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Abstract. This paper deals with the seasonality of hydro-
climatic extremes and with the problem of accounting for
their non-homogeneous character in determining the design
value. To this aim we devise a simple stochastic experiment
in which extremes are produced by a non-homogeneous ex-
treme value generation process. The design values are esti-
mated in closed analytical form both in a peak over thresh-
old framework and by using the standard annual maxima ap-
proach. In this completely controlled world of generated hy-
drological extremes, a statistical measure of the error associ-
ated to the adoption of a homogeneous model is introduced.
The sensitivity of this measure, named return period ratio,
to the typology and strength of seasonality is investigated.
We find that neglecting seasonality induces a downward bias
in design value estimators. The magnitude of the bias may
be large when the peak over threshold approach is adopted,
while the return period distortion is limited when the annual
maxima are considered. An application to rainfall data from
a 30 000 km2 region located in North-Western Italy is pre-
sented to better clarify the effects of disregarding seasonality
in a real case.

1 Introduction

Hydrological variables, like precipitation depth and river
discharge, often exhibit marked periodic variability at the
annual time scale (Black and Werritty, 1996; Sivapalan
et al., 2005; Viglione et al., 2010; Villarini et al., 2011).
As a consequence, also the corresponding extreme values,
i.e. the precipitation or discharge values associated to rele-
vant and unfrequent events, will likely be dependent on the
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non-homogeneity of their respective date of occurrence (e.g.
Maraun et al., 2009). The seasonal variability of extreme
events represents an issue for the standard applications of the
frequency analysis, because the presence of seasonality can
make some commonly used assumptions inappropriate. In
particular, one should relax either the assumption of a stan-
dard probability distribution to represent the data (e.g. Gum-
bel or GEV) or the assumption that all available data are sam-
pled from the same distribution (seeAllamano et al., 2011b,
p.3684-5). The manner how these date-dependent sample
values should be treated represents an open problem in sta-
tistical hydrology, tackled in different ways.

The standard procedures for design value estimation are
based on the analysis of series of annual maxima (AM). Es-
timation of the distribution of annual maxima from data with
seasonal variability has received attention in the literature.
Attempts to obtain the annual maximum distribution by fit-
ting different distributions to the maxima in separate seasons
– and to derive the expressions for the bias and variance of
the resulting annual quantile estimators – were done byLam-
berti and Pilati(1985) andBuishand and Demaré(1990). The
basic idea is to have, in each season, random variables that
satisfy the “identically distributed” hypothesis, which is es-
sential in standard statistical inference. The use of monthly
maxima has also been advocated (e.g.Carter and Challenor,
1981; Ettrick et al., 1987; Rust et al., 2009) because the hy-
pothesis of identically distributed random variables in classi-
cal extreme-value theory is better satisfied for monthly than
for annual maxima.

The problem with these approaches is that the number of
parameters to be estimated increases, while the amount of in-
formation useful to describe the upper tail of the distribution
increases at a lower rate, thus inflating the estimation uncer-
tainty of design values. In addition, the application of these
methods requires non-standard data (maxima in separate sea-
sons) which may not be available for long time periods.
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Maxima in separate seasons are, in fact, usually extracted
from the continuous time measurements, which are system-
atically collected since the beginning of the digital era.

If a continuous time series is available, a valid alterna-
tive is offered by the peak over threshold (POT) or par-
tial duration series approach. This approach considers sev-
eral over-threshold values instead of a unique extreme value
per year (Madsen et al., 1997; Lang et al., 1999; Claps and
Laio, 2003). The strongest motivation for adopting the POT
approach is that over-threshold values constitute precious
additional information about the upper tail of the distribu-
tion, which is very important in hydrological applications
(Revfeim, 1991; Katz et al., 2002). The POT approach natu-
rally lends itself to being used with a rate of occurrence of the
exceedances (λ) and an exceedances distribution having an
annual cycle (Todorovic and Zelenhasic, 1970; Rasmussen
and Rosbjerg, 1991). However, there are numerous appli-
cations of the POT approach which do not consider time-
dependent parameters (e.g.Madsen et al., 1997; Claps and
Laio, 2003; Bacova-Mitkova and Onderka, 2010; Fruh et al.,
2010).

The aim of this paper is to provide indications about the
effects of neglecting seasonality within standard POT or
AM approaches. A very simple and controllable framework
(which we call “toy-model” in Sect.2) is adopted, suitable
for sharpening the questions regarding the possible effects
of seasonality on design event estimation. The scope of our
contribution, hence, is not to propose a new model for use in
POT or AM analyses, but to analyze the magnitude of under-
(or over-) estimation of design events in the presence of sea-
sonality. In other words, our aim is to address the question
“what is the impact of neglecting seasonality on design event
estimation?”.

2 A “toy-model” for understanding seasonality effects
on the distributions of extremes

A simplified analytical model of the distribution of hydrocli-
matic extremes is devised, in which hydroclimatic variables
are assumed to follow a non-homogeneous Poisson process
of event arrivals in time with rateλ(t). The intensityx of
each event is distributed according to an exponential function

F(x|t) = 1 − exp [−x/α(t)] (1)

where the meanα(t) of the distribution is dependent on
time. Despite its simplicity, the model is widely adopted
in hydrology, as demonstrated by the numerous applications
that can be found in the literature (e.g.Eagleson, 1978; Ro-
driguez Iturbe et al., 1987; Rasmussen and Rosbjerg, 1989;
Laio et al., 2001). Observe that the exponential is merely
used as an example (simple and commonly used) distribu-
tion. To mimic the effects of seasonality, a sinusoidal (time-
dependent) variation is imposed on the parameters of the
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Fig. 1. Example of theh(t) (solid) andk(t) (dashed) curves, see
Eq. (2). The temporal shiftδ between the seasonal peaks is indi-
cated, as well as their amplitudes,aα andaλ. In this casen = 2.

Poisson process. The sine assumption is taken as a compro-
mise between the need to provide a realistic representation of
a periodic time series and the quest for simplicity that drives
our research. We writeα(t) andλ(t) as

α(t) = α0

(
1 + aα sin

(
2 π

365
nt

))
= α0 · h(t), (2)

λ(t) =
λ0

365

(
1 + aλ sin

(
2 π

365
nt + δ

))
=

λ0

365
· k(t),

whereα0 andλ0 are the average intensity and rate values;t

is time in days (t ∈ [0; 365]); n is the number of cycles per
year;h(t) is the non-dimensionalα regime andk(t) the non-
dimensionalλ regime;aα andaλ are, respectively, the am-
plitudes of the sinusoidsh(t) andk(t); andδ is the temporal
shift between the two (i.e. if the sinusoids are in phase events
are more intense when they are more frequent). Note that, to
constrainh(t) andk(t) above zero,aα andaλ can vary in the
range (0, 1). Observe also that the initial timet = 0 is taken
at any point whereα(t) =α0 and dα(t)/dt > 0. An example
for theh(t) andk(t) curves is reported in Fig.1.

The distribution in Eq. (1) is the conditioned distribution
F(x|t) of the event intensitiesx on the date of occurrencet .
The marginal distribution of the exceedancesF(x) can then
be obtained by applying the Law of Total Probability (or
Bayes theorem):

F (POT)(x) =
1

365

∫ 365

0
F(x|t) k(t) dt. (3)

An analytical solution to the integral in Eq. (3) is not avail-
able. To overcome this problem we substituteF(x|t) with
F ′(x|t) = 1− exp[−x ·α′(t)] (see the Appendix for details).
This guarantees the analytical tractability of Eq. (3). Of
courseF(x|t) andF ′(x|t)) behave similarly, however it is
not essential to have a precise correspondence between the
two functions. In reality, in fact, the average intensities are
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not strictly sinusoidal and (in a toy-model) could be repre-
sented also by an inverse sinusoidal function,α′(t). Our
initial guess to start with a standard sinusoidal form for the
event intensities serves the purpose of making our results
more easy to interpret.

SettingF ′(x|t) for F(x|t) in Eq. (3) leads to an expression
of the distribution of exceedances in closed analytical form:

F (POT)(x) = 1 − e
−

x
α0

{
8

[
0,

aα

α0 (1 + aα)
x

]
(4)

+ aλ 8

[
1,

aα

α0 (1 + aα)
x

]
cos(δ)

}
where8[·] is the modified Bessel function of the first kind
(Abramowitz and Stegun, 1965, ch. 9) andk(t) is as defined
in Eq. (2). An important property ofF(x) is that its expres-
sion does not change by changing the oscillation frequency
(parametern in Eq. (2)). Observe also that the mean ofF(x)

can be obtained analytically as the first moment of the distri-
bution in Eq. (4)

µx =

α0

(
aα − (1 + aα)

(√
1 + 2aα

(1 + aα)2 − 1
)

aλ cos(δ)
)

aα

√
1 + 2 aα

(1 + aα)2

. (5)

Moreover, the distribution in Eq. (4) tends to an exponen-
tial distribution (also called “base POT distribution”) in the
homogeneous case, i.e. whenaα =aλ = 0.

The distribution of exceedances Eq. (4) can then be trans-
posed into the correspondent annual maximum distribution.
In fact, despite the non-homogeneity of the process, the stan-
dard relationF (AM)(x) = e−λ0(1−F(x)) (relating the distribu-
tion of exceedances to the distribution of annual maxima,
F (AM)(x)) still holds (seeAllamano et al., 2011a, p.C2850).
On this premise, the following expression for the distribution
of annual maxima is obtained

F (AM)(x) = exp

[
−exp

[
−

x

α0

]
(6)

λ0

(
8

[
0,

aα x

α0 (1 + aα)

]

+ aλ 8

[
1,

aα x

α0 (1 + aα)

]
cos(δ)

)]
in which α0 plays the role of the scale parameter. Observe
that the distribution of maxima becomes a Gumbel distri-
bution (also called “base distribution”) whenaα =aλ = 0 in
Eq. (2). Observe also that for Eq. (6) the mean and standard
deviation of the distribution are not analytical.

3 Model application

Ignoring the possible effects of seasonality when adapting
a distribution to a set of data is a rather common simplifi-
cation, especially when few observations are available. In

the following we explore the consequences of such a sim-
plification, as they could affect the return period estimation
both for the distribution of exceedances and the distribution
of maxima.

To quantify the error associated to the selection of the base
(non-seasonal) distribution, we consider theT -year event
with the non-seasonal distribution and compute the corre-
sponding return period,T ∗, with the (correct) seasonal dis-
tribution. The return period ratio

RT =
T

T ∗
(7)

provides an indication of the magnitude of the underestima-
tion (overestimation) in design values related to neglecting
seasonality. In particular, ifRT > 1 the adoption of the base
distribution corresponds to an underestimation of the real de-
sign value.

3.1 Peak over threshold

Consider process exceedances to follow the distribution in
Eq. (4), having meanµx as defined by Eq. (5). As antici-
pated, in the homogeneous caseaα =aλ = 0, and the distri-
bution of exceedances becomes an exponential distribution,
also called “base distribution”. The design eventx

(POT)
T with

the base distribution is determined as

x
(POT)
T = −µx log

(
1

λ0 T

)
. (8)

Using the seasonal distribution Eq. (4) one finds that the
same eventx(POT)

T has a return periodT ∗, obtained by setting
Eq. (8) for x in Eq. (4), and considering thatλ0T

∗ = 1/(1−

F(x
(POT)
T )) (see e.g.Claps and Laio, 2003).

Given the simplicity of the model the return period ratio is
obtained in analytical form, and reads

R
(POT)
T = λ0 T

(
1

λ0 T

) z (1 + aα)
aα

(9)

(
8

[
0, z log

(
1

λ0 T

)]
− aλ 8

[
1, z log

(
1

λ0 T

)]
cos(δ)

)

with z = [aα −(1+aα)(
√

(1+2aα)/(1+aα)2−1)aλcos(δ)]/
√

1+2aα. Note that Eq. (9) is independent of the mean in-
tensityα0 becauseα0 is a scale parameter for both the base
and the seasonal distribution.

The sensitivity of the return period ratio to the parameters
of Eq. (4) is explored in Fig.2 (gray-shaded contour areas).
The results are obtained by varying two parameters at a time
and by fixing the other parameters. In particular, in Fig.2,
λ0 andaα are assumed to vary. In each point of the plane the
intensity of the grey-shade is proportional to the value of the
return period ratio, with large values of the return period ratio
R

(POT)
T corresponding to eventsR(POT)

T -times more frequent
in the “seasonal reality” than if the exponential distribution
was adopted. We find a strong sensitivity of the return period
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Fig. 2. Sensitivity of the return periodR(POT)
T

to variations ofλ0
andaα , with T = 100 years,δ =π , n = 1 andaλ = 0.5. In each point
of the plane the intensity of the grey-shade is proportional to the

value of the return period ratioR(POT)
T

. The percentage of cases rec-
ognized as non-exponential by the Anderson-Darling test (at a 5 %
level) is indicated by the black (labelled) contour lines.N = 20 years
is considered.

ratio to large values ofaα andλ0. The design event depen-
dence on this latter parameter (λ0) is formalized by Eq. (8).
From this equation it can be inferred that considering larger
λ0 values correspond to move further towards the right tail
of the distribution, thus exacerbating the differences between
the base and seasonal distribution.

The sensitivity ofR(POT)
T to the variation of the two other

parametersT andδ is shown, instead, in Fig.3: it emerges
that R(POT)

T significantly increases with both the return pe-
riod T and the phase shiftδ. The reason behind the depen-
dence ofR(POT)

T on δ is to be found in the event generation
mechanism. In fact, when the two regimes are in phase we
have a very high probability of picking all the exceedances
in the same season, with the consequence that they will be
almost identically and exponentially distributed. Conversely,
when the two regimes are out of phase, we will have a well-
mixed distribution of the events deriving by the coexistence
of one season characterized by few very intense events with
another season with a lot of small events. In this case, the
non-exponentiality of the distribution will be very marked,
with consequent highRT values. From Fig.3 it can be also
deduced thatR(POT)

T assumes slightly lower values when the
regimes are in phase.

One could argue that the effects of seasonality would be
recognized if the data were closely scrutinized. This is ver-
ified by applying the Anderson-Darling goodness of fit test
for exponentiality to the samples generated by the seasonal
model. The Anderson-Darling test is especially well suited

�

return period [years]

T(P
O

T
)

R

Fig. 3. Relation between the return period ratioR
(POT)
T

andT for
increasing values ofδ (0, 365/8, 365/4, 365/2), withaα =aλ = 0.5,
n = 1 andλ0 = 20.

to recognize deviations in the tails of the hypothetical and op-
erational distributions, and its failure to recognize the differ-
ence between the two distributions is precisely a demonstra-
tion that there might be a serious problem of model selection
in the presence of seasonality (seeLaio, 2004). In details,
1000 samples of lengthN ′, generated from the distribution
Eq. (4) under different parameterizations, are tested against
the hypothesis of exponential distribution. In Fig.2, black
labelled contour lines show the percentage of cases recog-
nized as non-exponential by the Anderson-Darling test (at a
5 % level) for the case ofN = 20 years (which entails a sam-
ple length ofN ′ =λ0N ). It is observed that, for smallaα

values, the percentages in the graph are very close to the sig-
nificance level of the test, meaning that the distribution in
this region is substantially undistinguishable from an expo-
nential distribution. The percentage of cases recognized as
non-exponential increases up to 50 % for larger values ofaα

(i.e. for very peaky seasonal regimes) andλ0.
By comparing the two sets of curves (gray-shaded areas

and contours) we observe that the pattern of theR
(POT)
T val-

ues and of the test performances (as functions ofλ0 andaα)
are rather similar: low efficiencies of the Anderson-Darling
test emerge in correspondence of lowR

(POT)
T values, whereas

better performances are found whereR
(POT)
T is high. How-

ever, it is clear that the power of the test remains rather low
even when theR(POT)

T values are large, with a 70 % proba-
bility of not being able to recognize a 5-fold increase in re-
turn period, with possible serious detrimental consequences
in design-value estimation.

3.2 Annual maxima

Suppose that a sample of annual maxima follows the distribu-
tion function in Eq. (6), which is described by the five param-
etersα0, λ0, aα, aλ andδ. The Gumbel distribution (which
is characterized by two parameters, calledα

(AM)
0 andλ

(AM)
0
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in the following) is the form that Eq. (6) would assume for
aα =aλ = 0, i.e. in the absence of seasonality. An analysis of
the error that would derive from the adoption of a Gumbel
distribution in the presence of seasonal maxima is provided
in the following.

As in the previous case, the two parametersα
(AM)
0 and

λ
(AM)
0 of a Gumbel distribution are estimated with the

method of moments as

α
(AM)
0 =

√
6 σ (AM)

π
, (10)

λ
(AM)
0 = exp

[
µ(AM)

α0
− γE

]
,

where µ(AM) is the mean andσ (AM) the standard de-
viation of the samples taken from the distribution in
Eq. (6) and γE is the Euler constant. We then define
x

(AM)
T =α0log[−1/λ0log[1 − 1/T ]] as the designT -year

event with the Gumbel distribution. The same event would
be characterized by a return periodT ∗ with the seasonal dis-
tribution Eq. (6). The return period ratioR(AM)

T is defined
by Eq. (7) as the ratio of the reference return periodT to the
return periodT ∗ of thex

(AM)
T event. In this case the relation

between the return period ratio and the distribution parame-
ters cannot be expressed in closed analytical form. The ra-
tio is computed several times by varying the parameters of
Eq. (6). The values assumed byR(AM)

T , after considering the
variation ofλ0 andaα and by keeping the other parameters
constant, are shown in Fig.4 (shaded areas). It can be ob-
served thatR(AM)

T assumes values up to 1.45, for high values

of aα and lowλ0, whereasR(AM)
T is unaffected by the vari-

ation of the scale parameterα0 (not shown). This implies
that the assumption of a Gumbel model leads to less relevant
overestimation of the return period of the design event than
in the POT case.

To check if these errors would be detectable we apply the
same testing procedure as for the POT case. The applica-
tion demonstrates that the test is unable, for sample dimen-
sionsN ≤ 50 years, to discern between a sample generated
from Eq. (6) and a Gumbel-distributed sample. In Fig.4
the percentage of cases recognized as non-Gumbel by the
Anderson-Darling test (at a 5 % level) is shown by the black
contour lines, for variable values ofaα andλ0. It can be ob-
served that the percentages in the graph are very close to the
test significance level, i.e. the two distributions are statisti-
cally undistinguishable.

4 Case study

In this section 294 rainfall stations located in the North-West
of Italy are examined, with the aim of demonstrating the
importance of precipitation seasonality in the area of study.

Fig. 4. Sensitivity of the return period ratioR(AM)
T

to variations of
λ0 andaα , with T = 100 years,n = 1, δ =π andaλ = 0.5. In each
point of the plane the intensity of the grey-shade is proportional to
the value of the return period ratio. The percentage of cases recog-
nized as non-Gumbel by the Anderson-Darling test (at a 5 % level)
is indicated by the black (labelled) contour lines.N = 50 years is
considered.

Daily totals of precipitation depths are available between
year 1913 and 1986. The peak over threshold series are ex-
tracted by imposing a threshold value of 20 mm on the pre-
cipitation depths. The threshold corresponds to aboutλ = 20
events per year over the whole data set, which seems a rea-
sonable approximation for the average number of significant
rain events in a year. The site-specific regime curves are ob-
tained by aggregating the exceedance amounts and the oc-
currence rates at the monthly timescale and by subsequently
averaging the results for each station. A representation of
the at-site regimesh(t) and k(t) (respectively, the amount
and occurrence regimes divided by their mean, see Eq.2) is
given in Fig.5 for all the stations in the region (grey lines).

A marked seasonal behavior in both the amount and occur-
rence rate of the regimes emerges: in particular most of the
curves are characterized by a double peak. The two curves
also appear to have approximately the same oscillation pe-
riod and to be in phase (i.e. the maximum rainfall occur
when the storms are more frequent). The time shift between
the two curves is determined by varying the value ofδ and
evaluating, for each station, a distance measure (D) between
the site-specific regimes.D is defined as the average of the
absolute differences between the 12 monthly values ofh(t)

and k(t). The minimumD is found in correspondence of
δ = 0 for 291 (out of 294) stations. The global regimes (black
curves in Fig.5) of the mean precipitation intensity and rain-
fall rate, derived by averaging the station-specific curves, are
then assumed to be in phase for the whole region of study.
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Fig. 5. Non-dimensional monthly average rainfall intensityh(t) and
rainfall ratek(t) for 294 gauging stations in North-Western Italy
(grey lines). The overall spatial mean values are reported in black.

The parametersα0 and λ0 are estimated in each station
as the average (over-threshold) rainfall intensity and rainfall
rate.aα andaλ are estimated as functions of the coefficients
of variation (CV) ofα(t) andλ(t). The reasoning to find the
relation between CVλ andaλ is described hereinafter. Simi-
larly one can find the relation between CVα andaα.

Under the hypothesis of poissonianity, the cumulative dis-
tribution of λ, F3(λ), can be obtained as a derived distribu-
tion of the times of occurrence, provided that the relationλ(t)

is monotonic. To meet this condition, we restrict the domain
of λ(t) to the interval[π/2n; 3π/2n] (which should be mul-
tiplied by 365/2π to be expressed in days). The distribution
of λ is unaffected by this assumption, due to the periodicity
of theλ(t) function. On this domain, the cumulative distri-
bution of timesFT (t) is uniform, Eq. (2) relatesλ to t , and
the cumulative distribution function ofλ reads

F3(λ) =
1

π
arcsin

(
λ0 − λ

aλλ0

)
−

1

2
, (11)

which is valid in the domain[λ0(1−aλ); λ0(1+aλ)]. The
mean and standard deviation are respectivelyµλ =λ0 and
σλ =aλλ0/

√
2 and the relation between CVλ andaλ is found

accordingly asaλ =
√

2 · CVλ. Analogously, one obtains
aα =

√
2·CVα.

R
(POT)
T values are then obtained from Eq. (9) for each sta-

tion, as shown in Fig.6. Rather large values are found,

Fig. 6. Return period ratios (R(POT)
T

) evaluated, forT = 100 years,
in 294 rain gauging stations of the North-West of Italy. The color

scale refers to the resulting range of variation ofR
(POT)
T

.

pointing out the risk to significantly underestimate the design
values if seasonality is neglected. When the annual max-
ima are considered,R(AM)

T varies between 1 and 1.45 (not
shown), demonstrating that in this case the errors induced by
neglecting seasonality are not extremely relevant.

5 Discussion and conclusions

The effects of disregarding seasonality of extremes when
evaluating the return period of a design event are investi-
gated. Two very simple examples are illustrated: (1) the
case of using an exponential distribution to describe POT
values derived from a non-homogeneous Poisson process
(Sect.3.1); and (2) the case of using a Gumbel distribution
for AM values extracted from a seasonal (i.e. with time de-
pendent parameters) distribution (Sect.3.2). The entity of the
return period overestimation (i.e. apparently less frequent ex-
treme events) when seasonality is not accounted for is quan-
tified by a coefficientRT . It is found that, when seasonality
is ignored and threshold exceedances (POT) are analyzed,
the return period of an event can be significantly overesti-
mated. Neglecting seasonality therefore corresponds to sig-
nificantly underestimating the design values; moreover, stan-
dard goodness-of-fit techniques are not very efficient at rec-
ognizing the unsuitability of the non-seasonal distribution.

Resorting to peak over threshold analysis is, nevertheless,
an advantageous technique, especially in the presence of few
years of observation, as acknowledged by numerous works
(see e.g.Wilks, 1993; Lang et al., 1999). This allows, in fact,
to capture more accurately the upper tail of the distribution,
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increasing at the same time the sample size. In this sense, the
difficulties pointed out by this study in analyzing seasonal
POT values should not discourage the adoption of an over-
threshold modelling, but rather reassert the need for accurate
preliminary analyses of the data based on visual inspection
of the regimes or, possibly, on unsupervised testing tech-
niques (e.g. “analysis of variance” or ANOVA techniques,
see e.g.Salas et al., 1980; Kottegoda and Rosso, 1998).

Less relevant errors are associated to the use of the an-
nual maximum distribution, even if seasonality still induces
a systematic downward bias in design value estimators. In
particular, the Gumbel distribution is found to represent an
acceptable choice to describe the annual maxima generated
by a Poisson exponential process with seasonally varying pa-
rameters. The reason behind this better performance proba-
bly lies in the greater flexibility of the Gumbel distribution
(compared to the exponential). Another possible motivation
behind this behavior is that seasonality is often disguised by
the AM approach: in fact, if seasonality is weak, the annual
maxima will be evenly distributed across the year, and hence
identically distributed. Conversely, if seasonality is strong,
annual maxima would preeminently stem from a specific sea-
son, where the “identically distributed” hypothesis will be
satisfied again.

However, while the Gumbel distribution generally per-
forms well, it is of interest to note that, in the presence of sea-
sonality, the estimatedα(AM)

0 andλ
(AM)
0 values (see Eq.10)

lose (some of) their physical significance. In fact,α0(AM)

andλ
(AM)
0 do not correspond to the average intensity and av-

erage rate,α0 andλ0. In Fig. 7a the relative variations of the
λ

(AM)
0 to λ0 ratio are shown for varyingaα andaλ. It is ob-

served that theλ0(AM) to λ0 ratio takes values between 1 (in
the homogeneous case) and 0.5, meaning that the estimated
λ

(AM)
0 could be one half of the realλ0. In panel b the be-

havior of the non-dimensional productλ
(AM)
0 α

(AM)
0 /λ0α0 is

shown in the same parameter range. One can observe that
the product values are fan-shaped around the unit value, with
greater differences corresponding to higheraα values. This
entails that in the parameters estimation process the total
“over-threshold” volumeλ(AM)

0 · α
(AM)
0 tends to remain con-

stant, with lower values assumed byλ being compensated by
an increase in the estimatedα. This systematic underestima-
tion of λ and overestimation ofα should be accounted for
when the parametersλ(AM)

0 andα
(AM)
0 are used to infer the

statistical properties of the extreme-value process in the area.
In conclusion, the message we want to convey with this

work is about the need of accounting for seasonality when
dealing with hydro-climatic extreme values. We show that
disregarding their non-homogeneity may have detrimental
consequences in design value estimation. Moreover, the er-
rors may be difficult to detect by means of standard goodness
of fit testing techniques. Future work will focus on the for-
mulation of ad-hoc metrics to identify and quantify the sea-
sonality in hydrological extremes.

A

B

A
M

A
M

A
M

Fig. 7. Panel (A) Sensitivity of the λ
(AM)
0 to λ0 ratio to

varying aα and aλ values (withT = 100 years,δ = 0, n = 1 and
λ0 = 20 events/year). Panel(B) Sensitivity of the non-dimensional

productλ(AM)
0 α

(AM)
0 /λ0α0 to the same parameter variations.

Appendix A

To solve the integral in Eq. (3) some further manipulation
of Eq. (1) is needed. To this end we approximateF(x|t) in
Eq. (1) as

F ′(x|t) = 1 − exp
[
−x · α′(t)

]
(A1)

with α′(t) =α′

0 · h′(t) =α′

0(1−a′
α sin(2πnt/365)). The minus

sign before the sine assures that the maxima and minima of
α(t) andα′(t) are in phase.

The values of the parametersα′

0 anda′
α should be found

which minimize the distance betweenF ′(x|t) and F(x|t).
A possible strategy could be to calculate the total squared
distance

TSD
(
α′

0, a′
α, x

)
=

∫ 365

0
[F(x|t) − F ′(x|t)]2 dt (A2)

=

∫ 365

0
e−2x/α(t)

[
1 − e−x(α′(t)−1/α(t))

]2
dt

and to find the values ofα′

0 and a′
α which minimize

TSD(α′

0, a′
α). The solution to this equation does not
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provide an analytical result, but one can observe that
the integral on the right hand side of Eq. (A2) can be
seen as a weighted average of the distance between the
curves, where the weighting factor isw(t) = e−2x/α(t). It is
clear that this weighting factor is maximum whereα(t) is
largest, i.e. int ′ = 365(π/2n+2π/n)/2π and minimum in
t ′′ = 365(3π/2n+2π/n)/2π . The ratio between the mini-
mum and maximum weighting factors reads

r =
e
−

2x
α0(1−aα)

e
−

2x
α0(1+aα)

= e
−

4xaα

α0(1−a2
α) (A3)

and rapidly converges to zero for large values ofx/α0, which
are those of interest in this paper (seeAllamano et al., 2011b,
p.3684-5 for discussion). The differences betweenF ′(x|t)

andF(x|t) are therefore negligible whenα(t) is small, and it
is sensible to determineα′

0 anda′

0 whenα(t) attains its max-
imum, i.e. int ′. By settingt ′ for t in F(x|t) andF ′(x|t) and
equating the two expressions one easily obtainsα′

0 = 1/α0
anda′

α =aα/(1+aα).
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