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Abstract. In situ observations of soil water state variables parameters significantly improved parameter identifiability
under natural boundary conditions are often used to estimatand that this approach was effective and robust, even in case
the soil hydraulic properties. However, many contributions of biased prior information. To be effective and robust, how-
to the soil hydrological literature have demonstrated that theever, it was essential to use a prior distribution that incorpo-
information content of such data is insufficient to accuratelyrates information about parameter correlation.

and precisely estimate all the soil hydraulic parameters. In
this case study, we explored to which degree prior informa-

tion about the soil hydraulic parameters can help improve

parameter identifiability in inverse modelling of in situ soil 1 Introduction

water dynamics under natural boundary conditions. We used

percentages of sand, silt, and clay as input variables to th&imulation of soil water dynamics under transient conditions
ROSETTA pedotransfer function that predicts the parametergypically requires knowledge of the soil hydraulic properties,
in the van Genuchten-Mualem (VGM) model of the soil hy- thatis, the water retention function and the hydraulic conduc-
draulic functions. To derive additional information about the tivity function. A broad array of methods exists to determine
correlation structure of the predicted parameters, which is nothese two constitutive relationships from laboratory or field
readily provided by ROSETTA, we employed a Monte Carlo experiments. An overview of these methods together with
approach. We formulated three prior distributions that in-a discussion of their strengths and limitations can be found
corporate to different extents the prior information about thein Durner and Lipsiug2005, amongst others. With the ever
VGM parameters derived with ROSETTA. The inverse prob- increasing pace of computational power, availability of ac-
lem was posed in a formal Bayesian framework and solvedcurate and stable numerical solution schemes of the govern-
using Markov chain Monte Carlo (MCMC) simulation with ing flow equations, and effective and efficient parameter opti-
the DiffeRential Evolution Adaptive Metropolis (DREAM) mization methods, the use of inverse modelling to determine
algorithm. Synthetic and real-world soil water content datasoil hydraulic properties has become increasingly popular in
were used to illustrate the approach. The results of this studyhe last few decades. A review dfugt et al.(20083 dis-
demonstrated that prior information about the soil hydrauliccusses recent progress in inverse modelling of soil hydraulic
properties. Laboratory methods such as the multistep outflow
method yan Dam et a].1994 have the advantage of being
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to study the spatial variability of the soil hydraulic proper- hydraulic properties of a two-layer profile from observed soil
ties. However, soil hydraulic properties derived from labora- surface temperature data and measurements of spatially dis-
tory experiments on small soil cores are typically inadequateributed soil water content at 36 locations and 2 depths within
to simulate soil water dynamics at larger spatial scaiitsdr a 6 mx 6 m plot. They implemented a Bayesian inference
et al, 2003 Mertens et a].2005 Guber et al.2006 Wohling scheme using Markov chain Monte Carlo (MCMC) simula-
et al, 2008 Baroni et al, 2010. There are multiple reasons tion and reported considerable uncertainty in the estimated
for this discrepancy, most notably that the sample volumesoil hydraulic parameters. Some of the parameters attained
analysed in the laboratory is not a representative elementarghysically unrealistic values, whicBteenpass et af2011)
volume (e.gMallants et al. 1997 or that the experimental attributed to a lack of information in the wet range. Finally,
conditions dictated in the laboratory are not representativaVohling and Vrugt{2011) explored whether using observa-
for field conditions (e.gBasile et al.2003. Arguably, field tions of two different soil water state variables helps to better
methods such as the internal drainage metlz g et al. constrain the soil hydraulic parameters. They estimated ef-
2003 provide estimates of the soil hydraulic properties thatfective soil hydraulic properties of a four-layer profile using
are more representative for in situ soil water dynamics. How-pressure head and soil water content measurements from 3
ever, such methods place a high demand on equipment arldcations and 5 depths. Depending on what kind of state vari-
time and are labour intensive. Moreover, considerable diffi-ables were used for model calibration, the estimated param-
culties arise when these local scale soil hydraulic propertiegters derived with MCMC simulation differed substantially,
are used to infer the effective retention and hydraulic con-while the uncertainty in these estimates was generally small.
ductivity function that characterize soil water dynamics at In summary, these studies suggest that in situ observa-
larger spatial scales (e.§mith and Diekkiiger, 1996 Zhu tions of soil water dynamics contain insufficient informa-
and Mohanty2002. Effective properties are defined here as tion to warrant accurate and precise estimation of the soil
the soil hydraulic properties of an equivalent homogeneousydraulic properties. A general approach to improve pa-
domain that produces the same response as the actual heterameter identifiability in case of data with limited informa-
geneous domain under some upscaled boundary conditiort®on content is the inclusion of prior information about the
(Vereecken et 12007). parameters of interest. In this study, we define “parameter
As an alternative to laboratory or field experiments, soil identifiability” as the antithesis of “parameter uncertainty”
hydraulic properties can be derived from field measurementgVrugt et al, 20033. We will refer to a parameter as be-
of soil water state variables under naturally occurring bound-ing identifiable if the uncertainty in its estimate is reason-
ary conditions Yereecken et 312008. One main advantage ably small. Note that our definition slightly differs from
of this approach is that it allows for estimating effective soil the classical definition used in inverse problem theory (e.qg.
hydraulic properties at larger spatial scales given observaCarrera and Neumari9860. The use of prior informa-
tions at multiple locations within the considered soil domain. tion is well established in groundwater hydrology and hy-
Several applications of this approach can be found in thedrogeophysics (e.gcarrera and Neumai986a Woodbury
soil hydrological literature Jacques et a[2002 estimated and Ulrich 1993 Kowalsky et al, 2004. However, only
the soil hydraulic properties of a four-layer soil profile using few soil hydrological studies have investigated the effect of
pressure head and water content data collected at 12 differenising prior information about the soil hydraulic parameters
locations and 5 depths along a 5.5m long trench. To mini-in inverse modelling of soil water dynamicaNang et al.
mize problems with nonuniqueness and to reduce the dimen2003 estimated soil hydraulic properties of four materials
sionality of the inverse problem, they used a stepwise paramef a layered soil profile using neutron probe measurements
eter estimation procedure that sequentially estimates the sodf soil water content collected in 9 boreholes distributed
hydraulic parameters for each individual soil layer. Anotherevenly in a 50 mx 50m plot during an extensive infiltra-
study byRitter et al.(2003 used soil water content mea- tion experiment. In their Bayesian analysis, they included
sured at 6 locations and 3 depths within a 486Cfield plot prior information about the mean values and variances of the
to infer the effective soil hydraulic properties of a three-layer soil hydraulic parameters as provided Ggrsel and Parrish
soil profile. They also reported problems in finding well- (1988 to estimate the parameter values that have maximum
defined values of the soil hydraulic parameters. To alleviateposterior density.Mertens et al(2004) estimated effective
these problemgitter et al.(2003 fixed some of the soil hy-  soil hydraulic properties for a two-layer profile using water
draulic parameters at values derived from laboratory expericontent observations from 25 locations and 3 depths within
ments.Wohling et al.(2008 derived effective soil hydraulic a 80 mx 20 m hillslope plot. They used prior information
properties of a three-layer soil profile using pressure head obeerived from laboratory and field experiments to formulate a
servations from 3 locations and 3 depths. They compared therior probability density function (pdf) of the soil hydraulic
efficiency of three multiobjective search algorithms in find- parameters. This prior distribution was subsequently used in
ing Pareto solutions of soil hydraulic parameters that characthe Generalized Likelihood Uncertainty Estimation (GLUE)
terize the trade-off in the fitting of pressure head data at dif-method Beven and Binley1992 to generate random sam-
ferent depthsSteenpass et gR011) estimated effective soil  ples of the soil hydraulic parameterslertens et al(2004)
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found that incorporation of prior information improved the T
sampling efficiency of the GLUE method and that the result- 50 M °
ing prediction uncertainty bounds better enclosed the obser- )
vational data. FinallyHou and Rubin(2005 employed the 3 ®
principle of minimum relative entropyWfoodbury and Ul-
rich, 1993 to infer prior distributions of the soil hydraulic oe
parameters from prior information that incompletely charac- o
terizes these distributions. To illustrate this approach, they o
used prior information about the expected values, variances, S
and lower and upper bounds of the soil hydraulic parameters g
derived from the ROSETTA databas®echaap et al.2001).
This prior distribution was then applied to calibrate a one- o e} Oe { ]
layer vadose zone model against observations of soil water
content profiles derived from neutron probe and time do- 9 oS .O
main reflectometry (TDR) measurements and to investigate PN ®
the effect of the length of the calibration period on model ° o
predictive uncertainty.

In this study, we investigated the effect of three different
prior distributions of the soil hydraulic parameters in inverse
modelling of in situ soil water dynamics. We used prior in-

fo_rm_at'on on_ Sar_]d' S'lt_' ar_1d clay p_ercentag_es and tr_anSIategig. 1. Measurement grid with 61 measurement points used to ob-
this information into prior information on soil hydraulic pa-  tain spatial averages of soil water content. Solid circles indicate 36
rameters using the ROSETTA pedotransfer funct®th@ap  measurement points located on a regular 10 8 m grid. Open
et al, 200]). Sand, silt, and clay percentages constitute ba-<ircles denote 25 measurement points used for local refinement of
sic soil information and are readily available in most vadosethe measurement grid. The refinement points were located such that
zone studies, making this approach widely applicable. Ineach box of the regular 1010 m grid contained one randomly
addition to the standard ROSETTA prediction that providesselected location.
the mean values and standard deviations of the predicted pa-
rameters, we tested a Monte Carlo approach to derive the
correlation structure of the predicted parameters. We for-agricultural field nearilich, Germany (TERENO test site
mulated three prior pdfs that incorporate to different extentsSelhausen, 5628.6” N, 6°2757.2" E, Weihernuller et al,
the prior information derived with ROSETTA. A Bayesian 2007 Herbst et al.2009. The measurement plot itself was
framework was used to combine the various prior pdfs withPlane. The soil in this part of the field had a silt loam tex-
the information contained in observations of soil water con-ture and was classified as a Stagnic Luvidtl§S Work-
tentin a 50 mx 50 m bare soil plot exposed to natural bound- ing Group WRB 2007). Soil texture within the 50 nx 50 m
ary conditions. The resulting posterior distribution was ex- Plot was fairly homogeneous. The fine earth fraction of
plored by MCMC simulation using the DiffeRential Evolu- the topsoil (0 to 30cm) was composed of#4 % sand,
tion Adaptive Metropolis (DREAM) algorithm\(rugt et al, ~ 70+=1% silt, and 16+ 1 % clay (meant standard deviation,
2008h 2009. The present study had two main objectives. N =47). Due to clay accumulation, the subsoil had a slightly
The first objective was to explore the potential benefit of in- higher percentage of clay, with 242 % sand, 662 % silt,
cluding additional information on parameter correlation in @hd 20=2% clay (V =12). The soil was kept bare dur-
the prior distribution of the soil hydraulic parameters. This INg the measurement campaign. Accumulation of weeds
information helps to better constrain the parameter space/vas prevented by occasional application of herbicides and
and we may expect that this additional constraint improvesmanual removal.
the identifiability of the estimated parameters. The second Soil water content was measured using TDR. Two-rod
objective was to test the robustness of the Bayesian approagbrobes (25 cm rod length, 2.3 cm rod spacing) were installed
in case of biased prior information. horizontally 6 cm below the soil surface. The waveforms
were recorded manually using a TDR100 device (Campbell
Scientific, Logan, UT, USA) and analysed using the algo-
2 Methods rithm described irHeimovaara and Boutg{1990. We used
the empirical relationship ofopp et al (1980 to convert the
apparent dielectric permittivity to soil water content. Mea-
We measured soil water content at 61 locations withinsurements were taken on 29 days between 19 March and
a 50 mx 50m bare soil plot (Figl). The measurement 14 October 2009, comprising a measurement campaign of
site was located at the bottom of a gently slopirg3{) 210 days. Because measurements of soil temperature and
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carbon dioxide efflux were carried out simultaneously with We chose this particular discretization scheme to accommo-
the TDR measurements, a complete measurement cycle atate the large gradients in pressure head that occur close to
all locations took about three hours. The soil temperaturethe surface in response to atmospheric forcing. In general,
and carbon dioxide efflux data were not used in this studyif nodal spacing is too large, the numerical solution of the
The soil water content data did not show any significant tem-Richards equation becomes inaccurate due to linearisation
poral or spatial trend and could be well described with a nor-errors of the pressure head and averaging errors of the hy-
mal distribution at any given measurement date. We arith-draulic conductivity yan Dam and Fedde2000. In the
metically averaged the soil water content data from the 61present case, a further increase in the number of nodes did
locations and used this time series of mean water content toaot significantly alter the simulation results, from which we
calibrate an effective soil hydraulic model. The mean valuesconcluded that the spatial discretization of the soil profile
were assigned the midpoints of each measurement cycles. was adequate.

2.2 Model description 2.2.4 Boundary conditions

2.2.1 Governing flow equation The water flux at the soil surface is controlled by potential
evaporatiorEpet (Cm h~1) and precipitatior? (cm h™1). The

We simulated one-dimensional vertical water flow in a numerical solution of the Richards equation was obtained by

100cm deep, homogeneous profile using the Richarddimiting the actual water flux across the upper boundary as

equation: follows:
oh
90 9 oh —K(h)<—+1><E (t)—P(t)
—=—(Kkm|—+1 1 = Epot
75 (0 (5 +1)) @ "\
for g <h()<h(jg* at z=0cm 4)

where 6 (cm®cm~3) denotes the soil water contenk i e .
(cm L) represents the soil hydraulic conductivity,(cm) ~ Wherehgg'= —100000 cm and{js"= 1 cm denote the min-
signifies the pressure head(h) is time, andz (cm, pos-  IMum and maximum values of the pressure head allowed at

itive upward) defines the vertical coordinate. We used theN® Upper boundary, respectively. If the simulated pressure
HYDRUS-1D model éimﬁnek et al, 2009 to solve the head reaches either of these two limits, the HYDRUS-1D

Richards equation for given initial and boundary conditions. Model switches to a pressure head boundary condition to cal-
culate the actual water flux.

2.2.2  Soil hydraulic properties Precipitation and other meteorological variables were
recorded at a meteorological station located 100 m west of

The soil hydraulic properties were parametrised using theghe measurement site. Potential evaporation was estimated

van Genuchten-Mualem (VGM) modelkan Genuchten  using the FAO method/(llen et al, 1998. The FAO method

1980). The water retention functiof(h), expressed in terms  consists of two steps. First, the potential evapotranspira-

of effective saturatiors (dimensionless), is given by: tion from a grass reference surface &Tis calculated using
a modified Penman-Monteith equatiofllén et al, 1998
S(h) = 0(h) — 6 _ { (1+|ah|”)_m for h<O ) p. 74). We used hourly averaged values of air temperature,
Os— 6, 1 for h>0 relative humidity, wind speed, incoming shortwave radiation,

and atmospheric pressure as input variables. In a second step,
where6, and6s (cm®cm™3) represent the residual and sat- the reference evapotranspiration is scaled with an empiri-
urated water content, respectively, amd(cm™?), n, and  cal coefficient,Epoy= 1.15ETref (Allen et al, 1998 p. 263).
m=1-1/n (both dimensionless) are shape parameters. Therhis coefficient reflects the increased evaporation potential

hydraulic conductivity functiork (k) is given by: of bare soils (as compared to the reference grass surface),
my 2 which is mainly due to the lower albedo of wet soil surfaces.
K (h) = KsS(h)- (1_ (1—S(h)1/’") ) (3) In the absence of detailed information about the lower

boundary of the considered soil domain, we tested differ-

where K (Cm h—l) is the saturated hydrau”c Conductivity, ent lower bOUndary conditions in HYDRUS-1D. From an in-

andL (dimensionless) is an additional shape parameter. ~ Verse modelling point of view, a zero gradient pressure head
boundary condition is most appealing because it does not

2.2.3 Spatial discretisation require explicit information about soil water state variables
or fluxes at the lower boundary. Readings from a nearby
The 100 cm deep profile was discretised into 81 nonequidispiezometer suggested that the ground water table was about
tant nodes. Nodal distance was shortest adjacent to the sa00 cm below the lower boundary of the simulated profile.
surface and gradually increased with depth, with a distance&imulations with the zero gradient boundary condition indi-
of 0.05cm at the upper and 3.5cm at the lower boundarycated that a substantial amount of water was lost from the
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profile due to drainage, resulting in simulated water contents Bayesian inference provides a formal way of combining
that considerably underestimated the actually observed soihformation from observations with prior information about
water content data. Repeated model runs with different realthe system. This is achieved through Bayes’ theorem:
izations of the VGM parameters demonstrated that this dif- - -

ference was persistent and could not be explained by an in?¥1:¥2:%¢|¥) < p(x1) p(x2) p(ce) p(§lx1.x2,0¢)  (8)

appropriate selection of the soil hydraulic parameters. WQNherep(xl), p(x2), and p(c.) denote the prior probabili-
therefore used a prescribed constant pressure hgads  ties, andp(x1,x2,0.|7) represents the posterior probability,
the lower boundary condition: that is, the probability of the parameters after assimilating the
h(t)=hpg at z=-—100cm (5) observatior!al _data. Ngte that E®) (mplies independence
between prior information of 1 andx». Based on the under-
Unfortunately, no measurements of pressure head or soil waying physics of the system, we may expect thatandx»
ter content were made at the bottom of the simulation domairare correlated, but in the absence of detailed prior informa-
from which an appropriate value @fg could be inferred.  tion about this correlation, the assumption of independence
We therefore treateld g as an unknown parameter that was js justifiable.
estimated jointly with the VGM parameters. It is common practice in Bayesian inference to eliminate
the standard deviation of the residuals from the inference
equations. This is expedient because we are not particularly
interested iv,. In addition, elimination o, has the advan-

All model runs started from a uniform initial pressure head tage of reducing the number of estimated parameters. As-
throughout the profile equal to the pressure head at the lower 9 9 P ’

boundaryi g. A 75 day spin-up period was used to allow for suming a Jeffrey_s prior fare, p(?s)al/ge’ the standqrd de-
- L SR viation of the residuals can be integrated out of the inference
the relaxation from the initial pressure head distribution and

L . ) . equations (e.gBox and Tiag 1992 Kavetski et al. 2006.
to reduce sensitivity of simulation results to soil water state.l_he likelihood function (Eq7) and Bayes’ theorem (E@)

2.2.5 Initial condition

initialization. then reduce to:
2.3 Inverse modelling N -3
~ 2
, i(x1, 9
Let the pressure head at the lower boundary be stored iﬁmxl ¥2) & (;8’ (¥1,x2) ) ®)
x1=[h ] and the VGM parameters ip=[6; s @ n K5 L].
The difference between the soil water content observationg (x1,x2|¥) x p(x1) p(x2) p(¥lx1,x2) (10)

y=[¥1,...,yn] and the corresponding HYDRUS-1D pre-
dicted valuey=[y1,..., yv] was computed using the follow-
ing residual vector:

In many practical applications of Bayes’ theorem, prior
information about the estimated parameteisand x2 is
vague. In this case, a uniform prior distribution is usually
gi(x1,x2) =y —yi(x1,x2) i=1.. N (6)  imposed. The only information provided by a uniform prior
is that of the bounds of the feasible parameter space. Within
these bounds, all parameter values have equal probability. In
the present case, we had rather limited information about
the pressure head at the lower boundary=[h g]. We
therefore specified a uniform prior distribution for this pa-
rameter defined ag(x1)~U(ax,,bx,), Wherea,, and by,

enote the lower and upper bounds, respectively (Taple

he bounds were selected based on the available informa-
tion about the depth of the ground water table and assum-
ing a hydrostatic equilibrium between the lower boundary

. N 1 X ) of the simulated profile and the ground water table. For
p(ylx1,x2,0¢) o, " exp —ﬁzgi (x1,%x2) (7)  the VGM parametersyo=[6; 6s « n Ks L], we tested three

€ i=1 different prior distributions, one being multivariate uniform,
Note that the likelihood is not only a function of the model p(x2)~f(ax,,bx,), and the other two being multivariate
parametersy; andxy, but also of the standard deviation of normal, p(x2)~N (ftx,, Zx,). These prior distributions are
the residualsg,. The value oby is typically unknown a pri-  defined in Sect2.4.
ori because it integrates over various error sources such as For models that are nonlinear in their parameters, such as
measurement errors, model structural errors, and errors itlYDRUS-1D, the posterior distributiop(x1,x2|y) cannot
model input variables. In practice, should therefore be be obtained by analytical means nor by analytical approxi-
considered as an unknown parameter that needs to be inferredation. We therefore resort to iterative methods that approx-
from the observational data. imate the posterior pdf by generating a large sample from this

whereN is the number of observations. A common approach
is to aggregate(x1,x2) into a single measure of model per-
formance and, depending on its definition, minimize or max-
imize this criterion during model calibration. If the inverse
problem is posed in a probabilistic framework, this criterion
is called the likelihood. It gives the probability of observing
the data given the model parameters. Under the assumptio
of independent, identically and normally distributed residu-
als,e~N(0,02), the likelihood is given as:
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explicit consideration. By sampling historical states, aber-
rant trajectories can jump directly to the modal region at any
time during the simulation. Third, the transition kernel defin-

ing the jumps in each of the chains does not require informa-

Table 1. Lower and upper bounds of the estimated parameters.

lower  upper

parameter  unit bound  bound . . S

tion about the current states of the chains. This is of great
Or cmicm=3  0.043 0.091 advantage in a multi-processor environment where the vari-
Os e <13m_3 0.409 0.481 ous candidate points can be generated simultaneously so that
logip(e)  cm™ —-2.55 -2.07 each chain can evolve most efficiently on a different proces-
logio(n) - 9 0.179  0.267 sor. An implementation of sampling from past states and
logip(Ks) cmh —2.24 -0.08 snooker updating is describedtar Braak and Vrugt2008.
L - —2.49 6.27 An application of DREAMzs) appears irschoups and Vrugt

)

h g cm —250 -50 (2010

In this study, we used three parallel chains to explore
the parameter space and approximate the posterior distri-
bution. The diagnostic oBrooks and Gelmar(1998 was
used to check when convergence to the target distribution
had been achieved. After convergence, we continued to run
DREAMs) and generated an additional 50000 samples,
which were used to summarize the posterior distribution.

distribution. The most general of such methods is MCMC
simulation (e.gBrooks 1999. The basic building block of
many existing MCMC schemes is the Metropolis algorithm
(Metropolis et al. 1953. To simplify notation, we merge
the two parameter vectons, andx; into a single vectox.
The Metropolis algorithm generates a Markov chain, which
has the property that the next position of the chdiht only
depends on its current positiah. The Markov chain is gen-

erated by alternating between two basic steps. First, a Pro 4 1 Predicting the soil hydraulic parameters
posalx* is generated. Second, the proposal is accepted with

2.4 Prior information about the soil hydraulic
parameters

probability: The ROSETTA programSchaap et al.2001) implements
o (px*1§) five hierarchical pedotransfer functions to estimate the VGM
A(x*,x'y) = mm(p(xi 5 ) (11)  parameters from a varying degree of basic soil data, such as

textural class, texture, bulk density, and soil water content

If the proposal is accepted, the Markov chain moves to theat specific pressure head values. We estimated the soil hy-

proposal positiony’*1 = x*. Otherwise, the current position draulic parameters from measured sand, silt, and clay per-

is retainedx’+1 = x’. centages of the topsoil layer at the experimental site. The
To generate samples from the posterior distribution, wecorresponding pedotransfer function is labelled with H2-C2

used the DREAM framework dfrugt et al.(2008h 2009. in Schaap et al(200). This pedotransfer function con-

This MCMC scheme runs multiple chains simultaneously for sists of an ensemble of artificial neural network models that

global exploration of the parameter space and automaticallyvere each calibrated to a different data set. These data sets

tunes the scale and orientation of the proposal distributionwere generated from the ROSETTA database using the boot-

during evolution of the chains to the target distribution. This strap methodEfron, 1979. The use of multiple calibration

scheme is an adaptation of the Shuffled Complex Evolutiondata sets provides a simple way to address uncertainty in the

Metropolis algorithm Yrugt et al, 20030 and has the ad- predicted soil hydraulic parameters. Each artificial neural

vantage of maintaining detailed balance and ergodicity whilenetwork model provides slightly different estimates of the

showing excellent efficiencies on complex, highly nonlinear, VGM parameters, and the ensemble means|[p; ... pe]

and multi-modal target distributions. The use of multiple and standard deviations=[u1 ... ug] (both size k6) con-

chains protects against premature convergence and opens sptute the ROSETTA output (TabB).

awide array of statistical tests to diagnose whether the chains ROSETTA uses logy-transformed values af, n, andKs,

have converged to a stationary distribution or not. We usedvhich induces an approximate normal distribution for each

the most recent variant of DREAM that uses sampling fromof the VGM parametersSchaap et a12001). This transfor-

past states and a mix of parallel direction and snooker upmation scheme was retained in the present study.

dates to generate proposals in each individual chain. This

algorithm, entitled DREANEs), has several desirable advan- 2.4.2 Deriving the covariance matrix of the predicted

tages. First, sampling from the past circumvents the require- soil hydraulic parameters

ment of using a large number of chains for posterior explo-

ration. Just a few chains will suffice. This will speed up The information provided by ROSETTA can readily be used

convergence to the target distribution, especially for high-to formulate an informative prior distribution that is mul-

dimensional problems. Second, outlier chains do not needivariate normal with mean vectot,, = p and diagonal
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Table 2. Mean values, standard deviations, and correlation coefficients of the ROSESKERadp et al.2001) predicted soil hydraulic
parameters.

correlation coefficients

standard
parameter  unit mean deviation 6 0s logig(e) logipn) 10gyo(Ks) L
6r cmiem—3  0.067 0.006  1.00
05 cmPem 3 0.445 0.009 0.18  1.00
logig(@)  cm™t -2.31 0060 081 071 1.00
log () - 0.223 0.011 -1.00 -0.24 —-0.85 1.00
l0g1o(Ks) cmh! -1.16 0.270 -0.40 0.83 0.21 0.33 1.00
L - 0.39 147 -100 -0.17 -0.81 1.00 0.40 1.00

covariance matrixzy, = diag(ui,...,ug). This approach, Step2:.Use ROSETTA to generate the corresponding random
however, is rather simplistic in that it ignores the correlation sal_mple of s_oil hydraulic parameterBropagate _the random sample
that is typically found between the soil hydraulic parameters.of input variables= through ROSETTA to obtain a random sample
Parameter correlation is evident from statistical analysis ofof soil hydraulic parametei (size 1000« 6):

soil hydrological databases (e@arsel and Parrisi988 de  rosetTaF— P (13)
Rooij et al, 2004. From an inverse modelling point of view, _ _ o

|t |S apparent from flrst_order apprOleatlonS Of the parame_we used quan“le-quantlle p|0tS and pairwise scatter p|OtS to test
ter covariance matrix (e.¢cool and Parker1988, objective whetherP follows a multivariate normal distribution. These diag-
function contour plots (e.gloormann et aj 199’3 or scat- nostic plots (not shown) indicated that each of the parameters had

ter plots of the posterior sampl¥/fugt et al, 20033. Given a}marglnal distribution close to normal and th_at the pairwise corr_el_a-
tions among these parameters were approximately linear, providing

these fm_dmgs, it seems prOdUCF'Ve to m_CIUde the Correlat'(_)nfurther justification for the use of the multivariate normal distribu-
of the soil hydraulic parameters in the prior pdf. In general, if j5, a5 the prior model.

we neglect correlation, we assign too high prior probabilities
to physically unrealistic combinations of the soil hydraulic
parameters.

To formulate prior pdfs that consider parameter corre-
lation, we need detailed information about the correlation
structure of the predicted parameteps, This information
is not provided by ROSETTA but can be derived using the,. _ _ .Jj for
following Monte Carlo approach. The basic idea of this ap- "/ /ciicj;
proach is that the correlation structure pican be inferred This correlation matrix contains the additional information needed

from a random sample drawn in close vicinity pf Using . : : . : .
this approach, we can derive the full covariance matrix of theltooa:j:r:q“getrze full covariance matrix of the predicted soil hydraulic

predicted parameteis,, in four subsequent steps:

Step 3:. Calculate the correlation matrix of the random sample of
soil hydraulic parametersCalculate the covariance mati@ (size

6 x 6) of the random sample of soil hydraulic parametersUse

C to calculate the corresponding correlation maRixXsize 6x 6)
defined as:

i,j=1,...6 (14)

Step 4:. Derive the covariance matrix of the predicted soil hy-
fjraulic parameters Derive the full covariance matrix of the pre-
dicted soil hydraulic parameteBs, by scaling the correlation ma-
trix R with the corresponding standard deviations of the predicted
parameters:

Step 1.. Draw a random sample of input variables et the mea-
sured percentages of sand, silt, and clay used as input variables
ROSETTA be denoted by (size 1x3). Generate a random sam-
ple of input variabled- (size 1006 3) from a multivariate normal
distribution, V(s £, Ef), centred aroung:

Xpij=Ti juilj for i,j=1,..., 6 (15)

(12) The scaling ensures that the diagonal entrieX pfcorrespond to
the standard deviations of the predicted parameters while the off-
diagonal terms reflect the correlation among the soil hydraulic pa-
Based on a preliminary analysis, we assigned the diagonal entrieeameters derived from the random sample.

of ¥y (variances) an arbitrary small value of 0.25%. This value Note that the resulting covariance matky only accounts
works well in practice, ensuring that the sampled percentages ar 9 ¥ only

in close vicinity of f, and hence, that the corresponding random ?or parameter ur?certalnty and correlation induced by Fhe F_’e'
sample of soil hydraulic parameters will be in close vicinitypof ~ dotransfer function. It does not account for uncertainty in
The negative values of the off-diagonal terms (covariances) werdhe predicted parameters due to uncertainty in the input vari-
chosen such that they are consistent with the compositional natur@bles. The correlation matrik derived with the Monte Carlo

of soil texture and thak ¢ is positive semidefinite. approach presented above is shown in T&ble

0.250 -0.125-0.125
N:ipp=fSp=|-0125 0250-0.125|—F
~0.125-0.125 0250
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2.4.3 Defining the prior distributions of the soil 0.5 e
hydraulic parameters

0.4
We tested three different formulations of the prior distribu-

tion of the soil hydraulic parameters. These prior distribu-
tions incorporate to different extends the information derived

0.3

Prior 2
Prior 1: Multivariate uniform distribution. The first prior is multi- 0.1 Prior 3

water content (cm3 cm_3)

variate uniformp (x2)~U(ax,,bx,), with lower and upper bounds
ax, andby,, respectively, that jointly define the feasible parame- [q T VA U P
ter space. We calculated the lower and upper bounds-a4 u
(Tablel).

Prior 2: Multivariate normal distribution without correlation.

The second prior is multivariate normal(x2)~N(sx,, Zx,),
with mean vectoruy, = p and diagonal covariance matrix
Exzzdia(:{u% ,,,,, ug).

Prior 3: Multivariate normal distribution with correlation.The

third prior is also multivariate normal but considers correlation
among the soil hydraulic parameters using the full covariance
matrix Xy, = X, derived using the Monte Carlo approach.

hyd. conductivity (cm hour_l)

Figure 2 illustrates how the three prior distributions af- pressure head (cm)
fect the prior uncertainty of the water retention and hydraulic
conductivity functions. Unsurprisingly, the largest prior un- Fig. 2. 95% prior uncertainty bounds ¢&) the water retention
certainties are found when using a uniform prior distribution function and(b) the hydraulic conductivity function correspond-
(Prior 1, red line). This uncertainty is substantially reduceding to the three prior probability distributions of the soil hydraulic
when prior information about the mean and standard deviaparameters: multivariate uniform distribution (Prior 1), multivariate
tion is considered (Prior 2, blue line). Even though parameter“orma| distripution without cprre_lation among_theT soi_l hydraulic pa-
correlation is ignored in this prior distribution, the VGM pa- rameters (Prior 2), a_md multlyarlate normal dls_trlbutlon with corre-
rameters are much better constrained now, and this results jigtion among the soil hydraulic parameters (Prior 3).
much smaller 95 % confidence intervals compared to the uni-
form prior case. When parameter correlation is considered in
the prior distribution (Prior 3, grey area), the confidence in-three prior distributions to inversely estimate the VGM pa-
terval around the inflection point of the water retention func- Fameters and, g, providing a test of the effectiveness of us-
tion shrinks symmetrically, but the uncertainty in the wet and ing prior information about the soil hydraulic parameters.
dry ranges is hardly affected. A qualitatively similar picture ~ We considered a second test case in which we have bi-

results for the hydraulic conductivity function. ased prior information. This test was specially designed to
establish whether we can infer the appropriate values of the
2.5 Generation of synthetic data soil hydraulic parameters even though the prior distribution

is biased, providing a test of the robustness of the Bayesian
To test the effectiveness and robustness of the Bayesian ajppproach. There are essentially two ways in which we can
proach, we used two synthetic data sets. In the first case, wgenerate this bias. One way is to maintain the synthetic time
created a time series of soil water content observations usingeries of soil water content observations and to corrupt the
the HYDRUS-1D model with ROSETTA predicted values of three prior pdfs. A simpler approach followed herein is to
the soil hydraulic parameters (Tal#eandh g = —150cm.  leave the prior pdfs untouched, but to create a second syn-
The upper boundary conditions as well as the observatiorthetic time series of soil water content observations using soil
dates were the same as for the real data set. A normally dishydraulic parameters that differ from the values predicted by
tributed error was added to the simulated soil water contentiROSETTA and used to create the prior pdfs. These param-
to represent the combined effect of model structural, boundeters were selected by drawing a large random sample from
ary condition, and observational error. The magnitude of thisPrior 3 and then purposely picking a realization with very
random error was similar to the root mean square error oflow prior probability. Model settings and input variables
the best HYDRUS-1D fit to the real soil water content datawere the same as in the previous case, and the same ran-
(Sect.3.2). This synthetic data set was then used with thedom error was added to the synthetic observations. We then
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Fig. 3. Cumulative prior and posterior probability distributions using synthetic soil water content data and three different unbiased prior
probability distributions(a) multivariate uniform distribution (Prior 1)b) multivariate normal distribution without correlation among the

soil hydraulic parameters (Prior 2), at@ multivariate normal distribution with correlation among the soil hydraulic parameters (Prior 3).

The blue lines represent the prior distributions. The red circles denote the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5 % quantiles of the
posterior distributions, respectively. The grey lines mark the parameter values used to generate the data. The x-axes cover the bounds liste
in Tablel.
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Fig. 4. Cumulative prior and posterior probability distributions using synthetic soil water content data and three different biased prior
probability distributions(a) multivariate uniform distribution (Prior 1)b) multivariate normal distribution without correlation among the

soil hydraulic parameters (Prior 2), at@ multivariate normal distribution with correlation among the soil hydraulic parameters (Prior 3).

The blue lines represent the prior distributions. The red circles denote the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5 % quantiles of the
posterior distributions, respectively. The grey lines mark the parameter values used to generate the data. The x-axes cover the bounds liste
in Tablel.
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Fig. 5. Pairwise scatter plots of the posterior sample and corresponding 95 % confidence ellipses using synthetic soil water content data anc
the biased prior probability distribution with correlation among the soil hydraulic parameters (Prior 3). The axes cover the bounds listed in
Tablel.

estimated the unknown model parameters from this secon@: g) was not warranted by calibration against the synthetic

time series using the three (now biased) prior distributions. soil water content data. Very similar findings were observed
with the informative prior that neglects parameter correla-
tion (Prior 2, Fig.3b). Note thath g was somewhat better

3 Results constrained in this case but still demonstrated considerable
uncertainty. This is a nice illustration of parameter interde-
3.1 Synthetic data pendence. Even though the priorigg was the same for the

three prior distributions, this parameter became better iden-
The results for the synthetic soil water content data using untifiable when the VGM parameters were more constrained
biased prior distributions are depicted in FRy. This plot in their prior pdf. Finally, the informative prior that consid-
shows the cumulative prior (blue line) and posterior (red cir-€rs parameter correlation (Prior 3, F&) substantially im-
cles) distributions of the estimated parameters correspondingroved the results. All the soil hydraulic parameters as well
to each of the three prior distributions. When using the uni-as the pressure head at the lower boundary suddenly became
form prior (Prior 1, Fig.3a), the water retention parameters Well identifiable by calibration against the observational data.
(6r, 6s, «, andn) were not identifiable, with posterior distribu- Note that in this case the true parameter values (grey lines)
tions that extended over the entire prior defined ranges. Thavere always located within the 95 % posterior confidence in-
posterior distributions of the two additional soil hydraulic pa- tervals and that these intervals were reasonably small. In this
rameters Ks and L) on the contrary differed markedly from study, we refer to an estimate that satisfies both of these pre-
their marginal prior distributions. Seemingly, the observa-conditions as an accurate and precise estimate.
tional data contained sufficient information to constrain these The results for the biased prior distributions are shown in
two parameters. The pressure head at the lower boundarlyig. 4. They were qualitatively similar to those observed
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Fig. 6. Cumulative prior and posterior probability distributions using real soil water content data and three different prior probability
distributions:(a) multivariate uniform distribution (Prior 1jp) multivariate normal distribution without correlation among the soil hydraulic
parameters (Prior 2), ar(d) multivariate normal distribution with correlation among the soil hydraulic parameters (Prior 3). The blue lines
represent the prior distributions. The red circles denote the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5% quantiles of the posterior
distributions, respectively. The x-axes cover the bounds listed in Table

previously for the unbiased priors case. Again, when usingmproved the outcome of the Bayesian inference scheme.
prior distributions that neglect correlation among the soil hy- To verify whether the prior distribution of the parameters
draulic parameters (Prior 1 and Prior 2), accurate and precisi consistent with the information from the soil water con-
estimation of the water retention parameters was not postent data, please consider Figwhich compares the 95 %
sible. Including prior information about parameter correla- confidence ellipses of the prior distribution (blue line) with
tion (Prior 3) significantly improved parameter identifiabil- those derived from the posterior sample (red line). This fig-
ity, enabling accurate and precise estimates of all parametersire highlights several important observations. First, the con-
Note that this was possible despite the bias in the prior infor-fidence ellipses of the posterior distribution are much smaller
mation. This is illustrated in more detail in Fi§, which than their respective counterparts of the prior distribution.
presents pairwise scatter plots of the posterior sample (gresecond, the prior distribution was apparently unbiased and
dots) and associated 95 % confidence ellipses of the prioconsistent with the posterior sample. And finally, the prior
(blue line) and posterior (red line) distribution. These el- and posterior distributions exhibit a very similar correlation
lipses were calculated based on the assumption of a bivariatstructure, particularly for the highly correlated parameters.

normal distribution of the respective parameters. Although Figure8 compares the observed and simulated soil water
the prior distribution of the VGM parameters was biased anddynamics_ The dark grey region represents the 95 % predic-
therefore assigned very low prior probability to the actualtion uncertainty intervals associated with the posterior pa-
parameter values (orange squares) used to generate the syameter uncertainty, whereas the light grey region depicts
thetic time series, the 95 % posterior confidence ellipses enthe total predictive uncertainty. Details on how to com-
compassed these values. pute these uncertainty intervals can be foun8déhoups and
Vrugt (2010 and so will not be repeated herein. For com-
pleteness, the top panel plots the observed rainfall hyeto-
graph (blue bars) and potential evaporation (red bars). The
Posterior distributions of the estimated parameters for theHYDRUS-1D model matched the in situ observations (red
real soil water content data are illustrated in FgThese re-  circles) very well, with a corresponding root mean square er-
sults resemble the findings presented in the previous sectioror of 0.009 cn¥ cm~3, and model efficiencyNash and Sut-

for the synthetic data. The use of the uniform prior (Prior 1) cliffe, 1970 of 0.87. These two measures of goodness of
and the multivariate normal prior that neglects parameter corfit were calculated for the HYDRUS-1D simulation that best
relation (Prior 2) did not warrant accurate and precise identi-described the observational data, that is, using the parame-
fication of all estimated parameters. Consideration of paramter values that had maximum posterior denséy= 0.066,

eter correlation in the prior distribution (Prior 3) substantially 6s=0.445,«¢ =0.0048,n = 1.68, Ks=0.074,L =0.63, and

3.2 Real data
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Fig. 7. Pairwise scatter plots of the posterior sample and corresponding 95 % confidence ellipses using real soil water content data and the
prior probability distribution with correlation among the soil hydraulic parameters (Prior 3). The axes cover the bounds listedlin Table

h g = —128). Note that two observations (day of year 190 The likelihood function used in this study was based on
and 238) fall outside the 95 % prediction uncertainty bounds.assumptions of uncorrelated, homoscedastic, and normally
This, however, is in good agreement with statistical expectadistributed residuals. If any of these assumptions is violated
tion (2 out of 29 observations correspond to approximatelythen the posterior distribution and corresponding prediction
7%). To convey an impression of the spatial variability of uncertainty intervals are subject to error and should be revis-
soil water content within the 50 i 50 m plot, we added bars ited. Good statistical practice therefore constitutes checking
to the mean values that span the 2.5 % and 97.5 % quantileshether the underlying assumptions of the likelihood model
of the spatially distributed observations. have been met (e.§choups and VrugP010. To assess the
Figure9 plots the 95 % uncertainty bounds of the soil hy- validity of these assumptions we conducted three diagnos-
draulic functions corresponding to the prior and posterior dis-tic tests, and the results of this are plotted in Hif. The
tributions. We also plotted the observed soil water contenttop panel measures the correlation among the residuals by
data. Note that the in situ data exhibited relative small vari-plotting the autocorrelation function. The autocorrelation at
ability and covered only a limited range of soil water states.given lag (red circles) remained within the theoretical 95 %
This explains, at least in part, why in situ observations of soilsignificance interval of a time series of uncorrelated residu-
water dynamics contain insufficient information to estimate als (blue lines), indicating that the residuals are uncorrelated.
accurately and precisely all VGM parameters. Note also thaiThe middle panel tests whether the magnitude of the residu-
some of the data fall outside the posterior uncertainty boundsals depends on the magnitude of the soil water content obser-
The reason for this is that these bounds show the uncertaintyation. The residuals appear homoscedastic, that is, indepen-
in the soil hydraulic functions due to uncertainty in the soil dent of the magnitude of the observational data. Finally, the
hydraulic parameters only. They do not include uncertaintybottom panel presents a quantile-quantile plot and explores
due to observational and model errors. whether the residuals follow a normal distribution. Except
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Fig. 8. 95 % predictive uncertainty bounds using real soil water content @igteneteorological forcing antb) observed and predicted soil

water content. The dark grey region represents the predictive uncertainty due to uncertainty in the estimated parameters. The light grey regior
denotes the predictive uncertainty due to the combined effects of parameter, model, boundary condition and calibration data uncertainty. The
red circles mark the mean values of the spatially distributed soil water content observations, while the red bars span the 2.5% and 97.5%
quantiles of these observations. Note that we depict daily values of potential evaporation and precipitation, but the HYDRUS-1D model was
actually run with hourly values of these forcing variables.

for the two large residuals discussed above, the quantiles ahformation content of our data could have been increased.
the residuals were in good agreement with this assumptionOne approach is to increase measurement frequency and to
We therefore concluded that the underlying assumptions ofneasure directly after rainfall events (Fig). This would
the likelihood model were met and that the posterior dis-have resulted in a larger range of observed soil water states.
tribution and corresponding predictive uncertainty intervals Another possibility is to consider the presence of vegetation,
were adequate. and consequently, root water uptake. This would have ex-
tended the range of observed soil water states to the dry end.
The gain of information associated with this, however, would
4 Discussion come at a cost. The simulation of root water uptake as a func-
tion of time and depth requires specification of additional
The results presented in this paper clearly indicate that theyarameters, which would need to be estimated simultane-
in situ observations of soil water content did not contain suf-ously with the other parameters, introducing additional pa-
ficient information to warrant an accurate and precise estitameter and model uncertainty (eliges and Mohanty2008
mation of all parameters of interest. This finding is not new Wollschiager et al.2009.
but has been reported previously (eJgcques et gl2002
Ritter et al, 2003. Naturally occurring boundary conditions  The use of prior information about the soil hydraulic pa-
display insufficient variability to result in a wide range of rameters substantially improved parameter identifiability. To
soil water states, which is a prerequisite to successfully estiachieve this improvement, however, it was necessary to in-
mating the VGM parameter¥/(ugt et al, 2001, 2002. The  clude information about parameter correlation in the prior
necessary information for some of the soil hydraulic param-distribution. Using this additional information, our results
eters simply appears beyond the range of the actual soil wawith synthetic data demonstrated that the Bayesian approach
ter content observations, and these parameters are therefoie effective and robust, even in case of biased prior infor-
difficult to constrain. There is different ways in which the mation. It is noteworthy that the bias we used in this study
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] ) ) ) Fig. 10. Diagnostic plots of the model residuals using real soil wa-
Fig. 9. 95 % prior and posterior uncertainty bound@fthe water  ter content datata) autocorrelation function with theoretical 95 %
retention function an¢b) the hydraulic conductivity function using  sjgnificance intervals of a time series of uncorrelated resid(a)s,

real soil water content data and the prior probability distribution regiquals as a function of the predicted soil water content,(@nd
with correlation among the soil hydraulic parameters (Prior 3). In qyantile-quantile plot.

addition, the actual soil water content observations are plotted.

the decision which parameter to fix is often rather arbitrary,

to test the robustness of the approach was rather moderat@ithout consideration of the actual information content of
Clearly, another situation occurs if the magnitude of the biasthe data (but see, e Bitter et al, 2003 Mertens et al.2005
is actually so large that the prior information becomes incom-for some exceptions). This might results in fixing a param-
patible with the information contained in the observational eter whose value is actually well defined by the calibration
data, as illustrated and discussedHou and Rubin(2005. data. An example of this is the parameter in the VGM
In this situation, any approach of using prior information is model that is often fixed at some value taken from the lit-
likely to fail. In practice, however, this failure becomes ev- erature because it is deemed unimportant or insensitive (e.g.
ident from inspection of the posterior distribution, with the Abbaspour et al.200Q Wollschiager et al.2009. In con-
maximum posterior density of at least some of the param-+rast, the results presented in this study demonstrated that
eters located at the bounds of the feasible parameter spagge in situ observations contained valuable information that
(Hou and Rubin2005. helped to substantially constrain this parameter (Bjg.|f

Another option to alleviate problems with parameter non-We still decide to fix some of the soil hydraulic parameters,
identifiability is to reduce the dimensionality of the model it remains typically difficult to choose appropriate values.
calibration problem and fix some of the soil hydraulic pa- This is particularly true fo6;, 6s, and Ks. These parame-
rameters at some a priori defined value (dacques et al.  ters are generally poorly defined by direct measurements and
2002 Ritter et al, 2003. This approach is practical but may should therefore be considered as fitting parametersv@ng.
impair the ability of the soil hydraulic model to accurately Genuchten and Nielsei985. The Bayesian approach pre-
describe the experimental data, in particular if parameter$ented in this study avoids many of the problems associated
are fixed at nonoptimal values. Due to parameter correlationWith fixing parameters.
fixing single parameters at nonoptimal values will likely cor- A recent review byereecken et al(2010 discusses the
rupt the estimates of the remaining parameters. Moreoverstrengths and limitations of existing pedotransfer functions to
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make accurate and reliable predictions of the parameters iparameters in the prior distribution. The proposed algorithm
the VGM model. They also make suggestions on how to im-to derive this additional information proved useful, yield-
prove the predictive capabilities of future pedotransfer func-ing reasonable estimates of the correlation coefficients of the
tions. We like to add to their suggestions to include infor- ROSETTA predicted parameters. Using the so derived full
mation on parameter correlation in the pedotransfer functiorcovariance matrix in Bayesian inverse modelling enabled us
output. The Monte Carlo approach we presented might proveéo successfully calibrate a one-dimensional effective vadose
useful inthis regard. Itis generally applicable and easy to im-zone model using real-world data with limited information
plement. As shown in this study, information on correlation content.
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_Bayes'an inverse m.ode_lllng of in situ data, bUt_ equally '“_'SEfUIfor providing the meteorological data used to define the upper
in many other applications such as stochastic modelling ofyoundary conditions. We also acknowledge the help of Nils
soil hydraulic properties and soil water flow (eMishraand  prolingheuer during the measurement setup and data collection.
Parker 1989 Mallants et al, 1996). The first, third, and fourth author gratefully acknowledge financial
support by the TERENO project and by SFB/TR 32 “Patterns in
Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and
5 Summary and conclusions Data Assimilation” funded by the Deutsche Forschungsgemein-
schaft (DFG). We thank the four anonymous referees for their

Many contributions to the soil hydrological literature have insightful comments on the discussion paper and Mauro Giudici
demonstrated the limited information content of in situ mea-°" Nis suggestions to improve our paper.

surement.s. of soil Watgr state varlab!es under .natural bo.undl'zdited by: A. Guadagnini

ary conditions to estimate the soil hydraulic properties.
A general approach, which has yet received very little at-

tention in the soil hydrological literature, is to use an infor- References

mative prior distribution of the soil hydraulic parameters and

to combine this distribution with the in situ observations us- Abbaspour, K., Kasteel, R., and Schulin, R.: Inverse parameter es-
ing Bayes’ theorem. In this paper, we investigated to which timation in a layered unsaturated field soil, Soil Sci., 165, 109—
degree prior information about the soil hydraulic parameters 123, 2000. ) )

can help improve parameter identifiability in inverse mod- Allen, R. G, Pereira, L. S., Raes, D., and Smith, M.: Crop evap-

. L . . otranspiration (guidelines for computing crop water require-
elling of in situ soil water dynamics under natural boundary ments), FAO Irrigation and Drainage Paper No. 56, Food and

Fond't'on,s' We used percentages of sand, silt, a”‘?' clay as Agricultural Organization of the United Nations, Rome, Italy,
input variables to the ROSETTA pedotransfer function that 1ggg
predicts the soil hydraulic parameters. Textural data constiBaroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., and
tute basic soil information that is readily available in most van Dam, J. C.: Uncertainty in the determination of soil hy-
vadose zone studies. In addition to the standard ROSETTA draulic parameters and its influence on the performance of two
prediction that provides the mean values and standard devi- hydrological models of different complexity, Hydrol. Earth Syst.
ations of the predicted parameters, we tested a Monte Carlo Sci., 14, 251-27@jo0i:10.5194/hess-14-251-2Q14010.
approach to derive the correlation structure of the predictedasile, A., Ciollaro, G., and Coppola, A.: Hysteresis in soil water
parameters. It was one objective of this study to explore the ;:?ﬁgfsrrfggz S‘rse: Eei;rtgu'l?(t:erfget;:t?e‘;or\;‘vz?e”rsgzzgsrlagzgat‘gg
yalue of t_hls.add|t|onal mformatlon on para_met_er correlation 1355,doi:10.1029/208/3WR00243F)2003.
in Bayesian inverse mOde”'“g- Another obje_ctlve was to _teStBeven, K. and Binley, A.: The future of distributed models: model
th? r(_)busmes_s of the Bayesian approaph In Cas.e Of_ b"’?lsed calibration and uncertainty prediction, Hydrol. Process., 6, 279—
prior information. We formulated three different prior distri- 298 doi:10.1002/hyp.3360060305992.
butions that incorporate to different extents the prior infor- Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical
mation derived with ROSETTA. We illustrated our approach  Analysis, John Wiley and Sons, New York City, NY, USA, 1992.
using synthetic and real-world observations of in situ soil wa-ter Braak, C. J. F. and Vrugt, J. A.: Differential evolution Markov
ter dynamics under natural boundary conditions. chain with snooker updater and fewer chains, Stat. Comput., 18,
The results of this study demonstrated that prior infor- 435-446d0i:10.1007/s11222-008-9104-2008. _ .
mation about the soil hydraulic parameters significantly im-Brooks. S. P.. Markov chain Monte Carlo method and its applica-
proved parameter identifiability in Bayesian inverse mod- _ oM J: Roy. Stat. Soc. D-Sta., 47, 69-100, 1998. L
elling of in situ soil water dynamics. The results also in- Brooks, S. P. and Gelman, A.: General methods for monitoring
. . : . convergence of iterative simulations, J. Comput. Graph. Stat., 7,
dicated that the Bayesian approach was effective and robust 4, 4-455, 1998,
under the conditions tested in this study, even in case of biarrera, J. and Neuman, S. P.: Estimation of aquifer parameters
ased prior information. For the Bayesian approach to be ef- ynder transient and steady state conditions: 1. Maximum like-
fective and robust, however, it was essential to incorporate in-  |ihood estimation incorporating prior knowledge, Water Resour.
formation about the correlation structure of the soil hydraulic Res., 22, 199-21@|0i:10.1029/WR022i002p00192986a.

www.hydrol-earth-syst-sci.net/15/3043/2011/ Hydrol. Earth Syst. Sci., 15, 3053-2011


http://dx.doi.org/10.5194/hess-14-251-2010
http://dx.doi.org/10.1029/2003WR002432
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1007/s11222-008-9104-9
http://dx.doi.org/10.1029/WR022i002p00199

3058 B. Scharnagl et al.: Investigating the effect of different prior distributions of the soil hydraulic parameters

Carrera, J. and Neuman, S. P.: Estimation of aquifer parameters of input uncertainty in hydrological modeling: 1. Theory, Water
under transient and steady state conditions: 2. Uniqueness, sta- Resour. Res., 42, W0340d0i:10.1029/2005WR004362006.
bility and solution algorithms, Water Resour. Res., 22, 211-227,Kool, J. B. and Parker, J. C.: Analysis of the inverse problem for
doi:10.1029/WR022i002p00211986b. transient unsaturated flow, Water Resour. Res., 24, 817-830,
Carsel, R. F. and Parrish, R. S.: Developing joint probability dis- doi:10.1029/WR024i006p00811988.
tributions of soil water retention characteristics, Water Resour.Kowalsky, M. B., Finsterle, S., and Rubin, Y.: Estimat-
Res., 24, 755-76%0i:10.1029/WR024i005p0075%988. ing flow parameter distributions using ground-penetrating
van Dam, J. C. and Feddes, R. A.: Numerical simulation of in- radar and hydrological measurements during transient flow
filtration, evaporation and shallow groundwater levels with the in the vadose zone, Adv. Water Resour., 27, 583-599,

Richards equation, J. Hydrol., 233, 72—8®j:10.1016/S0022- doi:10.1016/j.advwatres.2004.03.0@B04.
1694(00)00227-42000. Mallants, D., Jacques, D., Vanclooster, M., Diels, J., and

van Dam, J. C., Stricker, J. N. M., and Droogers, P.: Inverse Feyen, J.: A stochastic approach to simulate water flow in
method to determine soil hydraulic functions from multistep  a macroporous soil, Geoderma, 70, 299-31;10.1016/0016-
outflow experiments, Soil Sci. Soc. Am. J., 58, 647-652, 7061(95)00084-41996.
doi:10.2136/ss5aj1994.0361599500580003000294. Mallants, D., Mohanty, B. P., Vervoort, A., and Feyen, J.: Spa-

Durner, W. and Lipsius, K.: Determining soil hydraulic properties, tial analysis of saturated hydraulic conductivity in a soil with
in: Encyclopedia of Hydrological Sciences, edited by: Ander- macropores, Soil Technol., 10, 115-1319i:10.1016/S0933-
son, M. G., chap. 75, John Wiley & Sons, Chichester, UK, 1121- 3630(96)00093-11997.

1143,d0i:10.1002/0470848944.hsa072005. Mertens, J., Madsen, H., Feyen, L., Jacques, D., and Feyen, J.: In-
Efron, B.: Bootstrap methods: another look at the jackknife, Ann.  cluding prior information in the estimation of effective soil pa-
Stat., 7, 1-26¢0i:10.1214/a0s/117634455P979. rameters in unsaturated zone modelling, J. Hydrol., 294, 251—

van Genuchten, M. T.: A closed-form equation for predicting the  269,d0i:10.1016/j.jhydrol.2004.02.012004.
hydraulic conductivity of unsaturated soil, Soil Sci. Soc. Am. J., Mertens, J., Madsen, H., Kristensen, M., Jacques, D., and Feyen, J.:
44, 892-898d0i:10.2136/s55aj1980.03615995004400050002x  Sensitivity of soil parameters in unsaturated zone modelling and
1980. the relation between effective, laboratory and in situ estimates,
van Genuchten, M. T. and Nielsen, D. R.: On describing and pre- Hydrol. Process., 19, 1611-1638)i:10.1002/hyp.55912005.
dicting the hydraulic properties of unsaturated soils, Ann. Geo-Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller,
phys., 3, 615-628, 1985, A. H., and Teller, E.: Equations of state calculations by
http://www.ann-geophys.net/3/615/1985/ fast computing machines, J. Chem. Phys., 21, 1087-1091,
Guber, A. K., Pachepsky, Y. A., van Genuchten, M. T., Rawls, W. J., do0i:10.1063/1.1699114953.
Simiinek, J., Jacques, D., Nicholson, T. J., and Cady, R. E.: FieldMishra, S. and Parker, J. C.. Effects of parameter uncertainty
scale water flow simulations using ensembles of pedotransfer on predictions of unsaturated flow, J. Hydrol., 108, 19-33,
functions for soil water retention, Vadose Zone J., 5, 234-247, doi:10.1016/0022-1694(89)90276-X989.
doi:10.2136/vzj2005.0112006. Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through con-
Heimovaara, T. J. and Bouten, W.: A computer-controlled ceptual models part | — a discussion of principles, J. Hydrol., 10,
36-channel time domain reflectometry system for monitor- 282-290d0i:10.1016/0022-1694(70)902554070.
ing soil water contents, Water Resour. Res., 26, 2311-2316Ritter, A., Hupet, F., Méioz Carpena, R., Lambot, S., and Van-
doi:10.1029/WR026i010p02311990. clooster, M.: Using inverse methods for estimating soil hydraulic
Herbst, M., Prolingheuer, N., Graf, A., Huisman, J. A., Wei- properties from field data as an alternative to direct methods, Agr.
herntliller, L., and Vanderborght, J.: Characterization and under- Water Manage., 59, 77-98pi:10.1016/S0378-3774(02)00160-
standing of bare soil respiration spatial variability at plot scale, 9, 2003.
Vadose Zone J., 8, 762—77d0i:10.2136/vzj2008.0062009. de Rooij, G. H., Kasteel, R. T. A., Papritz, A., andiRler, H.:
Hou, Z. S. and Rubin, Y.: On minimum relative entropy con-  Joint distributions of the unsaturated soil hydraulic parameters
cepts and prior compatibility issues in vadose zone inverse and their effect on other variates, Vadose Zone J., 3, 947-955,
and forward modeling, Water Resour. Res., 41, W12425, doi:10.2136/vzj2004.0942004.
doi:10.1029/2005WR004082005. Schaap, M. G., Leij, F. J., and van Genuchten, M. T.. ROSETTA:
IUSS Working Group WRB: World reference base for soil re- a computer program for estimating soil hydraulic parameters
sources 2006, First update 2007, World Soil Resources Reports with hierarchical pedotransfer functions, J. Hydrol., 251, 163—
103, Food and Agricultural Organization of the United Nations, 176,d0i:10.1016/S0022-1694(01)004662801.
Rome, 2007. Schoups, G. and Vrugt, J. A.: A formal likelihood function for pa-
Ines, A. V. M. and Mohanty, B. P.: Near-surface soil moisture as- rameter and predictive inference of hydrologic models with cor-
similation for quantifying effective soil hydraulic properties un- related, heteroscedastic, and non-Gaussian errors, Water Resour.
der different hydroclimatic conditions, Vadose Zone J., 7, 39-52, Res., 46, W10531d0i:10.1029/2009WR008932010.
doi:10.2136/vzj2007.004@008. Simiinek, J., Sejna, M., Saito, H., Sakai, M., and van
Jacques, D.Simiinek, J., Timmerman, A., and Feyen, J.: Calibra-  Genuchten, M. T.: The HYDRUS-1D Software Package for Sim-
tion of Richards’ and convection-dispersion equations to field ulating the One-Dimensional Movement of Water, Heat and Mul-
scale water flow and transport under rainfall conditions, J. Hy- tiple Solutes in Variably-Saturated Media (Version 4.0), Depart-
drol., 259, 15-31¢l0i:10.1016/S0022-1694(01)005912D02. ment of Environmental Sciences, University of California River-
Kavetski, D. and Kuczera, G., and Franks, S. W.: Bayesian analysis side, Riverside, CA, USA, 2008.

Hydrol. Earth Syst. Sci., 15, 3043659 2011 www.hydrol-earth-syst-sci.net/15/3043/2011/


http://dx.doi.org/10.1029/WR022i002p00211
http://dx.doi.org/10.1029/WR024i005p00755
http://dx.doi.org/10.1016/S0022-1694(00)00227-4
http://dx.doi.org/10.1016/S0022-1694(00)00227-4
http://dx.doi.org/10.2136/sssaj1994.03615995005800030002x
http://dx.doi.org/10.1002/0470848944.hsa077b
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x
http://www.ann-geophys.net/3/615/1985/
http://dx.doi.org/10.2136/vzj2005.0111
http://dx.doi.org/10.1029/WR026i010p02311
http://dx.doi.org/10.2136/vzj2008.0068
http://dx.doi.org/10.1029/2005WR004082
http://dx.doi.org/10.2136/vzj2007.0048
http://dx.doi.org/10.1016/S0022-1694(01)00591-1
http://dx.doi.org/10.1029/2005WR004368
http://dx.doi.org/10.1029/WR024i006p00817
http://dx.doi.org/10.1016/j.advwatres.2004.03.003
http://dx.doi.org/10.1016/0016-7061(95)00084-4
http://dx.doi.org/10.1016/0016-7061(95)00084-4
http://dx.doi.org/10.1016/S0933-3630(96)00093-1
http://dx.doi.org/10.1016/S0933-3630(96)00093-1
http://dx.doi.org/10.1016/j.jhydrol.2004.02.011
http://dx.doi.org/10.1002/hyp.5591
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1016/0022-1694(89)90276-X
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/S0378-3774(02)00160-9
http://dx.doi.org/10.1016/S0378-3774(02)00160-9
http://dx.doi.org/10.2136/vzj2004.0947
http://dx.doi.org/10.1016/S0022-1694(01)00466-8
http://dx.doi.org/10.1029/2009WR008933

B. Scharnagl et al.: Investigating the effect of different prior distributions of the soil hydraulic parameters 3059

Smith, R. E. and Diekkrger, B.: Effective soil water characteristics Vrugt, J. A., Stauffer, P. H., \Bhling, T., Robinson, B. A., and Ves-
and ensemble soil water profiles in heterogeneous soils, Water selinov, V. V.: Inverse modeling of subsurface flow and transport
Resour. Res., 32, 1993-20@1%i:10.1029/96WR01048.996. properties: a review with new developments, Vadose Zone J., 7,

Steenpass, C., Vanderborght, J., Herbst, Blimfmek, J., and 843-864d0i:10.2136/vzj2007.0072008a.

Vereecken, H.: Estimating soil hydraulic properties from infra- Vrugt, J. A., ter Braak, C. J. F.,, Clark, M. P., Hyman, J. M.,
red measurements of soil surface temperatures and TDR data, and Robinson, B. A.: Treatment of input uncertainty in hy-
Vadose Zone J., 9, 910-924pi:10.2136/vzj2009.017&@011. drologic modeling: doing hydrology backward with Markov

Toormann, A. F., Wierenga, P. J., and Hills, R. G.: Parameter esti- chain Monte Carlo simulation, Water Resour. Res., 44, W00B09,
mation of soil hydraulic properties from one-step outflow data, doi:10.1029/2007WR00672@008b.

Water Resour. Res., 28, 3021-302®:10.1029/92WR01272  Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., Higdon, D., Robin-
1992. son, B. A., and Hyman, J. M.: Accelerating Markov chain Monte

Topp, G. C., Davis, J. L., and Annan, A. P.. Electromag- Carlo simulation by differential evolution with self-adaptive ran-
netic determination of soil water content: measurements in domized subspace sampling, Int. J. Nonlinear Sci., 10, 271-288,
coaxial transmission lines, Water Resour. Res., 16, 574-582, 2009.
doi:10.1029/WR016i003p00574980. Wang, W., Neuman, S. P., Yao, T., and Wierenga, P. J.: Simulation

Vereecken, H., Kasteel, R., Vanderborght, J., and Harter, T.: of large-scale field infiltration experiments using a hierarchy of
Upscaling hydraulic properties and soil water flow processes models based on public, generic, and site data, Vadose Zone J.,
in heterogeneous soils: a review, Vadose Zone J., 6, 1-28, 2,297-312, 2003.
doi:10.2136/vzj2006.0052007. Weihermuller, L., Huisman, J. A., Lambot, S., Herbst, M.,

Vereecken, H., Huisman, J. A., Bogena, H., Vanderborght, J., and Vereecken, H.: Mapping the spatial variation of soil
Vrugt, J. A., and Hopmans, J. W.: On the value of soil mois- water content at the field scale with different ground
ture measurements in vadose zone hydrology: a review, Water penetrating radar techniques, J. Hydrol.,, 340, 205-216,
Resour. Res., 44, W00DO0@¢i:10.1029/2008WR006822008. doi:10.1016/j.jhydrol.2007.04.013007.

Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Wohling, T. and Vrugt, J. A.: Multi-response multi-layer vadose
Schaap, M. G., and van Genuchten, M. T.: Using pedotrans- zone model calibration using Markov chain Monte Carlo sim-
fer functions to estimate the van Genuchten-Mualem soil hy- ulation and field water retention data, Water Resour. Res., 47,
draulic properties: a review, Vadose Zone J., 9, 795-820, WO04510,d0i:10.1029/2010WR0092632011.
doi:10.2136/vzj2010.0042010. Wohling, T., Vrugt, J. A., and Barkle, G. F.: Comparison of three

Vrugt, J. A., Bouten, W., and Weerts, A. H.: Information con-  multiobjective optimization algorithms for inverse modeling of
tent of data for identifying soil hydraulic parameters from  vadose zone hydraulic properties, Soil Sci. Soc. Am. J., 72, 305—
outflow experiments, Soil Sci. Soc. Am. J., 65, 19-27, 319,d0i:10.2136/sssaj2007.01,78008.
doi:10.2136/sssaj2001.65112001. Wollschlager, U., Pfaff, T., and Roth, K.: Field-scale apparent

Vrugt, J. A., Bouten, W., Gupta, H. V., and Sorooshian, S.: Toward hydraulic parameterisation obtained from TDR time series and
improved identifiability of hydrologic model parameters: the in-  inverse modelling, Hydrol. Earth Syst. Sci., 13, 1953-1966,
formation content of experimental data, Water Resour. Res., 38, doi:10.5194/hess-13-1953-20@D09.
1312,d0i:10.1029/2001WR001118002. Woodbury, A. and Ulrych, T.: Minimum relative entropy: for-

Vrugt, J. A., Bouten, W., Gupta, H. V., and Hopmans, J. W.: To- ward probabilistic modeling, Water Resour. Res., 29, 2847-2860,
ward improved identifiability of soil hydraulic parameters: on  doi:10.1029/93WR00923993.
the selection of a suitable parametric model, Vadose Zone J., 2Zhang, Z. F., Ward, A. L., and Gee, G. W.: Estimating soil hy-
98-113,d0i:10.2136/vzj2003.0092003a. draulic parameters of a field drainage experiment using inverse

Vrugt, J. A, Gupta, H. V., Bastidas, L. A., Bouten, W., and  techniques, Vadose Zone J., 2, 201-211, 2003.

Sorooshian, S.: A Shuffled Complex Evolution Metropolis al- Zhu, J. and Mohanty, B. P.: Spatial averaging of van Genuchten hy-
gorithm for optimization and uncertainty assessment of hy- draulic parameters for steady-state flow in heterogeneous soils:
drologic model parameters, Water Resour. Res., 39, 1201, a numerical study, Vadose Zone J., 1, 261-272, 2002.
doi:10.1029/2002WR001642003b.

www.hydrol-earth-syst-sci.net/15/3043/2011/ Hydrol. Earth Syst. Sci., 15, 30532011


http://dx.doi.org/10.1029/96WR01048
http://dx.doi.org/10.2136/vzj2009.0176
http://dx.doi.org/10.1029/92WR01272
http://dx.doi.org/10.1029/WR016i003p00574
http://dx.doi.org/10.2136/vzj2006.0055
http://dx.doi.org/10.1029/2008WR006829
http://dx.doi.org/10.2136/vzj2010.0045
http://dx.doi.org/10.2136/sssaj2001.65119x
http://dx.doi.org/10.1029/2001WR001118
http://dx.doi.org/10.2136/vzj2003.0098
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.2136/vzj2007.0078
http://dx.doi.org/10.1029/2007WR006720
http://dx.doi.org/10.1016/j.jhydrol.2007.04.013
http://dx.doi.org/10.1029/2010WR009265
http://dx.doi.org/10.2136/sssaj2007.0176
http://dx.doi.org/10.5194/hess-13-1953-2009
http://dx.doi.org/10.1029/93WR00923

