to simulations (see, e.g. Al 09]c electric energy.
rithm 1 outlined Iater); » €.9- A1 Using the pair Q, V), itis possible to calculate the associ-
: ated flood hydrograph with pea® and volumeV, once the

The paper is organized as follows. In Sexiwve first il- .
. . shape of the hydrograph has been chosen. As first approx-
lustrate the case study. In SeBtwe reconsider a previously . "©~ . " . . .
imation, it is possible to consider a triangular shape, where

introduced notion of RP in a multivariate environment, and . . - . .
compare it with other approaches. In Settve show how the base time is equal @, =2V/Q, the time of rise equals
) T, =Tp/2.67, and the time of recession is equal to 1IG7

oresent wo Srtegios 1o caculate arteal design events i 452691 Conservation Servica972andChow et l 1988
P 9 9 p.229 - for a different approach s8erinaldi and Grimaldi

multivariate context. Finally, in Sedb.we discuss the results L
outlined in the paper, and draw some conclusions. 2011). Consequently, the flood hydrograplis given by

wherer € I is a probability levelWw =C(Us, ..., Uy) is auni-
variate random variable (hereinaftey,) taking value orv,
and theU;’s are Uniform r.v.s o/ with copulaC. Note that
Eq. @) practically measures the probability that a random
event will appear in the region d@f defined by the inequal-

® 1.3351 02V, 0<r<T

2 The case study 7= 160 - 081 Q%/V, Ty<t<Ty
Although this work is of methodological nature, we feel im- Later, in Sect5, we shall test the behavior of the dam sub-
portant to illustrate with practical examples the new conceptgect to selected hydrographs. More particularly, we shall first
introduced. For this reason, we first present the case studgperate the reservoir routing of the flood hydrograph (see,
that will be used throughout the paper. e.g.Bras 199Q p.475-478 an@oppoy 1999 considering

The data are collected at the Ceppo Morelli dam, andas outlet only the uncontrolled spillway, and then we shall
are essentially the same as those investigat&kiMichele  check whether or not the reservoir level exceeds the crest
et al. (2009, to which we make reference for further de- level of the dam.
tails. The dam, completed in 1929, is located in the In Fig. 1 we show the trivariate plot of the available ob-
valley of Anza catchment, a sub-basin of the Toce riverservations, as well as the fits of the marginal distributions.
(Northern ltaly), and was built to produce hydroelectric en- However, we shall not insist on this point, being of sec-
ergy. The dam is characterized by a small water storage obndary importance with respect to the actual methodologi-
about 0.47% 10°m?3. The minimum level of regulation is cal target of the paper. The GEV law is used to model the
774.75ma.s.l., while the maximum is 780.75ma.s.l. Thestatistics of bothQ and V, since these are annual maxima:
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Fig. 1. Trivariate plot of the availabled, V, L) observations, and fits of the marginal distributions — see text.

the estimates of the parameters are reported in Tablée Table 1. Maximum-Likelihood estimates of the GEV parameters

fits are valuable, as they passed standard goodness-of-fit te§t} » andv, and corresponding 95% Confidence Intervals.
(namely, Kolmogorov-Smirnov and Anderson-Darling — see,

e.g.Kottegoda and Ross@®997) at all usual levels (viz., 1 %, Variable  Shape Scale Position
5%, and 10%). Instead, the behavior of the variables

quite tricky (as explained above, the water level is arbitrarily sy 8-3677 (i%igf; ( nfagsgj()ﬂ
fixed by the dam manager): for this reason, |t_s Iaw is calcu- 95%C.|. [0.15,058 [27.57,47.55 [48.15,70.55
lated via a non-parametric Normal Kernel estimatiBoW-
man and Azzalini1997. As a result, also in this case the 14 0.6149 1.5246 1.7231
Kolmogorov-Smirnov test is passed at all usual levels. (aemd) - AP m3) (1P m3)

The trivariate plot of the observations, as shown in Hig. 95%C.1. [0.37,0.86] [1.10,2.11  [1.26,2.19

is the first step usually carried out by practitioners to inves-
tigate the multivariate behavior of the phenomenon. How-
ever, we want to stress that this type of graph only provides
partial information, and should not be used to draw roughthe estimates of the Kendall’s and the Spearmans are

conclusions about the dependence structuredof¥(, L) — not statistically significant (as confirmed by the correspond-
see below, and alsGenest and Favr@007) for a thorough  ing p-values), and formal tests of independence suggest to
review. accept the hypothesis thatis independent of@, V). On

In order to investigate the joint behavior of the variables the contrary, the variableg), V) are significantly positively
(0, V, L), as is typical in copula analysis, we shall use the associated, and thu@ andV are not independent: the esti-
normalized ranks to carry out a non-parametric study. Themates of both the Kendall'sand the Spearmanysare large,
trivariate rank-plot shown in Fig2 provides some rough in- and the correspondingrvalues are negligible (see the values
dications about the global dependence structure (i.e. the cogeported in Fig2).
ula) linking the three variableg), V, L). As in De Michele et al(2009, a Gumbel copula was used

As already mentioned above, there are physical reason® model the dependence betwe@nand V, with parame-
to assume thaL is independent of @, V): the rank-plots  ter 6 ~ 3.1378, calculated via the inversion of the Kendall's
shown in Fig2 support this fact. Indeed, the sample is rather . The ability of this copula to model the available bivariate
uniformly sparse in both thel, L) and (V, L) planes. Also, data is checked via multivariate goodness-of-fit teBird,
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Fig. 2. Trivariate rank-plot of the availablg), V, L) observations, and bivariate rank-plots of the marginals — see text. Also shown are the
estimates of the Kendall'sand the Spearmans as well as the correspondipgvalues (derived from non-parametric tests of independence
based on rank statistics).

2009 Genest et a].2009 Kojadinovic et al, 2011): the re-  is Archimedean Nelsen 2006, then Coy is a partic-
sulting largep-values indicate that the Gumbel copdlay ular case of a “nested” Archimedean copulbog 1997
cannot be rejected at all standard levels. As a matter of factsGrimaldi and Serinaldi2006 Serinaldi and Grimaldi2007,
the analysis of the@®, V) rank-plot in Fig.2 shows a signif- Hardle and Okhrin201Q Hering et al, 2010. However,
icant association between these two variables in the upperFgy. =Covi(Fg, Fy, Fr) is not a trivariate Extreme
right corner of the unit square: indeed, the extreme pairsvalue law, sinceFy is not a GEV distribution.

practically lie on the main diagonal. Thus, it is not a sur-

prise that the fitted Gumbel copula, having a large upper tail

dependence coefficiehtpp ~ 0.75 (Nelsen 2006 Salvadori 3 Return period in a multivariate framework

etal, 2007) is suitable for modeling the dependence structure
of the pair , V). In passing, note thaf oy is an Extreme
Value copulaKlelsen2009: since bothFp andFy are GEV
distributions, it turns out thafgy =C v (Fg, Fy) is a bi-

In order to provide a consistent theory of RP’s in a multi-
variate environment, it is first necessary to precisely define
the abstract framework where to embed the question. Pre-
variate Extreme Value law (after al and V are annual  |iminary studies can be found Balvadori(2004; Salvadori
maxima). and De Michelg2004; Durante and Salvado(2010; Sal-
Given the previous results, sinéecan be assumed to be vadori and De Michelg2010, and some applications are
independent OfQ, V), itis immediate to construct a suitable presented inDe Michele et a|(200'(), Salvadori and De
trivariate copuleC gv . to model the dependence structure of Michele (2010; Vandenberghe et a02010. Hereinafter, we
the triplet @, V, L): shall consider as the object of our investigation a sequence
X ={X1, X2, ...} of independent and identically distributed
d-dimensional random vectors, with> 1: thus, eaclX; has
where ¢, v, w)e 3. As above, the ability of this cop- the same multivariate distributiaf as of the random vector
ula to model the trivariate data is properly checked, andX ~ F =C(F1, ..., Fy4) describing the phenomenon under in-
the resulting largep-values indicate that it cannot be re- vestigation, with suitable marginals’s andd-copulaC. For
jected at all standard levels. In passing, note that alsexample, we may think of a set of flood observations given
Cov1 is an Extreme Value copula. In addition, sinCgy by the pairs of non-independent r.v.'s Flood Peak — Flood

Covi(u, v, w) = Coy(u, v) w, (4)

Hydrol. Earth Syst. Sci., 15, 3293305 2011 www.hydrol-earth-syst-sci.net/15/3293/2011/
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Volume, joined by the copul@. The case of a non-stationary X > x* (viz., Dy+ =[x*, 00)). According to Definitionl, the
sequencet’ is rather tricky, and will be discussed in a future corresponding RP’s arg/Fx (x*) in the former case, and
work. u/(1— Fx(x*)) in the latter one.

In applications, usually, the event of interest is of the type It is important to stress that the RP is a quantity associ-
{X e D}, whereD is a non-empty Borel set iR? collecting  ated with a proper event. However, with a slight abuse of
all the values judged to be “dangerous” according to somdanguage, we may also speak of “the RP of a realization”
suitable criterion. Note that the Borel family includes all the (viz., x* in the example given above), meaning in fact “the
sets of interest in practice (like, e.g. the intervalso, x1), RP of the eventX belongs to the dangerous regibg- iden-

(x1, x2), (x2, 00), as well as the corresponding multivari- tified by the given realization*}”. Indeed, in a univariate
ate versions). Let > 0 be the average inter-arrival time of framework, the assignment of uniquely specifies the cor-
the realizations it (viz., u is the average time elapsing be- responding regio, .

tweenX; andX;1). Following, e.gEmbrechts et a(2003, Actually, also in a multivariate framework it is possible
and given the fact that the sequeriéés i.i.d. (and, thus, sta- to associate a given multi-dimensional realizatiohe R¢
tionary), the univariate r.v.'¢B; = Ip(X;)} form a Bernoulli  with a dangerous regio,+ c R?. As an illustration,
process (wheré is an indicator set function), with positive consider the two different bivariate dangerous regions con-
probability of “success’pp given by structed in Salvadori (2004; Salvadori and De Michele
(2009. In these papers the joint behavior of the vector
pp = P(X € D), (5) (X, Y)~F=C(Fx, Fy) was analysed: for instance, in

terms of variables of hydrological interest, think of the pairs
flood peak-volume, or storm intensity-duration. In particular,
great attention was paid to the following two sets:

where we assume that<Opp <1. Then, it makes sense
to calculate the first random timdp that the sequence
B={B1, Ba, ...}, generated byr, takes on the value 1 (viz.,

the first random time that’ entersD): 1. ("OR”case)D). ={(x, y) € R?: x > x*Vy > y*},
o where at least one of the components exceeds a pre-
Ap = p-min{i : X; € D}. (6) scribed threshold (roughly, it is enough that one of the

e ) variables is too large);
Clearly, the r.vAp/u follows a Geometric distribution with ge)

parametepp, and therefore the expected valuedg$ is 2. (‘AND”case) D) ={(x, y) € R%: x > x* Ay > y*},
where both the components exceed a prescribed thresh-

E(Ap) = up = /P 7) old (roughly, it is necessary that both variables are too
large).

Given the well known “memoryless property” of the Geo-
metric distribution, and the features of the Bernoulli processHere 7* =(x*, y*) is a prescribed vector of thresholds, and
(see, e.gFeller, 1971), it is clear thatup also corresponds /A are the “(inclusive) OR” and “AND” operators.
to the average inter-arrival time between two successive re- | this work we follow a different approach. The idea
alizations of the eventX € D}. Evidently, up rangesin  stems from the possibility to write, in the univariate case,
[i, +o0): for example, if annual maxima are investigated, the dangerous regio®,- in two equivalent ways: either
then =1 year, and hencap=1/pp>pu. We are NOW  agp . ={x: x>x*}, or Dy» = {x: Fx(x)>Fx(x*)}. Clearly,

ready to introduce a consistent notion of RP. the same rationale holds by considering as a dangerous re-
DEFINITION 1. The RP associated with the evéit € D} gion the setD,~ ={x: x<x*}, which may be of interest,
is given byup =u/P(X € D). e.g. for the study of droughts. Then, by considering the above

Definition 1 is a very general one: the sBtmay be con-  formulation as given in terms of the distribution functisg,
structed in order to satisfy broad requirements, useful in dif-it s clear how it can be extended in a natural way to the multi-
ferent applications. Indeed, most of the approaches alreadyimensional case, as we shall illustrate below. First of all we
present in literature are particular cases of the one outlinegheed to introduce the following notion.
above. DEFINITION 2. Given ad-dimensional distribution

As a univariate example, let be a r.v. with distribution F=C(Fi, ... F;) andt€ (0, 1), thecritical layer £ of
Fx. In order to identify a dangerous region, traditionally a |eyel; is defined as
prescribed critical design valu€' is used. ThenD (or, bet-
ter, D,+) contains all the realizations that are judged to begf = {x ¢ RY - F(x) = t}. (8)
“more dangerous” than*. For instance, in hydrology, if
droughts are of concern;* may represent a small value of  Clearly, £ is the iso-hyper-surface (having dimension
river flow, and the dangerous realizations of interest are those — 1) where F equals the constant value thus, £ is a
for which X <x* (viz., D= =[0, x*]). Instead, if floods (iso)line for bivariate distributions, a (iso)surface for trivari-
are of concerny* may indicate a large value of river flow, ate ones, and so on. Evidently, for any gives R?, there
and the dangerous realizations of interest are those for whiclexists auniquecritical layer £ supportingx: namely, the

www.hydrol-earth-syst-sci.net/15/3293/2011/ Hydrol. Earth Syst. Sci., 15, 33852011



3298 G. Salvadori et al.: Return period and design

one identified by the level= F(x). Note that, thanks to "AND" case
Eq. @), there exists a one-to-one correspondence between
the two iso-hyper-surface8¢ ={u € 14 : C(u)=1t} (per- A
taining toC in 19) andLF (pertaining toF in R?).

The critical layer £f partitions R? into three non-
overlapping and exhaustive regions:

1. Rr={x ¢ R : F(x) < t};
2. LF, the critical layer itself;
3. Ry ={x € R : F(x) > t}.

Practically, at any occurrence of the phenomenon, only three
mutually exclusive things may happen: either a realization of
X liesinR, oroverLl, oritliesinR;. Note that all these
three regions are Borel sets.

Thanks to the above discussion, it is how clear that the
following (multivariate) notion of RP is meaningful, and co-
incide with the one used in the univariate framework. Fig. 3. Graphical illustration of the dangerous regiDt). (shadeq

DEFINITION 3. Let X be a multivariate r.v. with distri- " the "AND" case — see text.
bution F=C(Fy, ..., Fy). Also, IetE,F be the critical layer

supporting a realizatiom of X (i.e.7=F(x)). Then, the RP An advantage of the approach outlined in this work is that
associated wittr is defined as realizations lying over the same critical layer do always gen-
1. for the regionR> erate the same dangerous region. Evidently, this is not the
case considering the “OR-AND” approach discussed above.
7 = n/P(X € RY), (9) Furthermore, in the “AND” case, it may happen that real-
izations not lying in the dangerous regity- of interest have
2. for the regiorR = a RP larger than the one of. More specifically, as graphi-
cally illustrated in Fig.3, for a given realizatioz* lying on
TS = u/P(X € RY). (10)  the isoline of levelr € (0, 1) (whereF =1), the dangerous

regionDZ. is given by the shaded area. However, given an-
other realizatiorw*, lying on the isoline of levek > ¢, the
corresponding RP may be larger than the one*ofut w*

d does not belong t®7.. A similar rationale also holds for the
“OR” case. Instead, in the approach outlined in this work,
all the realizationy having a KRPx, <, must lie inR,
whereas all thosg having a KRPky >k, must lie inR;

— clearly, all the realizations lying ovet! share the same

In the sequel we shall concentrate only ugdn: the cor-
responding formulas foR~ could easily be derived. Note
thatR; may be of interest, e.g. when floods are investigate
while R may be appropriate if droughts are of concern.

Now, in view of the results outlined iNelsen et al(2001,
2003, it is immediate to show that

7> I KRP k.
' vp(fx € R4 F(x) > t}) For the sake of convenience, we report below the algo-
_ 2 (11) rithm explained inSalvadori and De Michel€010 for the
1—vr({x € R: F(x) <1t} calculation ofK¢ (see alsdzenest and Rives1993 Barbe
. 12 etal, 1996, which yields a consistent Maximum-Likelihood
T 1— Ke@) estimator ofK¢. Here we assume that the copula model is
well specified, i.e. it is available in a parametric form.
wherev is the probability measure induced Byover R?, ALGORITHM 1. Calculation of the Kendall's measure

andK ¢ is the Kendall's distribution function associated with function K .

C (see Eq@.3 and the ensuing discussion). ClearR; is

a function of the critical levet identified by the relation 1. Simulate a sample w1, .., u, from the
t=F(x). Itis then convenient to denote the above RP via  d-copula  C.

a special notation as follows.

DEFINITION 4. The quantityx, =7 is called the For i=1 .. m calculate  =Cl).
Kendall's RPof the realizationx belonging toﬁ,F (here- 3. For tel calculate
inafter, KRP). Ken=1 Y 1w < 0.

Hydrol. Earth Syst. Sci., 15, 3293305 2011 www.hydrol-earth-syst-sci.net/15/3293/2011/
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As an illustration, in Fig4a we plot an estimate of the
function K¢ associated with the copuldgy: here Algo-
rithm 1 is used, running a simulation of size=5 x 10’.
Also shown is the empirical estimate &fc calculated by
using the available observations: the horizontal patterns are
simply due to the small sample size.

=

4 Quantiles associated with the KRP L 05l

Traditionally, in the univariate framework, once a RP (say,
T) is fixed (e.g. by design or regulation constraints), the
corresponding critical probability levep is calculated as
1-p=P(X>x,)=pu/T, and by invertingFy it is then im-
mediate to obtain the quantikg, = F)({l)(p), which is usu-

@

0.751

0.251

= Simulation
e Empirical

ally unique. Theny, is used in practice for design purposes o
and rational decision making. As shown below, the same ap-
proach can also be adopted in a multivariate environment (to
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—— Simulation
= = =Multivar.

be compared witlBelzunce et a).2007).

DEFINITION 5. Given ad-dimensional distributionF =
C(F1, ..., Fy) with d-copulaC, and a probability levep € I,
theKendall's quantileg, € I of orderp is defined as
gp = infr € I: Ke(t) = p} = K&V (p), (12)
WhereK(C_l) is the inverse oK ¢.

Definition 5 provides a close analogy with the definition
of univariate quantile: indeed, recall th&t is a univariate
distribution function (see E@), and hencg,, is simply the
guantile of orderp of K¢. Thanks to Eq.2), it is clear that
the critical Iayerﬁg _ is the iso-hyper-surface iR? whereF

takes on the valug,, while ch,, is the corresponding one in

14 where the related copultd equalsy),.

Now, let £5p be fixed. Then, according to Eqg3)(
p=Kc(qp) =P(C(F1(X1), ..., Fa(Xa)) =< qp). Therefore,
p is the probability measure induced 6yon the regiorR< ,
while (1— p) is the one ofR> . From a practical p0|nt of
view this means that, in a Iarge simulationmoindependent
d-dimensional vectors extracted from np realizations are
expected to lie |rR< and the others ||7R>

REMARK 1. It |s worth stressing that a common error
is to confuse the value of the copulawith the probabil-
ity induced byC on I (and, hence, oR?): on the criti-
cal Iayerﬁc itis C =g, but the corresponding regldi’i<
has probablhtyp Kc(gp) #4qp, sinceKc is usually non-
linear (the same rationale holds for the reg?ép ). In other
words, while in the univariate case the vajue Fx (xp) cor-
responds to the probability induced on the regiop, where
xp is the quantile ofX of order p, this is not so in the multi-
variate case.

SinceK ¢ is a probability distribution, ang,, is the corre-
sponding quantile of ordes, we could use a standard boot-
strap technique (see, elgavison and Hinkley1997 to es-
timate ¢, if it cannot be calculated analytically. The idea
is simple, and stems directly from the very definitionggt

www.hydrol-earth-syst-sci.net/15/3293/2011/

Fig. 4. (a) Simulation-based estimate of the functiéf (con-
tinuousline) associated with the copul@QVL; also shown is
its empirical estimatentarkerg calculated by using the available
observations — see textb) Plot of the (millenary KRP) quantile
~ 0.946537 thick-dashedine) associated with the critical prob-
ability level p=0.999; also showntlfin-dashedline) is the esti-
mate of the valu& ¢ ~0.999998 associated with the critical level

zi"D ~0.997754 — see text.

viz., to look for the valuey, of C such that, in a simulation

of sizen, np realizations show a copula value less tiggn
Then, by performing a large number of independent simula-
tions of sizen, the sample average of the estimatgd is
expected to converge to the true valugzgf A possible al-
gorithm is given below, most suitable for vectorial software.
Here we assume that the copula model is well specified, i.e. it
is available in a parametric form.

ALGORITHM 2. Calculation of ¢ ,. First of all, choose a
sample size, a critical probability levelp, the total number

of simulationsN, and fix the critical indeX = | np|.

for i=1: N

S=sim( C; n); % simulate n d-vectors
from copula C

C=C(S); % calculate C for simulated
vectors

C=sort ( C); % sort-ascending
simulated C values

E@{)=C(k); % store new estimate of qp
into vector E
end
g=Mean(E); % calculate the estimate of
dp

Then, once the loop is completed, provides an esti-
mate ofg,. Practically, Algorithm2 does the “inverse”
task of Algorithm 1. The bootstrap method may also
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yield an approximate confidence interval fpy (seeDiCi- Copula Critical Layer

ccio and Efron 1996 for more refined solutions): for in-

stance, at a 10% level, the random interv@d os, go.95)

can be used, wherggos and gogs are, respectively, the

quantiles of order 5% and 95 % extracted from the vector ;

E. Using Algorithm2 (and setting: = 10*, p =0.999, and

N =10/, for a total of 181 simulated triplets), we estimated g

g0.999~ 0.946537 for the copul@ gy, of interest here, and

a 10 % confidence interval (0.946110, 0.946973), a process g

that took about 48 h of CPU time on a iMac equipped with

a 3.06 GHz Intel Core 2 Duo processor and 8 GB RAM. As 094

an illustration, in Fig4b we show an estimate of the func- 0.94

tion K¢, associated with the copulyyv , atr* ~0.946537 096

(corresponding to a millenary KRP): as expected, the value 0.98 0.98

Kc(t*) is almost exactly equal to 99.9 %. 11 U
As a further illustration, in Figs we plot the critical iso- v

S:Jrfacectc* of the trivariate C_OpuwQVL for thg critical level . Fig. 5. Critical iso-surfacecﬁ of the copulaC gy, corresponding
t*~0.946537, cprrespondmg t_o a regulation return period; e (millenary KRP) critical levet* ~~0.946537, indicated by
of 1000 years (viz., all the realizations dif. have a KRP  {he diamondmarkers on the axes. Thircle and thesquaremark-
equal to 1000 years). Thel oy, =¢* for all points be-  ersindicate, respectively, the Component-Wise and the Most-Likely
longing to El‘;. Instead,C gy <t* (and«, <1000 years) design realizations — see text.
in the regionRs “below” L&, the one containing the ori-
gin 0=(0, 0, 0), wherea€ gy >t* (and«, > 1000 years) o . . . o
in the regionR “above” /;tC*, the one containing the up- RP may not be sufficient to identify a design realization, and
per cornerL=(1, 1, 1). On average, only 0.1% of the real- additional considerations may be required in order to pick
izations extracted from a simulation 6fyy are expected out a “characteristic” realization over the critical layer of in-
to lie in Rz. However, the level of the critical layer is terest. In the following, we outline possible ways to carry
1* = go.909~ 0.946537< p=0.999, as indicated by the dia- Out such a selection. Clearly, several approaches can be pro-
monds markers in the plot. posed, each one possibly yielding a different solution: below,
As a further example, consider that the regiofggoiden- W€ show two possible elementary strategies to deal with the
tified by the critical layerC% oo (Where the multivariate dis-  Problem. , _ ,
tribution F, or, equivalently, the copuld, takes on the The basic |dea} is simply to _mtrpduce a suitable fu_nptmn
value 0.999) has an estimated probability smaller tharf10 (S&y, w) that “weighs” the realizations lying on the critical
and a corresponding KRP of abouk3.0° years: practically, layer of interest. Following t_hls_app_roach, the practitioner
only one realization oy, out of 3x 10f simulations is ~ ¢&n then freely choose the criterion (i.e. the functigrthat
expected to lie iR o (instead of 1 out of 1000). Evi- pest fits the practical needs. Clearly, W|f[hout loss of gener_al—
dently, if F (or C) were substituted fok ¢ in Eq. (11) during 1> w can be assumed to be non-negative. In turn, a “design
the design phase, then the structure to be constructed woulgalization” can be defined as follows.

result over-sized (being expected to withstand stunning ex-DEFINITION 6. Letw : Lf -0, oc) be a weight func-
treme events). tion. The design realizatioh, € £ is defined as

0.96

() = argmax w(x), (13)

. . . . F
5 Design in a multivariate framework x €Ly

provided that the argmax exists and is finite.

The situation outlined in the previous section is generally Definition 6 deServes some Comments

similar to the one found in the study of univariate phenom-

ena, where a single r.\X with distribution Fy is used to — In general, the unicity of the maximum may not be
model the stochastic dynamics. However, as already men-  gyaranteed. When this happens, a recourse to phys-
tioned, the multivariate case generally fails to provide anat-  ica|/phenomenological considerations, or to additional
ural solution to the problem of identifying a unique design procedures (like, e.g. Maximum Information/Entropy
realization. In fact, even if also the laygf acts as a (multi- schemesJaynes2003, may help solving the problem.
dimensional) critical threshold, there is no natural criterion to

select which realization lying o8/ (among theso? ! pos- — Different copulas may share the same Kendall’s mea-

sibilities) should be used for design purposes. In otherwords,  sureK¢, and hence the same KRP (e.g. all the bivari-
in a multivariate environment, the sole tool provided by the ate Extreme Value copulas with the same Kendall's
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Ghoudi et al. 1998. However, in general, the critical when a sewer system is of concern, only storms having short
layers of such copulas will have a different geometry, durations and high intensities could be considered, whereas
and, in turn, will provide different design realizations. a critical design storm for a structure in the main river could
) , ) be spotted by restricting the attention to storms of long dura-
— The search of the point of maximum in EQ3 can be  {jons and low intensities. Roughly speaking, in the approach
subjected to additional constraints, in order to take into, tjined here, the calculation of the critical design realization
account the possible sensitivity of the structure undercan pe made dependent on both the environment in which a
design to the behavior of specific marginals (see alsogyctyre should be designed, as well as on the stochastic dy-
the discussion in Remar®): for instance, a Bayesian ,5mics of the phenomenon under investigation.

approach might be advisable. Overall, the procedure to identify the design realization

— Sometimes it could be more appropriate to select a sefould be described as follows. Lét be a random vector
of possible design realizations (i.e. an ensemble, rathelVith distribution = C(Fy, ..., Fa).
than a single one) that should be used, together with 1. Fix a RPT
experts’ opinions, in order to better evaluate the features = '
of the phenomenon affecting the structure under design. 2. Calculate the corresponding probability level
This procedure can be carried out by using a suitable p=1—p/T.
step function in Eq.X3).
. . 3. Compute the Kendall’s quantilg, as in Eq. {2), either
In passing, we note that, in the present case study, the analytically or by using Algorithn2.

distribution Fpy, and the copuld oy are trivariate, and

hence the corresponding critical layers are simply two- 4. Fix a suitable weight functiomw.

dimensional surfaces iR3 and I3, respectively. Figuré _ _ N

shows the critical layer of level pertaining toC gy ., and 5. Calcul?pte the point of maximui, of w on the critical

the corresponding one pertaining £y, can be drawn by layer L, .

exploiting Eq. ). Now, for the sake of graphical illustra- ) L o

tion, it is possible to parametriz&Z in polar coordinates 1N€ resulting,, represents a “typical” realization & with
(say,(«, r)) via a one-to-one transformation, and thus re-map@ 9iven RP. Roughly speaking, it denotes the design realiza-
and plot any functionw defined ovech; onto the rectangle tion obtained by considering _the very stochastic dynamics of
(0, /4) x (0, 7), for a suitable maximum ra§. In turn, it the pheqomeqqn. Note that, in geneﬁa,l,(qr, better, the cor- .

is rather easy to have a peek of the behavior of any weightesponding critical layer) should be considered together with
functionw overLL;. other information (e.g. the physical features of the structure)
REMARK 2. A delicate problem may arise when adopt- in order to be correctly used in practice. For the sake of il-
ing the approach outlined above: to make the point C|earylustrat|on, below we introduce two weight functions.
consider the following example. Suppose that we use the du- . . o
ration of a storm and the storm intensity as the two variabless'1 Component-wise excess design realization

of interest. In a fast responding system (e.g. a sewer strucA realization lying on the critical layet” may be of ma-

ture), a storm having short duration but high intensity may. r interest when all of its marginal components are ex-

. 0
cause a failure, whereas the same storm may not cause all(%eded with the largest probability. In simple words, we sug-
problem at a catchment level. In the catchment, however,

a .
. . . i : i look for th int(sy = F such th

storm with long duration and intermediate to low intensity ggst to 00K 10 the po t(s.)' (X1, ..., Xa) €Ly SUC t at.

it .is maximum the probability that a dangerous realization
may cause a flood event, whereas the same storm does not:( ) satisfies all the following component-wise
cause any problem to the sewer system. Now, as a matt%leqﬁleilit.igsy'd 9 P
of principle, the design realizatio$), for the given return '
period (i.e. the “typical” critical storm calculated according
to the strategy illustrated here) may not cause any problem
in both systems, and therefore these would be wrongly degr y ~ x using a simplified notation. The next definition is
signed. Practically, the sewer systems should be designeghmediate.

using critical design storms of short durations and high in- pErFINITION 7. The Component-Wise Excess weight
tensities, whereas a structure in the main river of the waterfynction wce is defined as
shed should be designed using storms of long durations and

1> X1, ooy Yd = Xd, (14)

low intensities. However, the problem is more apparent thanyceg(x) = P(X € [x, 00)), (15)
real. In fact, there are neither theoretical nor practical limita-
tions to restrict the search for the maxima in Ef3)(over a  where X has distributionF =C(Fy, ..., Fy), and[x, oco)

suitable sub-region cmf;: remember that all the realizations is the hyper-rectangle i®? whose points satisfy all the in-
on the critical layer share the same prescribed KRP. Thusequalities stated in Eq14).
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Table 2. Estimates of the critical design realizations, for a mil-

lenary return period, according to different strategies — see text.
Also shown are the estimates of the univariate quantiles of order

p =0.999 of the variables of interest. The right-most column shows
the Maximum Water Level of the dam associated with the flood
event Q, V, L) reported on the corresponding row.

Strategy (0] \%4 L M. W. L.
(m3s™l) @Pmd) (@mas.l) (mas.l)
C.-E. 352.76 2521 78125  782.08
M.-L. 316.23 19.64 78129  781.98
FD0.999) 1208.9 17258 781.44  784.80

Then, by restricting our attention to the critical layef,
the following definition is immediate.
DEFINITION 8. The Component-wise Excess design real-
izationscg of levelr is defined as

dce(r) = argmax wce(x),
xeLf

(16)

wherer € (0, 1).

REMARK 3. Via the Probability Integral Transform and
Sklar's Theorem, it is easy to show that
wee(x) = P(U € [u(x), 1)), (17)
where U has the same copul@ as of X and Uniform
marginals,u(x) = (Fi(x1), ..., Fg(xg)), and[u, 1] is the
hyper-rectangle ii¢ with lower cornem and upper cornet.
Thus, the probabilities of interest can be directly computed in
the unit hyper-cube (see, edpe 1997 by working directly
on the critical layerc¢ (instead of£f), a solution numer-
ically more convenient. Note that, for largedimensional
problems, the CPU time involved may become prohibitive
though clever solutions have been proposed for ldig/ésee,
e.g.Cherubini and RomagnolR009. In some caseSice
can be calculated analytically; otherwise, it can be empiri-
cally estimated (e.g. by calculating it over suitable points of
£ orch).

In Fig. 6 we show the behavior abce overﬁ,*, as well as
the Component-wise Excess design realizatipa(t*) cal-
culated for the case study investigated here (see als®¥ig.

G. Salvadori et al.: Return period and design

Excess probability over Critical layer

Fig. 6. Polar re-mapped plot of the Component-Wise Excess weight
functionwcg over the critical Iayelct*, corresponding to the (mil-
lenary KRP) critical level* ~ 0.946537. Thetar marker indicates
where the maximum is attained — see text and Table

(i.,e. 784ma.s.l.). The column“M. W. L.” in Tabl2 re-
ports the value 782.08 m a.s.l.: thus, no over-topping occurs,
i.e. the dam seems to be safe against Component-Wise Ex-
cess millenary realizations.

5.2 Most-likely design realization

A further approach to the definition of a characteristic design
event consists in taking into account the density of the mul-
tivariate distribution describing the overall statistics of the
phenomenon investigated: in fact, assuming that the density
f of Fis well defined over’, we may think of using it as

a weight function.

Clearly, the restrictionf, of f over LF is not a proper
density, since it does not integrate to one. However, it may
provide useful information, since it induces a (weak) form
of likelihood over£[: in fact, it can be used to weigh the
realizations lying onCF , and spot those that are (relatively)
“more likely” than others. Indeed; inherits all the features
of interest directly from the true global density The next
definition is immediate.

DEFINITION 9. The Most-Likely weight functionvm is
defined as

This point has the largest probability to be component-wise

exceeded by an extreme realization with KRP larger than,,, (x) = f(x),

(18)

1000 years, and therefore it should be regarded as a sort of

(statistical) “safety lower-bound”: viz., the structure under

wheref is the density off =C (Fy, ..., Fy).

design should, at least, withstand realizations having (multi- Then, by restricting our attention to the critical lay&f,

variate) sizecg(t*), as reported in Tabl2.
As anticipated in Sect2, using the design realization
3ce(t*), we operated the reservoir routing of the corre-

the following definition is immediate.

sponding flood hydrograph. Then, we checked whether or
not the reservoir level exceeds the crest level of the dam
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DEFINITION 10. The Most-Likely design realizatiody. Density over Critical layer
of levelt is defined as
dmL(t) = argmax wpmL(x) = argmax  f(x), (29)

xelf xeclf

-12

wherer € (0, 1).
REMARK 4. As a rough interpretatiorsy plays the role -
as of a “characteristic critical realization”, i.e. the one that ;?-16
has to be expected if a critical event with given KRP happens. 3
In some casesy can be calculated analytically; otherwise,
it can be empirically estimated (e.g. by calculatifigover 20
suitable points oLf). 0

In general, provided that weak regularity conditions are
satisfied,f can be calculated by using the marginal densities

fi's of X, and the density = o4 C(ul, ..., ug) Of the
copulaC:

-14

-18

5d Fig. 7. Polar re-mapped plot of the (log) Most-Likely weight func-
f(x)=——-——C(F1(x1), ..., Fi(xq)) tion wy over the critical Iayerﬁt*, corresponding to the (mil-
X1 -+ 0xg lenary KRP) critical level* ~0.946537 (for the sake of presen-
(20) tation, the surface is clipped at20). Thestar marker indicates
=c(F1(x1), ..., Fa(xq)) - 1_[ Ji(xi). where the maximum is attained — see text and Table

Since our target is to compare the “weight” of different real- 55 follows. In fact, as a further possible strategy, suppose
izations, from a computational point of view it may be bet- {hat 3 critical design realization p = (x0.999, y0.999, 20.999)
ter to minimize—In(f) over £]" (since the maxima are pre- s gefined in terms of the millenary univariate quantiles of
served). the three variables of interest here (see the last row of Ta-
As an illustration, in the present (absolutely continuos) ble 2). In turn, the |ayer£f;gu supportingdip has a crit-
1D

case, the expression of the trivariate dengigy, ;. is given i .
ical level 17~ 0.997754 (see Figib), corresponding to a

by
value of K¢ (1) ~0.999998, and a KRP of about:510°
fovi(x, v, 2) = cov(Fox), Fv(») - fo) - fr(») - fLz), (21) years. It is then immediate to realize that, in order to pro-
3 ) ) vide a true millenary multivariate design realization, it may

where , y, z) € R®, andcgy is the density of the Gumbel not be enough (or necessary) to rely upon millenary univari-
copula modeling the paird, V). In Fig. 7 we show the be-  ate quantiles. Also, operating the reservoir routing using
havior of (the logarithm offomc (i.e. fovr) overLf, aswell s o vields a reservoir level of about 784.80 m (see Table
as the Most- L|ke|y des|gn reahzatlcﬂﬂm_ ([*) Calc.:ulated for Wh|Ch may cause an over- topp|ng and a dam failure
the case study investigated here (see also $jig.The ac- The example given above, as well as the illustrations pre-
tual values of the functiomy are irrelevant: in fact, we are  gented in Secs, may suggest the following empirical con-
only interested in spotting whergyy . is maximal. There-  sideration (which, however, should be taken with care). Both
fore, the Most-Likely design realization could be regardedine millenary multivariate design realizatiodse and sy
as the “typical” realization: viz., the structure under design yje|ded a maximum water level of about 782 m a.s.l., whereas
should be expected to withstand events having (multlvanate%/1D (with a KRP of the order of 0years) generated a max-
sizedm (t*), as reported in Tabl2. _ . imum level over-topping the dam crest by only about 80 cm.

Again, as a test, using the design realizaigi (:*), we  Thus, apparently, the dam is over-sized, i.e. it could with-
operated the reservoir routing of the corresponding flood hy-tand events with a RP much larger than 1000 years. Clearly,
drograph, and checked whether or not the reservoir level €Xfrom the safety point of view, this is a good news. On the
ceeds the crest level of the dam. The column “M. W. L other hand, a smaller structure, correctly sized for withstand-
in Table 2 reports the value 781.98ma.s.l.: thus, no over-ing trye millenary multivariate events, would probably re-

topping occurs, i.e. the dam seems to be safe also againgf,ce the cost.
Most-Likely millenary realizations.
5.3 Additional remarks about design strategies

An interesting test concerning the misuse of univariate ap-
proaches in a multivariate framework can be carried out
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