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Abstract. Calculating return periods and design quantiles
in a multivariate environment is a difficult problem: this pa-
per tries to make the issue clear. First, we outline a possible
way to introduce a consistent theoretical framework for the
calculation of the return period in a multi-dimensional envi-
ronment, based on Copulas and the Kendall’s measure. Sec-
ondly, we introduce several approaches for the identification
of suitable design events: these latter quantities are of utmost
importance in practical applications, but their calculation is
yet limited, due to the lack of an adequate theoretical envi-
ronment where to embed the problem. Throughout the paper,
a case study involving the behavior of a dam is used to illus-
trate the new concepts outlined in this work.

1 Introduction

The notion of Return Period (hereinafter, RP) is frequently
used in hydrology (as well as in water resources and civil
engineering, and more generally in geophysical and environ-
mental sciences) for the identification of dangerous events,
and provides a means for rational decision making (for a re-
view, seeSingh et al., 2007, and references therein).

The traditional definition of the RP is as “the average time
elapsing between two successive realizations of a prescribed
event”, which clearly has a statistical base. Equally impor-
tant is the related concept ofdesign quantile, usually defined
as “the value of the variable(s) characterizing the event asso-
ciated with a given RP”. In engineering practice, the choice
of the RP depends upon the importance of the structure, and
the consequences of its failure. For example, the RP of a dam
design quantile is usually 1000 years or more (Midttomme
et al., 2001), while for a sewer it is about 5–10 years (Briere,
1999).
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While in the univariate case the design quantile is usu-
ally identified without ambiguity – and widely used in the
engineering practice (Chow et al., 1988) – in the multi-
variate one this is not so. Indeed, the identification prob-
lem of design events in a multivariate context is of funda-
mental importance, but of troublesome nature. Recently,
several efforts have been spent on the issues of multivari-
ate design and quantiles (see, e.g.Serfling, 2002; Belzunce
et al., 2007; Chebana and Ouarda, 2009, 2011b; Chaouch
and Goga, 2010, and references therein; for a methodology
to identify multivariate extremes by using depth functions see
Chebana and Ouarda, 2011a). Here we address the following
crucial question: “How is it possible to calculate the critical
design event(s) in the multivariate case?” Below, we outline
a suitable approach in order to provide consistent answers.

As we shall show later, the calculation of the RP is strictly
related to the notion of Copula. The use of copulas in envi-
ronmental sciences is recent and rapidly growing. Shortly, a
multivariate copulaC is a joint distribution onI d = [0, 1]d

with Uniform margins. The link between a multivariate dis-
tribution F and the associatedd-dimensional copulaC is
given by the functional identity stated by Sklar’s Theorem
(Sklar, 1959):

F (x1, ..., xd) = C (F1 (x1), ..., Fd (xd)) (1)

for all x ∈ Rd , where theFi ’s are the univariate margins ofF .
If all the Fi ’s are continuous, thenC is unique. Most impor-
tantly, theFi ’s in Eq. (1) only play the role of (geometrically)
re-mapping the probabilities induced byC on the subsets of
I d onto suitable subsets ofRd , without changing their val-
ues: viz., the dependence structure modeled byC plays a
central role in tuning the probabilities of joint occurrences.
In fact, under weak regularity conditions, any pointx ∈ Rd

can be uniquely re-mapped ontou ∈ I d (and vice-versa) via
the Probability Integral Transform:

(u1, ..., ud) = (F1(x1), ..., Fd (xd)). (2)
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For a thorough theoretical introduction to copulas seeJoe
(1997); Nelsen(2006); for a practical approach seeSalvadori
et al.(2007); Jaworski et al.(2010). In order to avoid trouble-
some situations, hereinafter we shall assume thatF is contin-
uous (but not necessarily absolutely continuous), and strictly
increasing in each marginal: these regularity constraints are
rather weak, and satisfied by the majority of the distributions
used in applications. Clearly, also pathological cases can be
carried out, but they require suitable techniques that go be-
yond the scope of this work.

Later we shall use theKendall’s distribution(or measure)
functionKC : I → I (Genest and Rivest, 1993, 2001) given
by

KC(t) = P(W ≤ t) = P(C (U1, ..., Ud) ≤ t), (3)

wheret ∈ I is a probability level,W =C(U1, ..., Ud) is a uni-
variate random variable (hereinafter,r.v.) taking value onI ,
and theUi ’s are Uniform r.v.s onI with copulaC. Note that
Eq. (3) practically measures the probability that a random
event will appear in the region ofI d defined by the inequal-
ity C(u) ≤ t – see alsoGenest and Rivest(2001); Nappo and
Spizzichino(2009). Thus, as we shall see,KC turns out to
be a fundamental tool for calculating a copula-based RP for
multivariate events.

Unfortunately, at present no general analytical expressions
of KC are known – except for special cases, like the one of
bivariate Extreme Value copulas (Ghoudi et al., 1998), and
some Archimedean copulas (McNeil and Něslehov́a, 2009)
– and it is necessary to resort to simulations (see, e.g. Algo-
rithm 1 outlined later).

The paper is organized as follows. In Sect.2 we first il-
lustrate the case study. In Sect.3 we reconsider a previously
introduced notion of RP in a multivariate environment, and
compare it with other approaches. In Sect.4 we show how
to calculate the corresponding quantile. Then, in Sect.5 we
present two strategies to calculate critical design events in a
multivariate context. Finally, in Sect.6 we discuss the results
outlined in the paper, and draw some conclusions.

2 The case study

Although this work is of methodological nature, we feel im-
portant to illustrate with practical examples the new concepts
introduced. For this reason, we first present the case study
that will be used throughout the paper.

The data are collected at the Ceppo Morelli dam, and
are essentially the same as those investigated inDe Michele
et al. (2005), to which we make reference for further de-
tails. The dam, completed in 1929, is located in the
valley of Anza catchment, a sub-basin of the Toce river
(Northern Italy), and was built to produce hydroelectric en-
ergy. The dam is characterized by a small water storage of
about 0.47× 106 m3. The minimum level of regulation is
774.75 m a.s.l., while the maximum is 780.75 m a.s.l. The

maximum water level is at 782.5 m a.s.l., and the dam crest
level is at 784 m a.s.l. The dam has an uncontrolled spill-
way (84 m long) at 780.75 m a.s.l., and also intermediate
and bottom outlets (the latter ones are obstructed by river
sediments).

In De Michele et al.(2005), “undisturbed” flood hydro-
graphs incoming the reservoir were fixed by using the inverse
reservoir routing, the water levels in the reservoir, and the
operations on the controlled outlets. Then, maximum annual
flood peaksQ and volumesV were identified and selected
for 49 years, from 1937 to 1994. As a result of a thorough
investigation, almost all of the occurrence dates of theQ’s
and theV ’s were the same: i.e. they happened during the
same flood event.

As an improvement overDe Michele et al.(2005), beyond
the pair (Q, V ), also the initial water levelL in the reservoir
before the flood event (Q, V ) is considered in this work, in
order to analyse the triplet (Q, V , L) of practical interest: in
fact, on the one handL represents the starting state of the
dam; on the other hand, (Q, V ) is the hydrologic “forcing”
to the structure. Clearly, there are physical reasons to assume
thatL is independent of (Q, V ) – see also below. The sample
mean ofL is about 780.44 m a.s.l., with a sample standard de-
viation of about 1 m. The small variability ofL with respect
to its range (here [774.75, 780.75] is the regulation range),
is mainly due to the management policy of the reservoir: the
target of the dam manager is to keep a high water level, in
order to get the maximum benefit concerning the production
of electric energy.

Using the pair (Q, V ), it is possible to calculate the associ-
ated flood hydrograph with peakQ and volumeV , once the
shape of the hydrograph has been chosen. As first approx-
imation, it is possible to consider a triangular shape, where
the base time is equal toTb = 2V/Q, the time of rise equals
Tr =Tb/2.67, and the time of recession is equal to 1.67Tr,
(seeSoil Conservation Service, 1972andChow et al., 1988,
p.229 – for a different approach seeSerinaldi and Grimaldi,
2011). Consequently, the flood hydrographq is given by

q(t) =

{
1.335t Q2

/
V, 0 ≤ t ≤ Tr

1.6 Q − 0.8 t Q2
/
V, Tr ≤ t ≤ Tb

.

Later, in Sect.5, we shall test the behavior of the dam sub-
ject to selected hydrographs. More particularly, we shall first
operate the reservoir routing of the flood hydrograph (see,
e.g.Bras, 1990, p.475–478 andZoppou, 1999) considering
as outlet only the uncontrolled spillway, and then we shall
check whether or not the reservoir level exceeds the crest
level of the dam.

In Fig. 1 we show the trivariate plot of the available ob-
servations, as well as the fits of the marginal distributions.
However, we shall not insist on this point, being of sec-
ondary importance with respect to the actual methodologi-
cal target of the paper. The GEV law is used to model the
statistics of bothQ andV , since these are annual maxima:
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Fig. 1. Trivariate plot of the available (Q, V , L) observations, and fits of the marginal distributions – see text.

the estimates of the parameters are reported in Table1. The
fits are valuable, as they passed standard goodness-of-fit tests
(namely, Kolmogorov-Smirnov and Anderson-Darling – see,
e.g.Kottegoda and Rosso, 1997) at all usual levels (viz., 1 %,
5 %, and 10 %). Instead, the behavior of the variableL is
quite tricky (as explained above, the water level is arbitrarily
fixed by the dam manager): for this reason, its law is calcu-
lated via a non-parametric Normal Kernel estimation (Bow-
man and Azzalini, 1997). As a result, also in this case the
Kolmogorov-Smirnov test is passed at all usual levels.

The trivariate plot of the observations, as shown in Fig.1,
is the first step usually carried out by practitioners to inves-
tigate the multivariate behavior of the phenomenon. How-
ever, we want to stress that this type of graph only provides
partial information, and should not be used to draw rough
conclusions about the dependence structure of (Q, V , L) –
see below, and alsoGenest and Favre(2007) for a thorough
review.

In order to investigate the joint behavior of the variables
(Q, V , L), as is typical in copula analysis, we shall use the
normalized ranks to carry out a non-parametric study. The
trivariate rank-plot shown in Fig.2 provides some rough in-
dications about the global dependence structure (i.e. the cop-
ula) linking the three variables (Q, V , L).

As already mentioned above, there are physical reasons
to assume thatL is independent of (Q, V ): the rank-plots
shown in Fig.2 support this fact. Indeed, the sample is rather
uniformly sparse in both the (Q, L) and (V , L) planes. Also,

Table 1. Maximum-Likelihood estimates of the GEV parameters
for Q andV , and corresponding 95% Confidence Intervals.

Variable Shape Scale Position

Q 0.3677 36.2031 59.3507
(m3 s−1) – (m3 s−1) (m3 s−1)
95% C. I. [0.15, 0.58] [27.57, 47.55] [48.15, 70.55]

V 0.6149 1.5246 1.7231
(106 m3) – (106 m3) (106 m3)
95% C. I. [0.37, 0.86] [1.10, 2.11] [1.26, 2.19]

the estimates of the Kendall’sτ and the Spearman’sρ are
not statistically significant (as confirmed by the correspond-
ing p-values), and formal tests of independence suggest to
accept the hypothesis thatL is independent of (Q, V ). On
the contrary, the variables (Q, V ) are significantly positively
associated, and thusQ andV are not independent: the esti-
mates of both the Kendall’sτ and the Spearman’sρ are large,
and the correspondingp-values are negligible (see the values
reported in Fig.2).

As in De Michele et al.(2005), a Gumbel copula was used
to model the dependence betweenQ andV , with parame-
ter θ ≈ 3.1378, calculated via the inversion of the Kendall’s
τ . The ability of this copula to model the available bivariate
data is checked via multivariate goodness-of-fit tests (Berg,
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Fig. 2. Trivariate rank-plot of the available (Q, V , L) observations, and bivariate rank-plots of the marginals – see text. Also shown are the
estimates of the Kendall’sτ and the Spearman’sρ, as well as the correspondingp-values (derived from non-parametric tests of independence
based on rank statistics).

2009; Genest et al., 2009; Kojadinovic et al., 2011): the re-
sulting largep-values indicate that the Gumbel copulaCQV

cannot be rejected at all standard levels. As a matter of facts,
the analysis of the (Q, V ) rank-plot in Fig.2 shows a signif-
icant association between these two variables in the upper-
right corner of the unit square: indeed, the extreme pairs
practically lie on the main diagonal. Thus, it is not a sur-
prise that the fitted Gumbel copula, having a large upper tail
dependence coefficientλUpp≈ 0.75 (Nelsen, 2006; Salvadori
et al., 2007) is suitable for modeling the dependence structure
of the pair (Q, V ). In passing, note thatCQV is an Extreme
Value copula (Nelsen, 2006): since bothFQ andFV are GEV
distributions, it turns out thatFQV =CQV (FQ, FV ) is a bi-
variate Extreme Value law (after all,Q and V are annual
maxima).

Given the previous results, sinceL can be assumed to be
independent of (Q, V ), it is immediate to construct a suitable
trivariate copulaCQV L to model the dependence structure of
the triplet (Q, V , L):

CQV L(u, v, w) = CQV (u, v) w, (4)

where (u, v, w) ∈ I3. As above, the ability of this cop-
ula to model the trivariate data is properly checked, and
the resulting largep-values indicate that it cannot be re-
jected at all standard levels. In passing, note that also
CQV L is an Extreme Value copula. In addition, sinceCQV

is Archimedean (Nelsen, 2006), then CQV L is a partic-
ular case of a “nested” Archimedean copula (Joe, 1997;
Grimaldi and Serinaldi, 2006; Serinaldi and Grimaldi, 2007;
Härdle and Okhrin, 2010; Hering et al., 2010). However,
FQV L =CQV L(FQ, FV , FL) is not a trivariate Extreme
Value law, sinceFL is not a GEV distribution.

3 Return period in a multivariate framework

In order to provide a consistent theory of RP’s in a multi-
variate environment, it is first necessary to precisely define
the abstract framework where to embed the question. Pre-
liminary studies can be found inSalvadori(2004); Salvadori
and De Michele(2004); Durante and Salvadori(2010); Sal-
vadori and De Michele(2010), and some applications are
presented inDe Michele et al.(2007); Salvadori and De
Michele(2010); Vandenberghe et al.(2010). Hereinafter, we
shall consider as the object of our investigation a sequence
X = {X1, X2, ...} of independent and identically distributed
d-dimensional random vectors, withd > 1: thus, eachXi has
the same multivariate distributionF as of the random vector
X ∼ F =C(F1, ..., Fd ) describing the phenomenon under in-
vestigation, with suitable marginalsFi ’s andd-copulaC. For
example, we may think of a set of flood observations given
by the pairs of non-independent r.v.’s Flood Peak – Flood
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Volume, joined by the copulaC. The case of a non-stationary
sequenceX is rather tricky, and will be discussed in a future
work.

In applications, usually, the event of interest is of the type
{X ∈ D}, whereD is a non-empty Borel set inRd collecting
all the values judged to be “dangerous” according to some
suitable criterion. Note that the Borel family includes all the
sets of interest in practice (like, e.g. the intervals(−∞, x1),
(x1, x2), (x2, ∞), as well as the corresponding multivari-
ate versions). Letµ > 0 be the average inter-arrival time of
the realizations inX (viz., µ is the average time elapsing be-
tweenXi andXi+1). Following, e.g.Embrechts et al.(2003),
and given the fact that the sequenceX is i.i.d. (and, thus, sta-
tionary), the univariate r.v.’s{Bi = ID(Xi)} form a Bernoulli
process (whereI is an indicator set function), with positive
probability of “success”pD given by

pD = P(X ∈ D), (5)

where we assume that 0< pD < 1. Then, it makes sense
to calculate the first random timeAD that the sequence
B = {B1, B2, ...}, generated byX , takes on the value 1 (viz.,
the first random time thatX entersD):

AD = µ · min {i : Xi ∈ D}. (6)

Clearly, the r.v.AD/µ follows a Geometric distribution with
parameterpD, and therefore the expected value ofAD is

E(AD) = µD = µ/pD. (7)

Given the well known “memoryless property” of the Geo-
metric distribution, and the features of the Bernoulli process
(see, e.g.Feller, 1971), it is clear thatµD also corresponds
to the average inter-arrival time between two successive re-
alizations of the event{X ∈ D}. Evidently,µD ranges in
[µ, +∞): for example, if annual maxima are investigated,
then µ = 1 year, and henceµD = 1/pD ≥ µ. We are now
ready to introduce a consistent notion of RP.
DEFINITION 1. The RP associated with the event{X ∈D}

is given byµD =µ/P(X ∈D).
Definition 1 is a very general one: the setD may be con-

structed in order to satisfy broad requirements, useful in dif-
ferent applications. Indeed, most of the approaches already
present in literature are particular cases of the one outlined
above.

As a univariate example, letX be a r.v. with distribution
FX. In order to identify a dangerous region, traditionally a
prescribed critical design valuex∗ is used. Then,D (or, bet-
ter, Dx∗ ) contains all the realizations that are judged to be
“more dangerous” thanx∗. For instance, in hydrology, if
droughts are of concern,x∗ may represent a small value of
river flow, and the dangerous realizations of interest are those
for which X ≤ x∗ (viz., Dx∗ = [0, x∗]). Instead, if floods
are of concern,x∗ may indicate a large value of river flow,
and the dangerous realizations of interest are those for which

X ≥ x∗ (viz.,Dx∗ = [x∗, ∞)). According to Definition1, the
corresponding RP’s areµ/FX(x∗) in the former case, and
µ/(1−FX(x∗)) in the latter one.

It is important to stress that the RP is a quantity associ-
ated with a proper event. However, with a slight abuse of
language, we may also speak of “the RP of a realization”
(viz., x∗ in the example given above), meaning in fact “the
RP of the event{X belongs to the dangerous regionDx∗ iden-
tified by the given realizationx∗

}”. Indeed, in a univariate
framework, the assignment ofx∗ uniquely specifies the cor-
responding regionDx∗ .

Actually, also in a multivariate framework it is possible
to associate a given multi-dimensional realizationx∗

∈ Rd

with a dangerous regionDx∗ ⊂ Rd . As an illustration,
consider the two different bivariate dangerous regions con-
structed in Salvadori (2004); Salvadori and De Michele
(2004). In these papers the joint behavior of the vector
(X, Y )∼ F =C(FX, FY ) was analysed: for instance, in
terms of variables of hydrological interest, think of the pairs
flood peak-volume, or storm intensity-duration. In particular,
great attention was paid to the following two sets:

1. (“OR” case)D∨
z∗ = {(x, y) ∈ R2

: x > x∗
∨ y > y∗

},
where at least one of the components exceeds a pre-
scribed threshold (roughly, it is enough that one of the
variables is too large);

2. (“AND” case)D∧
z∗ = {(x, y) ∈ R2

: x > x∗
∧ y > y∗

},
where both the components exceed a prescribed thresh-
old (roughly, it is necessary that both variables are too
large).

Herez∗ = (x∗, y∗) is a prescribed vector of thresholds, and
∨, ∧ are the “(inclusive) OR” and “AND” operators.

In this work we follow a different approach. The idea
stems from the possibility to write, in the univariate case,
the dangerous regionDx∗ in two equivalent ways: either
asDx∗ = {x : x≥x∗

}, orDx∗ = {x : FX(x)≥FX(x∗)}. Clearly,
the same rationale holds by considering as a dangerous re-
gion the setDx∗ = {x : x≤x∗

}, which may be of interest,
e.g. for the study of droughts. Then, by considering the above
formulation as given in terms of the distribution functionFX,
it is clear how it can be extended in a natural way to the multi-
dimensional case, as we shall illustrate below. First of all we
need to introduce the following notion.

DEFINITION 2. Given a d-dimensional distribution
F =C(F1, ..., Fd) and t ∈ (0, 1), thecritical layer LF

t of
level t is defined as

LF
t = {x ∈ Rd

: F(x) = t}. (8)

Clearly, LF
t is the iso-hyper-surface (having dimension

d − 1) whereF equals the constant valuet : thus,LF
t is a

(iso)line for bivariate distributions, a (iso)surface for trivari-
ate ones, and so on. Evidently, for any givenx ∈ Rd , there
exists auniquecritical layerLF

t supportingx: namely, the
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one identified by the levelt =F(x). Note that, thanks to
Eq. (2), there exists a one-to-one correspondence between
the two iso-hyper-surfacesLC

t = {u ∈ I d
: C(u) = t} (per-

taining toC in I d ) andLF
t (pertaining toF in Rd ).

The critical layer LF
t partitions Rd into three non-

overlapping and exhaustive regions:

1. R<
t = {x ∈ Rd

: F(x) < t};

2. LF
t , the critical layer itself;

3. R>
t = {x ∈ Rd

: F(x) > t}.

Practically, at any occurrence of the phenomenon, only three
mutually exclusive things may happen: either a realization of
X lies inR<

t , or overLF
t , or it lies inR>

t . Note that all these
three regions are Borel sets.

Thanks to the above discussion, it is now clear that the
following (multivariate) notion of RP is meaningful, and co-
incide with the one used in the univariate framework.
DEFINITION 3. Let X be a multivariate r.v. with distri-

butionF =C(F1, ..., Fd). Also, letLF
t be the critical layer

supporting a realizationx of X (i.e. t =F(x)). Then, the RP
associated withx is defined as

1. for the regionR>
t

T >
x = µ/P

(
X ∈ R>

t

)
, (9)

2. for the regionR<
t

T <
x = µ/P

(
X ∈ R<

t

)
. (10)

In the sequel we shall concentrate only uponR>
t : the cor-

responding formulas forR<
t could easily be derived. Note

thatR>
t may be of interest, e.g. when floods are investigated,

whileR<
t may be appropriate if droughts are of concern.

Now, in view of the results outlined inNelsen et al.(2001,
2003), it is immediate to show that

T >
x =

µ

νF ({x ∈ Rd : F(x) > t})

=
µ

1 − νF ({x ∈ Rd : F(x) ≤ t})

=
µ

1 − KC(t)
,

(11)

whereνF is the probability measure induced byF overRd ,
andKC is the Kendall’s distribution function associated with
C (see Eq.3 and the ensuing discussion). Clearly,T >

x is
a function of the critical levelt identified by the relation
t =F(x). It is then convenient to denote the above RP via
a special notation as follows.
DEFINITION 4. The quantity κx =T >

x is called the
Kendall’s RPof the realizationx belonging toLF

t (here-
inafter,KRP).

F ≡ t F ≡ s

x*

y*
z*

D∧
z∗

w*

"AND" case

Fig. 3. Graphical illustration of the dangerous regionD∧
z∗ (shaded)

in the “AND” case – see text.

An advantage of the approach outlined in this work is that
realizations lying over the same critical layer do always gen-
erate the same dangerous region. Evidently, this is not the
case considering the “OR–AND” approach discussed above.

Furthermore, in the “AND” case, it may happen that real-
izations not lying in the dangerous regionDz∗ of interest have
a RP larger than the one ofz∗. More specifically, as graphi-
cally illustrated in Fig.3, for a given realizationz∗ lying on
the isoline of levelt ∈ (0, 1) (whereF ≡ t), the dangerous
regionD∧

z∗ is given by the shaded area. However, given an-
other realizationw∗, lying on the isoline of levels > t , the
corresponding RP may be larger than the one ofz∗, but w∗

does not belong toD∧
z∗ . A similar rationale also holds for the

“OR” case. Instead, in the approach outlined in this work,
all the realizationsy having a KRPκy < κx must lie inR<

t ,
whereas all thosey having a KRPκy > κx must lie inR>

t

– clearly, all the realizations lying overLF
t share the same

KRPκx .
For the sake of convenience, we report below the algo-

rithm explained inSalvadori and De Michele(2010) for the
calculation ofKC (see alsoGenest and Rivest, 1993; Barbe
et al., 1996), which yields a consistent Maximum-Likelihood
estimator ofKC . Here we assume that the copula model is
well specified, i.e. it is available in a parametric form.
ALGORITHM 1. Calculation of the Kendall’s measure

function KC .

1. Simulate a sample u1, ..., um from the
d-copula C.

2. For i = 1, ..., m calculate vi = C(ui).

3. For t ∈ I calculate
K̂C(t) = 1

m

∑m
i=1 1(vi ≤ t).
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As an illustration, in Fig.4a we plot an estimate of the
function KC associated with the copulaCQV L: here Algo-
rithm 1 is used, running a simulation of sizem = 5× 107.
Also shown is the empirical estimate ofKC calculated by
using the available observations: the horizontal patterns are
simply due to the small sample size.

4 Quantiles associated with the KRP

Traditionally, in the univariate framework, once a RP (say,
T ) is fixed (e.g. by design or regulation constraints), the
corresponding critical probability levelp is calculated as
1− p = P(X > xp) =µ/T , and by invertingFX it is then im-

mediate to obtain the quantilexp =F
(−1)
X (p), which is usu-

ally unique. Then,xp is used in practice for design purposes
and rational decision making. As shown below, the same ap-
proach can also be adopted in a multivariate environment (to
be compared withBelzunce et al., 2007).
DEFINITION 5. Given ad-dimensional distributionF =

C(F1, ..., Fd) with d-copulaC, and a probability levelp ∈ I ,
theKendall’s quantileqp ∈ I of orderp is defined as

qp = inf{t ∈ I : KC(t) = p} = K
(−1)
C (p), (12)

whereK
(−1)
C is the inverse ofKC .

Definition 5 provides a close analogy with the definition
of univariate quantile: indeed, recall thatKC is a univariate
distribution function (see Eq.3), and henceqp is simply the
quantile of orderp of KC . Thanks to Eq. (2), it is clear that
the critical layerLF

qp
is the iso-hyper-surface inRd whereF

takes on the valueqp, whileLC
qp

is the corresponding one in

I d where the related copulaC equalsqp.
Now, let LF

qp
be fixed. Then, according to Eq. (3),

p =KC(qp) = P(C(F1(X1), ..., Fd(Xd)) ≤ qp). Therefore,
p is the probability measure induced byC on the regionR<

qp
,

while (1− p) is the one ofR>
qp

. From a practical point of
view this means that, in a large simulation ofn independent
d-dimensional vectors extracted fromF , np realizations are
expected to lie inR<

qp
, and the others inR>

qp
.

REMARK 1. It is worth stressing that a common error
is to confuse the value of the copulaC with the probabil-
ity induced byC on I d (and, hence, onRd ): on the criti-
cal layerLC

qp
it is C =qp, but the corresponding regionR<

qp

has probabilityp =KC(qp) 6= qp, sinceKC is usually non-
linear (the same rationale holds for the regionR>

qp
). In other

words, while in the univariate case the valuep =FX(xp) cor-
responds to the probability induced on the regionR<

p , where
xp is the quantile ofX of orderp, this is not so in the multi-
variate case.

SinceKC is a probability distribution, andqp is the corre-
sponding quantile of orderp, we could use a standard boot-
strap technique (see, e.g.Davison and Hinkley, 1997) to es-
timate qp if it cannot be calculated analytically. The idea
is simple, and stems directly from the very definition ofqp:
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Fig. 4. (a) Simulation-based estimate of the functionKC (con-
tinuous line) associated with the copulaCQV L; also shown is
its empirical estimate (markers) calculated by using the available
observations – see text.(b) Plot of the (millenary KRP) quantile
t∗ ≈ 0.946537 (thick-dashedline) associated with the critical prob-
ability level p = 0.999; also shown (thin-dashedline) is the esti-
mate of the valueKC ≈ 0.999998 associated with the critical level
t∗1D ≈ 0.997754 – see text.

viz., to look for the valueqp of C such that, in a simulation
of sizen, np realizations show a copula value less thanqp.
Then, by performing a large number of independent simula-
tions of sizen, the sample average of the estimatedqp ’s is
expected to converge to the true value ofqp. A possible al-
gorithm is given below, most suitable for vectorial software.
Here we assume that the copula model is well specified, i.e. it
is available in a parametric form.

ALGORITHM 2. Calculation of qp. First of all, choose a
sample sizen, a critical probability levelp, the total number
of simulationsN , and fix the critical indexk = bnpc.

for i = 1: N

S = sim ( C; n); % simulate n d-vectors
from copula C

C = C(S); % calculate C for simulated
vectors

C = sort ( C); % sort-ascending
simulated C values

E(i) = C(k); % store new estimate of qp

into vector E

end
q = Mean(E); % calculate the estimate of
qp

Then, once the loop is completed,q provides an esti-
mate of qp. Practically, Algorithm2 does the “inverse”
task of Algorithm 1. The bootstrap method may also
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yield an approximate confidence interval forqp (seeDiCi-
ccio and Efron, 1996 for more refined solutions): for in-
stance, at a 10 % level, the random interval(q0.05, q0.95)

can be used, whereq0.05 and q0.95 are, respectively, the
quantiles of order 5 % and 95 % extracted from the vector
E. Using Algorithm2 (and settingn = 104, p = 0.999, and
N = 107, for a total of 1011 simulated triplets), we estimated
q0.999≈ 0.946537 for the copulaCQV L of interest here, and
a 10 % confidence interval (0.946110, 0.946973), a process
that took about 48 h of CPU time on a iMac equipped with
a 3.06 GHz Intel Core 2 Duo processor and 8 GB RAM. As
an illustration, in Fig.4b we show an estimate of the func-
tion KC , associated with the copulaCQV L, at t∗ ≈ 0.946537
(corresponding to a millenary KRP): as expected, the value
KC(t∗) is almost exactly equal to 99.9 %.

As a further illustration, in Fig.5 we plot the critical iso-
surfaceLC

t∗ of the trivariate copulaCQV L for the critical level
t∗ ≈ 0.946537, corresponding to a regulation return period
of 1000 years (viz., all the realizations onLC

t∗ have a KRP
equal to 1000 years). Then,CQV L = t∗ for all points be-
longing toLC

t∗ . Instead,CQV L < t∗ (andκx < 1000 years)
in the regionR<

t∗ “below” LC
t∗ , the one containing the ori-

gin 0= (0, 0, 0), whereasCQV L > t∗ (andκx > 1000 years)
in the regionR>

t∗ “above” LC
t∗ , the one containing the up-

per corner1= (1, 1, 1). On average, only 0.1 % of the real-
izations extracted from a simulation ofCQV L are expected
to lie in R>

t∗ . However, the level of the critical layer is
t∗ =q0.999≈ 0.946537< p = 0.999, as indicated by the dia-
monds markers in the plot.

As a further example, consider that the regionR>
0.999 iden-

tified by the critical layerLF
0.999 (where the multivariate dis-

tribution F , or, equivalently, the copulaC, takes on the
value 0.999) has an estimated probability smaller than 10−6,
and a corresponding KRP of about 3× 106 years: practically,
only one realization ofCQV L out of 3× 106 simulations is
expected to lie inR>

0.999 (instead of 1 out of 1000). Evi-
dently, ifF (or C) were substituted forKC in Eq. (11) during
the design phase, then the structure to be constructed would
result over-sized (being expected to withstand stunning ex-
treme events).

5 Design in a multivariate framework

The situation outlined in the previous section is generally
similar to the one found in the study of univariate phenom-
ena, where a single r.v.X with distribution FX is used to
model the stochastic dynamics. However, as already men-
tioned, the multivariate case generally fails to provide a nat-
ural solution to the problem of identifying a unique design
realization. In fact, even if also the layerLF

t acts as a (multi-
dimensional) critical threshold, there is no natural criterion to
select which realization lying onLF

t (among the∞d−1 pos-
sibilities) should be used for design purposes. In other words,
in a multivariate environment, the sole tool provided by the
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Fig. 5. Critical iso-surfaceLC
t∗ of the copulaCQV L corresponding

to the (millenary KRP) critical levelt∗ ≈ 0.946537, indicated by
thediamondmarkers on the axes. Thecircle and thesquaremark-
ers indicate, respectively, the Component-Wise and the Most-Likely
design realizations – see text.

RP may not be sufficient to identify a design realization, and
additional considerations may be required in order to pick
out a “characteristic” realization over the critical layer of in-
terest. In the following, we outline possible ways to carry
out such a selection. Clearly, several approaches can be pro-
posed, each one possibly yielding a different solution: below,
we show two possible elementary strategies to deal with the
problem.

The basic idea is simply to introduce a suitable function
(say,w) that “weighs” the realizations lying on the critical
layer of interest. Following this approach, the practitioner
can then freely choose the criterion (i.e. the functionw) that
best fits the practical needs. Clearly, without loss of general-
ity, w can be assumed to be non-negative. In turn, a “design
realization” can be defined as follows.
DEFINITION 6. Let w : LF

t → [0, ∞) be a weight func-
tion. The design realizationδw ∈ LF

t is defined as

δw(t) = argmax
x ∈ LF

t

w(x), (13)

provided that the argmax exists and is finite.
Definition6 deserves some comments.

– In general, the unicity of the maximum may not be
guaranteed. When this happens, a recourse to phys-
ical/phenomenological considerations, or to additional
procedures (like, e.g. Maximum Information/Entropy
schemes;Jaynes, 2003), may help solving the problem.

– Different copulas may share the same Kendall’s mea-
sureKC , and hence the same KRP (e.g. all the bivari-
ate Extreme Value copulas with the same Kendall’sτ ;
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Ghoudi et al., 1998). However, in general, the critical
layers of such copulas will have a different geometry,
and, in turn, will provide different design realizations.

– The search of the point of maximum in Eq. (13) can be
subjected to additional constraints, in order to take into
account the possible sensitivity of the structure under
design to the behavior of specific marginals (see also
the discussion in Remark2): for instance, a Bayesian
approach might be advisable.

– Sometimes it could be more appropriate to select a set
of possible design realizations (i.e. an ensemble, rather
than a single one) that should be used, together with
experts’ opinions, in order to better evaluate the features
of the phenomenon affecting the structure under design.
This procedure can be carried out by using a suitable
step function in Eq. (13).

In passing, we note that, in the present case study, the
distributionFQV L and the copulaCQV L are trivariate, and
hence the corresponding critical layers are simply two-
dimensional surfaces inR3 and I3, respectively. Figure5
shows the critical layer of levelt∗ pertaining toCQV L, and
the corresponding one pertaining toFQV L can be drawn by
exploiting Eq. (2). Now, for the sake of graphical illustra-
tion, it is possible to parametrizeLF

t∗ in polar coordinates
(say,(α, r)) via a one-to-one transformation, and thus re-map
and plot any functionw defined overLF

t∗ onto the rectangle
(0, π/4) × (0, r̃), for a suitable maximum raỹr. In turn, it
is rather easy to have a peek of the behavior of any weight
functionw overLF

t∗ .
REMARK 2. A delicate problem may arise when adopt-

ing the approach outlined above: to make the point clear,
consider the following example. Suppose that we use the du-
ration of a storm and the storm intensity as the two variables
of interest. In a fast responding system (e.g. a sewer struc-
ture), a storm having short duration but high intensity may
cause a failure, whereas the same storm may not cause any
problem at a catchment level. In the catchment, however, a
storm with long duration and intermediate to low intensity
may cause a flood event, whereas the same storm does not
cause any problem to the sewer system. Now, as a matter
of principle, the design realizationδw for the given return
period (i.e. the “typical” critical storm calculated according
to the strategy illustrated here) may not cause any problem
in both systems, and therefore these would be wrongly de-
signed. Practically, the sewer systems should be designed
using critical design storms of short durations and high in-
tensities, whereas a structure in the main river of the water-
shed should be designed using storms of long durations and
low intensities. However, the problem is more apparent than
real. In fact, there are neither theoretical nor practical limita-
tions to restrict the search for the maxima in Eq. (13) over a
suitable sub-region ofLF

t∗ : remember that all the realizations
on the critical layer share the same prescribed KRP. Thus,

when a sewer system is of concern, only storms having short
durations and high intensities could be considered, whereas
a critical design storm for a structure in the main river could
be spotted by restricting the attention to storms of long dura-
tions and low intensities. Roughly speaking, in the approach
outlined here, the calculation of the critical design realization
can be made dependent on both the environment in which a
structure should be designed, as well as on the stochastic dy-
namics of the phenomenon under investigation.

Overall, the procedure to identify the design realization
could be described as follows. LetX be a random vector
with distributionF =C(F1, ..., Fd).

1. Fix a RPT .

2. Calculate the corresponding probability level
p = 1− µ/T .

3. Compute the Kendall’s quantileqp as in Eq. (12), either
analytically or by using Algorithm2.

4. Fix a suitable weight functionw.

5. Calculate the point of maximumδw of w on the critical
layerLF

qp
.

The resultingδw represents a “typical” realization inRd with
a given RP. Roughly speaking, it denotes the design realiza-
tion obtained by considering the very stochastic dynamics of
the phenomenon. Note that, in general,δw (or, better, the cor-
responding critical layer) should be considered together with
other information (e.g. the physical features of the structure)
in order to be correctly used in practice. For the sake of il-
lustration, below we introduce two weight functions.

5.1 Component-wise excess design realization

A realization lying on the critical layerLF
t may be of ma-

jor interest when all of its marginal components are ex-
ceeded with the largest probability. In simple words, we sug-
gest to look for the point(s)x = (x1, ..., xd) ∈LF

t such that
it is maximum the probability that a dangerous realization
y = (y1, ...,yd ) satisfies all the following component-wise
inequalities:

y1 ≥ x1, ..., yd ≥ xd , (14)

or y > x using a simplified notation. The next definition is
immediate.
DEFINITION 7. The Component-Wise Excess weight

functionwCE is defined as

wCE(x) = P(X ∈ [x, ∞)), (15)

whereX has distributionF =C(F1, ..., Fd), and [x, ∞)

is the hyper-rectangle inRd whose points satisfy all the in-
equalities stated in Eq. (14).
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Table 2. Estimates of the critical design realizations, for a mil-
lenary return period, according to different strategies – see text.
Also shown are the estimates of the univariate quantiles of order
p = 0.999 of the variables of interest. The right-most column shows
the Maximum Water Level of the dam associated with the flood
event (Q, V , L) reported on the corresponding row.

Strategy Q V L M. W. L.
(m3 s−1) (106 m3) (m a.s.l.) (m a.s.l.)

C.-E. 352.76 25.21 781.25 782.08
M.-L. 316.23 19.64 781.29 781.98

F
(−1)
· (0.999) 1208.9 172.58 781.44 784.80

Then, by restricting our attention to the critical layerLF
t ,

the following definition is immediate.
DEFINITION 8. The Component-wise Excess design real-
izationδCE of level t is defined as

δCE(t) = argmax
x ∈ LF

t

wCE(x), (16)

wheret ∈ (0, 1).
REMARK 3. Via the Probability Integral Transform and

Sklar’s Theorem, it is easy to show that

wCE(x) = P(U ∈ [u(x), 1]), (17)

where U has the same copulaC as of X and Uniform
marginals,u(x) = (F1(x1), ..., Fd(xd)), and [u, 1] is the
hyper-rectangle inI d with lower corneru and upper corner1.
Thus, the probabilities of interest can be directly computed in
the unit hyper-cube (see, e.g.Joe, 1997) by working directly
on the critical layerLC

t (instead ofLF
t ), a solution numer-

ically more convenient. Note that, for larged-dimensional
problems, the CPU time involved may become prohibitive,
though clever solutions have been proposed for larged ’s (see,
e.g. Cherubini and Romagnoli, 2009). In some cases,δCE
can be calculated analytically; otherwise, it can be empiri-
cally estimated (e.g. by calculating it over suitable points of
LC

t orLF
t ).

In Fig. 6 we show the behavior ofwCE overLF
t∗ , as well as

the Component-wise Excess design realizationδCE(t∗) cal-
culated for the case study investigated here (see also Fig.5).
This point has the largest probability to be component-wise
exceeded by an extreme realization with KRP larger than
1000 years, and therefore it should be regarded as a sort of
(statistical) “safety lower-bound”: viz., the structure under
design should, at least, withstand realizations having (multi-
variate) sizeδCE(t∗), as reported in Table2.

As anticipated in Sect.2, using the design realization
δCE(t∗), we operated the reservoir routing of the corre-
sponding flood hydrograph. Then, we checked whether or
not the reservoir level exceeds the crest level of the dam
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Fig. 6. Polar re-mapped plot of the Component-Wise Excess weight
functionwCE over the critical layerLF

t∗ , corresponding to the (mil-
lenary KRP) critical levelt∗ ≈ 0.946537. Thestar marker indicates
where the maximum is attained – see text and Table2.

(i.e. 784 m a.s.l.). The column“M. W. L.” in Table2 re-
ports the value 782.08 m a.s.l.: thus, no over-topping occurs,
i.e. the dam seems to be safe against Component-Wise Ex-
cess millenary realizations.

5.2 Most-likely design realization

A further approach to the definition of a characteristic design
event consists in taking into account the density of the mul-
tivariate distribution describing the overall statistics of the
phenomenon investigated: in fact, assuming that the density
f of F is well defined overLF

t , we may think of using it as
a weight function.

Clearly, the restrictionft of f over LF
t is not a proper

density, since it does not integrate to one. However, it may
provide useful information, since it induces a (weak) form
of likelihood overLF

t : in fact, it can be used to weigh the
realizations lying onLF

t , and spot those that are (relatively)
“more likely” than others. Indeed,ft inherits all the features
of interest directly from the true global densityf . The next
definition is immediate.
DEFINITION 9. The Most-Likely weight functionwML is
defined as

wML (x) = f (x), (18)

wheref is the density ofF =C(F1, ..., Fd).
Then, by restricting our attention to the critical layerLF

t ,
the following definition is immediate.

Hydrol. Earth Syst. Sci., 15, 3293–3305, 2011 www.hydrol-earth-syst-sci.net/15/3293/2011/



G. Salvadori et al.: Return period and design 3303

DEFINITION 10. The Most-Likely design realizationδML
of level t is defined as

δML (t) = argmax
x ∈ LF

t

wML (x) = argmax
x ∈ LF

t

f (x), (19)

wheret ∈ (0, 1).
REMARK 4. As a rough interpretation,δML plays the role
as of a “characteristic critical realization”, i.e. the one that
has to be expected if a critical event with given KRP happens.
In some cases,δML can be calculated analytically; otherwise,
it can be empirically estimated (e.g. by calculatingf over
suitable points ofLF

t ).
In general, provided that weak regularity conditions are

satisfied,f can be calculated by using the marginal densities

fi ’s of X, and the densityc = ∂d

∂u1···∂ud
C(u1, ..., ud) of the

copulaC:

f (x) =
∂d

∂x1 ··· ∂xd

C (F1(x1), ..., Fd (xd))

= c(F1(x1), ..., Fd (xd)) ·

d∏
i=1

fi (xi).

(20)

Since our target is to compare the “weight” of different real-
izations, from a computational point of view it may be bet-
ter to minimize−ln(f ) overLF

t (since the maxima are pre-
served).

As an illustration, in the present (absolutely continuos)
case, the expression of the trivariate densityfQV L is given
by

fQV L(x, y, z) = cQV

(
FQ(x), FV (y)

)
· fQ(x) · fV (y) · fL(z), (21)

where (x, y, z) ∈ R3, andcQV is the density of the Gumbel
copula modeling the pair (Q, V ). In Fig. 7 we show the be-
havior of (the logarithm of)wML (i.e.fQV L) overLF

t∗ , as well
as the Most-Likely design realizationδML (t∗) calculated for
the case study investigated here (see also Fig.5). The ac-
tual values of the functionwML are irrelevant: in fact, we are
only interested in spotting wherefQV L is maximal. There-
fore, the Most-Likely design realization could be regarded
as the “typical” realization: viz., the structure under design
should be expected to withstand events having (multivariate)
sizeδML (t∗), as reported in Table2.

Again, as a test, using the design realizationδML (t∗), we
operated the reservoir routing of the corresponding flood hy-
drograph, and checked whether or not the reservoir level ex-
ceeds the crest level of the dam. The column “M. W. L.”
in Table 2 reports the value 781.98 m a.s.l.: thus, no over-
topping occurs, i.e. the dam seems to be safe also against
Most-Likely millenary realizations.

5.3 Additional remarks about design strategies

An interesting test concerning the misuse of univariate ap-
proaches in a multivariate framework can be carried out
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as follows. In fact, as a further possible strategy, suppose
that a critical design realizationδ1D = (x0.999, y0.999, z0.999)

is defined in terms of the millenary univariate quantiles of
the three variables of interest here (see the last row of Ta-
ble 2). In turn, the layerLFQV L

t∗1D
supportingδ1D has a crit-

ical level t∗1D ≈ 0.997754 (see Fig.4b), corresponding to a
value ofKC(t∗1D) ≈ 0.999998, and a KRP of about 5× 105

years. It is then immediate to realize that, in order to pro-
vide a true millenary multivariate design realization, it may
not be enough (or necessary) to rely upon millenary univari-
ate quantiles. Also, operating the reservoir routing using
δ1D, yields a reservoir level of about 784.80 m (see Table2),
which may cause an over-topping and a dam failure.

The example given above, as well as the illustrations pre-
sented in Sect.5, may suggest the following empirical con-
sideration (which, however, should be taken with care). Both
the millenary multivariate design realizationsδCE and δML
yielded a maximum water level of about 782 m a.s.l., whereas
δ1D (with a KRP of the order of 105 years) generated a max-
imum level over-topping the dam crest by only about 80 cm.
Thus, apparently, the dam is over-sized, i.e. it could with-
stand events with a RP much larger than 1000 years. Clearly,
from the safety point of view, this is a good news. On the
other hand, a smaller structure, correctly sized for withstand-
ing true millenary multivariate events, would probably re-
duce the cost.
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6 Conclusions

This paper is of methodological nature, and introduces orig-
inal techniques for the calculation of design quantiles in a
multivariate environment. In this work we made an effort
to reduce the troublesome nature of multivariate analysis –
which has always limited its practical application – by pro-
viding consistent frameworks (the KRP) and techniques (the
weight functions on the critical layers) to address the identi-
fication of the critical design events when several dependent
variables are involved. In particular, the “CE” and “ML” de-
sign values may provide basic realizations with given KRP,
of interest in multivariate design problems.

It worth noting that the design phase should not be con-
fused with risk assessment. In fact, the target of the former
one is to provide characteristic realizations (e.g. the design
realizations) useful for planning and managing a a structure.
In this case only thehazardcomponent is taken into account,
viz. the probabilistic behavior of the r.v.’s under considera-
tion, but no specific information is exploited about the struc-
ture (e.g. the dam) under design. The risk assessment, in-
stead, aims at pointing out possible dangereous situations
by further introducing theimpact ingredient, i.e. by consid-
ering the physical influence of the variables on the struc-
ture. In other words, the design phase only identifies the set
of possible realizations (namely, those on the critical layer)
that are associated with a given probabilistic level of con-
fidence. These realizations should then be carefully used,
together with additional information (e.g. the morphology of
the basin), in order to provide specific parameters for quanti-
fying the risk of a structural failure.

To the best of our knowledge, this is the first time that a
similar study is presented. Clearly, further research is nec-
essary, especially concerning the introduction of alternative
design strategies, and their mutual comparison. In addition,
a step towards a consistent framework for dealing with risk
assessment in a multivariate environment is needed.
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