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Abstract. The current generation of large-scale hydrolog-
ical models does not include a groundwater flow compo-
nent. Large-scale groundwater models, involving aquifers
and basins of multiple countries, are still rare mainly due
to a lack of hydro-geological data which are usually only
available in developed countries. In this study, we propose
a novel approach to construct large-scale groundwater mod-
els by using global datasets that are readily available. As the
test-bed, we use the combined Rhine-Meuse basin that con-
tains groundwater head data used to verify the model out-
put. We start by building a distributed land surface model
(30 arc-second resolution) to estimate groundwater recharge
and river discharge. Subsequently, a MODFLOW transient
groundwater model is built and forced by the recharge and
surface water levels calculated by the land surface model.
Results are promising despite the fact that we still use an
offline procedure to couple the land surface and MODFLOW
groundwater models (i.e. the simulations of both models are
separately performed). The simulated river discharges com-
pare well to the observations. Moreover, based on our sen-
sitivity analysis, in which we run several groundwater model
scenarios with various hydro-geological parameter settings,
we observe that the model can reasonably well reproduce
the observed groundwater head time series. However, we
note that there are still some limitations in the current ap-
proach, specifically because the offline-coupling technique
simplifies the dynamic feedbacks between surface water lev-
els and groundwater heads, and between soil moisture states
and groundwater heads. Also the current sensitivity analysis
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ignores the uncertainty of the land surface model output. De-
spite these limitations, we argue that the results of the current
model show a promise for large-scale groundwater modeling
practices, including for data-poor environments and at the
global scale.

1 Introduction

Groundwater is a vulnerable resource, and in many areas,
groundwater is being consumed faster than it is being natu-
rally replenished (e.g.Rodell et al., 2009; Wada et al., 2010).
Given increased population and heightened variability and
uncertainty in precipitation due to climate change, the pres-
sure upon groundwater resources is expected to intensify.
These issues make monitoring and predicting groundwater
changes, especially over large areas, imperative.

Changes in groundwater resources and their causes can
be inferred from groundwater models. A groundwater
model has the ability to calculate and predict spatio-temporal
groundwater head in a sufficiently fine resolution (e.g. 1 km
resolution). However, large-scale groundwater models, es-
pecially for large aquifers and basins of multiple countries,
are still rare, mainly due to lack of hydro-geological data.
Some existing large-scale groundwater models, such as in the
Death Valley area, USA (D’Agnese et al., 1999), and in the
MIPWA region, the Netherlands (Snepvangers et al., 2007),
were developed on the basis of highly detailed information
(e.g. elaborate 3-D geological models). Such information
may be available in developed countries but is seldom avail-
able in other parts of the world.
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In this paper, we propose a novel approach for construct-
ing a large-scale groundwater model by using only readily
available global datasets. Note that by large scale, we mean
large extent area sizes, as defined byBierkens et al.(2000),
and not map scale or resolution. Here the model proposed
is a MODFLOW transient groundwater model that is cou-
pled to a distributed land surface model. The latter is used to
estimate groundwater recharge and surface water levels that
are used to force the groundwater model. As the test bed
of this study, we use the combined Rhine-Meuse basin (total
area:±200 000 km2). This basin, located in Western Europe
(see Fig.1), is selected because it contains ample ground-
water head data that can be used to verify the model out-
put. However, while constructing the model, we use only
globally available datasets that are listed as follows. We
use the Global Land Cover Characteristics Data Base Ver-
sion 2.0 (GLCC 2.0,http://edc2.usgs.gov/glcc/globeint.php)
and FAO soil maps (1995) in order to parameterize the
land cover and upper sub-surface properties. For mapping
hydro-geological features and estimating their aquifer prop-
erties, we make use of the global digital elevation model
of HydroSHEDS (Lehner et al., 2008) and an estimate of
groundwater depth based on a simple steady-state ground-
water model (see Sect.2.2). For climatological forcing,
we use the global CRU datasets (Mitchell and Jones, 2005;
New et al., 2002) that are combined with the ECMWF re-
analysis data of ERA-40 (Uppala et al., 2005) and opera-
tional archive (http://www.ecmwf.int/products/data/archive/
descriptions/od/oper/index.html).

The goal of this paper is then to construct a large-
scale groundwater model on the basis of readily available
global datasets and to evaluate the model performance us-
ing groundwater head observations. Here we do not intend
to calibrate the model yet. Rather, we conduct a sensitivity
analysis to study how changing aquifer properties influence
the model outcome, specifically the resulting groundwater
head time series. By this sensitivity analysis, we expect to
gain insights into the model behaviour that can be used as
the basis for improving the current model.

The paper is organized as follows. In the following sec-
tion, we explain the model concept and structure used in this
study. Then, we present the methodology to evaluate the
model outcome, including the sensitivity analysis procedure.
Subsequently, the results and their analyses follow. The last
part of this paper is mainly devoted to a discussion about the
prospects of large-scale groundwater assessment in data-poor
environments and at the global scale, and to suggest ways to
further improve this large-scale model.

2 Model description

2.1 General modeling procedure

The hydrological model developed in this study consists
of two parts: (1) the land surface model (Sect.2.2 and
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Fig. 1. The combined Rhine-Meuse basin used as the test bed for
this model. The bold black line indicates the scope of the model
area while the bold dashed line indicates the approximate border
between the Meuse and Rhine basins. The major rivers and large
lakes are indicated in blue. The map shown in the upper part indi-
cates the location of the study area in Europe.

Appendix A), which conceptualizes the hydrological pro-
cesses on and in the upper-soil or unsaturated-zone layer; and
(2) the groundwater model (Sect.2.3), which describes sat-
urated flow in the deeper underground. The land surface
model was adopted from the global hydrology model of
PCR-GLOBWB (Van Beek and Bierkens, 2009; Van Beek
et al., 2011) having two upper soil stores and a sim-
ple linear groundwater store (see Fig.2a). In this study,
we replaced the latter by the MODFLOW groundwater
model (McDonald and Harbaugh, 1988).

We started this modeling exercise by modifying PCR-
GLOBWB and performing the daily simulation of it to cal-
culate groundwater recharge and river discharge. The river
discharge was translated to monthly surface water levels
by assuming channel dimensions and properties based on
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Fig. 2. The modeling structure and strategy for this study:(a) the concept of the land surface model of PCR-GLOBWB (Van Beek and
Bierkens, 2009; Van Beek et al., 2011): on the left, the soil compartment, divided in the two upper soil stores,S1 andS2, and the linear
groundwater store,S3, that is replaced by the MODFLOW (McDonald and Harbaugh, 1988) groundwater model; on the right, the total local
gains from all cells are routed along the local drainage direction to yield the channel discharge,Qchn. (b) The modeling strategy used to
couple the PCR-GLOBWB and MODFLOW: first, we run the PCR-GLOBWB to calculate the monthly net rechargeQ23 to groundwater
store and channel dischargeQchn that can be translated into surface water levels by assuming channel dimensions. Then, the monthly net
recharge and surface water levels are used to force MODFLOW.

geomorphological relations to bankfull discharge (Lacey,
1930). These surface water levels and groundwater recharge
were used to force a weekly transient groundwater model
built in MODFLOW. The whole modeling procedure can be
considered as an offline-coupling procedure between PCR-
GLOBWB and MODFLOW because we separately and se-
quentially run both of them (see Fig.2b). We chose
this offline-coupling method to avoid expensive computa-
tional costs. This version, which takes about 1.0 h for one-
year model simulation in a single PC with AMD Athlon
Dual Core Processor 5200 + 2.71 GHz 2GB RAM, is the
first step into developing a fully coupled one. Using this
offline-coupling version, we evaluated computational loads
and identified weaknesses and possibilities in the modeling
structure.

2.2 PCR-GLOBWB land surface model

PCR-GLOBWB (Van Beek and Bierkens, 2009; Van Beek
et al., 2011) is a raster-based global hydrological model
coded in the PCRaster scripting languange (Wesseling et al.,
1996). Here we briefly describe its main features and modifi-
cations implemented for the purpose of this paper. The orig-
inal PCR-GLOBWB (hereafter called as “PCR-GLOBWB-
ORI”) has 30′×30′ cells, while the modified one used in this
study (hereafter called as “PCR-GLOBWB-MOD”) has the
resolution of 30′′×30′′ (approximately equal to 1 km× 1 km
at the equator).

The full description of PCR-GLOBWB-MOD is pro-
vided in Appendix A, which mainly discusses the hydrolog-
ical processes above and in the first two upper soil stores.
These upper soil stores respectively represent the top 30 cm
of soil (thicknessZ1 ≤ 30 cm ) and the following 70 cm
of soil (Z2 ≤ 70 cm), in which the storages are respec-
tively symbolized asS1 and S2 [L]. In both versions of
PCR-GLOBWB (hereafter “PCR-GLOBWB” refers to both
“PCR-GLOBWB-ORI” and “PCR-GLOBWB-MOD”), the
states and fluxes are calculated on a daily basis. Climate
forcing data are also supplied on a daily resolution (see Ap-
pendix B about the forcing data used in this study). Follow-
ing Fig. 2a, the specific local runoffQloc [L T−1] in each
land surface cell of PCR-GLOBWB consists of three com-
ponents: direct runoffQdr [L T−1], interflowQsf [L T−1] and
baseflowQbf [L T−1]. Note that as the consequence of the
offline-coupling procedure between the land surface model
and MODFLOW, the linear reservoir concept of groundwa-
ter store (in which the storage is symbolized asS3 [L]) is still
used in PCR-GLOBWB-MOD, specifically for estimating
Qbf. In addition to Fig.2, some tables related to the model
are provided: Table1 listing the model parameters, including
the global datasets used to derive them; Table2 listing the
state and flux variables; and Table3 summarizing the most
important changes introduced in PCR-GLOBWB-MOD. It
is important to note that contrary to a 30′

×30′ cell in PCR-
GLOBWB-ORI, a 30′′ ×30′′ cell in PCR-GLOBWB-MOD
has a uniform type of land cover, a uniform type of vegetation
and a uniform type of soil. PCR-GLOBWB-MOD considers

www.hydrol-earth-syst-sci.net/15/2913/2011/ Hydrol. Earth Syst. Sci., 15, 2913–2935, 2011



2916 E. H. Sutanudjaja et al.: Groundwater model for the Rhine-Meuse basin

only the sub-grid elevation variability (based on the 3′′ digital
elevation map of HydroSHEDS, see Eq. (A9)) to estimate the
fraction of saturated soil contributing to surface runoff.

As illustrated in Fig.2a, besides precipitationP [L T−1]
and evaporationE [L T−1] fluxes, important vertical fluxes
are water exchanges between the stores 1 and 2,Q12 [L T−1],
and between the stores 2 and 3,Q23 [L T−1]. Note that
bothQ12 andQ23 consist of downward percolation fluxes,
Q1→2 andQ2→3 [L T−1], and upward capillary rise fluxes,
Q2→1 andQ3→2 [L T−1]. However, in the current PCR-
GLOBWB-MOD, to force one-way coupling from the land
surface model to MODFLOW, we inactivate the upward
capillary rise from the groundwater to second soil stores
(Q3→2 = 0), which is one of the limitations of the current
modeling approach.

The land surface model simulation was performed for the
period 1960–2008. In this study, we limited the channel dis-
charge calculation of PCR-GLOBWB-MOD to monthly res-
olution. Therefore, we could neglect water residence time
in channels (less than a week) and obtain monthly channel
discharge time series,Qchn [L3 T−1] by simply knowing the
surface areaAcell [L2] of each cell and accumulating the
monthly values of the specific local runoffQloc from all cells
along the drainage network.

2.3 Groundwater model

As mentioned earlier, a MODFLOW (McDonald and Har-
baugh, 1988) based groundwater model is used to replace
the groundwater store (S3) in the land surface model. Here
we built a simple MODFLOW model that considers only
a single upper aquifer (see Sect.2.3.1). The MODFLOW
model was forced by the output of PCR-GLOBWB-MOD,
particularly the monthly rechargeQ23 (see Sect.2.3.2) and
the monthly channel dischargeQchn that is beforehand trans-
lated to surface water levels (see Sect.2.3.3). We performed
groundwater flow simulation for the period 1965–2008 using
a weekly time step and monthly stress period, within which
specific groundwater recharge and surface water levels are
constant. Note that as there are no readily available global
datasets about groundwater extraction by pumping, we did
not include groundwater abstraction in our model yet.

2.3.1 Aquifer properties

To characterize the properties of the aquifer, we initially
turned to two maps: (1) the global lithological map of
Dürr et al. (2005) and (2) the UNESCO international
hydro-geological map of Europe (http://www.bgr.de/app/
fishy/ihme1500/). However, both maps are imprecise at 30′′

resolution employed here. The locality of units of the first
map is not accurate, particularly after being checked with
the 30′′ digital elevation map of HydroSHEDS that we used.
For example, we found that the position of the Upper Rhine
Graben area, a large and important groundwater body located

in the central part of the study area, is inaccurate. Moreover,
the first map does not include small aquifer features that are
often located surrounding rivers in narrow valleys. Although
the second map includes these small aquifer features, it is as
yet only a scanned map (not a digital one) with all its geocod-
ing problems.

To overcome these difficulties, we developed a proce-
dure that classifies the model area to shallow permeable
sedimentary basin aquifers and deep less permeable moun-
tainous aquifers. Briefly stated, the method uses a steady-
state groundwater model to calculate steady-state groundwa-
ter heads, a digital elevation map (DEM) to estimate ground-
water depths and a drainage direction map (LDD) to incorpo-
rate the influence of river networks, that are closely related to
the occurrence of groundwater bodies in their surroundings.
The method is summarized as follows:

1. First, for the entire model area, we assumed a
set of uniform aquifer properties, transmissivity
KD = 100 m2 day−1 and specific yieldSy= 0.25, specif-
ically for calculating the groundwater recession coeffi-
cientJ in Eq. (A28) of the land surface model.

2. Next, we ran the PCR-GLOBWB-MOD land surface
model for a long period (1960–2008).

3. Subsequently, using the output of step2, the long-term
average recharge and discharge fields were calculated.
The latter was translated to surface water level fields by
using relations between discharge and channel dimen-
sions (see Sect.2.3.3).

4. The average water level and discharge fields derived in
the step3 were used to force the groundwater model
in order to estimate a field of steady-state groundwater
head. Furthermore, using the DEM30′′ [L] (where the
subscript 30′′ indicates the spatial resolution), we could
derive a steady-state field of “groundwater depth”dgw
[L], which is the difference between the surface level
elevation and the calculated steady-state groundwater
head.

5. We assumed that cells with steady-state groundwater
depthsdgw of less than 25 m have productive aquifers.
These shallow groundwater cells, located in valleys,
were classified as the “sedimentary pocket/basin” cells
that most likely contain permeable materials and pro-
ductive groundwater bodies. To avoid the occurrence
of isolated cells due to errors and limitations in the
DEM30′′ (such as “blocked” rivers in narrow valleys
or gorges), we used the LDD30′′ to assure that down-
stream cells of a sedimentary basin cell are also clas-
sified as sedimentary basin cells. Moreover, because
MODFLOW uses a discretization that does not allow
diagonal flow across the corners (see e.g.Wolf et al.,
2008), we made sure that a sedimentary basin cell must
have at least one neighbor in its left, right, upper, or
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Table 1. List of model parameters used in the model.

Symbol Description Source or estimation method Values Unit

β empirical exponent in the soil FAO soil map (1995)a distributed –
water retention curve

b sub-grid elevation parameter Eq. (A9) distributed –
Bchn andDchn channel width and depths Eqs. (4) and (5) distributed m
BRES river and drainage bed resistance Best guess estimate 1 day
Cf,min andCf,max minimum and maximum GLCC 2.0 land cover mapb distributed –

vegetation cover fractions
CFR refreezing rate in the snow pack Best guess estimate 0.05 day−1

CRDR river and drainage bed conductance Eq. (8) distributed m2 day−1
CWH liquid water holding capacity per Best guess estimate 0.10 –

unit snow storageSs
DDF degree-day factor in the snow pack Best guess estimate 0.0055 ◦C m day−1

DEM elevation value from the digital HydroSHEDS (Lehner et al., 2008) distributed m
elevation map/model

fi a parameter updatingEp,0 after Best guess estimate 1 –
interception flux

fwat a boolean map indicating water GLCC 2.0 and levels 1 & 2 0 or 1 –
bodies (1) or land surface cells (0) of GLWD (Lehner and D̈oll, 2004)

hveg vegetation height GLCC 2.0 land cover mapc distributed m
Inv andIveg interception capacities per unit Best guess estimate 0.001 m

surface area in non vegetated and
vegetated areas

J groundwater recession coefficient Eq. (A27) distributed day−1

Kci , Kcwat crop factors for wet interception, Best guess estimate 1 –
andKcs surface water and bare soil areas
KcT crop factor for vegetation area Eq. (A26) distributed, –

based on the land cover type monthly varying
KD transmissivity Best guess estimate Sects.2.3.1and3 m2 day−1

Ksat,1 andKsat,2
d saturated hydraulic conductivities FAO soil map (1995) distributed m day−1

L hillslope length DEM of HydroSHEDS distributed m
LAI min and LAImax minimum and maximum leaf area indexes Table ofHagemann(2002) distributed –
n Manning coefficient Best guess estimate 0.045 m−1/3 s
ψ50 % soil matric suction at which Best guess estimate 3.33 m

transpiration is halved
ψfc soil matric suction at field capacity Best guess estimate 1 m
ψsat,1 andψsat,2 soil matric suctions at saturation FAO soil map (1995) distributed m
SC1 andSC2 soil water storage capacities

(
θsat,1×Z1

)
and

(
θsat,2×Z2

)
distributed m

RBOT and DELV river bed and drain elevations Sect.2.3.3 distributed m
Simax interception capacity Eq. (A1) distributed, m

monthly varying
Sl channel longitudinal slope DEM of HydroSHEDS distributed –
Sy aquifer specific yield or storage Best guess estimate Sects.2.3.1and3 –

coefficient
θsat,1 andθsat,2 effective soil moisture contents at saturation FAO soil map (1995) distributed –
tan(α) grid-average slope DEM of HydroSHEDS distributed –
TLR temperature lapse rate Best guess estimate −0.65 ◦C m−1

Wmax grid-average soil storage SC1+SC2 distributed m
Wmin grid-minimum soil storage Best guess estimate 0 m
Z1 andZ2 soil thicknesses FAO soil map (1995) distributed m

a The parameterization of FAO map (1995) based on Table ofVan Beek and Bierkens(2009). b The parameterization of GLCC 2.0 land cover map based on Table ofHagemann
(2002). c The parameterization of the vegetation heighthveg based on Table ofVan Beek(2008). d The subscripts 1 and 2 indicate the first and second soil stores.

lower extents. This is done in order to ensure the flow
connectivity among the cells.

6. The remaining cells were subsequently classified as
“mountainous area” cells, where groundwater bodies
are most likely located at greater depths. Note that here

we mean real groundwater bodies, not perched ground-
water storage in regolith, which is modeled in the inter-
flow module of the land surface model (see Sect.A5).
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Table 2. List of state and flux variables defined in the model.

Symbol Description Unit

dgw groundwater depth, difference between surface level elevation m
and groundwater head= DEM−h

Ei evaporation flux from the intercepted water m day−1

Ep,0 reference potential evaporation energy (forcing data) m day−1

Ep,i potential evaporation energy for wet interception areas m day−1

Ep,s potential evaporation energy for bare soil areas m day−1

Es total soil evaporation= Es1+Essl m day−1

Es1 soil evaporation from the first soil store m day−1

Essl soil evaporation from the melt water store in the snow pack m day−1

Ewat surface water evaporation m day−1

h groundwater head m
HRIV monthly surface water levels/elevations m
K1(s1) andK2(s2) unsaturated hydraulic conductivities at specific degree of saturationss1 ands2

∗ m day−1

ψ1(s1) andψ2(s2) soil matric suctions (at specific degree of saturationss1 ands2) m
P total precipitation (forcing data) m day−1

P01 infiltration flux to the first soil layer m day−1

Pn net precipitation flux transferred to the soil m day−1

Prain liquid rainfall flux m day−1

Q12 andQ23 net vertical fluxes from the first to second soil stores:Q12=Q1→2−Q2→1; m day−1

and from the second soil to groundwater stores:Q23=Q2→3−Q3→2
Q1→2 andQ2→3 downward components of percolation fluxes, from the first to second soil m day−1

stores and from the second to groundwater stores
Q2→1 andQ3→2 upward seepage (capillary rise) fluxes, from the second to first soil stores m day−1

and from the third groundwater to second stores.
For this study, the latter is inactivated (Q3→2 = 0).

Qbf baseflow m day−1

Qchn monthly average discharge from the land surface model output m3 s−1

Qdr direct runoff m day−1

Qloc total local runoff from a land surface cell m day−1

Qsf interflow or shallow sub-surface flow m day−1

Qtot total local runoff expressed as a fluid volume per unit time m3 day−1 or m3 s−1

Qwat change in surface water storage m day−1

s1 ands2 degrees of saturation (S1/SC1 andS2/SC2) –
S1 andS2 upper soil storages (first and second soil storages) m
S3 groundwater storage m
Si interception storage m
Sn snow flux m day−1

Ss snow storage m
Sssl melt water storage in the snow pack m
t and1t time and timestep day
Ta atmospheric temperature (forcing data) K or◦C
Wact grid-average actual soil storage (Improved Arno Scheme) =S1+S2 m
x fraction of saturated soil –

∗ The subscripts 1 and 2 indicate the first and second soil stores.

7. For the sedimentary basin class, we assigned relatively
high values of transmissivity (KD = 100 m2 day−1) and
specific yield or storage coefficient (Sy= 0.25), while
relatively low ones are assigned for the mountainous
area class (KD = 25 m2 day−1 andSy= 0.02).

8. Using the aquifer properties defined in the step7,
we repeated steps2–7 to approximate the steady-
state groundwater depth (shown in Fig.3) and to sub-
sequently define the final classification map – that
was verified with the UNESCO international hydro-
geological map of Europe (http://www.bgr.de/app/fishy/
ihme1500/) – and itsKD andSyfields.
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Table 3. Important changes in PCR-GLOBWB-MOD (compared to the original PCR-GLOBWB-ORI).

Item Parameters PCR-GLOBWB-ORI PCR-GLOBWB-MOD Explanations of change
or variables

Cell size - 30′ ×30′ 30′′
×30′′ A fine resolution is needed

to provide groundwater head
fields.

Sub-grid variabilities - Considering variations of Only sub-grid elevation The sub-grid variations of land cover
of elevation, land cover variation is considered. vegetation and soil types are less

vegetation and soil. important for a 30′′
×30′′ cell.

Improved Arno Scheme Wmin Wmin ≥ 0 Wmin = 0 Wmin is less important for
a 30′′ ×30′′ cell.

Interception module fi , Inv andIveg Only Iveg is used. Inv andfi are introduced. A broader definition of interception
is used in PCR-GLOBWB-MOD
(see Sect.A1).

Surface water routing Qchn Using the kinematic wave We limit the discharge To avoid expensive computational
(channel discharge) method, dailyQchn Qchn analyses to cost (needed by the kinematic

can be obtained. monthly resolution. wave method).
Upward capillary rise Q3→2 Q3→2 6= 0 Q3→2 = 0 To force one-way offline coupling
from the groundwater between the land surface model
to soil stores and MODFLOW.
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Fig. 3. The approximate steady-state groundwater depth map that
is used for aquifer classification. Here, we classified cells that have
groundwater depth below 25 m and their downstream cells as the
“sedimentary basin”, where shallow productive aquifer pockets are
usually located. Moreover, we also made sure that a sedimen-
tary basin cell must have at least one neighboring cell in its left,
right, upper, or lower extents. The remaining cells were classi-
fied as “mountainous areas”, where groundwater depths are large
(see Sect.2.3.1).

The fields of KD and Sy were stored in the “Block-
Centered Flow” (BCF) package of MODFLOW (seeMc-
Donald and Harbaugh, 1988, Chapter 5). Here we de-
fined a single aquifer layer, in which two conditions apply
throughout the simulation:

1. The transmissivityKD is constant in time, independent
of the actual thickness of the water table or the satu-
rated zone. This condition is suitable for our model
as groundwater head fluctuation is mostly expected to
be only a small fraction of the thickness of the sin-
gle aquifer layer defined in the model. This condition
also implies that our MODFLOW cells are never ‘dry’
(i.e. the simulated groundwater heads never fall below
the aquifer bottom elevation).

2. Syis defined as the storage coefficient that remains con-
stant in time and ignoring the fact that there might be a
“transition” from a “confined groundwater” situation to
a “phreatic water table” situation, or vice versa. Here
we ignore the presence of confining layer and assume a
phreatic groundwater throughout the simulation.

The main advantage of using this layer type is that it makes
the MODFLOW iterative solver quickly converge through-
out the simulation. Moreover, it circumvents the problem of
having to define the aquifer top and bottom elevations, the
information that is not globally available.

Attention is needed to convert the storage coefficientSy
for the variable 30′′ ×30′′ grid-size cells before using them
in MODFLOW as MODFLOW normally uses a rectangu-
lar discretization with appropriate unit lengths (e.g. m). In
the MODFLOW BCF package, the input values ofSy are
commonly multiplied by the cell areas to create so-called
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“storage capacities” (SCMF, unit: m2) that are used for the
calculation (seeMcDonald and Harbaugh, 1988, Chapter 5,
pages 5–24 and 5–25). The MODFLOW groundwater model
that we built has the same resolution as the land surface
model: 30′′ × 30′′. It means that our MODFLOW cells,
which are not rectangular, have inappropriate length units
and varying surface areasAcell (m2). Given this fact, we have
to modify the input ofSyso thatSCMF has correct values and
units:

Syinp = Syact ×
Acell

AMF
(1)

where Syinp is the input supplied to the BCF package of
MODFLOW, Syact is the actual storage coefficient andAMF
is the ‘apparent’ MODFLOW cell dimension, which is
30′′

× 30′′. Using theseSyinp input values, the values of
SCMF (internally multiplied byAMF in the BCF package)
are:

SCMF = Syinp × AMF = Syact ×
Acell

AMF
× AMF (2)

= Syact × Acell

Note that the transmissivitiesKD (m2 day−1) are not mod-
ified because the algorithm in the BCF package of MOD-
FLOW never multipliesKD with the MODFLOW cell di-
mensionsAMF.

2.3.2 Boundary conditions and recharge

No-flow boundaries were assumed at the boundaries sur-
rounding the basin, thus assuming that topographic and
groundwater divides coincide. For the “large lakes” (see
Fig. 1), we assumed fixed-head boundary conditions, keep-
ing water levels constant for the entire simulation period.
Here we define “large lakes” by selecting, from the derived
surface water bodyfwat map (see Sect.A8), only the lakes
that have surface areas at least five times of 30′′

×30′′ grid-
cell. For each of those lakes, constant water levels are as-
sumed based on the DEM30′′ of HydroSHEDS.

The monthly time series of groundwater rechargeQ23 ob-
tained from the land surface model of PCR-GLOBWB-MOD
were fed to the “Recharge” (RCH) package of MODFLOW.
The actual unit ofQ23 is m day−1. In the RCH package cal-
culation, the input values of recharge are multiplied by the
MODFLOW cell dimension so that they are expressed in a
volume per unit time (seeMcDonald and Harbaugh, 1988,
Chapter 7), which is m3 day−1 in our case. Because our
MODFLOW cell dimension is 30′′ × 30′′ (AMF), the input
of Q23 must be modified as follows:

Q23,inp = Q23,act ×
Acell

AMF
(3)

whereQ23,inp is the input introduced to the RCH package of
MODFLOW andQ23,act is the actual recharge from the land
surface model output (unit: m day−1).

2.3.3 Channel dimensions and surface water levels

We used the “RIVER” (RIV) and “DRAIN” (DRN) pack-
ages of MODFLOW to accommodate (offline) interaction
between groundwater bodies and surface water networks.
This interaction is governed by actual groundwater heads
and surface water levels. The latter can be translated from
the monthly dischargeQchn by using assumed channel prop-
erties: the channel widthBchn [L], channel depthDchn [L],
Manning roughness coefficientn [L−1/3 T], and channel lon-
gitudinal slopeSl [−].
Bchn is derived using the formula ofLacey (1930) who

postulated that the width of a natural channel at bankfull flow
is proportional to the root of the discharge:

Bchn ≈ Pbkfl = 4.8 × Q0.5
bkfl (4)

where Pbkfl (unit: m) andQbkfl (m3 s−1) are the wetted
perimeter and flow at the bankfull condition, and 4.8 is a fac-
tor with unit s0.5 m−0.5 (seeSavenije, 2003). In large natural
alluvial rivers,Pbkfl is slightly larger thanBchn. To calculate
Qbkfl, which, as a rule of thumb, occurs on average once ev-
ery 1.5 yr, we used the monthly time series ofQchncalculated
from the land surface model.
Dchn is derived by combining the Lacey’s formula with

Manning’s formula (Manning, 1891) and assuming a rectan-
gular channel shape:

Dchn =

(
n × Q0.5

bkfl

4.8 × Sl0.5

)3/5

(5)

By subtractingDchn from DEM30′′ , we may estimate the
channel or river bed elevation, RBOT. However, due to er-
rors in DEM30′′ , a few of pixels may have unrealistic RBOT
elevations. Here we implemented median filters with various
window sizes to smooth the longitudinal profile of RBOT.

Given the channel properties, RBOT,n, Bchn and Sl,
the monthly water levels HRIV can be translated from the
monthly dischargeQchn by means of Manning’s formula:

HRIV = RBOT +

(
n × Qchn

Bchn × Sl0.5

)3/5

(6)

RBOT and monthly HRIV are used as the input for the RIV
package, the principle of which is:

QRIV =

{
CRDR × (HRIV − h) if h > RBOT
CRDR × (HRIV − RBOT) if h ≤ RBOT

(7)

where QRIV [L3 T−1] is the flow between the stream and
aquifer, taken as positive if it is directed into the aquifer,h is
the groundwater head, and CRDR [L2 T−1] is the estimated
river conductance:

CRDR =
1

BRES
× Pchn × Lchn (8)

where BRES [T] is the bed resistance (taken as 1 day),Pchn
[L] is the channel wetted perimeter (approximated byBchn)
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andLchn [L] is the channel length (approximated by the cell
diagonal length).

The RIV package is defined only in cells withBchn≥ 2 m.
To simulate smaller drainage elements, the DRN package is
defined for all cells without RIV package:

QDRN =

{
CRDR × (h −DELV) if h > DELV
0 if h ≤ DELV

(9)

where QDRN [L3 T−1] is the flow between the drainage net-
work and stream and DELV is the median drain elevation,
which is assumed to be located half meter below the surface
elevation DEM30′′ .

3 Sensitivity analysis of aquifer properties

In groundwater modeling, the transmissivityKD and stor-
age coefficientSyare important parameters which are also
subject to large uncertainty. In this paper, which may be
considered as our first attempt to model groundwater at a
large scale, we did not perform a full calibration yet. How-
ever, we did investigate the sensitivity of the model outcome
to changing aquifer properties. The list of the scenarios
that we simulated is given in Table4, in which the refer-
ence scenario hasKDref,1 = 100 m2 day−1 andSyref,1 = 0.25
for sedimentary basins andKDref,2 = 25 m2 day−1 and
Syref,2 = 0.02 for mountainous area class. The others have
different aquifer properties. For example, the scenario
“A02.0 B00.5” has transmissivities 2× KDref and storage
coefficients 0.5× Syref.

For the sake of simplicity, we used only one fixed output
from the land surface model for all scenarios. The monthly
rechargeQ23 and surface water level HRIV time series fields
are the same for all scenarios. To verify the land surface
model output, we first compared the modeled discharge in
two stations: Lobith and Borgharen, located in the down-
stream parts of Rhine and Meuse, respectively. Note that
the baseflow component of the modeled discharge evaluated
here isQbf from the groundwater linear reservoir of the land
surface model (Eq. (A27)), not -(QRIV+QDRN) from the
MODFLOW model (Eqs. (7) and (9)). In other words, al-
though they are by definition the same, we ignored the dis-
crepancies between the baseflow values of the land surface
and groundwater models.

For each scenario, the simulated groundwater levels or
headshmd are compared to the piezometer datahdt. We
have collected more than 30 000 sets of head time series from
several institutions in the Netherlands, Belgium, France,
Germany and Switzerland and some individual partners.
For model evaluation, we selected a subset of over about
6000 time series which are relatively recent (after 1979) and
long records exceeding 5 yr that contain seasonal variations
(at least there is a measurement datum for each season: win-
ter, spring, summer and autumn). Moreover, based on the in-
formation from the data suppliers, we only selected the time

Table 4. List of the sensitivity analysis scenarios including their
performance indicators presented in basin-scale average values.

Scenarios KD Sy Rcor QRE7525

A00.5 B00.1 0.5×KDref 0.1×Syref NA∗∗ NA
A00.5 B00.2 0.5×KDref 0.2×Syref NA NA
A00.5 B00.3 0.5×KDref 0.3×Syref 0.42 254 %
A00.5 B00.5 0.5×KDref 0.5×Syref 0.40 190 %
A00.5 B01.0 0.5×KDref 1×Syref 0.36 133 %
A00.5 B02.0 0.5×KDref 2×Syref 0.33 103 %
A01.0 B00.1 1×KDref 0.1×Syref NA NA
A01.0 B00.2 1×KDref 0.2×Syref 0.43 352 %
A01.0 B00.3 1×KDref 0.3×Syref 0.42 276 %
A01.0 B00.5 1×KDref 0.5×Syref 0.40 203 %
A01.0 B01.0∗ 1×KDref 1×Syref 0.36 138 %
A01.0 B02.0 1×KDref 2×Syref 0.32 103 %
A02.0 B00.1 2×KDref 0.1×Syref NA NA
A02.0 B00.2 2×KDref 0.2×Syref 0.43 339 %
A02.0 B00.3 2×KDref 0.3×Syref 0.42 261 %
A02.0 B00.5 2×KDref 0.5×Syref 0.40 188 %
A02.0 B01.0 2×KDref 1×Syref 0.36 128 %
A02.0 B02.0 2×KDref 2×Syref 0.32 98 %
A05.0 B00.1 5×KDref 0.1×Syref 0.43 472 %
A05.0 B00.2 5×KDref 0.2×Syref 0.43 313 %
A05.0 B00.3 5×KDref 0.3×Syref 0.42 242 %
A05.0 B00.5 5×KDref 0.5×Syref 0.40 176 %
A05.0 B01.0 5×KDref 1×Syref 0.36 116 %
A05.0 B02.0 5×KDref 2×Syref 0.32 89 %
A10.0 B00.1 10×KDref 0.1×Syref 0.43 437 %
A10.0 B00.2 10×KDref 0.2×Syref 0.42 291 %
A10.0 B00.3 10×KDref 0.3×Syref 0.41 222 %
A10.0 B00.5 10×KDref 0.5×Syref 0.40 160 %
A10.0 B01.0 10×KDref 1×Syref 0.37 110 %
A10.0 B02.0 10×KDref 2×Syref 0.33 84 %

∗ The scenario A01.0B01.0 is the reference scenario.∗∗ NA indicates the scenarios
that failed to converge, specifically the ones with low transmissivities and storage coef-
ficients. KD: aquifer transmissivities;Sy: specific yields or storage coefficients;Rcor:
cross-correlation coefficients between calculated and measured groundwater head time
series;QRE7525: the relative error of inter-quantile range of the calculated groundwater
head time series (compared to the observation, see Eq. (10)).

series belonging to the top aquifer. Figure7a shows the se-
lected measurement station locations. Note that for stations
located in the same pixel, we did not upscale them to the pixel
resolution because they usually have different time spans. It
means that all measurements are at the point scale, not at
the 30′′ ×30′′ as the model resolution, and our evaluation is
therefore on the conservative side because of lack of scale
adjustment.

To verify the model performance of each scenario, specif-
ically in every measurement station, we compared and eval-
uated modeled and observed head time series using several
measures. First, we calculated the bias between both mean
values,

[
h̄md

− h̄dt
]
, and the bias between both median val-

ues,
[
hmd

50 −hdt
50

]
. Also, we calculated the cross-correlation

coefficientRcor between the model results and measurement
data. The latter performance indicator, calculated without
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Fig. 4. The average calculated groundwater head for the period
1974–2008, based on the reference scenario A01.0B01.0. The al-
phabetical codes shown on the maps indicate the measurement sta-
tion locations for the graphs in Fig.5.

considering any lags, evaluates the timing of modeled time
series to measurement time series. Finally, to evaluate the
time series amplitude, we calculated the (relative) inter-
quantile range error, QRE7525:

QRE7525 =
IQmd

7525 − IQdt
7525

IQdt
7525

(10)

where IQmd
7525 and IQdt

7525 are the inter-quantile ranges of the
model result and measurement data time series. While eval-
uating mean and median biases, cross-correlations and inter-
quantile range errors, we only used dates for which measure-
ment data exist.

With so many observation points used (> 6000 points),
we decided to analyze all performance indicators (biases,
cross-correlations and inter-quantile range errors) at the sub-
basin scale. We sub-divided the model areas into several
sub-basins, by using the local drainage direction map. Then,
in each sub-basin, we calculated the sub-basin averages of∣∣h̄md

− h̄dt
∣∣, ∣∣hmd

50 −hdt
50

∣∣, Rcor and
∣∣QRE7525

∣∣.
4 Results

Figure 5a and5b show the river discharges calculated by
the land surface model and the measurement data in two
locations, in Lobith (downstream of Rhine) and Borgharen
(Meuse), both are in the Netherlands. The figures show that

the discharge can be reasonably simulated by the model,
except the summer discharge in Borgharen which is gener-
ally overestimated. This overestimation can be explained
by the fact that our model did not include water extraction
in Monsin, located about 25 km upstream of Borgharen. In
Monsin, especially during the summer, some water from the
Meuse River is diverted to sustain the navigation function of
the Scheldt River, which is located outside the Rhine-Meuse
basin (De Wit, 2001).

Some examples of comparison of simulated head time se-
ries to measurement data are presented in Fig.5c–5g. Here,
instead of plotting actual headhmd andhdt values, we plotted
the model results and measurement data in their anomalies
related to their mean values,h̄md and h̄dt. Note that, while
calculatingh̄md and h̄dt, we only used the dates for which
measurement data exist. For the examples shown in Fig.5c–
5g, we can conclude that the model is able to capture both
the timing and the amplitude of observed heads quite well.

An alternative straightforward way to evaluate the model
outcome is by making scatter-plots between both mean val-
ues,h̄dt andh̄md – as shown in Fig.6a, and between both me-
dians,hdt

50 andhmd
50 – as shown in Fig.6b. From both scatter-

plots, we see that model result average and median values
correlate very well to measurement data average and median
values. However, these scatter-plots should be carefully in-
terpreted because they do not provide information about the
spatial distribution of the biases between the model results
and measurement data. Moreover, such scatter-plots are pre-
dominantly influenced to areas with high densities in mea-
surement stations, which are mainly in the lowland and val-
ley areas of the basins. Also, some data suppliers supplied
enormous number of data, while others supplied only few
points (see Fig.7). Areas with sparse measurement stations
may not be well-represented in the scatter-plots.

The uneven station location distribution is another rea-
son why we performed the analyses at the sub-basin scale.
Figure 8 shows the sub-basin-scale mean absolute biases
(
∣∣h̄dt

− h̄md
∣∣) of the reference scenario A01.0B01.0. Here

we observe that there are large biases in some sub-basins.
Explanations for these biases are model structure errors
(e.g. only a single layer aquifer model used and no pump-
ing activities simulated), parameter errors (e.g. no cali-
bration, only two classes for classifying aquifer and only
homogeneous aquifer properties assigned for each class)
and discrepancies in resolutions and elevation references
between the model results and point measurement data. Re-
lated to the elevation references, we acknowledge that we did
not do perform any correction to the DEM of HydroSHEDS
used in the model and station elevation information provided
by data suppliers, who most likely do not use the same el-
evation references. This issue may be considered as one
of the limitations of the current modeling approach. How-
ever, given the nature of a large-scale groundwater model,
which covers multiple basins and countries, we have to ac-
cept that it is still difficult to define the same and consistent
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Vacherauville, France

R 
 
= 0.8681

QRE = -41.40% mean values : measurement = 186.44 m ; model = 187.58 m 
median values : measurement = 186.18 m ; model = 187.48 m

Trier-Euren, Germany

R 
 
= 0.8087

QRE = +132.24% mean values : measurement = 126.67 m ; model = 131.00 m 
median values : measurement = 126.56 m ; model = 130.81 m

Kemmern, Germany

R 
 
= 0.8396

QRE = -29.54% mean values : measurement = 234.44 m ; model = 237.79 m 
median values : measurement = 234.17 m ; model = 237.68 m

Maaseik, Belgium

R 
 
= 0.8707

QRE = -7.61% mean values : measurement = 23.88 m ; model = 25.10 m 
median values : measurement = 23.58 m ; model = 24.93 m

Germersheim, Germany

R 
 
= 0.8211

QRE = +28.33% mean values : measurement = 98.19 m ; model = 102.44 m 
median values : measurement = 98.18 m ; model = 102.40 m

Borgharen, Netherlands (downstream of Meuse) 

Lobith, Netherlands (downstream of Rhine)

Fig. 5. The comparison between measurement data (red) and model output (black):(a) the discharge in Lobith, located downstream of the
Rhine.(b) The discharge in Borgharen, located downstream of Meuse.(c, d, e, f, and g)Groundwater head anomaly comparisons based on
the reference scenario A01.0B01.0 at several locations indicated in Fig.4.

elevation reference for the whole model area. Moreover,
the accuracy of the DEM of HydroSHEDS used, which is
the most recent derivation product of SRTM mission (http:
//www2.jpl.nasa.gov/srtm/), should be considered limiting
since the target value of the SRTM standard accuracy is
16 m. In MODFLOW, an accurate DEM is important, par-
ticularly because it is needed as the input to define drainage
bed (RBOT and DELV) and surface water level (HRIV) el-
evations, which serve as the model boundary conditions by
means of RIV and DRN packages (see Eqs. (6), (7), and (9)).

Figures9 and 10 show the sub-basin scale averages of
Rcor, which indicate the timing punctuality, and

∣∣QRE7525

∣∣,
which indicate the magnitude of amplitude error. Both fig-
ures present results from several scenarios with different
aquifer properties (KD andSy). We see that mostly the ampli-
tude error

∣∣QRE7525

∣∣ (Fig.10) is sensitive to different aquifer
properties, while the timing agreementRcor (Fig. 9) is less

sensitive. The latter may be due to the fact that although we
variedKD andSy for our MODFLOW groundwater model
input, we used the same land surface model output (the same
rechargeQ23 and surface water levels HRIV time series)
for all scenarios. It seems that, to achieve better time se-
ries timing, we should have extended our sensitivity analysis
by also looking at the uncertainty of our land surface model
outcome. The sensitivity of

∣∣QRE7525

∣∣ and the insensitivity
of Rcor to the aquifer properties variation can be observed
from Table4, that summarizes the (entire) basin-scale av-
erage values for each scenario. Note that to calculate these
basin-scale average values, we used the surface areas of sub-
basins as weight factors. From our sensitivity analysis, we
see that the basin-scale average values of

∣∣QRE7525

∣∣ vary
from 80 % to above 450 %, while the basin-scale average val-
ues ofRcor vary only from 0.32 to 0.43.
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To further explore the results, we plotted the basin scale
values of

∣∣QRE7525

∣∣ against(1−Rcor) in Fig. 11. Ideally,
a scenario should have both values near zero or its point
in Fig. 11 is located near the origin of the axes. From
Fig. 11, we encounter that different combinations ofKD and
Syvalues can lead to similar performance ofRcor. Moreover,
we also see a pareto optimal front developing while looking
into two performance indicators at the same time. It implies
that the performance indicators,Rcor and

∣∣QRE7525

∣∣, behave
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Fig. 8. The sub-basin averages of absolute mean biases, based on
the reference scenario A01.0B01.0.

oppositely, in the sense that, moving through the parameter
space, a performance indicator improves whereas the other
deteriorates. This condition can be regarded as an inability
of the model to reproduce simultaneously different aspects
of observed groundwater heads, which are related to model
structural limitations that should be investigated in the future.

Yet, despite the aforementioned limitations, we can still
observe that our groundwater model can reasonably re-
produce the time series of observed groundwater head
time series. Figure12a and12b shows the histogram of
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Fig. 9. The sub-basin average of timing agreement indicators,Rcor, for all scenarios. To distinguish near zero values (white), we use a
yellow background. The lower right corner map is a composite map of the maximum values of all scenarios. Note: some scenarios with
small tranmissivitiesKD and storage coefficientsSyfailed to converge.

the maximum values ofRcor and the minimum values of∣∣QRE7525

∣∣ that are selected from the sub-basin scale values
of all scenarios (from Figs.9 and10). We observed that more
than 50 % of sub-basins have relatively good timing agree-
ments (Rcor> 0.5), and more than 50 % of sub-basins have
relatively small amplitude errors (

∣∣QRE7525

∣∣< 50 %). They
include not only shallow groundwater areas, but also areas

with deep groundwater heads (see the lower right corners
figures of Figs.9 and10). These facts indicate that the re-
sults of our current model are promising.
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Fig. 10. The sub-basin average of amplitude error indicators,
∣∣QRE7525

∣∣, for all scenarios. The lower right corner map is a composite map
of the minimum values of all scenarios. Note: some scenarios with small tranmissivitiesKD and storage coefficientsSyfailed to converge.

5 Conclusions and discussion

This study shows that it is possible to build a simple and
reasonably accurate large-scale groundwater model by us-
ing only global datasets. It suggests a promising prospect
for large-scale groundwater modeling practice, including in
data-poor environments. Although the model may not be
suitable for karstic aquifer areas – for which MODFLOW

is not suitable for modeling groundwater flow – PCR-
GLOBWB-MOD can be applied in several areas that con-
tain large sedimentary basins or pockets, such as the basins
of Nile, Danube, Mekong, Yellow and Ganges-Brahmaputra
Rivers.

The promising results of this study open an opportunity
to improve common existing global large-scale hydrologi-
cal models, such as the original version of PCR-GLOBWB
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Fig. 11. The scatter-plots of two model performance indicators (in
(entire) basin-scale average values) from all scenarios with varying
aquifer properties:

∣∣QRE7525
∣∣ (y-axis) and(1−Rcor) (x-axis).

(Van Beek and Bierkens, 2009; Van Beek et al., 2011),
WASMOD-M (Widén-Nilsson et al., 2007) and VIC (Liang
et al., 1994), which do not have the ability to calculate
spatio-temporal groundwater heads; therefore, do not incor-
porate any lateral flows in their groundwater compartments.
Although groundwater heads and lateral groundwater flows
may not be important for current common global hydrolog-
ical models, which usually have a spatial resolution of 25–
50 km, their inclusion is relevant for future global hydrologi-
cal models that may have spatial resolutions of down to 1 km
(Wood et al., 2011).

Several authors (Bierkens and van den Hurk, 2007; Fan
et al., 2007; Miguez-Macho et al., 2007; Anyah et al., 2008;
Miguez-Macho et al., 2008; Maxwell and Kollet, 2008;
Fan and Miguez-Macho, 2010, 2011) have suggested that
groundwater lateral flows can be important for regional cli-
mate conditions. For instance,Bierkens and van den Hurk
(2007) have shown that rainfall persistence may be partly ex-
plained by groundwater confluence to discharge zones that
remain wet throughout the year to sustain evaporation for
longer periods of time. However, for our study area that has
humid climate and relatively high drainage density, the im-
portance of groundwater lateral flows to regional climate has
to be confirmed. In such areas where rainfall may be mostly
transferred as hillslope and channel flows, groundwater lat-
eral flow or groundwater confluence to discharge zones may
only be important during a long dry spell. This issue may still
not be resolved from our current study, but we argue that any
further investigation about it can be done by using a model
such as presented here.

We realize that there are several weaknesses in the current
approach. The most obvious one is the fact that we do not
use a full coupling between the land surface model and the
groundwater model parts. Consequently, the soil moisture
of the upper soil stores calculated by the land surface model,
do not interactively correlate to groundwater heads simulated
with the groundwater model (as capillary rise is ignored).
The omission of this interaction makes the groundwater store
not have the ability to sustain soil moisture states and to fulfil
evaporation demands (especially during dry seasons).

We also ignore the fluctuations of water levels in large
lakes. Moreover, we disable the direct and interactive con-
nection between the channel/surface water flows and ground-
water tables. It should be also noted that the current model
ignores the fact that overland flows may occur as the con-
sequence of rising water tables above the land surface ele-
vation (especially for phreatic aquifer locations). Such over-
land flow might be accommodated by using additional MOD-
FLOW packages (e.g.Restrepo et al., 1998). However, they
are currently irreconcilable with PCR-GLOBWB-MOD in
its current form as the capillary rise from the groundwater
store has been disabled. All of the aforementioned weak-
nesses must be addressed while building the next generation
of this model that includes full coupling between the land
surface model and the groundwater model parts.

We also acknowledge that the current version of PCR-
GLOBWB-MOD is still not suitable for areas under heavy
anthropogenic water extraction as there are no global datasets
on pumping activities that can be meaningfully resolved at
the model resolution (30′′ ×30′′). As far as we know,Wada
et al. (2010) and Wada et al.(2011) are the only studies
that estimated global groundwater abstraction, but at a very
coarse resolution of 30′ ×30′. However, our model is still
useful to assess impacts under an uncertain future climate,
such as changing precipitation and temperature. Moreover,
if such datasets of water pumping abstraction rate are pro-
vided, they can be readily incorporated in our model.

In this study, the sensitivity analysis of the groundwater
head output is still limited to the uncertainty of our aquifer
properties in the groundwater model, not considering the un-
certainty of the land surface model outcome. In a future
study, we may want to extend the sensitivity analysis by run-
ning several scenarios with varying soil properties of the first
and second soil stores (unsaturated zone) to produce several
recharge and surface water level time series and using them
to force the groundwater model. However, considering afore-
mentioned weaknesses discussed previously, this extended
sensitivity analysis may not be meaningful if we do not use
the fully coupled model. In such a fully coupled model, the
dynamic feedbacks between surface water levels and ground-
water heads, and between soil moisture states and groundwa-
ter heads are expected to influence the behaviour of resulting
groundwater head time series.

Moreover, for such a fully coupled large-scale model,
model evaluation and calibration can be reasonably done by
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Fig. 12. Histograms of maximum values of all maps in Fig.9 (cross correlationRcor) and minimum values of all maps in Fig.10 (amplitude
error

∣∣QRE7525
∣∣). Each bar in the histogram is clustered based on approximate groundwater depths that are calculated by averaging the

34-yr 1974–2008 average modeled groundwater heads of all scenarios. Note that, to calculate these average depths, we used only cells with
measuring stations.

comparing the model soil moisture states and remote sensing
soil moisture products, such as AMSR-E (e.g.Njoku et al.,
2003) and ERS (Wagner et al., 1999), which are also avail-
able for the entire globe. By doing this, we anticipate that
a large-scale groundwater model can be evaluated and cal-
ibrated without extensive head measurement data that are
hardly available in other parts of the world. Thus, it allows
the construction and verification of large-scale groundwater
models in data-poor environments.

Appendix A

The land surface model of PCR-GLOBWB-MOD

This Appendix A briefly describes the main features of the
land-surface model of PCR-GLOBWB-MOD (which has the
spatial resolution of 30′′ × 30′′) and explains the modifica-
tions from its original version PCR-GLOBWB-ORI (30′

×

30′), of whichVan Beek and Bierkens(2009) andVan Beek
et al. (2011) provide the detailed description. Note that as
stated in Sect.2.2, the terms “PCR-GLOBWB-ORI” and
“PCR-GLOBWB-MOD” refer to the original and modified
versions, while ‘PCR-GLOBWB’ refer to both versions.

A1 Interception

PCR-GLOBWB includes an interception storage,Si [L],
which is subject to evaporation. Precipitation,P [L T−1],
which falls either as snow,Sn [L T−1] (if atmospheric tem-
perature is below the water freezing temperature,Ta< 0◦C),
or liquid rainfall,Prain [L T−1] (if Ta≥ 0◦C), fills the inter-
ception storage up to a certain threshold. In PCR-GLOBWB-
MOD, we use the interception definition as suggested by

Savenije(2004), asserting that interception accounts not only
for evaporation fluxes from leaf interception, but also any
fast evaporation fluxes as precipitation may be intercepted
on other places, such as rocks, bare soils, roads, litters, or-
ganic top soil layers, etc. Thus, the interception capacity is
parameterized as:

Simax,m =
[
1 − Cf,m

]
Inv + Cf,m Iveg LAI m (A1)

whereSimax [L] is the interception capacity of each grid-
cell consisting of the fractionsCf [−] of vegetation cover.
Inv andIveg [L] are parameters defining the interception ca-
pacities per unit surface area in non-vegetated and vegetated
areas. LAI [−] is the leaf area index, defined as the ratio
of total upper leaf surface of vegetation divided by the sur-
face area of the land on which the vegetation grows. Equa-
tion (A1), used in PCR-GLOBWB-MOD, is slightly dif-
ferent than its original version PCR-GLOBWB-ORI, which
limits the interception capacity only to leaf canopies repre-
sented by the second term of Eq. (A1) (Cf,m Iveg LAI m). The
first term of Eq. (A1) ([1 − Cf,m] Inv), introduced in PCR-
GLOBWB-MOD, represents the interception capacity in the
non-vegetated fraction.

The subscript m, which is the monthly index, indicates that
Simax,m,Cf,m and LAIm show monthly or seasonal variations
due to vegetation phenology. Their variations are according
to a growth factorfm [−] which is a function of monthly
temperatureTm [2]:

fm = 1 −

[
Tmax − Tm

Tmax − Tmin

]2

(A2)

whereTmax andTmin are the maximum temperature and min-
imum temperature assumed for the growing and dormancy
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seasons, and the monthly temperatureTm fields are taken
from the 10′ CRU-CL2.0 dataset (New et al., 2002), contain-
ing 12 monthly fields representing the average climatology
conditions over 1961–1990. Usingfm, the seasonal parame-
tersCf,m and LAIm are modeled as:

LAI m = LAI min + fm × (LAI max − LAI min) (A3)

Cf,m = Cf,min + fm ×
(
Cf,max − Cf,min

)
(A4)

The maximum and minimum values of LAI andCf are as-
signed based on the land cover map of GLCC 2.0 (http:
//edc2.usgs.gov/glcc/globeint.php), the global ecosystem
classification ofOlson(1994a,b) and the improved land sur-
face parameter table ofHagemann(2002).

The fast evaporation flux from the intercepted water,Ei
[L T−1], is limited by either available evaporation energy for
wet interception areasEp,i [L T−1] or available water inSi:

Ep,i = Ep,0 × Kci (A5)

Ei 1t = min
(
Si, Ep,i 1t

)
(A6)

where Ep,0 [L T−1] is the reference potential evapora-
tion (FAO Penman-Monteith,Allen et al., 1998), Kci [−]
is the “crop factor” for interception areas and1t [T] is the
timestep (one day).

A2 Snow pack

If Ta< 0◦C, the surplus precipitation aboveSimax falls as
snow and feeds the snow storage,Ss [L], which is mod-
eled with a degree-day-factor (DDF [L2−1 T−1

]) method
adapted from the HBV model (Bergstr̈om, 1995). Snow may
melt (if Ta≥ 0◦C) and melt water may refreeze (ifTa<0◦C)
with linear rate CFR [T−1] or evaporate (if enough energy is
available). Melt water can also be stored in a liquid water
storage of the snow pack,Sssl [L], up to a certain maximum
holding capacity that is proportionally toSsand controlled by
a factor CWH [−]. Any surplus above this holding capacity
is transferred to the soil.

A3 Direct or surface runoff

If Ta≥ 0◦C, the net input liquid flux transferred to soil,Pn
[L T−1], consists of the surplus precipitation above the inter-
ception capacitySimax (falling as liquid rainfall) and excess
melt water from the snow pack. In principle,Pn infiltrates
if soil is not saturated and causes direct runoff if soil is sat-
urated. However, this principle cannot be straightforwardly
implemented because we have to account for the variability
of soil saturation within a 30′′ ×30′′ cell. Here we adopted
the Improved Arno Scheme concept (Hagemann and Gates,
2003), in which the total soil water storage capacity of a cell
consists of the aggregate of many different soil water storage
capacities. Following this concept,Van Beek and Bierkens
(2009) derived Eq. (A7) to estimate the fractional saturation

of a PCR-GLOBWB grid-cell,x [−], as a function of grid-
average valuesW [L]:

x = 1 −

(
Wmax − Wact

Wmax − Wmin

) b
b+1

(A7)

whereWmin is the grid-(local)-minimum capacity,Wact and
Wmax are respectively the grid-average-actual water storage
and water capacity for the entire soil profile (Wact= S1+S2
andWmax= SC1+SC2, whereSC[L] is the soil water capac-
ity for each layer).

Based on Eq. (A7), the net input fluxPn is divided into
direct runoff,Qdr [L T−1], and infiltration flux into the first
soil layer,P01 [L T−1]. The direct runoff is given by:

Qdr1t =



0 if Pn1t+Wact≤Wmin

Pn1t−1Wact+

1W

[(
1Wact
1W

) 1
b+1

−
Pn1t

(b+1)1W

]b+1

if Wmin<Pn1t+Wact≤Wmax

Pn1t−1Wact if Pn1t+Wact>Wmax

(A8)

with 1W =Wmax−Wmin and1Wact=Wmax−Wact.
Equation (A8) states that an eventPn, for a given cell and

a given period1t , only generates runoffQdr if it brings
Wact aboveWmin. It implies thatWmin is an important pa-
rameter governing runoff generation response time, espe-
cially for a large and highly variable 30′

×30′ cell of PCR-
GLOBWB-ORI consisting of several land cover, vegetation
and soil types. However,Wmin is less important for a rel-
atively small 30′′ × 30′′ cell of PCR-GLOBWB-MOD, for
which we assumed a uniform type of land cover, a uniform
type of vegetation and a uniform type of soil. Here, for
the sake of simplicity, we assumedWmin = 0 for all cells
in PCR-GLOBWB-MOD. However, PCR-GLOBWB-MOD
still considers the sub-grid elevation variability in a 30′′

×30′′

cell by the existence of parameterb that accounts for the fact
that for a given soil wetness, we expect that more runoff is
produced in mountainous regions than in flat regions (see e.g.
Hagemann and Gates, 2003; Van Beek and Bierkens, 2009):

b = max

(
σh − σmin

σh + σmax
, 0.01

)
(A9)

where σh is the standard deviation of orography within
a 30′′ × 30′′ cell calculated from the 3′′ DEM of Hy-
droSHEDS (Lehner et al., 2008), andσmin andσmax are the
model-area minimum and maximum values of the standard
deviations of orography at the grid resolution.

Through this scheme, the amount of infiltrationP01 trans-
ferred to the first soil store is equal to the difference between
Pn andQdr (P01 = Pn −Qdr). However, we also have to
consider that the infiltration rate cannot exceed the saturated
hydraulic conductivity of the first layer,Ksat,1 [L T−1]. In
this case, ifP01>Ksat,1, its excess is passed to the direct
runoffQdr.
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A4 Vertical water exchange between soil and
groundwater stores

Net vertical fluxes between the first and second storesQ12
[L T−1] are driven by degrees of saturation of both lay-
ers, s [−]. They are calculated either ass1 =S1/SC1 and
s2 =S2/SC2; or s1 = θ1/θsat,1 and s2 = θ2/θsat,2, where the
subscript sat indicates saturation andθ [−] is the effective
moisture content defined as the fraction of storage over thick-
ness (θ1 =S1/Z1 and θ2 =S2/Z2). In principle,Q12 con-
sists of a downward percolationQ1→2 [L T−1], and a cap-
illary rise Q2→1 [L T−1]. If there is enough water inS1,
percolationQ1→2 is equal to the first store unsaturated hy-
draulic conductivity,K1(s1) [L T−1]. If s1<s2, capillary rise
may occur with the amount ofQ2→1 =K2(s2)× (1−s1),
whereK2(s2) [L T−1] is the second store unsaturated hy-
draulic conductivity and(1−s1) is the moisture deficit in the
first store. The unsaturated hydraulic conductivity of each
layer,K(s), which depends on the degree of saturations, is
calculated based on the relationship suggested byCampbell
(1974):

K(s) = Ksat × s2β+3 (A10)

whereβ [−] is a soil water retention curve parameter based
on the model ofClapp and Hornberger(1978):

ψ = ψsat × s−β (A11)

with ψ being the soil matric suction [L]. Equations (A10)
and (A11), in which the subscripts 1 and 2 are removed, are
used for both soil stores. To assign all soil parameters (i.e.β,
ksat,ψsat, θsatandZ – see Table1), we used the FAO soil map
(1995) and a soil parameter table derived byVan Beek and
Bierkens(2009) based on the database ofGlobal Soil Data
Task(2000).

Net vertical fluxes between the second and groundwa-
ter stores,Q23 [L T−1], also consist of percolationQ2→3
[L T−1] and capillary riseQ3→2 [L T−1]. Ideally, the flux
Q3→2 [L T−1] should exist and its amount is controlled by
moisture contents and groundwater heads. However, in the
current PCR-GLOBWB-MOD, to force one-way coupling
of the land surface model to MODFLOW, the capillary rise
from the groundwater store is inactivated (Q3→2 = 0), which
is one of the limitations of the current modeling approach.

A5 Interflow or shallow sub-surface flow

In shallow soil deposits covering bed rocks and in regolith
soil developed in mountainous areas, interflow or sub-surface
storm flow is an important runoff component as perched
groundwater bodies usually occur during wet periods. In
PCR-GLOBWB, we model the interflow,Qsf [L T−1], as re-
leasing water from the second store based on a simplified
approach ofSloan and Moore(1984):

LQsf(t) =

[
1 −

1t

TCL

]
LQsf (t − 1t) + (A12)

1t

TCL
L [Q12(t) − Q23(t)]

where(t) and (t −1t) indicate the actual time and previ-
ous time,LQsf(t) [L2 T−1] is the interflow per unit hillslope
width, andL [L] is the average hillslope length, defined as
half the average distance between stream channels. The pa-
rameter TCL [T] is a characteristic response time given by:

TCL =
L ×

(
θsat,2 − θfc,2

)
2 × ksat,2 × tan(α)

(A13)

whereθfc [−] is the moisture content at field capacity and
tan(α) [−] is the grid-average slope for each cell. To de-
rive tan(α) in each cell of PCR-GLOBWB-MOD, we used
the 3′′ DEM of HydroSHEDS. To deriveθfc [−], we used
Eq. (A11) and assumed the matric suctionψfc (at field capac-
ity) equals 1 m. To deriveL, we derived the channel network
map of the Rhine-Meuse basin using the 3′′ DEM and LDD
of HydroSHEDS. First, we calculated a generalized diver-
gence map∇Sl (a generalized curvature) using 3× 3 mov-
ing windows as outlined byZevenbergen and Thorne(1987).
Subsequently, by tracking from the most upstream 3′′ cells,
we located “channel head” cells, which are the inflection
points from hillslope landscape cells – that are dominated
by mass wasting and generalized by positive∇Sl – to valley
cells – that are areas of topographic convergence and general-
ized by negative∇Sl (Montgomery and Foufoula-Georgiou,
1993; Howard, 1994). Then, we assumed every cell located
downstream of these channel head cells to have streams with
the total length equals to its cell diagonal length. Consider-
ing errors that may exist in DEM, we added a condition that
cells having drainage contributing area higher than 2500 of
3-arc second cells (about 25 km2 at the equator) are chan-
neled. Having derived the channel network map, we calcu-
latedL, which is approximately equal to half the reciprocal
of drainage density, 1/2Dd (see e.g.Rodriguez-Iturbe and
Rinaldo, 1997).

A6 Soil evaporation and plant transpiration

Soil evaporation, Es [L T−1], may originate from two
places: (1) from the first store (in which the storage is
S1); and (2) from the melt water store in the snow pack (Sssl).
The flux fromSssl, which is symbolized byEssl [L T−1], is
always prioritized over that fromS1, which is symbolized
by Es1 [L T−1

]. The total of both is limited by the potential
evaporation energy left after interception flux,Ep,s [L T−1]
(Essl + Es1 ≤Ep,s). In addition,Es1 in the saturated areax is
limited by the saturated conductivityKsat,1, while the one in
the unsaturated area (1−x) is limited by the unsaturated con-
ductivityK1(s1). In PCR-GLOBWB-MOD, these principles
are summarized by:

Ep,s =
(
Ep,0 − fi Ei

)
× Kcs × (1 − Cf) (A14)

Essl 1t = min
(
Sssl, Ep,s1t

)
(A15)
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Es1 = (1 − x) × min
(
K1(s1), Ep,s − Essl

)
(A16)

+ x × min
(
Ksat,1, Ep,s − Essl

)
wherefi [−] is a parameter for updatingEp,0 after the inter-
ception fluxEi (taken as 1) andKcs [−] is a “crop factor”
coefficient assumed for bare soil areas.

Transpirations occurs due to root abstraction from both
first and second soil stores. Their total flux,T12 [L T−1],
is limited to the potential energy left after interception flux,
Ep,T [L T−1

] (hereafter called as potential transpiration). Un-
der fully saturation, roots can experience lack of aeration pre-
venting themselves to uptake water. Therefore, we consider
that transpiration only takes place in unsaturated area(1−x).
In PCR-GLOBWB-MOD, these principles are summarized
by:

Ep,T =
(
Ep,0 − fi Ei

)
KcT Cf (A17)

T12 = fT Ep,T (1 − x) (A18)

whereKcT [−] is the crop factor assumed for each land cover
type andfT [−] is a reducing factor due to lack of soil mois-
ture (water stress) that was derived based on the Improved
Arno Scheme concept byVan Beek and Bierkens(2009):

fT =
1

1 + (θE/θ50 %)
−3 β50 %

(A19)

θE =

Wmax + b1W

[
1 −

b + 1
b

(
1Wact
1W

) 1
b+1
]

Wmax + b1W

[
1 −

(
1Wact
1W

) 1
b+1
] (A20)

where the parametersθ50 % [−] andβ50 % [−] are the degree
of saturation at which the potential transpiration is halved
and the corresponding coefficient of its soil water retention
curve, andθE [−] is a state variable representing the aver-
age degree of saturation over the unsaturated fraction(1−x).
Note that allθE, θ50 % andβ50 % are the effective values for
the entire soil profile (the first and second soil stores). The
values ofθ50 % andβ50 % are given as:

θ50 %=

SC1Rf,1

(
ψ50 %
ψsat,1

)−
1
β
+SC2Rf,2

(
ψ50 %
ψsat,2

)−
1
β

SC1Rf,1 + SC2Rf,2
(A21)

β50 %=
SC1 Rf,1 β1+SC2 Rf,2 β2

SC1Rf,1 + SC2Rf,2
(A22)

whereψ50 % [L] is the matric suction at which potential tran-
spiration is halved (taken as 3.33 m), andRf [−] is the root
fractions per soil layer. Here we simplified that the root
fractions are proportionally distributed according to the layer
thicknesses,Rf,1 =Z1/(Z1+Z2) andRf,2 =Z2/(Z1+Z2).

The distribution of the total transpirationT12 to the fluxes
from both stores,T1 and T2 [L T−1], is based on the root

fractions,Rf,1 andRf,2, and available water storages,S1 and
S2:

T1 =
Rf,1 S1

Rf,1 S1 + Rf,2S2
× T12 (A23)

T2 =
Rf,2 S2

Rf,1S1 + Rf,2S2
× T12 (A24)

Within a time step,T1 has the same priority asEs1 andQ12,
while T2 has the same priority asQ12 andQsf. If the avail-
able storages are limited to accommodate total fluxes, all
fluxes are reduced proportionally to their sizes.

Crop factorsKcT [−] in Eq. (A17), based on land cover
types, are calculated as (Allen et al., 1998):

KcT,m = Kcmin + (A25)

[Kcfull − Kcmin] ×
[
1 − exp(−0.7 LAIm)

]
whereKcmin andKcfull are crop factors assumed under min-
imum and full vegetation cover conditions. The first was
taken as 0.2, while the latter was calculated as (Allen et al.,
1998):

Kcfull = 1.0 + 0.1 × hveg ≤ 1.2 (A26)

wherehveg is the height of vegetation in meter based on the
table ofVan Beek(2008).

A7 Baseflow and specific runoff from a land surface cell

In the land surface model part of PCR-GLOBWB-MOD, we
still use the groundwater linear reservoir (in which the stor-
age isS3 [L]) in order to calculate the baseflow component
Qbf [L T−1]:

Qbf = S3 J (A27)

where J [T−1] is the reservoir coefficient parameterized
based onKraaijenhoff van de Leur(1958):

J =
π2(KD)

4 SyL2
(A28)

with KD [L2 T−1
] being the aquifer transmissivity andSy[−]

being the aquifer specific yield. To parameterizeKD andSy,
we refer to Sect.2.3.1of this paper.

From the three components,Qdr, Qsf, andQbf, the local
runoff in a land surface cell,Qloc [L T−1], is given as:

Qloc = Qdr + Qsf + Qbf (A29)

For the cells with “urban” and “glacier ice” land covers,Qloc
consists of onlyQdr because they are considered as imper-
meable areas where no infiltration can occur. Equation (A29)
is not valid for a “surface water” cell, which is described in
Sect.A8.
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A8 Surface water bodies and surface water
accumulation in the land surface model

For cells classified as surface water bodies, we assumed that
the local storage changeQwat [L T−1] is only influenced
by the precipitation,P , and open water evaporation,Ewat
[L T−1]:

Qwat = P − Ewat (A30)

Ewat = Ep,0 × Kcwat (A31)

whereKcwat [−] is the “crop factor” coefficient assumed for
surface water bodies.

Knowing the cell areas for all grid-cells,Acell [L2], and
combiningQwat andQloc, we can express the total local
runoff in a water volume per unit timeQtot [L3 T−1]:

Qtot = Acell × [(1 − fwat) Qloc + fwatQwat] (A32)

wherefwat [−] is either one for surface water cells or zero
for non-surface water cells. To get thefwat field, we inte-
grated the surface water bodies identified in the GLCC 2.0
land cover map and the levels 1 and 2 of the Global Lakes
and Wetlands Database (Lehner and D̈oll, 2004).

In this study, we limited the discharge calculation to
monthly resolution. Therefore, we could neglect water resi-
dence time in channels (less than a week) and obtain monthly
discharge time seriesQchn [L3 T−1] by simply accumulating
the monthly values ofQtot along the drainage network.

Appendix B Climatological forcing data

Climate time series maps, consisting of temperatureTa,
precipitationP , and reference potential evaporationEp,0,
are supplied on a daily basis to force the land surface
model. For the current PCR-GLOBWB-MOD, we used
the monthly CRU data (Mitchell and Jones, 2005; New
et al., 2002) in combination with: (1) the EMCWF ERA-
40 re-analysis data (Uppala et al., 2005), for the pe-
riod 1960–1999 (Sect.B1); and (2) the EMCWF opera-
tional archive (http://www.ecmwf.int/products/data/archive/
descriptions/od/oper/index.html), for 2000–2008 (Sect.B2).

B1 Period 1960–1999

For the period 1960–1999, we used the monthly CRU-TS2.1
dataset (Mitchell and Jones, 2005), covering 1901–2002, and
the daily ERA-40 reanalysis dataset (Uppala et al., 2005),
covering 1957–2002. First, we re-sampled ERA-40 maps
into half-degree (30′) resolution, which is the resolution of
CRU-TS2.1. These re-sampled ERA-40 daily time series
fields were subsequently used to downscale the monthly
CRU-TS 2.1 into daily resolution. To get finer spatial resolu-
tion maps, we used the 10′ CRU-CL2.0 dataset (New et al.,

2002), containing 12 monthly fields representing the average
climatology over the period 1961–1990. For precipitationP ,
this algorithm is summarized by:

P30′,d =
PERA-40, 30′,d

PERA-40, 30′,m
× PCRU-TS2.1,30′,m (B1)

Pfn,10′,d =
PCRU-CL2.0,10′,m

PCRU-CL2.0,30′,m
× P30′,d (B2)

where the subscripts 10′ and 30′ indicate the spatial reso-
lutions, the subscripts m and d indicate the monthly and
daily resolutions, the subscripts CRU-CL2.0, CRU-TS2.1
and ERA-40 indicate the dataset names and the subscript fn
stands for the final derived forcing data supplied to the
model.

Equation (B1), used for temporal downscaling from
monthly to daily fields, and Eq. (B2), used for spatial down-
scaling from 30′ to 10′, were also used to derive the daily
10′ forcing temperature fields,Ta10′,d. For this temperature
downscaling, the unit must be in Kelvin (K) in order to avoid
zero and near zero values in the denominators. To improve
the spatial resolution of the snow coverage (simulated by the
snow pack), the forcing temperature fields were downscaled
into 30′′ resolution:

Tafn,30′′,d = Ta10′,d + TLR ×(DEM30′′ −DEM10′) (B3)

whereTLR [2L−1] is the temperature lapse rate, DEM30′′ is
taken from the 30′′ digital elevation map of HydroSHEDS
(Lehner et al., 2008) and DEM10′ is its aggregated version at
10′ resolution.

For monthly reference potential evaporationEp,0, we used
the dataset ofVan Beek(2008), which is available at 30′,
covering 1901–2002 and derived based on the FAO Penman-
Monteith method (Allen et al., 1998). To derive monthlyEp,0
fields,Van Beekused relevant climatological fields of CRU-
TS2.1, such as cloud cover, vapour pressure, and average,
minimum and maximum temperature fields. For wind speed
fields, the CRU-CL1.0 (New et al., 1999) dataset, containing
average monthly wind speeds over 1961–1990, was used as
there are no wind speed fields defined in CRU-TS2.1.

For PCR-GLOBWB-MOD, the 30′ monthly reference po-
tential evaporation fields ofVan Beek(2008) – symbolized
asEp,0,∗,30′,m – were downscaled into 10’ resolution fields
using the monthlyTaCRU-CL2.0,10′,m (unit: K), and into daily
resolution using the dailyTa10′,d (K):

Ep,0,10′,m =
TaCRU-CL2.0,10′,m

TaCRU-CL2.0,30′,m
× Ep,0,∗,30′,m (B4)

Ep,0,fn,10′,d =
Ta10′,d

Ta10′,m
× Ep,0,10′,m (B5)
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B2 Period 2000–2008

For the precipitation and temperature forcing data during
2000–2008, we used the ECMWF operational archive
(http://www.ecmwf.int/products/data/archive/descriptions/
od/oper/index.html) that was constrained to the long term
averages and trends of the CRU-TS2.1 data:

1. For each year y, the annual mean of the CRU-TS2.1
forcing data,FCRU-TS2.1,y (which may be either precip-
itation or temperature) was calculated. Subsequently,
the 1961–1980 long-term mean ofFCRU-TS2.1,y – sym-
bolized asF̄CRU-TS2.1,61-80 – was also calculated.

2. Next, for the period 1981–2002, we calculated the
anomaly time seriesAy:

Ay = FCRU-TS2.1,y − F̄CRU-TS2.1,61-80 (B6)

3. Furthermore, the trend of theAy time series was re-
gressed with the following linear model:

Atrend
y = b0 + b1 × y (B7)

whereAtrend
y is the model prediction, whileb0 andb1

are the intercept and slope parameters.

4. Subsequently, the 2000–2008 long-term mean,
F̄ trend

CRU-TS2.1,00-08, was estimated using Eq. (B7),

F̄CRU-TS2.1,61-80 and the year y= 2004, which is taken
as the representative of the period 2000–2008:

F̄ trend
CRU-TS2.1,00-08 = F̄CRU-TS2.1,61-80 (B8)

+ (b0 + b1 × 2004)

5. As done in the step1, the long-term average of an-
nual means of the ECMWF operational archive datasets
(hereafter called as “ECMWF-OA”) for the period
2000–2008 – symbolized as̄FECMWF-OA,00-08– was cal-
culated.

6. Next, the bias betweenF̄ECMWF-OA,00-08 and
F̄ trend

CRU-TS2.1,00-08, was identified and used to correct the
ECMWF operational archive datasets:

F corrected
ECMWF-OA,m = FECMWF-OA,m + 1F̄ (B9)

1F̄ = F̄ trend
CRU-TS2.1,00-08− F̄ECMWF-OA,00-08 (B10)

whereFECMWF-OA,m are the original monthly ECMWF-
OA fields andF corrected

ECMWF-OA,m are their corrected ones
that are used to force the land surface model (for the
period 2000–2008).

7. The aforementioned procedure is done at monthly and
30′ resolutions, for both precipitationP and tempera-
ture Ta fields. To obtain finer resolutions, Eqs. (B1),
(B2) and (B3) were used.

To obtain monthly reference potential evaporationEp,0
fields over the period 2000–2008, for most of which no CRU-
TS2.1 datasets are available, we defined a procedure to select
the corresponding data from the monthly dataset ofVan Beek
(2008), Ep,0,∗,30′,m, that covers the period 1901-2002. The
procedure – repeated for each 30′

×30′ cell, and every month
m and year y in 2000–2008 – is summarized as:

1. For the same month m, we identified the best corre-
sponding year y-CRU from the 1901-2002 CRU-TS2.1
datasets in which the precipitationPCRU-TS2.1,m,y-CRU
and temperatureTaCRU-TS2.1,m,y-CRU are similar to
P corrected

ECMWF-OA,m,y andTacorrected
ECMWF-OA,m,y.

2. Next, we assumed that the monthly reference poten-
tial evaporationEp,0,30′,m,y (where y is in the interval
[2000,2008]) is the same as the one ofVan Beek(2008)
for the month m and year y-CRU,Ep,0,∗,m,y-CRU (where
y-CRU is in the interval[1901,2002]).

3. To get finer resolutions, Eqs. (B4) and (B5) were used.
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