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Abstract. Catchments show a wide range of response be-
haviour, even if they are adjacent. For many purposes
it is necessary to characterise and classify them, e.g. for
regionalisation, prediction in ungauged catchments, model
parameterisation.

In this study, we investigate hydrological similarity of
catchments with respect to their response behaviour. We
analyse more than 8200 event runoff coefficients (ERCs) and
flow duration curves of 53 gauged catchments in Rhineland-
Palatinate, Germany, for the period from 1993 to 2008, cov-
ering a huge variability of weather and runoff conditions.
The spatio-temporal variability of event-runoff coefficients
and flow duration curves are assumed to represent how dif-
ferent catchments “transform” rainfall into runoff. From the
runoff coefficients and flow duration curves we derive 12
signature indices describing various aspects of catchment re-
sponse behaviour to characterise each catchment.

Hydrological similarity of catchments is defined by high
similarities of their indices. We identify, analyse and de-
scribe hydrologically similar catchments by cluster analysis
using Self-Organizing Maps (SOM). As a result of the clus-
ter analysis we get five clusters of similarly behaving catch-
ments where each cluster represents one differentiated class
of catchments.

As catchment response behaviour is supposed to be de-
pendent on its physiographic and climatic characteristics,
we compare groups of catchments clustered by response
behaviour with clusters of catchments based on catchment
properties. Results show an overlap of 67 % between these
two pools of clustered catchments which can be improved
using the topologic correctness of SOMs.
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(leyrita@uni-trier.de)

1 Introduction

An important task of science in any particular field is to “per-
petually organize a body of knowledge gained by scientific
inquiry” (Wagener et al., 2007). Classification groups to-
gether those systems that are similar, limiting the variability
within classes (McDonnell and Woods, 2004). Thus, classifi-
cation in itself can be a valuable first contribution in gaining
understanding of systems.

In hydrology, a classification of catchments based on a rig-
orous analysis of patterns in observed data is almost non-
existent (McDonnell and Woods, 2004; Woods, 2002). Clas-
sification is a task of learning a classification model that maps
each attribute setx to one of the predefined class labelsy

(Tan et al., 2006). Prior to the use of a classification model
we have to define classes of similar catchments. For example
Burn (1997) used an agglomerative hierarchical clustering
algorithm to define homogeneous regions for catchment re-
gionalization. Basin similarity is expressed using seasonality
measures derived from the mean date of occurrence of the an-
nual maximum flood. Hall and Minns (1999) demonstrated
that Representative Regional Catchments (RRC) whose char-
acteristics are hydrologically more appealing than geograph-
ical proximity might define classes. They employed tech-
niques like Kohonen networks and fuzzyc-means, which
are straightforward in application and were found to iden-
tify broadly similar RRCs. Merz et al. (2006) described
six climatic regions in Austria by Event Runoff Coefficients
(ERCs). ERCs are highly correlated with mean annual pre-
cipitation, but poorly with soil type and land use. Oudin et
al. (2010) defined similarity of catchments on the basis of
model parameter transferability and compared them with a
pool of apparently physically similar catchments.

With respect to this current state of basin classifica-
tion Wagener et al. (2007) provide a review of catchment
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classification and conclude that “there is a need for a classifi-
cation system in which each catchment is another data point
and would increase the understanding about how catchment
functions are defined.” Furthermore, they define require-
ments for a classification framework which “should provide
a mapping of landscape form and hydro-climatic conditions
on catchment function ... while explicitly accounting for un-
certainty and for variability at multiple temporal and spatial
scales.” Thus, opposite to the uniqueness of place concept
(Beven, 2000) and despite the fact that complexity and dif-
ferences between catchments can be overwhelming, patterns
and connections might be discernible according to Wagener
et al. (2007). They therefore place catchment classification as
a necessary step in the advancement of hydrological sciences.

Different classification procedures have been proposed in
the literature. Traditionally, geographically coherent regions
have been applied in regional flood analyses. In most practi-
cal applications (e.g. Stedinger et al., 1992), the regions are
found by expert judgement, i.e. by a subjective assessment
of which catchments one would expect to behave similar in
terms of their runoff behaviour. These subjective consid-
erations are usually based on a personal knowledge of the
analyst of the catchment characteristics, climatic inputs and
runoff response of the catchments. There have also been
a number of attempts at identifying homogeneous regions
by multivariate statistical methods that are used for group-
ing catchments according to their similarity in catchment at-
tributes. Cluster analysis is one of the popular statistical
methods for combining catchments into groups (e.g. Acre-
man and Sinclair, 1986; Burn, 1997). The idea of clus-
ter analysis is to identify groups (regions) in such a way
that the similarity of catchments within one region is max-
imized while similarity between regions is minimized. Other
methods used to form groups are factor analysis, principal
component analysis, artificial neural networks, fuzzy sets
and canonical correlation analyses. A promising technique
for classifying catchment in hydrology is SOM, which, to
our knowledge, have not yet been used before in classifying
catchment response behaviour. Di Prinzio et al. (2011), in
this special issue, also used SOM to classify catchment re-
sponse behaviour, but with a contrasting size of study area
and variables and with a different focus.

A SOM consists of an unsupervised learning neural net-
work algorithm that performs a non-linear mapping of the
dominant structures present in a high-dimensional data field
onto a lower-dimensional grid (Herbst et al., 2009b). More-
over, a SOM represents all input data sets in such a way that
the distance and proximity relationships (i.e. the topology),
are preserved as much as possible. Properties that distin-
guish SOM from other data mining tools are that it is nu-
merical, non-parametric, and insensitive against a small por-
tion of missing data. SOMs represent graded relationships,
provide visualizations of structures in high dimensional data
sets, need no assumptions about data distribution or cluster
shapes and may find unexpected structures in the data (Kaski,

1997). There are only a few parameters to fix before train-
ing a SOM: the distance measure, a neighbourhood func-
tion, normalization and the size of the SOM. Once a SOM
is trained, it can be used for many purposes e.g. detecting
data structures, clustering, visualizing results via plots and
describing clusters. In general, neural networks are good at
solving problems such as classification, prediction, associa-
tion and particularly clustering. SOMs have found diverse
applications in various fields of data mining in business,
engineering, industry, medicine and science (Maimon and
Rokach, 2005). Hall and Minns (1999) used a small SOM for
regionalization of catchments by physical catchment charac-
teristics. Ramachandra Rao and Srinivas (2008) used SOMs
for regionalization of watersheds in Indiana, USA, to iden-
tify plausible regions. Herbst et al. (2009a) used SOMs for
hydrological model evaluation and optimization. Toth (2009)
used SOM to classify hydro-meteorological catchment con-
ditions for streamflow forecasting. Kalteh et al. (2008)
gives an overview of various applications of SOM in hydrol-
ogy e.g. analysis of rainfall-runoff processes, simulation of
surface water quality, clustering ecologic items or remote
sensing methods to cluster soil moisture. They conclude
that “SOM is a promising technique suitable to investigate,
model, and control many types of water resources processes
and systems”.

The main objective of this study is to apply SOMs for
catchment classification by their response behaviour. Clus-
tering of catchments is the first step to build a classification
scheme. Catchments with similar physical catchment prop-
erties may show different runoff behaviour because of cer-
tain combinations of physiographic and climatic properties.
Therefore, we cluster catchments by response behaviour, in-
dependent of these properties. Additionally, using the same
technique, the catchments are grouped independently of their
response behaviour according to their physiographic and cli-
matic catchment attributes, such as mean annual precipita-
tion and mean slope. The comparison of the two independent
grouping results sheds light on the main research questions
of PUB (Sivapalan et al., 2003), i.e. to what extent do catch-
ments with similar physiographic and climatic catchment at-
tributes show similar response behaviour?

Catchment response behaviour is described by signature
indices, derived from event-based runoff coefficients and
flow duration curves. Event-based runoff coefficients offer
information about changes between events and seasons and
give a first idea of the hydrological functioning of the catch-
ment under different conditions. They help to understand
how different landscapes “filter” rainfall into runoff and to
explain observed differences with catchment characteristics
and related runoff mechanisms (Blume et al., 2007). They
are used as a diagnostic variable to represent runoff gener-
ation in catchments, particularly if a range of catchments
and a range of events are to be compared by a single indi-
cator (Merz et al., 2006). The flow duration curve is com-
monly used to indicate and classify watershed functioning,
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summarize the ability of a catchment to produce flow values
of different magnitudes, and is therefore strongly sensitive
to the vertical redistribution of soil moisture within a basin
(Yilmaz et al., 2008).

Compared to studies characterizing catchments by re-
sponse behaviour over large and diverse areas, e.g. in Aus-
tria (Merz et al., 2006), in France and England (Oudin et
al., 2010), in the UK (Yadav et al., 2007) or in Australia
(van Dijk, 2010) the current study area comprises 53 small
to medium-sized catchments in the low mountain ranges of
in Rhineland-Palatinate, Germany. This area was also part of
the study area to describe catchment behaviour with winter
storm flow coefficients in regression models by Hellebrand
et al. (2007).

With respect to the main objective, a four-step approach is
envisaged:

– Step (i) specifies information from hydrological catch-
ment characteristics obtained from hydrograph analy-
sis: event-based runoff coefficients and flow duration
curves.

– Step (ii) uses Self-Organizing Maps (SOM) for cluster-
ing catchments with similar response behaviour and de-
scribes clusters as a basis for classification. Addition-
ally we implement Hierarchical Clustering on the SOM
to define the number of classes and cluster borders.

– Step (iii) clusters catchments by important physical
catchment properties with the same method like (ii).

– Step (iv) compares both pools of clusters as a review of
interpretability of the clustering by response behaviour.
Furthermore it allows connecting catchment behaviour
with physical catchment properties as a basis for catch-
ment classification covering both kinds of catchment
characteristics.

The implementation of these four steps pursues a scale-
independent and region-independent basin classification
method which lies in line with the classification system as
proposed by Wagener et al. (2007). However, it should be
noted that this study does not propose a universal classifi-
cation system, but merely tries to uncover the potential of
a basin classification method in a rather geographically re-
stricted area.

2 Data and methodology

2.1 Study area

The study area consists of 53 small to medium-sized gauged
catchment areas in Rhineland-Palatinate, Germany (Fig. 1a).
The catchments are situated in the low mountain ranges
of the Rheinisches Schiefergebirge, the Saar-Nahe-Bergland
and the Rhine Valley. Most of the catchments belong to

the basins of Ahr, Wied, Lahn and Nahe, which all drain
to the river Rhine. Five catchments drain directly to the
Rhine. Among the 53 catchments there are 35 upstream
catchments; three catchments are triple nested. The catch-
ments areas vary from 9 to 1469 km2, 46 catchments areas
are less than 400 km2 and 2 are larger than 1000 km2. El-
evation ranges from about 100 m a.s.l. in the Rhine valley
up to 818 m a.s.l. in the Hunsrück, mean elevation is about
341 m a.s.l. Geology differs from schist, greywacke, and
quartzite in the Rheinisches Schiefergebirge to sedimentary
rock in the Saar-Nahe-Bergland and Rhine Valley. Many wa-
tersheds are characterised by tertiary and quaternary volcan-
ism (basaltic rocks, pumice stone and tuff).

Mean annual precipitation ranges from 530 mm yr−1 in the
south-east up to 1108 mm yr−1 in the west and north (study
period 1993–2008, Fig. 1b). Almost all watersheds are rural
with little urbanization except for four catchments which are
moderately urbanized (11 % to 14 %). The main land use
is agricultural, but varies between 7 % and 90 % for single
catchments. Some watersheds, especially in the southeast,
support viticulture and orchards.

2.2 Data

For the data-driven classification method, hourly runoff and
areal precipitation data for the period from January 1993 to
December 2008 are available. These time series cover a wide
range of diverse annual or seasonal precipitation and runoff
events: from years with high precipitation and exceptionally
heavy floods like 1993 or 1995 to years with very dry sum-
mer periods like 2003.

Aerial precipitation was calculated with “InterMet” (Ger-
lach, 2006), which interpolates meteorological data us-
ing kriging technique. To calculate aerial precipitation
for Rhineland-Palatinate and adjacent areas, InterMet takes
into account data form about 200 rain gauges, meteoro-
logical data, prevailing atmospheric conditions, orography,
and satellite and radar data. Typical rainfall fields extend
in the range of most of the catchment sizes. In summer
some mostly convective rainfall events affect only parts of
catchments.

2.3 Methods

As described in the introduction, a four-step method is pur-
sued for a catchment classification method. This section ex-
plains the indices describing physical catchment properties
and the analytical methods.

2.3.1 Event-based runoff coefficients

This study uses the Event-based Runoff Coefficient (ERC) as
described by Merz et al. (2006) and Norbiato et al. (2009).
ERCs describe the rainfall amount that appears as a
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Fig. 1. Study area:(a) 53 catchments in Rhineland-Palatinate, Germany and(b) mean annual precipitation 1993 to 2008. Note that some
catchments are nested, so their areas overlap. Smaller catchments are plotted on top of larger ones.

significant runoff above base flow, directly following the cor-
responding rainfall as given in Eq. (1).

ERC =

∑
Qd

Aeo ·
∑

prec · 1000
(1)

with:
ERC = Event Runoff Coefficient
Qd = direct event runoff [m3 h−1]
Aeo= catchment area [km2]
prec = areal event precipitation [mm h−1].
The method of Merz et al. (2006) was developed for catch-
ments in Austria. For this study we modified some param-
eters responsible for catchment separation to optimize the
method for catchments in Rhineland-Palatinate.

Comparing the resulting ERCs with manually calculated
ERCs for 17 catchments in Rhineland-Palatinate verifies
them. The comparison between manually and automatically
calculated coefficients indicates a good fit with a mean dif-
ference to all manually calculated coefficients of about 0.05.
The same set of adapted criteria is used for all catchments in
this study.

ERCs are calculated by a four-step approach:

a. Separation of observed runoff into baseflow and direct
flow using the digital filter proposed by Chapman and
Maxwell (1996).

b. Identification of peak flows, start and end of events and
event-rainfall as described by Merz et al. (2006). A peak
flow was identified with direct runoff twice as high as
baseflow and with no larger flow 12 h before and after.
To assist in event separation, a characteristic time scale
of the runoff dynamics of each runoff peak was esti-
mated. Start and end of an event were searched in an
iterative process with the characteristic time scale and
thresholds to find the time where the direct runoff at
the beginning and end of an event is as small as pos-
sible (Merz et al., 2006). Event rainfall was defined as
the amount of rainfall within a time period before start
and end of an event depending on the characteristic time
scale.

c. Calculation of event runoff and rainfall volume and es-
timation of ERCs following Eq. (1).

d. The calculated ERCs contain unsuitable events which
are: very small events, events with insufficient data
or poor event separation and events caused by snow
melting.

We exclude very small events with a rainfall amount less
than 5 mm or a maximum discharge less than the long-
term mean discharge measured separately for summer
and winter. Frequently, these events are not separated
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accurately or display only low fluctuations of discharge.
These exclusions affect events in summer and winter
and are independent of resulting ERC.

Events caused by snow melt following a special dy-
namic of runoff and do not play a major role for the
response behaviour in the study area.

Unsuitable events are eliminated from the data set to
improve data quality. Eliminated events with very high
discharge or precipitation are checked and in case of
poor separation manually calculated and saved for anal-
ysis. The two events with the highest ERCs are verified
by visual inspection and manual recalculation.

To represent all ERCs of one catchment, we use the Empir-
ical Cumulative Distribution Function (ECDF). The ECDF
is associated with the empirical measures of the sample,
i.e. it estimates the true underlying distribution function of
the points of a sample. Steep slopes of the ECDF indicate an
independency of actual catchment conditions. Flat slopes of
the ECDF indicate a high variability of ERCs influenced by
actual catchment conditions.

2.3.2 Flow duration curves

For additional information about runoff behaviour concern-
ing direct runoff data, we use Flow Duration Curves (FDC).
The FDC is the complement of the cumulative distribution
function of streamflow. In an FDC, discharge is plotted
against exceedance probability and shows the percentage of
time that a given flow rate is equalled or exceeded and pro-
vides a probabilistic description of stream flow at a given
location. A steep slope of the FDC indicates flashiness of the
stream flow response to precipitation input whereas a flat-
ter curve indicates a relatively damped response and a higher
storage (Yadav et al., 2007).

Normalization of runoff allows for a comparison of FDC
and can be done by mean (e.g. Yadav et al., 2007), by median
(e.g. Clausen and Biggs, 2000) or by catchment area. Oppo-
site to common daily, monthly and annual FDCs (e.g. Vogel
and Fennessey, 1994; Yadav et al., 2007), we use FDCs based
on hourly discharge.

2.3.3 Indices

As homogenous regions may be found for almost any set of
variables (Nathan and McMahon, 1990), the selection of the
most appropriate set of indices constitutes an important step.

A single characteristic cannot describe all facets of catch-
ment response behaviour. Therefore, we calculated a huge
amount of indices which describe, seen by themselves, im-
portant aspects of runoff behaviour. Indices representing
ERCs are statistically derived from data of all ERCs of one
catchment, again separately for summer and winter. Indices
from FDCs following the “signature measures” of Yilmaz et
al. (2008) describe high, medium and low flow segments of

the FDCs. A correlation analysis shows very high correla-
tions between many of these indices. High correlated indices
(Spearman’s rho>0.8; Spearman, 1904) do not bring new in-
sights into the analysis and therefore were excluded. On the
other hand, we consider an even distribution of indices with
respect to season, high and low flow and the importance of
indices. As a result of the weighting and selection processes
12 significant indices are identified (Table 1). Six indices de-
scribe mean and median ERCs, their variability and seasonal-
ity and two indices characterise the mid and high segment of
the ECDFs. Four indices from the FDC describe catchment
behaviour of high, intermediate and low flow. The values
of these 12 indices characterise the unique runoff response
behaviour of one catchment.

2.3.4 SOM

The 12 indices describing catchment response behaviour of
one catchment (Table 1) can be seen as a vector that spans
a high-dimensional data space. The data set of each catch-
ment, which is called input vector, represents the response
behaviour of a catchment. For exploratory data analysis of
these high-dimensional data spaces of many catchments, we
use a Self-Organizing Map (SOM) which is first described
1982 by Teuvo Kohonen (Kohonen, 1982). A SOM is an un-
supervised learning algorithm based on artificial neural net-
works to produce a low-dimensional representation of a high-
dimensional input data set. The goal of training a SOM is to
present input vectors in an easily understandable form that
preserves as much of the essential information in the data as
possible. Kohonen (2001) provides a detailed description of
the algorithm and its properties.

A SOM consists of centroids called neurons which are or-
ganized on a regular grid. Each neuron is represented by
a prototype vector with the same dimension as the input
vectors.

There are two primary quality properties of SOM: repre-
senting input data and data topology accuracy. The quality
of data representation is usually measured using a quantisa-
tion error defined by Euclidian distance between input vec-
tors and prototype vectors. The quantisation error should be
as small as possible, but there is no universal reference for it.
The prototype vector with the lowest quantisation error to a
certain input vector is called the Best Matching Unit (BMU)
and is the basis for assigning input vectors, and thus catch-
ments, to neurons. Moreover, the quantisation error of the
whole SOM measures the data representation by the average
Euclidian distance between input vectors and their associated
BMU. The topologic error measures the topologic represen-
tation: the percentage of two prototype vectors that are clos-
est to a given input vector but are not neighbours on the map
lattice.

The number and composition of neurons, which constructs
the dimension of the SOM, can be determined automatically
by means of a heuristic algorithm (Vesanto et al., 2000) or
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Table 1. Indices describing catchment behaviour.

index name calculation information

mean runoff Mean Mean =1m
m∑

j=1
ERCj overall feature of ERC,

coefficient ERCj = event runoff coefficient of eventj highly correlated to
m = number of events many other indices

coefficient of CV CV =

√
1

m − 1

m∑
j=1

(
ERCj − Mean

)2

Mean variability of ERC
variation

seasonality Season Season =mean Winter− mean Summer
Mean differences

between winter
and summer

median Summer MedianSm MedianERC from Mai to October central tendency of

median Winter MedianWi Median ERC from November to April magnitude of ERC
in summer or winter

coefficient of CVWi CV of ERC from November to April variability of ERC
variation in in winter
Winter

slope of the QSM QSM =0.8 quantile− 0.2 quantile
mean variability in

ECDF, me- medium range of
dium range runoff-coefficients

slope of the QSH QSH =1.0 quantile− 0.8 quantile
mean variability in high

ECDF, high range of runoff-
range coefficients

high-flow MWH MWH =

H∑
h=1

Qh

H
watershed

segment h = 1, 2, ...H flows with exceedance response
volume of probabilities<0.02 to large
the FDC precipitation events

low-flow MWL MWL =

L∑
l=1

Ql

H
long-term

segment l = 1, 2, ...L flows with exceedance sustainability
volume of probabilities 0.7–0.9 of flow
the FDC (0.9 instead of 1.0 be-

cause of interpolated
missing data 0.9 to 1.0)

mid segment MS MS =m2 − m7 vertical
slope of the m2, m7: flow exceedance redistribution
FDC probability 0.2 and 0.7 of water

high segment HS HS =m0.005−m2 variability of
slope of m0.005,m2: flow exceedance watershed
the FDC probability 0.005 and 0.2 response to large

precipitation events
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manually. Small SOMs with few neurons often do not cover
the complete variance of the input vectors and minimize in-
terpretability; large maps perform a vague clustering.

If we want to cluster without a predefined number of clus-
ters and get different levels of clustering that allow interpre-
tations of cluster, we have to train a SOM with more neurons
than the estimated number of clusters but small enough to
define clusters. We choose the number of neurons after com-
parison of differently sized SOMs to get a SOM with a rea-
sonable quantisation error, no topologic error, evident levels
of clustering and a high interpretability.

Prior to the SOM training, each index has to be normal-
ized to ensure that all indices have equal importance inde-
pendent from their values. All indices are scaled linearly so
that the variance of each is equal to one. Although indices
can be weighted individually, we prefer to weight all indices
equally. However, the choice of indices is a kind of weight-
ing in itself.

The competitive and cooperative training algorithm com-
pares the Euclidean distance of an input vector to all pro-
totype vectors of the SOM. Next, the neuron with the most
similar prototype vector and its neighbours are adjusted to-
wards the input vector. At each training step of the SOM
sequential training, one input vector is chosen randomly and
processed to the SOM to update the closest and nearby neu-
rons. In the course of the training, the prototype vectors and
their neighbours are “tuned” to all input vectors. The neu-
rons of the SOM gradually specialize to represent the input
and become ordered on the map lattice with nearby neurons
having similar data items. The final prototype vectors form a
discrete approximation of the input data distribution (Herbst
et al., 2009b).

As an alternative to the sequential approach, we use the
batch training algorithm of the “SOM-Toolbox for Mat-
lab 5”, described in Vesanto et al. (2000), Herbst and
Casper (2008) and Herbst et al. (2009b). Instead of using
a single data vector at a time, the whole data set is presented
to the map before any adjustments are made. In each training
step, the data set is partitioned according to the Voronoi re-
gions of the prototype vectors, i.e. each input vector belongs
to the data set of the neuron to which it is closest. After this,
the prototype vectors are updated according to the weighted
average of the input samples (Vesanto et al., 2000). The batch
training algorithm speeds up the training process, does not
need a learning rate factor and makes the SOM independent
from a random choice of dataset at start of the training, which
makes a SOM reproducible.

A SOM forms a semantic map where similar samples are
mapped closer together and dissimilar apart and can be used
for visualizing different features. Popular visualizations of
SOMs, used in this paper are:

a. U-matrix (Fig. 4a): visualizes distances between two
neighbouring neurons as well as the median distance
from each neuron to its neighbours, and thus shows the

cluster structure of the map: high values indicate cluster
borders; uniform areas of low values indicate clusters
themselves.

b. Component planes (Fig. 4b): show mean values of each
index onto neurons and allows recognizing separating
factors between clusters.

c. Assignment of catchments to neurons (Fig. 4c): labels
input vectors represented by catchment numbers to their
corresponding BMU.

d. Distribution of index properties for each neuron (Fig. 7)
demonstrated by bar charts.

All visualizations are linked by position: in each figure, a
certain position corresponds to the same neuron.

2.3.5 Hierarchical clustering

Hierarchical clustering is also an unsupervised method like
a SOM. In its agglomerative approach it starts with single
data points as individual clusters and at each step merges the
closest pair of clusters until one cluster remains. This re-
quires the definition of cluster proximity. In this study we use
the unweighted group average distance which defines cluster
proximity as the average pairwise proximity among all pairs
of points in different clusters. Usually the result is displayed
as a tree-like diagram called dendrogram which displays both
the cluster-subcluster relationships and the order in which the
clusters were merged (Tan et al., 2006). The lengths of the
limbs of the dendrogram show the proximity of cluster or
points. Data items can be clustered by cutting the dendro-
gram at a desired level.

3 Results

3.1 Runoff coefficients and flow duration curves

A total of 8259 Event Runoff Coefficients (ERCs) for 53
catchments were analysed, which corresponds to 100 to
200 events per watershed. There is a large variability in
the ERCs. Figure 2 shows the distribution of the ERCs for
18 randomly selected catchments for a yearly (a) and sea-
sonal (b and c) analysis. The 18 selected catchments repre-
sent a wide range of catchment behaviour and show differ-
ences of ERC between catchments. For lack of space, it is
not possible to show all 53 boxplots in this figure.

Single runoff coefficients range from 0.003 to 0.89. The
yearly mean runoff coefficients range from 0.03 to 0.36.
Most catchments show a strong seasonal trend with higher
ERCs in winter (Fig. 2b) and lower ERCs in summer
(Fig. 2c). Mean runoff coefficients in summer range
from 0.02 to 0.15, while in winter they range from 0.05
to 0.56. Although, ERCs tend to be low in summer,
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Fig. 2. Boxplots of ERC for 18 catchments for(a) the entire
year,(b) winter and(c) summer. The boxplots show the 25th and
75th percentile, the median, values inside the interquartile range
from the box and outliers of the event runoff coefficients. The green
lines indicate the mean ERC. The widths of the boxes are propor-
tional to the square-roots of the number of ERCs for this catchment.

some single summer events with larger ERCs occur in each
catchment.

These outliers are caused by intensive convective precipi-
tation events often in combination with heavy thunderstorms.
Variability of ERCs tend to be larger in winter than in sum-
mer, but most catchments show less skewed distributions and
relative short boxes which indicate the 25th and 75th per-
centiles in Fig. 2b. Thus, during winter, 50 % of the events
of a catchment reach an analogous ERC, whereas the other
50 % display a much higher variability.

Event durations are between less than one day and many
days.

The Empirical Distribution Functions (ECDFs) in Fig. 3a
display the distribution of ERCs for each catchment. The
lower part of the ECDFs is dominated by very low ERC that
occur in summer. The ECDFs show characteristic shapes for
each catchment.

To compare the FDCs of different catchments by their re-
sponse behaviour we have to normalize them in a way that
influences of physiogeographic and hydroclimatic conditions

are mostly excluded. Normalization by catchment area
shows high influences of mean annual precipitation and is
therefore not suitable for this study. Normalization by mean
results in FDCs not well distinguishable for low exceedance
probabilities and shows a high dependence of extreme val-
ues, covered by other indices in this study. Therefore, runoff
for FDCs is normalized by its median value (Q.5) to elim-
inate most of the influences of mean annual precipitation,
catchment area and extreme high or low flow and get well
distinguishable FDCs. The FDC (Fig. 3b) show a wide range
of runoff behaviour in all segments from flat curves to steep
curves. Moreover, even in the geographically restricted re-
gion which includes nested catchments there are quite dif-
ferent response characteristics suitable for comparison and
clustering.

3.2 Clustering by catchment response behaviour

In this paper two or more catchments are assumed to be-
have similar if similarity in the ECDFs and FDCs are given.
Catchments with similar response behaviour are grouped by
training a SOM and implementing hierarchical clustering on
the SOM.

The dimension of the SOM is manually adjusted to 30 neu-
rons on a 5× 6 grid. This dimension has optimal explanatory
power of the U-matrix (Fig. 4a) and a topological error of
zero.

The SOM grid with the assignment of 53 available catch-
ments to neurons (Fig. 4c) shows 25 neurons labelled with up
to four catchment numbers. Catchments that are labelled to-
gether on one neuron can be considered as behaving similar
and build the smallest unit of clustering. SOM reduces the
variability of 53 catchments to 25 neurons. To further reduce
the number of groups we apply a cluster analysis. The U-
matrix (Fig. 4a) shows obviously different parts of the map:
two blue-coloured regions in the upper part indicate units
with a high degree of similarity, which can be seen as sep-
arate clusters. A row of red and orange colours separates
the two bottom rows of neurons from the remaining map and
builds a cluster border. Further visual clustering or setting of
cluster borders is difficult. Therefore, we perform hierarchi-
cal clustering on the SOM. The dendrogram (Fig. 5) shows
the arrangement of five reasonable clusters, which are named
with capital letters A to E. The transfer of the cluster from
the dendrogram to the U-matrix of the SOM is displayed in
Fig. 5 as well. With the help of the assignment of catch-
ments to neurons (Fig. 4c) we can relate catchments to the
clustering. Despite overlapping ECDFs and FDCs (Fig. 6),
the clusters are clearly visible in both diagrams. The spatial
distribution of clustered catchments (Fig. 6) shows a group-
ing of catchments with similar response behaviour, but also
some catchments which do not belong to a group.

Quantisation errors of input vectors to their Best Match-
ing Unit (BMU) indicate the adequateness of representing
catchment data by the BMU. Most of the input vectors have
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a) b) 

Fig. 3. Catchments response behaviour of 53 catchments for the entire year:(a) empirical cumulative distribution functions of event runoff
coefficients and(b) flow duration curves, normalized by median.

Fig. 4. Visualizations of a SOM:(a) unified distance matrix: neurons of the SOM are indicated by numbers. It shows structures by
visualising distances between neighbouring neurons and, on additional hexagons between neurons, median distances between two neurons.
(b) Component planes for each index display mean values of each index on the neurons of the SOM.(c) Assignment of catchments to neurons
labels catchment IDs to their corresponding BMU1. All visualizations of SOMs are linked by position: in each figure, a certain position
corresponds to the same neuron.

quantisation errors less than 2.7, 58 % are below 1.6. For
comparison: the general quantisation error is 1.64. But four
catchment data sets have very high quantisation errors be-
tween 2.98 and 4.43. These catchments (3, 4, 21 and 31),
labelled to neurons at the edge of the SOM, can be consid-
ered having special response behaviour, not very well cov-
ered by the SOM. They display extreme values for most of

the indices. Because every two of these catchments match to
one neuron they can be considered forming two sub-clusters.

With the information from the component planes (Fig. 4b)
and the distribution of index properties for each neuron
(Fig. 7), we can characterise each cluster by a special com-
bination of aspects of the response behaviour, listed in Ta-
ble 2. All clusters except cluster B show either very high or
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Fig. 5. Dendrogram on SOM and U-matrix with cluster. Numbers in the dendrogram correspond to neuron numbers on the U-matrix; capital
letters indicate clusters.

Fig. 6. Clusters by catchment response behaviour: empirical distribution function of event runoff coefficients, flow duration curve
(limb < 50 %) and spatial distribution. The striped catchments in the map are borderline cases, shown in colours of their first and second best
cluster. Note, some catchments are nested, so their areas overlap. Smaller catchments are plotted on top of larger ones.

low values of one or more characteristic aspect of runoff re-
sponse, which makes them distinguishable from each other.
This discernibility is a clear indication of the potential of
the SOM to build classes of similar behaviour. Cluster B
shows a medium response behaviour indicated by medium
values of all indices. These clusters will be discussed and
interpreted together with physical catchment properties in
Sect. 3.4 (Comparison).

A possible disadvantage to our and many other methods
of classification is the certainty of the allocation of catch-
ments to a particular class. Classes of similar catchments
by response behaviour or by physical catchment characteris-
tics do not show sharp borders, especially for catchments in

a geographically restricted area. This is the case with most
classifications in hydrology and other earth sciences where
heterogeneity is involved (Merz and Blöschl, 2003). These
cases may cause allocation of similar catchments to differ-
ent clusters. To overcome this, Hall and Minns (1999) used
fuzzy c-means to draw attention to “borderline” cases hav-
ing significant membership levels of more than one class and
raised the question how to proceed with borderline cases.
The topological correctness of the SOM in combination with
the quantisation errors addresses this problem. A borderline
catchment is identified as catchment that is labelled to neigh-
bouring neurons with a not exceeding medium distance and
belonging to different clusters. As a decisive criterion for
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Fig. 7. Distribution of index properties for each neuron as bar charts. Lines indicate cluster border, letters cluster names.

Table 2. Characteristics of cluster A to E by catchment response
behaviour.

characteristic

cluster runoff variability seasonality reactivity
coefficients runoff runoff runoff

coefficients coefficients

A ∼ – – –
summer:+

B −− + + −−

C – ∼ −− –
winter++

D ++ −− −− +

E + ++ ++ ++
summer:–

with: ++ very high, + high,∼ medium,−− low, – very low

borderline catchments we use their quantisation errors to the
BMU and to the neuron of the neighbouring cluster. Catch-
ments with a similar quantisation error to different neurons
can be recognized as belonging to two neurons and thus may
belong to two clusters. With this procedure, we can im-
prove clustering and areal grouping of catchments (Fig. 6).
We can identify three borderline cases (catchments 1, 26 and
43) from the clusters by response behaviour. They belong
to neurons at the edge of a cluster with medium distance to a
neighbouring neuron of another cluster. In their first 6 BMUs

there is a frequent change between both clusters with slightly
increasing quantisation errors. Therefore, we assign them to
both clusters: catchment 1 to B and C, catchment 26 to A and
B and catchment 43 to D and A.

3.3 Physical catchment properties

A list of physical catchment properties is compiled from a
digital elevation model and different digital sources that de-
scribe catchment size, flow length, drainage density, topog-
raphy, geology, soils, land use and climate of the catchments.
All of them have more or less impact on runoff.

Yadav et al. (2007) recognised that using too many dy-
namical properties simultaneously often results in a rejec-
tion of all models, which is also our experience. Further-
more, different degrees of influence make it necessary to
weight and choose certain groups of catchment characteris-
tics. To reduce this amount of indices and to avoid redun-
dancies, we eliminate all indices with high correlation co-
efficients (Spearman’s rho>0.8; Spearman 1904) to other
indices. From the remaining indices, we choose indices with
high correlation to indices of runoff behaviour considering
physical indices identified in other studies as most important
for runoff behaviour.

For the chosen indices describing runoff behaviour catch-
ment size effects are not observable. A correlation analy-
sis of catchment size and runoff indices showed the largest
correlation (Spearman’s rho; Spearman, 1904) between size
and MWL of 0.47 and HS−0.38, both indices are derived
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from the flow duration curve. Correlation coefficients be-
tween catchment size and the other indices are consider-
ably lower. Within the 46 catchments (87 %) smaller than
370 km2, correlation coefficients show no correlation be-
tween catchment size and the chosen runoff indices. Also
Merz and Bl̈oschl (2009) found no correlation of mean event
runoff coefficients and their variability to catchment size for
catchments in Austria. Yadav et al. (2007) suggest that catch-
ment area isn’t the most important physical characteristic de-
scribing response behaviour for English catchments.

The result of the selection process to find responsible
catchment attributes for the study region are six meaningful
catchment properties:

– Mean Annual Precipitation 1993–2008 (MAP),

– mean long-term potential evaporation (ET), calculated
from raster data of the mean annual potential grass ref-
erence evapotranspiration from the “Hydrological Atlas
of Germany” for the period from 1961 to 1990 (Bun-
desministerium f̈ur Umwelt, Naturschutz und Reaktor-
sicherheit, 2000),

– Wetness index: ratio of MAP to ET (Wet),

– mean slope derived from a digital elevation model with
a resolution of 20 m (Slope),

– average field capacity derived from Bodenübersichts-
karte 1:200 000 von Rheinland-Pfalz (BÜK 200) (FK),

– percentage of area with intense to medium ground
water recharge, derived from Hydrologischer Atlas
Rheinland-Pfalz and GeologischëUbersichtskarte von
Rheinland- Pfalz 1:300 000 (GUEK 300) (GW).

Climate and antecedent soil moisture are suggested as a ma-
jor control in runoff generation (Sankarasubramanian and
Vogel, 2002; Yadav et al., 2007; Merz and Blöschl, 2009).
Therefore, half of the used indices describe climate. The
wetness index as an expression of long-term water balance
is highly correlated with MAP. Using MAP and the wetness
index can also be seen as a weighting of MAP as the most
important catchment property.

The spatial arrangement of clusters by behaviour (Fig. 6)
follows a simplified gradient of increasing mean annual pre-
cipitation (MAP) from East to West and South to North.
There is a high correlation between MAP and mean ERCs
with a trend of increasing mean ERCs with increasing MAP.
With increasing MAP, it becomes more likely that initial con-
ditions are wet, thus enhancing runoff generation. The sea-
sonal variability of ERCs (Fig. 2) reveals the changes in an-
tecedent soil moisture and evapotranspiration. Climate has
the largest influence on runoff behaviour not least by influ-
encing drainage characteristics, controlling geomorpholog-
ical structures, soils and vegetation (Sivapalan, 2005; Nor-
biato et al., 2009).

Pfister et al. (2002) and Hellebrand et al. (2007) found a
strong relationship between winter storm flow coefficients
and the permeability of the substratum for catchments in
the Grand Duchy of Luxembourg and Rhineland-Palatinate
which is represented here by the average field capacity and
the ground water recharge.

Other catchment properties like flow length, catchment
size, slope heterogeneity or land use show no important in-
fluence on the chosen indices of runoff behaviour or are elim-
inated because of high correlation to included indices.

Note, that because of not available data for all catchments,
clustering of catchments by physical properties and compar-
ison of catchments (Sect. 3.4) is based on 45 catchments.

Training a SOM with 4× 7 neurons and performing hi-
erarchical clustering on the SOM, the same method as used
before, lead to 5 reasonable clusters of catchment properties
(Fig. 8). The SOM grid with the labelled neurons (Fig. 8d)
shows a clustering of the 45 catchments on 22 neurons. There
are up to 4 catchments labelled on one neuron, building the
smallest unit of clustering. The dendrogram (Fig. 8a) justifies
the choice of five clusters, which are named with roman nu-
merals I to V. With the help of the labelled neurons (Fig. 8d)
and the component planes (Fig. 8c), we characterise these
clusters as described in Sect. 3.4 (comparison).

Within the clusters by physical catchment properties we
identify 5 borderline catchments: 1, B and C; 26, A and B;
27, B and E; 39, C and B; 43, D and A.

3.4 Comparison

The spatial variability of catchment response behaviour is
supposed to be dependent on its physiographic and climatic
characteristics. Following this a priori assumption, we search
for corresponding clusters of catchments with similar phys-
ical catchment characteristics to illustrate the plausibility of
the classification by response behaviour.

For each cluster of catchment behaviour, we counted the
number of catchments matching a certain cluster of catch-
ment properties (Table 3). Corresponding clusters show the
highest overlap of catchments (Table 3, yellow). For most of
the clusters, the number of shared basins allows a clear as-
signment. Only catchments from clusters B and IV cannot
be clearly assigned to a corresponding cluster. Furthermore,
clusters B and IV both represent medium response behaviour
and medium catchment properties, i.e. they show reasonable
corresponding catchment properties. Therefore, we assign
cluster B to cluster IV. Attaching borderline catchments to
their second best cluster (Table 3) supports the assignment B
to IV.

The overlap between the two cluster sets is about 67 %.
This result complies with Oudin et al. (2010) who found an
overlap between hydrologically similar catchments and sets
of physical catchment properties of 60 % in France and Eng-
land. However, they used parameters of hydrological mod-
els and other physical catchment properties. Moreover, their
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Fig. 8. SOM and clusters by physical catchment properties.(a) Dendrogram of SOM indicates cluster I to V,(b) unified distance matrix
with neurons indicated by numbers and clusters; shows structures by visualising distances between neighbouring neurons and, on additional
hexagons, median distances between two neurons.(c) Component planes for each index display mean values of the index onto the neurons
of the SOM.(d) Assignment of catchments to neurons labels catchment IDs to their corresponding BMU1. In each figure, a certain position
corresponds to the same neuron.

study area with 893 catchments is much larger than ours.
This may indicate a possibility for classification and accom-
panying problems across scales.

Corresponding clusters show appropriate catchment prop-
erties (clusters I to V) and catchment response behaviour
(clusters A to E):

– I: Very steep catchments with low water storage capac-
ity, low MAP and high ET; it correspond to E with
high ERCs and very high variability, seasonality and
reactivity.

– II: Low slopes, high water storage capacity but dry with
high ET; corresponds to C with very low ERCs and
reactivity, low seasonality and medium variability but
high variability in winter.

– III: High mean slopes, very low water storage capaci-
ties, high MAP and low to medium ET; it correspond
to two quite different clusters: A and D. With these

catchment properties one would expect high ERCs and
reactivity and low variability and seasonality – as in
cluster D, not cluster A. In this case we can assume a
lack of important physical characteristics in the analy-
sis. Most of the catchments of cluster A are larger, shal-
lower, have larger flow lengths, larger drainage density
and have more agriculturally used areas and less forests
than catchments of cluster D.

– IV: No exceptional values at all; it corresponds to B.
Both clusters show medium values for all aspects of
response behaviour as well as of physical catchment
characteristics.

– V: Very flat catchments, very high ground water
recharge and MAP, low ET; it corresponds to A with
medium ERCs, very low variability, seasonality and
reactivity.
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Table 3. Overlap between clusters of response behaviour (A to E)
and clusters of catchment properties (I to V). Numbers indicate the
number of corresponding catchments. Numbers in brackets indi-
cate the number of corresponding catchments considering border-
line catchments assigned to their second best cluster. Correspond-
ing clusters are marked in yellow.

response behaviour

A B C D E
catchment
properties

I 1 (1) 3 (1) 5 (5)

II 1 (−) 5 (8)

III 6 (7) 2 (2) 7 (8)

IV 3 (−) 2 (3) 2 (2) 2 (1)

V 5 (7) 1 (−)

4 Discussion

Although the study area is comparatively small and homo-
geneous and there are many nested catchments, the indices
describing catchment response behaviour show a high dis-
criminating power and enable us to characterise catchments.
Clustering of catchments by their response behaviour as well
as by their physical properties leads to five clusters, each rep-
resenting different facets of flow regimes or types of catch-
ments. The comparison of the two pools of clusters show
plausible classes of catchments. Each class of response be-
haviour represents different facets of flow regimes and can be
characterised by high or low values of special aspects of re-
sponse behaviour. Two classes are determined by steep flow
duration curves and by the highest ERCs. This behaviour
corresponds with steep catchment slopes and low water stor-
age capacities. Different mean annual precipitation causes
corresponding higher or lower runoff coefficients. Catch-
ments with flatter flow duration curves display the lowest
runoff coefficients. Moreover, due to their higher water stor-
age capacities low seasonality and variability of ERCs are
apparent. Within this group of catchments, differences in
mean annual precipitation and potential evapotranspiration
cause different runoff coefficients.

The comparison of clusters based on (i) response be-
haviour and (ii) physical catchment properties can be seen
as a review of interpretability of the clustering by response
behaviour. It allows connecting catchment behaviour with
physical catchment properties as a basis for catchment clas-
sification covering both kinds of catchment characteristics.
Most of the catchment characteristics, which are obtained by
the classification method, can be interpreted well.

In Sect. 3.2, we define borderline catchments as catch-
ments on the border of two clusters, near the overlap. We

can identify 3 borderline catchments in the clusters based on
runoff behaviour and 5 borderline cases in the clusters based
on physical catchment properties. If we assign these 8 bor-
derline catchments to their second best cluster, we improve
the overlap between the two pools of clusters from 67 % to
84 % (Table 3).

Thus, we divide the classified catchments into three
groups:

1. catchments within the overlap: catchment behaviour
is closely related to the considered physical catchment
properties,

2. catchments near the overlap: catchment behaviour is re-
lated to the considered catchment properties and addi-
tional property(s),

3. catchments outside the overlap: individual physical
catchment properties are responsible for catchment re-
sponse behaviour.

The Classification of catchments in group (1) is clear. For
the classification of catchments in group (2), we may define
a differing class taking into account additional facts. Catch-
ments of group (3) represent a subclass which is caused by
special catchment properties. This subclass of catchments
with similar behaviour but different physical catchment prop-
erties describes a so called “process equifinality” in the
runoff signal (Hellebrand et al., 2011). Different processes
producing the same values of discharge characteristics in dif-
ferent basins. For example, catchment 28 (Planig, 171 km2)
fits well to clusters C and II, like most catchments from clus-
ter C; catchment 39 (Schulm̈uhle, 145 km2) belongs to clus-
ter C too but fits to cluster IV. None of these catchments are
borderline cases, both show very low to medium quantisa-
tion errors to their BMUs. The indices of both catchments
are inside the range of indices of cluster C, they can be as-
sumed to as behave similarly. On the U-matrix (Fig. 8b),
clusters II and IV are neighbouring clusters but well sepa-
rated by a row of neurons indicating high differences, show-
ing a clear separation of both clusters. This case of process
equifinality points to different processes but similar runoff
behaviour and can be figured out by comparing both pools of
clusters.

The clusters in this study show geographic trends or
groups, but no continuous regions. In the geographically re-
stricted study area, the scale of diversity in landscape and in
catchment characteristics is small. Therefore, the differences
between catchments of different clusters are smaller than be-
tween clustered catchments in other landscapes, which are
larger and more diverse. Classification of catchments has to
consider scale and diversity of the respective region.
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5 Conclusions

In this study, we define each five distinguishable classes of
catchment behaviour and physical catchment properties by
using SOMs. The comparison of the two pools of clusters,
show a high overlap between both cluster sets. We take this
as a sign that SOM has detected well structures inherent the
catchment behaviour.

The SOM serves as a tool for unsupervised clustering, but
also to analyse and visualize the clusters itself. In spite of
using a default dimension of the SOM we train a SOM with
30 neurons, which is the optimal SOM dimension for the
used data set. For other data sets, the optimal dimension
of a SOM has to be found in an iterative process. Here, the
large number of neurons makes hierarchical clustering on the
SOM necessary to define cluster borders. On the other hand,
a large number of neurons in combination with the topolog-
ical correctness of SOMs offer a scope of interpretation of
the clusters itself and their relationships, to find catchments
with extreme response behaviour or to identify and discuss
borderline cluster to improve clustering. Visualizations like
the bar charts with index properties for each neuron in Fig. 7
or component planes in Fig. 4b describe clusters and iden-
tify indices causes clustering. Furthermore, SOMs allow to
project any data set with the same dimensionality outside the
training data set onto the map and thus to a certain cluster.
Therefore a SOM can be used as a tool for classification of
(new) data sets.

The presented approach allows the identification of clus-
ters of similar catchment response behaviour and next, to
classify catchments by their response behaviour with a view
to physical catchment properties. A comparison with catch-
ments clustered by physical properties shows a reasonable
overlap which can be improved by analysis of SOMs. Still, a
number of catchments show individual runoff response be-
haviour which cannot be explained by catchments proper-
ties considered here. The individuality of catchments limits
the possibilities of simplifying runoff generation. To find a
meaningful classification of catchments, both kinds of catch-
ment characteristics have to be taken into account.

The classification presented in this study is valid for catch-
ments in the study area in Rhineland-Palatinate. Catchments
in other landscapes or at other scales may have other classi-
fication items because of influence, different processes have
on the runoff response. However, the methodology presented
in this paper is independent of landscape and scale.
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Größen, Veranstaltungen 3/2006 – Niederschlag-Abfluss-
Modellierung zur Verl̈angerung des Vorhersagezeitraumes
operationeller Wasserstands- und Abflussvorhersagen, Kollo-
quium am 27 Sepember 2005 in Koblenz, Bundesanstalt für
Geẅasserkunde, 2006.

Hall, M. and Minns, A.: The classification of hydrologically homo-
geneous regions, Hydrolog. Sci. J., 44, 693–704, 1999.

Hellebrand, H., Hoffmann, L., Juilleret, J., and Pfister, L.: Assess-
ing winter storm flow generation by means of permeability of
the lithology and dominating runoff production processes, Hy-
drol. Earth Syst. Sci., 11, 1673–1682,doi:10.5194/hess-11-1673-
2007, 2007.

Hellebrand, H., M̈uller, C., Fenicia, F., Matgen, P., and Savenije, H.:
A process proof test for model concepts: modelling the meso-
scale, Phys. Chem. Earth, 36, 42–53, 2011.

Herbst, M. and Casper, M. C.: Towards model evaluation and iden-
tification using Self-Organizing Maps, Hydrol. Earth Syst. Sci.,
12, 657–667,doi:10.5194/hess-12-657-2008, 2008.

Herbst, M., Gupta, H. V., and Casper, M. C.: Mapping model be-
haviour using Self-Organizing Maps, Hydrol. Earth Syst. Sci.,
13, 395–409,doi:10.5194/hess-13-395-2009, 2009a.

Herbst, M., Casper, M. C., Grundmann, J., and Buchholz, O.: Com-
parative analysis of model behaviour for flood prediction pur-
poses using Self-Organizing Maps, Nat. Hazards Earth Syst. Sci.,
9, 373–392,doi:10.5194/nhess-9-373-2009, 2009b.

Kalteh, A. M., Hjorth, P., and Berndtsson, R.: Review of the self-
organizing map (SOM) approach in water resources: Analysis,
modelling and application, Eviron. Modell Softw., 23, 835–845,
2008.

www.hydrol-earth-syst-sci.net/15/2947/2011/ Hydrol. Earth Syst. Sci., 15, 2947–2962, 2011

http://dx.doi.org/10.5194/hess-4-203-2000
http://dx.doi.org/10.5194/hess-15-1921-2011
http://dx.doi.org/10.5194/hess-15-1921-2011
http://dx.doi.org/10.5194/hess-11-1673-2007
http://dx.doi.org/10.5194/hess-11-1673-2007
http://dx.doi.org/10.5194/hess-12-657-2008
http://dx.doi.org/10.5194/hess-13-395-2009
http://dx.doi.org/10.5194/nhess-9-373-2009


2962 R. Ley et al.: Catchment classification by runoff behaviour with self-organizing maps (SOM)

Kaski, S.: Data Exploration Using Self-Organizing Maps, Dr. the-
sis, Department of Computer Science and Engineering, Helsinki
University of Technology, Helsinki, 57 pp., 1997.

Kohonen, T.: Self-Organize Formation of Topologically Correct
Feature Maps, Biol. Cybern., 43, 59–69, 1982.

Kohonen, T.: Self-Organizing Maps, 3rd Edn., Information Sci-
ences, Springer, Berlin, Heidelberg, New York, 501 pp., 2001.

Maimon, O. and Rokach, L.: Data mining and knowledge discovery
handbook, Springer, New York, 1383 pp., 2005.

McDonnell, J. J. and Woods, R.: On the need for catchment classi-
fication, J. Hydrol., 299, 2–3, 2004.

Merz, R. and Bl̈oschl, G.: A process typology of regional floods,
Water Resour. Res., 39, 1340,doi:10.1029/2002WR001952,
2003.

Merz, R., Bl̈oschl, G., and Parajka, J.: Spatio-temporal variability
of event runoff coefficients, J. Hydrol., 331, 591–604, 2006.

Merz, R. and Bl̈oschl, G.: A regional analysis of event
runoff coefficients with respect to climate and catchment
characteristics in Austria, Water Resour. Res., 45, W01405,
doi:10.1029/2008WR007163, 2009.

Nathan, R. J. and McMahon, T. A.: Identification of homogenous
regions for the purposes of regionalisation, J. Hydrol., 121, 217–
218, 1990.

Norbiato, D., Borga, M., Merz, R., Blöschl, G., and Carton, A.:
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