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Abstract. In a hydrological modelling scenario, often the 1 Introduction

modeller is confronted with external data, such as remotely-

sensed soil moisture observations, that become available to

update the model output. However, the scale triplet (spacSOil moisture, one of the leading actors in the hydrologi-
ing, extent and support) of these data is often inconsisten€al cycle, influences considerably evaporation, infiltration,
with that of the model. Furthermore, the external data car@nd runoff processes. Other processes such as plant growth
be cursed with epistemic uncertainty. Hence, a method i@nd bio-geochemical fluxes in the terrestrial hydrosphere, are
needed that not only integrates the external data into th@lso largely determined by soil moisture. Soil moisture is
model, but that also takes into account the difference in scaléherefore a key variable in hydrological models. Assimi-
and the uncertainty of the observations. In this paper, asynlation of soil moisture observations, which boils down to
thetic hydrological modelling scenario is set up in which a objectively combining soil moisture observations with the
high-resolution distributed hydrological model is run over an Mmodel results at the same time step in order to produce a
agricultural field. At regular time steps, coarse-scale field- Pest” soil moisture estimate, can improve the predictive ca-
averaged soil moisture data, described by means of possRability of hydrological models. (e.grow and Ryu2009

bility distributions (epistemic uncertainty), are retrieved by Brocca et al.2009 De Lannoy et al.2007ab; Merlin et al,
synthetic aperture radar and assimilated into the model. A2008. However, acquiring in situ soil moisture measure-
method is presented that allows to integrate the coarse-scaf@ents with a high space-time resolution is often expensive
possibility distribution of soil moisture content data with the @nd labour intensive. Therefore radar remote sensing is of-
fine-scale model-based soil moisture data. The method i$€n Presented as an alternative to offer high spatial resolu-
subdivided in two steps. The first step, the disaggregatioﬁion soil moisture data in hydrological data assimilation stud-
step, employs a scaling relationship between ﬁe|d_averagejfs. Yet, soil moisture estimation from radar remote sens-
soil moisture content data and its corresponding standard dd0d as for instance from the Synthetic Aperture Radar (SAR)
viation. In the second step, the soil moisture content valuedackscattered signal is hampered by, among other things, the

are updated using two alternative methods. difficulty to correctly parameterize soil roughnegdvarez-
Mozos et al.2009 Lievens et al.2009 Verhoest et a] 2008

Callens et al. 2006 Davidson et al.2000 Oh and Kay
1998. Furthermore, as explained bgrhoest et al(2007), it

is unfeasible to measure soil roughness at each bare soil field
when radar remote sensing is to be applied at the catchment
or regional scale. Therefor¥erhoest et al(2007) suggest

Correspondence ta. Vernieuwe to use a priori roughness information based on the known
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distribution (see Subse@.2) of roughness parameters, re- Alternatively, Penna et al(2009 and Ivanov et al.(2010
flecting the possible values of soil roughness parameters imention a parabolic relationship. Integrating an estimation of
then used in the soil moisture retrieval algorithm. Using thethe field-averaged soil moisture content value, represented by
possibility distribution of soil roughness in the soil moisture means of a possibility distribution, on the one hand, and the
retrieval procedure from SAR results in a possibility dis- within-field soil moisture variability, represented by means
tribution of soil moisture contentVernieuwe et al(2011) of a probability distribution, on the other hand, both stem-
further elaborated on the use of possibility distributions in ming from different sources of information, should therefore
soil moisture estimation from SAR by taking into account take into account the existence of such a relationship.
the interactivity between the roughness parameters as to re- In addition, some papers already exist in which proba-
duce the non-specificity in the possibility distribution of soil bilistic and possibilistic uncertainty are combine@uyon-
moisture content. net et al.(2003 proposed a hybrid method in which Monte
Generally, the soil moisture content estimation of an agri-Carlo random sampling of probability distributions is com-
cultural field on the basis of high resolution SAR images is bined with fuzzy interval analysis. They demonstrated their
performed using field-averaged backscatter values. Applicamethod in a risk assessment case study of human exposure
tion of the possibilistic soil moisture retrieval technique asto the presence of cadmiumBaudrit et al.(2006 further
in Verhoest et al(2007) andVernieuwe et al(2011), using  elaborated on this methodBaudrit et al.(2007) then com-
a field-averaged backscatter value hence leads to a possibipared different methods for the propagation of probabilistic
ity distribution of soil moisture content reflecting its possi- and possibilistic uncertainty in a risk assessment case study
ble field-averaged values. When this possibility distribution of groundwater contamination.
of soil moisture content is then assimilated into a distributed In this paper, a method is developed that integrates coarse-
hydrological model, some elementary difficulties arise. First,scale uncertain field-averaged soil moisture content and fine-
a scale gap exists when the distributed model is employedcale soil moisture variability. The method is based on a
at a finer resolution than the field scale, for instance as tescaling relationship reflecting the relationship between the
meet precise agricultural needs or to model rainfall/runoff in within-field soil moisture variability and its averaged soil
a small hydrological catchment. The within-field variabil- moisture content. The scaling relationship is identified on
ity of soil moisture may be significanMinet et al, 2011h the basis of synthetically generated soil moisture data and
Hupet and VancloosteP002 Western and Risch| 1999 the method is demonstrated in a data assimilation framework
and may have a significant impact on field-scale hydrolog-by means of a twin experiment.
ical behaviour inet et al, 2011a Mallants et al. 1996, This paper is organised as follows. Secti@mprovides
which justifies the spatial distribution of hydrological param- some background on possibility theory and the possibilis-
eters within a field plot for accurate hydrological modelling. tic retrieval method to obtain the possibility distributions of
Second, the possibility distribution of soil moisture content field-averaged soil moisture content. SectBdescribes the
represents the possible field-averaged soil moisture contenidentification of the relationship between mean soil moisture
for a given field, whereas an empirical probability distribu- content and its variability. Sectighthen explains the method
tion, reflecting the within-field soil moisture variability can used to integrate the coarse-scale possibility distribution with
be computed on the basis of the fine-scale soil moisture conthe fine-scale modelled soil moisture content values. The in-
tent values predicted by the hydrological model. So, differenttegration method is subdivided into two steps. A first “disag-
uncertainty representations of the field-averaged soil moisgregation” step (Subsect.1) describes how the possibility
ture content are to be considered. Therefore, in order to indistribution of soil moisture content is combined with the re-
tegrate a coarse-scale possibility distribution of soil moisturelationship between field-averaged soil moisture content and
content within a fine-scale modelling framework, a techniqueits standard deviation in order to establish a bundle of cu-
is needed that can deal with the difference in scale and thamulative normal distribution functions. A second “update”
can furthermore take into account the different types of un-step (Subsect.?) then demonstrates, by means of a data as-
certainty incorporated in both data types. similation twin experiment how this bundle can be further
A number of studies already dealt with the relationship employed to update the soil moisture contents in a spatially
between the averaged soil moisture content and soil moisturdistributed hydrological model. Finally, Se&.formulates
variability (e.g.lvanov et al, 201Q Famiglietti et al, 2008 the conclusions and a few perspectives for future research.
Vereecken et 812007 Western et a).2003 Hupet and Van-
clooster2002 Western and Risch| 1999. Famiglietti et al.
(2008 andWestern and Rischl(1999 noted that soil mois-
ture variability depends on the overall coverage or the ex-
tent within which soil moisture is measured. Famiglietti
et al. (2008, an exponential-based relationship that relates
soil moisture variability, expressed as its standard deviation,
and the averaged soil moisture content value is introduced.
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2 Possibility distributions of field-averaged soil s
moisture content
1

2.1 SAR-based soil moisture estimation

It is widely known that one of the advantages of Synthetic
Aperture Radar (SAR) is its potential to offer high resolu- «
tion soil moisture content data at a regional extent. Sev-
eral models have been proposed to relate soil moisture to
the backscatter signal, ranging from purely empirical rela-
tionships to physically-based models. In this study, the In-
tegral Equation Model (IEM) for small and medium rough- (W)a s
ness, developed bifung (1994, is applied. This model,
which only §|mulates the single scattering compolnent of theFig. 1. Trapezoidal possibility distribution with indication of an
backscattering process, has already been applied success. o ().
fully in several remote sensing studiesitese et al. 1996

Alvarez-Mozos et a).2005 2006 Hoeben and Trogt200Q

Mancini et al, 1999. It is only valid for surfaces with a 2 2 possibility distributions

single-scale roughness having small to moderate surface root

mean square (rms) heightss(< 2, with k the wave number  |n contrast to a probability distribution representing uncer-
(k=2m /2 (1 being the wavelength)) andthe rms height).  tainty originating from variability (e.g. the distribution of
The autocorrelation function is considered to be isotropic anchreciseroughness parameters within a field), a possibility
is represented by an exponential function. Besides the roughdistribution represents uncertainty stemming from a lack of
ness parameters, the model uses the dielectric constant of th@¢iowledge, also called epistemic uncertainty. It assigns pos-
soil to compute the backscattering value. After applying thesibility degreesr, (x) € [0, 1] to the values: of a variablev,
inverse IEM, the obtained dielectric constant is converted tofor which unsurprising parameter values receive a possibil-
volumetric soil moisture using the dielectric mixing model ity degree equa| to 1, whereas impossib|e parameter values
(Dobson et al.1989. If the latter results in soil moisture receive a possibility degree equal to 0. The set of values
values larger than saturation, then the soil is considered to bghat have a possibility degree greater than or equal teith
saturated, whereas if the retrieved moisture value obtained < ¢ < 1;

is smaller than the residual moisture content, it is replaced

by the latter value. This operation, in accordance Wigin- (Me={x|7(x)>al, D
hoest et al(2007), is performed in order to ensure that only

soil moisture values are retrieved that are physically possibleis called thex-cut of the possibility distribution. An example
However, apart from the soil moisture content, the backscatof a trapezoidal possibility distribution in which ancut is
tered radar signal is also influenced by the soil roughnesshdicated, is presented in Fig. The possibilistic retrieval
state of the field under consideration. Numerous studies almethod as described iverhoest et al(2007) uses trape-
ready reported the difficulty of determining the correct val- zoidal possibility distributions for rms height and correlation
ues of bare soil surface roughness parameters, described kngth, which are then propagated through the inverse IEM
root mean square (rms) height and correlation length (e.gas to obtain a possibility distribution of soil moisture content,
Alvarez-Mozos et a).2009 Lievens et al. 2009 Verhoest  following Zadeh's extension principl€édeh 1975:

et al, 2008 Callens et al.2006 Mattia et al, 2003 David-

son et al, 200Q Oh and Kay 1998. Consequently, obtain- 7o (z) = SUp min(z(x),me(y)), (2)

ing accurate soil moisture values using backscatter models fy)=z

that rely on this type of soil parameters, such as the IEM re,iih x, y andz values of rms heigh [L], correlation length
mains a tedious task. Precise knowledge of the correct avery [L] and soil moisture conter#t [-], respectively. The func-

age roughness parameters of the field under consideration i, f represents in this particular application the inverse
not available: the average rms height and correlation lengthgp, By applying the extension principle, the couplasy)
are deterministic values, yet cannot be determined becaus[ﬁat are mapped to are selected and their joint possibil-
knowledge and good measurement techniques are missingy degree is calculated as ntin (x),7¢(y)). The possibil-
Therefore, it is. na}tura_l tq de_scribe the fields roughness bXty degree of; is then obtained by taking the supremum of
means of possibility distributions as suggestedveyhoest joint possibility degrees of the respective couptlesy).
etal.(2007. For a continuous functiorf and for possibility distributions
whosex-cuts are closed intervals, the extension principle can
be applied more practically on the basisaetuts (Nguyen
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Table 1. Soil characteristics of the agricultural field considered. 5 dam ‘ ‘ ‘ B 0.9
o cluster centre
50 0.8
Soil characteristic value asl
0.7
Clay fraction 12.0% = 40
Sand fraction 3.75% 5 0.6
Bulk density 1.285gcm? 535
Residual moisture content 3.9355% < o 405
Saturated moisture content 46.3645 % % ™
© 250 ’
g
° 20f 10.3
1978. In a first step, a levet is selected for which the- S 1>
cuts of the possibility distributions of the input variables are 10/ % 10.1
determined. Next, interval analysis or interval computation [ \C L

is applied to identify the correspondiagcut of the possibil- 04 06 Omsheightioml 14
ity distribution of the output variable, which is the interval

determined by the minimum and maximum output value ob-Fig. 2. Contours of the joint possibility distribution for rms
tained through application of on thew-cuts of the input  height and correlation length for the rotary tilled roughness
variables. By repeating the procedure for differedevels,  class {ernieuwe et al.2011).

the possibility distribution of the output variable can be es-

tablished. The minimum operator used in E8) further-

more indicates that the variableand¢ are treated as ifthey 3  |dentification of the scaling relationship

are separable or non-interactive. However, if the variables

are interactive, a joint possibility distribution can be defined, e\ era) studies have already confirmed the existence of a re-
and directly used in Eq2] instead of the minimum operator |51ionship between the standard deviation of the soil mois-

on the individual possibility distributionsVernieuwe et al. o content values within a given extent and the correspond-
(2017 used the possibilistic Gustafson—Kessel fuzzy cluster—ing averaged value. However, if such a scaling relationship

ing algorithm Krishnapuram and Kelled 993 to determine 5"+, he ysed within a modelling framework, the expected
the joint possibility distribution of rms height and correla- o japility at the model resolution should be related to the
tion length as to take into account the interaction betweeny,qraqe ‘soil moisture value at a coarser scale (e.g. the field
both variables. level). In order to establish such a scaling relatonship, a
large number of detailed within-field observations should be
performed for very dry to very wet conditions. One way
to obtain such information is through detailed soil mois-

In this paper, the joint possibility distribution of soil rough- tUré monitoring campaigns, using for instance nearby re-
ness parameters, as determined/@mnieuwe et al(2017), ~ Mote sensing platforms such as GPR platforms (eiget
for the rotary tilled roughness class (corresponding to€t al, 2011h. Unfortunately, due to a lack of sufficient mea-

seedbed) and a profile length of 4 m is employed (see¥ig. sured field data to cover the full range of soil moisture con-
All applications of the possibilistic soil moisture retrieval ditions, modelled soil moisture content values are used in the

procedure employed in this paper are performed with thePresentwork. Therefore, the TOPMODEL-basBe\en and
inverse IEM for a VV polarised, C-band (frequency of K|rkby, _197_9 land-atmosphere transfer scheme (TOF_’LATS)
5.3 GHz) radar configuration, an incidence angle ofad ~ (Famiglietti and Wood1994 was employed to synthetically

an agricultural field for which an exponential correlation 9enerate the scaling relationship between mean soil moisture
function is used. The soil characteristics of this agricultural €Nten®, and its standard deviatiah for the bare soil agri-
field are listed in Tabld. Furthermore, as the field-averaged cultural field under consideration (with soil parameters listed
backscatter values were used as input to the possibilistic ré Table 1) for which heights range from 125 m to 139 m.
trieval procedure, it is important to note that the obtained 1° this end, the topographic index for this field was deter-

possibility distribution of soil moisture content reflects the Mined at a 5 mx 5 m resolution, yielding values from 5
possible values of field-averaged soil moisture content. {0 16. The other model parameters were obtained through a

lumped application of TOPLATS to the Zwalm catchment as
described inPauwels et al(2001). The model was forced
with a four and a half year spanning hourly meteorological
data set containing air and dew point temperat€),(so-

lar radiation (W n72), wind speed (m3t) and precipitation

2.3 Identification of the SAR-based possibility
distributions
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(ms1). In order to oblige the model to reach lower field- 0.07 : ;
averaged soil moisture contents, the model was further forcecT
with the same meteorological data set except for the precipi-£ 0.06
tation data that were decreased to 10 % of their original value. §
Figure3 shows the obtained plot of field-averaged soil mois- o 0.05
ture content values versus their corresponding standard deviz
ation. A large variability of the standard deviation around the £ 0.04
mean soil moisture content values is observed. Several au3

conte

thors (e.glvanov et al,201Q Teuling et al, 2007 Vereecken ~ § 0931

etal, 2007 Teuling and Troch2005 already argued that dif- &

ferent factors such as hysteresis, climate variability, topogra-% e

phy, antecedent states and soil heterogeneity influence thes

spatial soil moisture variability and lead to a non-unique re- s o0

lationship. In that respectyestern et al2003 found alarge ~ * . ‘ ‘ ‘ . . ‘ ‘ %
variability of relationships between field-averaged and stan- 03 032 034 036 038 04 042 044 046
dard deviation of soil moisture content when comparing a mean soil moisture content [~]

large number of studies based on field measurembstisov ) ] ) ] ) )
Fig. 3. Fitted spline with 4 knots (red), between mean soil mois-

et al. (2010 hypothesize the existence of an attractor in the
( 9 hyp ture content values and their standard deviation (black dots) for the

phase space of th.e hydrgloglca! systgm, explammg .the ex'ségricultural field considered.
tence of hysteresis in this relationship. As interactions be-

tween past weather conditions, topography, vegetation pat-

terns and soil characteristics actually govern the spatial strucgo, MATLAB® was employed. For each model, its perfor-
ture of soil moisture, one can argue that no unique relamance on the validation data was expressed using the relative
tionship exists between mean soil moisture and its variabil-,gt squared error (RRSE\itten and Frank20035), i.e. the
ity, but rather that the relationship moves between an Uppefoot mean squared error (RMSE) divided by the standard de-
and lower envelope set mostly by soil properti8alfucci  yiation of the validation data set, which hence compares the
1998, mainly as a function of past climat@duling et al. = performance of the fitted model to a simple ‘no-knowledge’
2007). However, modeling this behaviour is not straightfor- model that predicts the average of the actual values in the val-
ward. Still, in the remainder of this paper, as to simplify the jjation data. A value of 1 then indicates that the model be-
method presented hereafter, it was decided to ignore the difpgyes as good as the “no-knowledge” model. Tabists the
ferent factors and processes underlying the non-uniquenesginimal and maximal RRSE values obtained during the 10-
of this scaling relationship and to introduce a unique rela-fo|q cross-validation for each model. These results clearly
tionship which is fitted to the data in Fi§. Of course, ifa  gpnow that the exponential-based model proposesgigli-
model would be available that describes the scaling relationgtii et al. (2008 is outperformed by the other three mod-
ship as a function of past weather conditions, topographye|s. |n order to decide on the best model, a non-parametric
vegetation patterns and soil characteristics, one could use ik ,skal Wallis test Kruskal and Wallis 1952 was carried
instead of the simplified unique relationship applied in this ot to test for significant differences between the perfor-
paper. mance values of all models, followed by a non-parametric
In order to identify a single scaling relationship to the comparison of a control group to other grougsi{ 1999,
data, presented in Fi@, four models were tested in a 10- to seek one-tailed significant differences between one group,
fold cross-validation strategy. To this end, the data set washe control group and each of the other groups. As the lowest
first randomly divided into 10 folds or groups. Each model RRSE values are obtained by the spline model with 4 knots
was then identified using 9 folds, and its performance wast js assumed that this model fits the data best. This group
then validated on the remaining fold. This procedure was reqnf RRSE values is therefore chosen as the control group.
peated ten times, such that each fold once served to validatehe results of this latter test reveal that the spline model
the model. The models identified on the data consist of theyjth 4 knots outperforms the exponential-based model and
exponential-based relationship proposedmayniglietti et al.  the second order polynomial, yet no significant differences

(2008 (modexp): are found between the two spline models. The spline model
with 4 knots was chosen to be used throughout the remainder
05 = k16mexp(—k20m), ) of this paper.

with k1 and k2 the model parameters, two concave cubic
spline models with 3 and 4 knots respectively (rggdnd
mods,), and a second order polynomial (ngd In order to
fit the splines, the Shape Language Modelling (SLM) toolkit
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1

Table 2. Minimal and maximal RRSE values obtained during the
cross-validation for the different models: the exponential-based 0.9} 1
function proposed biFamiglietti et al (2008 (modexp), two spline sl |
functions with 3 and 4 knots respectively (m@gnd mod,), and a '
second order polynomial (mgjl The results of the Kruskal-Wallis o O7f 1
(KW) statistical test and the nonparametric comparison (NC) of a 2 o6l |
control group to other groups for a significance lewek 0.05 are L
given as well. £ 05} 1
g
2 04f 1
modexp Modsy mModgy  Modp 8 03
min RRSE 0.9738 0.5843 0.5538  0.6460
max RRSE 0.9772  0.6052 0.5733  0.6675 0.2f 1
KW p=5.631210"8 <0.05 0.1y 1
NC (Qu=—2.242) —5.7382 —1.9127 0  —3.8255 0 02 025 03 035 04 045 05

mean soil moisture content [-]

Fig. 4. Possibility distribution of field-averaged soil moisture con-

4 Integration method tent retrieved by the SAR.

The integration method integrates the coarse-scale SAR mea- . . . . .
. . L : .Soil moisture content value with a given possibility degree,
surements into the fine-scale distributed model and is SUbdlfhe corresponding standard deviation is obtained through the
vided into two steps. The first step is called the disaggregaéca“n reIF;\tionsr% and the correspondin cumulativeg nor-
tion step and disaggregates the coarse-scale possibility dis- 9 P P 9

tribution of field-averaged soil moisture content into a bun- :F;: gflSstgi?#:ggtlljsreds;i;renr:?ﬁg;s stg‘iuﬁgsz'nb;'ttgedS'St”r;]beu'
dle of cumulative normal distribution functions. The second . ) . ' . P

! : . .. .. model is a continuous function, thecut method, i.e. apply-
step, the update step, first establishes the empirical d|str|bu|h interval analysis to the-cuts in the possibility distribu-
tion function of modelled soil moisture content values, uses Y y P Y

the information of the bundle to update this distribution and Eg?hrﬁzgr?a?n?mgl%yggé \iy:;n;ggiwﬁeﬁ SJI %%135 tie:enie:tlg;val
updates the modelled soil moisture content values. ¥ =0 g

of soil moisture content values. The lowest possibility level
to which the disaggregation step is applied therefore corre-
sponds taxg = €+ with § > 0 a small value. Algorithni

- ; ; ; ; ; describes this disaggregation stég, andd, denote respec-
The first step in the integration method consists of disaggre-
P g 99 tively the left and right endpoints of thecuts, andAé6,, the

gating the field-averaged soil moisture content to take into . o
account the difference in scale between the model extenij'scrm's"”t[Ion step.

(e.g. the field) and the model resolution. On the one hand,

the modeller has at his disposal a possibility distribution of ~Dat& Possibility distribution of soil moisture content
soil moisture content obtained by the SAR (see Bjgthat Scaling relationship (spline)

. : . . Result Bundle of cumulative normal distribution
reflects the more or less possible field-averaged soil mois- fofsau_éiadeol gg ulative normal distributions

4.1 Disaggregation step

ture content values. On the other hand, a spline has been Determine the correspondingcut (g, ) Of the
determined from TOPLATS simulations (see S&fthat re- possibility distribution 0Bm

lates field-averaged soil moisture content values with their for 8m=6mi,0mi + Abm, ...,0mr do

corresponding standard deviations. In order to integrate the Use the spline to calculate the corresponding standard
information present in the possibility distribution with the deviationds

soil moisture values predicted by the hydrological model, Compute the cumulative normal distributiofn(®m, s)

a method is established that employs a scaling relationship. endend

Ryu and Famigliett{2005 concluded that the soil moisture’s
spatial variability within a satellite footprint can be described
by means of a normal distribution. Other authors (&lg:
berg 1996 Wilson et al, 2003 also reported that soil mois- Figurebillustrates the cumulative normal distributions ob-
ture content is approximately normally distributed. In this tained when the disaggregation step is carried out for the
disaggregation step, the simple assumption that a normal disx-cut ()ge. It can be seen that the cumulative normal
tribution can be used to describe the within-field soil mois- distributions have been cut off at higher soil moisture con-
ture variability is hence adopted. For each field-averagedent values than the saturated soil moisture content value

Algorithm 1: Outline of the disaggregation step.

Hydrol. Earth Syst. Sci., 15, 3103314 2011 www.hydrol-earth-syst-sci.net/15/3101/2011/
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1r 1r
0.9+ 0.9+
0.8t 0.8F
0.7+ 0.7+
> 0.6F > 06F
5 5
S 05 ‘S 05F
< o
2 0.4f S 0.4f
0.31 0.3t
0.2t 0.2+
0.1+ 0.1+
(e : : . ‘ : . w ( . A O ;
005 01 015 02 025 03 035 04 045 005 01 015 02 025 03 035 04 045
soil moisture content [-] soil moisture content [-]

Fig. 5. Cumulative normal distributions obtained on the basis of Fig. 6. Bundle of cumulative normal distributions. Solid lines in-
field-averaged soil moisture content values(ingg. Solid lines  dicate distributions corresponding to the endpoints of the different
indicate distributions corresponding to the endpoints ofthit. a-cuts. The distribution indicated in bold originates frem; .

(0.46). The bundle of cumulative normal distributions ob-
tained after performing the procedure for 11 possibility lev- 5|
els, i.e.qp=€¢+68,01 =0.1,00 =0.2,,...,010=1 is pre-
sented in Fig6. In this figure, distributions given in solid 95
lines have a mean value that corresponds to the endpoints of

thea-cuts. The mean value of the central distribution, given § |[—— os00000]

in bold corresponds to the single field-averaged soil moistureg 0sl i
content value in(7);. As the mean value of each cumula-
tive normal distribution originates from the possibility distri-
bution and therefore has a possibility degree, this degree is L
transferred to the cumulative distribution. Therefore, a third
dimension, reflecting the possibility degree of the cumula-
tive normal distributions, is associated with the bundle. This
indicates that, if a cross-section of the bundle is taken ata ¢ ‘ ‘ ‘ ‘
particular probability degree, a possibility distribution of soil o 0.2 o moistuorfcomemo[f] 045 0
moisture content values is obtained (see F)g.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

e

0.2 0.25 0.3 0.35 0.4 0.45 0.5

possibil
o

0.5 i

Fig. 7. Cross sections of the bundle of cumulative normal distribu-
4.2 Update step tions at probability degrees 0.3, 0.5 and 0.8.

The second step in the integration method demonstrates the
applicability of the bundle of cumulative normal distribution

functions to update the modelled soil moisture content val-
ues. To this end, a synthetic data assimilation twin experi-

ment is set up, in which a modelling scenario employing a h icultural field und iderafi
distributed hydrological model is mimicked. At certain time 1994 was run on the agricultural field under consideration
on a fine-scale basis of 5 m 5 m. The reference, which

steps in this experiment, SAR measurements of soil mois- il be referred h h btained with th
ture content become available, yet are represented by mearf§" P€ ¢ errel toas t de truth was o r:ame l\.N't t Ie _samr(:._
of a possibility distribution of field-averaged soil moisture parameter values used to generate the scaling relationship

content. At these time steps, the disaggregation step is thelpletween figld—averaged soil mqisture content values and the
first used to establish a bundle of cumulative normal distri_cqrrespondlng ;tandarq deviations. The. model was for.ced
butions, followed by the update step to modify the modelledW'th an hourly time series of meteorological data spanning

soil moisture content values using the information present in"a/f @ year, different from the one used in S&tontaining
the bundle. information about air and dew point temperatut€), so-

lar radiation (W n72), wind speed (m3t) and precipitation

4.2.1 Twin experiment set up

For the twin experiment, TOPLATS-amiglietti and Woogd
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1r soil moisture content values predicted by the model with the
ool modified parameters at the considered time step, can be up-
dated, i.e. the external data of soil moisture content values are
08¢ assimilated into the model (the so-called assimilated run). To
07k this end, an empirical cumulative distribution function (cdf)

of modelled soil moisture content values for the agricultural
field, ﬁ(.)(e;em,es) having mear9,, and standard deviation
0s, is first established (the green distribution in F8y. This
empirical distribution function is then optimised according

probability
o
(62}

o to the information present in the bundle following an itera-
03r tive optimisation procedure. Therefore, the empirical mean
02t value is shifted and the corresponding standard deviation cal-
culated according to the scaling relationship. The empiri-
oL cal distribution is then recomputed such that its mean value

S o o o o3 o o7 o and standarql_dewatlon correqur_\d to the_s_e new v_alue_:s. At
soil moisture content [-] each probability level of the modified empirical distribution,
a cross section of the bundle similar to the ones shown in
Fig. 8. Modelled empirical cdf (green dashed line) and its optimi- Fig. 7 can be taken such that a possibility distribution is ob-
sation (red solid line) according to the information present in thetained. For each soil moisture content value in the modified
bundle (cumulative normal distributions originating from the end- empirical distribution, a possibility degree can then be de-
points of the possibility distribution are given in black solid lines).  termined from the possibility distribution of the cross sec-
tion corresponding to the probability level of that soil mois-
ture content value. The “optimal” empirical distribution is

(ms™). In a next step, field-averaged soil moisture valuesthen the one that is located as good as possible in the bundle
were sampled from this model run at four different time stepsj e. the one for which the minimum of all these possibility

(DOY42, DOY105, DOY117 and DOY162) that were not di- degrees is maximized:

rectly followed by a rain event and converted into a corre-

sponding backscatter value by means of the IEM. To this end,p = argma*min[pog(ﬁg (0:6m,0))] @
the radar configuration described in Settogether with the Om

roughness parameters corresponding to the centre of the joint

possibility distribution were used. Subsequently, by apply-with ¢, the cdf of modelled soil moisture content values to
ing the possibilistic soil moisture retrieval procedure with the pe optimised, and pos the possibility degreesfgfin the
joint possibility distribution (see Fig) of soil roughness pa-  pundle. It is important to note that, by using this method, the
rameters to these backscatter values, the corresponding poge|d-averaged soil moisture value, given by the SAR, and
sibility distributions of field-averaged soil moisture content present in the bundle is, fully trusted. Yet, the soil mois-
were obtained. ture pattern as predicted by the hydrological model is pre-
Next, a model scenario was obtained by modifying theserved. The optimisation procedure was performed in this
values of two model parameters of TOPLATS, i.e. the ex-experiment using the golden section search combined with
ponential coefficient of the topmodel baseflow equation ancthe parabolic interpolation methodrdrsythe et a).1976
the water table depth, as to allow the model output to deviateBrent, 1973 (available in Matlab®). The search interval was
from the soil moisture content values obtained by the truth.pounded by the mean values of the outer left and right dis-
The soil moisture content values of this model run (furthertributions in the bundle, i.e. the distributions with possibility
referred to as the baseline run) were then obtained by forcinglegreee + 8. In order to enhance the sensitivity of the op-
the model with the same meteorological data as used in thé@misation procedure, only possibility degrees higher than
truth, however with these modified model parameters. were taken into account and intermediate possibility degrees
were interpolated on the basis of the original 11 possibility
4.2.2 Update step using possibility degrees in the bundle levels obtained from the SAR-retrieved possibility distribu-
tion of field-averaged soil moisture content values. In this
At the time steps corresponding to the sampling time stepsvay, a new empirical cdf is obtained (the red cdf in F8Y.
(DOY 42, DOY 105, DOY 117 and DOY 162) at which according to which the modelled soil moisture content val-
the SAR-retrieved possibility distributions were acquired theues are updated such that the formerly wettest (driest) pixels
disaggregation step (see Settl) was employed to estab- receive the new wettest (driest) soil moisture content values.
lish a bundle of cumulative normal distributions. Accord- In order to insert these soil moisture content values into the
ing to the information present in this bundle, i.e. the cumu-hydrological model along the different soil layers, a nudging
lative normal distributions and their possibility degrees, theprocedure was carried out as follows. In this experiment, the
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Fig. 9. Field averaged soil moisture content modelled in different model runs (truth, baseline run and assimilated run). Time steps at which
SAR data is acquired are also indicatéal. Overview of the entire time serief) detail of assimilation at DOY 4Z¢) detail of assimilation

at DOY 105, (d) detail of assimilation at DOY 117 an@) detail of assimilation at DOY 162. The optimisation in the assimilated runs

was performed w.r.t. the information present in the bundle (bundle ) or w.r.t. the Wasserstein distance between the empiricial and the central
cumulative normal distribution in the bundle (distance).
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Table 3. RMSE values when comparing to the truth calculated on Table 4. Values of the Wasserstein distandg between the cdf

a seven days time window starting at the assimilation time stepsof the truth and the optimised cdfs. Values of the Jaccard similar-

The optimisation in the assimilated runs was performed w.r.t. theity index J between the soil moisture image of the truth and the

information present in the bundle (bundle) or w.r.t. the Wassersteinmages corresponding to the optimised cdfs. The optimisation is

distance between the empirical and the central cumulative normaperformed w.r.t. the information present in the bundle (bundle) or

distribution in the bundle (distance). w.r.t. the Wasserstein distance between the empirical and the cen-
tral cumulative normal distribution in the bundle (distance).

DOY 42 DOY 105 DOY 117 DOY 162

RMSE bundle[]  0.0255  0.0258  0.0170  0.0102 DOY 42 DOY 105 DOY 117 DOY 162
Emgg g'smlr_‘ce [ 88312; gggg; 88;23 88‘;22 dwbundle  90.7607 42.1535  21.1509  15.9738
aseline[] 0. : : : dy distance  63.7962  48.7142  28.1939  24.7573

J bundle 0.8997 009530 09757  0.9813

J distance 0.9260 0.9463 0.9681 0.9729

soil was divided into four soil layers, a root zone of 0.05 m,
two soil layers of 0.1 m and 0.2 m and a bottom layer. It

was furthermore presumed that soil moisture was uniformlyleveIS in the bundle, a second optimisation procedure was

distributed along each soil layer. The change in soil m0|stureCarrieol out. At the assimilation time steps (DOY 42, DOY

content for each soil layer was interpolated, according to the105 DOY 117, DOY 162), the empirical cdfs were not op-

soil depth at the beginning of the soil layer, between a MaX=imised according to Eq4j, but according to the minimum

imum soil mO'St“Te change in the root zone and a zero SOIIdistance to the cumulative normal distribution with possibil-
moisture change in the bottom layer.

, X , ity degree equal to 1, i.e. the distribution corresponding to
The results of this experiment are shown in F9gas & e mode of the possibility distribution. This distribution is

time series of root zone field-averaged soil moisture content, 5\vn in boldface in Fig8. The soil moisture content values

values. The truth, baseline and assimilated run are giveNyere then updated according to this optimised distribution
From this figure, it can be seen that applying the integra-yq inserted into the model similarly as described in Sub-

tion method and Eq4] in this twin experiment to update the  gect 4.2 2 |n the latter optimisation approach, the Wasser-
modelled soil moisture content values, results in a shift of thestein distanceGibbs and S12002 between two cdf” and

baseline values towards the truth. This effect slightly persists; \vith F-1 andG-1 their corresponding inverse functions
after the third assimilation time step (DOY 117) at the lower is,employed: '

soil moisture content values. This can also be noticed in a
small improvement of the value of the RMSE calculated on o 3
a seven days time window starting at the assimilation timedw=/ [F~=(t) — G~ ~(1)|dt. (5)
steps. Tabl& lists these RMSE values in which RMSE bun- 0
dle and RMSE baseline respectively compare the assimilate&igure 9 shows the time series of the field-averaged soil
and baseline run with the truth. Figu®b, c, d and e also moisture content values as obtained by the truth, the base-
shows a more detailed view of the soil moisture assimilation.line run, the assimilated run when Ed) (s used and the
Each subfigure shows the soil moisture time series 7 days beassimilated run when the Wasserstein distancegJEg.min-
fore and after the assimilation time steps. In R, itis ob-  imised. Figuredb, c, d and e shows a more detailed view of
served that the field-averaged soil moisture content value athese assimilations. From this figure, it can be seen that no
the assimilation time step exceeds the truth. This is due to thenajor differences exist between both optimisation methods,
optimisation procedure in which the empirical cdf has beenwhich is confirmed by the RMSE values, RMSE bundle vs.
optimised instead of only its mean value. Furthermore, it hasRMSE distance in Tablgfor the first and the second optimi-
been assumed that the within-field soil moisture variability is sation procedure, respectively. Slightly lower RMSE values
normally distributed, cumulative normal distributions were are obtained with the first optimisation method for the first
therefore used in the establishment of the bundle. Howevertwo assimilation time steps, whereas slightly lower RMSE
it can be seen in FigB that a difference in shape exists be- values are obtained with the second optimisation method for
tween the cumulative normal distributions in the bundle andthe other two assimilation time steps. Figu@shows the
the empirical cdf. different cdfs for the four time steps. This figure shows that
both optimised distribution functions only slightly differ for
4.2.3 Update step using central cumulative distribution  the assimilation dates DOY 105 and DOY 117, whereas a
function somewhat larger difference exists at the other two assimila-
tion dates. Tabld lists the values of the Wasserstein distance
In order to check whether there is an added value of optimisbetween the cdf of the truth and the cdfs optimised accord-
ing the empirical cdf by taking into account the possibility ing to Egs. 4) and &). In addition, the values of the Jaccard
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Fig. 10. Cdfs at the different assimilation time stefs) at DOY42,(b) at DOY 105,(c) at DOY 117 andd) at DOY 162.

Similarity Index between the updated soil moisture images5 Conclusions
and the images of the truth were also calculated Baets
et al, 2009 De Baets and De Meyg?005: In a hydrological modelling scenario, often the problem
arises that soil moisture content measurements become avail-
_ S amin(e!,6) able at a certain time step. However, this information is not
N Zlf,\’: Lmax!,6") necessarily provided at the same scale at which the hydro-
logical model is run. Furthermore, if field-averaged SAR-
with N the number of pixelsg’ the soil moisture content retrieved backscatter values are inverted using the possi-
value [-] in the image of the truth, amtl’ the updated soil bilistic retrieval method Verhoest et a).2007 Vernieuwe
moisture content value [-]. The values of the Wassersteiret al, 2011), only a possibility distribution of field-averaged
distances and the Jaccard Similarity Indices show that, apasgoil moisture content values can be obtained. Therefore, a
from the distance and value of the similarity index at DOY method has been introduced in this paper that integrates soil
42, the cdfs and the corresponding soil moisture images thamoisture measured at a coarse scale (field scale) and repre-
were optimised using Eq4), slightly better resemble the sented by means of a possibility distribution, with modelled
cdfs and images of the truth. Yet, although taking into ac-soil moisture contents at a fine scale. To this end, a scaling
count the information present in the bundle, i.e. the possi+elationship between the field-averaged soil moisture content
bility degrees of all cumulative normal distributions, is more and its corresponding standard deviation is employed.
informative from a mathematical point of view, no large dif-  In the first step of the method, a unique scaling relation-
ference is observed when the more practical procedure of opship was fitted to synthetically obtained soil moisture data
timising the empirical cumulative distribution according to as to obtain a mathematical expression for the scaling re-
the distance between two cumulative distribution functions,lationship. To this end, four different models were tested,
is employed. out of which the splines yielded the best results. The inte-
gration method, in which a possibility distribution of field-
averaged soil moisture content values is combined with the
unique scaling relationship as to obtain a bundle of cumula-
tive normal distributions, was then demonstrated by means

: (6)
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of a twin experiment in which TOPLATS was employed at a distribution function. However, a clear difference in shape
fine scale (5 mx 5m). At certain time steps in the modelling could be observed between the empirical cdf and those in the
scenario, the situation was mimicked in which possibilis- bundle. Subsequently, the part of the method in which the
tic SAR-retrieved soil moisture data became available: field-modelled soil moisture content values are updated accord-
averaged soil moisture content values were sampled from thang to the information present in the bundle fully relies on
truth and converted into possibility distributions of soil mois- the field-averaged soil moisture content value as provided by
ture content by means of the possibilistic retrieval method.the SAR, whereas the modelled soil moisture pattern is pre-
In a real-world situation, however, field-averaged backscat-served. Future research can therefore extend the method as
ter values would be obtained from the SAR and convertedto meet these shortcomings.

into a possibility distribution of soil moisture content values.
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