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Abstract. Hydrologic similarity between catchments, de-
rived from similarity in how catchments respond to precip-
itation input, is the basis for catchment classification, for
transferability of information, for generalization of our hy-
drologic understanding and also for understanding the poten-
tial impacts of environmental change. An important question
in this context is, how far can widely available hydrologic
information (precipitation-temperature-streamflow data and
generally available physical descriptors) be used to create
a first order grouping of hydrologically similar catchments?
We utilize a heterogeneous dataset of 280 catchments located
in the Eastern US to understand hydrologic similarity in a
6-dimensional signature space across a region with strong
environmental gradients. Signatures are defined as hydro-
logic response characteristics that provide insight into the
hydrologic function of catchments. A Bayesian clustering
scheme is used to separate the catchments into 9 homoge-
neous classes, which enable us to interpret hydrologic sim-
ilarity with respect to similarity in climatic and landscape
attributes across this region. We finally derive several hy-
potheses regarding controls on individual signatures from the
analysis performed here.
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1 Introduction

Catchments provide a sensible (though not the only possible)
unit for a hydrological classification system. Despite the de-
gree of uniqueness and complexity that each catchment ex-
hibits (Beven, 2000), we generally assume that some level
of organization and therefore a degree of predictability of
the functional behavior of a catchment exists (Dooge, 1986).
This organization may be a result of natural self-organization
or the co-evolution of climate, soils, vegetation and topogra-
phy (Sivapalan, 2005). The uniqueness of catchments limits
the success of hydrological regionalization, but the long-term
use of statistical methods in hydrology suggests that some
information transfer is possible. Hydrology has thus far not
established a common catchment classification system that
would provide order and structure to the global assemblage
of these heterogeneous spatial units (McDonnell and Woods,
2004; Wagener et al., 2007) and which would provide a first
order grouping of hydrologically similar catchments with im-
plications for hydrological theory, observations and model-
ing (Gupta et al., 2008; McMillan et al., 2010).

Identifying and categorizing dominant catchment func-
tions as revealed through a suite of hydrologic response
characteristics, such as those extracted from observed
streamflow-precipitation-temperature datasets, is one strat-
egy to quantify the degree of similarity that may exist be-
tween catchments (McIntyre et al., 2005; Wagener et al.,
2007; Oudin et al., 2008, 2010; Samaniego et al., 2010; Lyon
and Troch, 2010; Haltas and Kavas, 2011). Understanding
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how and why certain functional behavior occurs in a given
catchment would ultimately shed new light on the reasons
for the degree of similarity or dissimilarity that is exhibited
between catchments (Gottschalk, 1985; Dooge, 1986). A
range of benefits would be obtained if both catchment func-
tions and their causes could be understood and formalized
in a similarity framework, and therefore in a classification
scheme (Grigg, 1965, 1967):

1. To give names to things, i.e., the main classification
step.

2. To permit transfer of information, i.e., regionalization
of information.

3. To permit development of generalizations, i.e. to
develop new theory.

In the light of increasing concerns about non-stationarity of
the responses of hydrologic systems (Milly et al., 2008; Wa-
gener et al., 2010), we add a fourth benefit:

4 To provide a first order environmental change impact
assessment, i.e., the hydrologic implications of climate,
land use and land cover change.

All four of the above listed benefits are objectives of a catch-
ment classification system to achieve order and new under-
standing while also providing predictive power. Achieving
a generalization of knowledge beyond individual catchments
or beyond a particular dataset has been a particular strug-
gle in hydrology, as well as in other sciences related to the
natural world (Beven, 2000; Harte, 2002). We believe that
the task of catchment classification will be an essential ele-
ment in this much hoped for generalization. So how should
one define hydrologic similarity or dissimilarity in a catch-
ment classification system? Past strategies for classification
have largely focused on physical similarity (e.g., similarity
in physical characteristics, or how the catchments look) or
on similarity of some (narrowly defined) characteristic of the
streamflow record (mainly based on flow regimes). Below
we argue that both approaches fall short in achieving all of
the four benefits listed above, and that the general idea of
catchment function (Black, 1997; Sivapalan, 2005; Wagener
et al., 2007) can bridge the gap between these strategies and
help fulfill the needs of a more general classification system.

Previous studies have demonstrated the usefulness of em-
pirical analysis of large datasets through clustering to iden-
tify homogeneous groups of hydrologically-relevant entities.
Examples include Ramachandra Rao and Srinivas (2006) for
catchments, Bormann et al. (1999) for hydrologic response
units, Bormann (2010) for soil types, McNeil et al. (2005)
for water bodies and Panda et al. (2006) for chemical wa-
ter types. At the catchment scale, Winter (2001) intro-
duced the idea of hydrologic landscapes, which are defined

on the basis of similarity of climate, topography and ge-
ology, assuming that catchments that are similar with re-
spect to these three criteria will behave similarly in a hy-
drological sense. This approach clusters the USA into 20
non-contiguous regions using over 40 000 units of about
200 km2 size (Wolock et al., 2004). In a similar manner, But-
tle (2006) suggests that, within a particular hydro-climatic
region, three factors should provide first-order controls on
the streamflow response of catchments: (1) typology – hy-
drologic partitioning between vertical and lateral pathways,
(2) topology – drainage network connectivity, and (3) topog-
raphy – hydraulic gradients as defined by basin topography.
Borman et al. (1999) applied a classification to hydrologi-
cal quantities and physically based model (soil-vegetation-
atmosphere-transfer-scheme) to examine the hydrologic be-
havior of catchments with respect to different ecotypes (hy-
dropedotopes) of one catchment in Germany. Borman (2010)
utilized a hydrologic classification system based on soil tex-
ture groupings, assuming soil to be a major control of hy-
drologic similarity. Similarly, Ramachandra Roa and Srini-
vas (2005) investigates catchments contained within Indiana
using physical features (area, channel length, channel slope,
etc.) in order to classify catchments as physically similar.
These studies make the implicit assumption that the phys-
ical (climate and landscape) properties considered are the
dominant controls on the “hydrologic behavior” of a catch-
ment and are therefore sufficient to group catchments that are
hydrologically similar. However, Merz and Blöschl (2009)
showed that land use, soil types, and geology did not seem to
fully define the process controls on catchment behavior when
analyzing over 400 catchments in Austria. In addition, the
uniqueness problem discussed above can lead to unexpected
behavior of some catchments that is difficult to predict a pri-
ori without very detailed information about the catchment.
Therefore, to fully permit (hydrologic) information transfer
and to achieve a generalization of the relationships between
catchment attributes, climate and hydrologic responses, an
explicit quantitative assessment of such relationships (a map-
ping) is required and has to be tested, rather than an implicit
one as used by Winter (2001) and Buttle (2006).

Alternatively, assessing similarity in terms of certain
streamflow characteristics has been particularly popular in
aquatic ecology, due to the importance of flow characteris-
tics for aquatic habitats (e.g., Poff et al., 2006; Olden and
Poff, 2003; Monk et al., 2007), and in regime studies (e.g.,
Haines et al., 1988; Bower et al., 2004; Moliere et al., 2009).
However, these studies are typically not aimed at understand-
ing the behavior of the catchment, including the causes of a
particular regime occurring beyond climatic differences be-
tween regions.

Black (1997) introduced the idea of hydrologic function,
defined as the actions of the catchment exerted on the pre-
cipitation it collects. Wagener et al. (2007, 2008) expanded
this idea by viewing catchments as non-linear space-time fil-
ters, which perform a set of common hydrologic functions,
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broadly consisting of partitioning, storage, and release of
water. Partitioning is defined as the process whereby in-
coming precipitation is partitioned at the land surface into
several components (e.g., infiltration, interception and sur-
face runoff). Storage refers to the mechanisms by which
incoming precipitation is held in temporary storage before
its eventual release from the catchment (e.g., soil moisture,
groundwater or interception). Release of stored water is de-
fined as the pathway (and state) through which water ul-
timately leaves the catchment (e.g., evaporation, transpira-
tion or surface runoff). Wagener et al. (2007) suggested that
(to a degree) these functional characteristics should be re-
vealed and hence observable in selected signatures of the
catchment responses to precipitation input, i.e., in character-
istics of the streamflow hydrograph, soil moisture and veg-
etation patterns, and other hydrologic variables. Different
observed characteristics will enable a more or less detailed
view of catchment function. Other observations, e.g., iso-
topic tracers, likely provide additional information on in-
ternal pathways than what could possibly be derived from
streamflow data alone (e.g., McGlynn et al., 2003; Weiler et
al., 2003; McGuire et al., 2005; Tetzlaff et al., 2009; Broxton
et al., 2009). However, the limited availability of such tracer
data makes it necessary to understand how far more gener-
ally available data such as streamflow can provide first-order
insight.

This paper provides the first ever cluster analysis to be per-
formed with respect to hydrologic similarity, derived from
the notion of catchment function, across a large geographic
region with strong environmental gradients. The objective is
to understand how catchments group and whether hypothe-
ses regarding controls on similarity can be generated. We use
an empirical approach to cluster catchments based on hydro-
logic similarity as defined by six key signatures. None of
the signatures themselves are novel, but their combined use
to quantify hydrologic function, and hence hydrologic simi-
larity, is. The choice of streamflow as output variable, with
all its limitations as discussed above, means that while we
can utilize many catchments, the similarity analysis is lim-
ited to a first-order classification. Some functional equifi-
nality, i.e., a limited ability to uniquely characterize hydro-
logic function, will necessarily remain. The results are valid
within the hydro-climatic and landscape characteristic gradi-
ents in our dataset. We use the clustering result to speculate
on more general signature controls that will have to be gener-
alized through additional study, e.g., using numerical models
as used by Carrillo et al. (2011).

2 Study catchments and data

A total of 280 catchments, spanning the eastern half of the
United States, were used in this study. Catchments range in
size from 67 km2 to 10 096 km2 (though only a few very large
catchments are included), and show aridity indices (long-

term ratio of annual potential evapotranspiration to annual
precipitation rates) between 0.41 and 3.3, hence represent-
ing a heterogeneous dataset (See further details in Supple-
ment). The size of the catchments ensures that hillslope
scale controls do not affect any of the signatures, which has
been shown to decline beyond some 10 km2 catchment size
(Robinson et al., 1995). Ecoregions are delineated based on
climatic and land cover information. The ones found in our
study region are type 1 eco-regions 5, 8 and 9, which are
defined as Northern Forests, Eastern Temperate Forests, and
Great Plains, respectively (Omernik, 1987).

Time-series data of daily streamflow, precipitation, and
temperature for all catchments were provided by the MOPEX
project (Duan et al., 2006). The catchments within
this dataset are minimally impacted by human influences.
Streamflow information within this dataset was originally
provided by the United States Geological Survey (USGS),
while precipitation and temperature were supplied by the Na-
tional Climate Data Center (NCDC). A total of 10 hydrologic
years of data was used (1949 to 1958) in order to calculate the
signatures. This time period was assumed to be long enough
to capture climatic variability, but short enough to not be af-
fected by climatic trends. An analysis of the impact of trends
on the classification is outside the scope of this paper. To
ensure precipitation quality, the MOPEX dataset assumes a
minimum acceptable precipitation gauge density within each
catchment defined following the equation,

N = 0.6A0.3 (1)

whereN is the number of precipitation gauges andA is the
area of the catchment (km2) (Schaake et al., 2000). The use
of this guideline provides mean areal precipitation estimates
at each time step and should result in less than 20 % error
80 % of the time (Schaake et al., 2006). The MOPEX dataset
has been used widely for hydrologic model comparison stud-
ies (see references in Duan et al., 2006).

3 Signatures

Signatures quantify characteristics of the hydrologic re-
sponse that provide insight into the functional behavior of
the catchment. In this paper we will limit ourselves to signa-
tures derived from widely available time-series information
such as streamflow, precipitation, and temperature as the ba-
sis of a first-order analysis. These key signatures were cho-
sen, from a much larger list of possible indices (see list in
Yadav, 2007), by selecting those that are largely uncorrelated
and that have an interpretable link to catchment function as
discussed in the next sections. None of the chosen signa-
tures scales with catchment size. The chosen signatures are:
runoff ratio, baseflow index, snow day ratio, slope of the flow
duration curve, streamflow elasticity, and rising limb density.
In the remainder of this section we will provide a brief defi-
nition of each of the six signatures.
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3.1 Runoff ratio

Runoff Ratio (RQP [-]) is defined as the ratio of long-term
average streamflow,Q, to long-term average precipitation,
P ,

RQP=
Q

P
(2)

It represents the long-term water balance separation between
water being released from the catchment as streamflow and
as evapotranspiration (assuming no net change in storage)
(Milly, 1994; Olden and Poff, 2003; Poff et al., 2003,
Sankarasubramanian et al., 2001; Yadav, 2007). A high
runoff ratio identifies a catchment from which a large amount
of water exits as streamflow (streamflow dominated or blue-
water dominated), whereas a low value of runoff ratio iden-
tifies a large amount of water exiting the catchment as evap-
otranspiration (ET dominated or green-water dominated).

3.2 Slope of the Flow Duration Curve

The Flow Duration Curve (FDC) is the distribution of prob-
abilities of streamflow being greater than or equal to a spec-
ified magnitude. FDC is typically derived from hourly or
daily (and sometimes monthly) streamflow data (e.g., Vogel
and Fennesy, 1994; Jothityangkoon et al., 2001; Jencso et
al., 2009). To quantify an index of flow variability, the slope
of the FDC (SFDC [-]) is calculated between the 33rd and
66th streamflow percentiles, since at semi-log scale this rep-
resents a relatively linear part of the FDC (Yadav et al., 2007;
Zhang et al., 2008). A high slope value indicates a variable
flow regime, while a low slope value means a more damped
response. Damped response can arise as a result of a com-
bination of persistent (wide-spread and year-round) rainfall
and/or the dominance of groundwater contribution to stream-
flow. The signature is defined as,

SFDC=
ln(Q33%)− ln(Q66 %)

(0.66−0.33)
(3)

whereSFDC is the slope of the flow duration curve,Q33 % is
the streamflow value at the 33rd percentile,Q66 %

is the streamflow value at the 66th percentile.

3.3 Baseflow index

Base Flow Index (IBF [-]) is the ratio of long-term baseflow
to total streamflow (e.g., Arnold et al., 1995; Vogel and Kroll,
1992; Kroll et al., 2004). A high value of IBF defines a catch-
ment with higher baseflow contribution, i.e., more water us-
ing long flowpaths through the catchment. A range of algo-
rithms has been proposed and compared to perform a separa-
tion of quick flow and baseflow from observations of stream-
flow alone (Kroll et al., 2004; Eckhardt, 2005; Institute of
Hydrology, 1980; Arnold et al., 1995; Arnold and Allen,
1999; Wittenberg and Sivapalan, 1999; Laaha and Blöschl,
2006). In this study we use the one-parameter single-pass

digital filter method (DFM) based on previous studies re-
ported by Arnold et al. (1995) and Lim et al. (2005). We do
not consider the specific choice of filter crucial in this study
since we focus on the relative differences between catch-
ments, rather than on the actual values. The filter applied
is defined as follows,

QDt = cQDt−1+
1+c

2
(Qt −Qt−1) (4)

whereQD,t is the direct flow value at time-step t,Qt is the
total flow at time step t, andc is a parameter. The parame-
ter c was set at a value of 0.925 based on a comprehensive
case study performed by Eckhardt (2007). The value of the
baseflowQB,t at time-step t is then given by,

QBt = Qt −QDt (5)

The baseflow index is therefore,

IBF =

∑ QB

Q
(6)

where the summation is carried out over all time steps of the
study period.

3.4 Streamflow elasticity

Streamflow elasticity (EQP[-]) describes the sensitivity of
a catchment’s streamflow response to changes in precipita-
tion at the annual time scale. It can be calculated by tak-
ing the inter-annual difference between annual streamflow
divided by the inter-annual difference between annual pre-
cipitation, which is then normalized by the long-term runoff
ratio (Schaake, 1990; Dooge, 1992). Based on the study by
Sankarasubramanian et al. (2001) we assume that the median
value provides a more stable value of this index, i.e.,

EQP= median

(
dQ

dP

P

Q

)
(7)

whereEQP is the streamflow elasticity, dQ (dP ) is the dif-
ference between the previous year’s streamflow (precipita-
tion) and the current year’s streamflow (precipitation),P

is the mean annual precipitation, andQ is the mean an-
nual streamflow. The median value ofEQP is considered
as a robust measure, since it filters out outliers, which may
significantly affect the mean value (Sankarasubramanian et
al., 2001; Sankarasubramanian and Vogel, 2003).EQP is
the percentage change in streamflow divided by the percent-
age change in precipitation. A value of 1 indicates that a
1 % precipitation change leads to a 1 % change in stream-
flow. A value greater or less than 1 would, respectively, de-
fine the catchment as being elastic, i.e., sensitive to change
of precipitation, or inelastic, i.e., insensitive to a change of
precipitation.
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3.5 Snow day ratio

The snow day ratio (RSD [-]) is defined as the number of days
that experience precipitation when the average daily air tem-
perature is below 2◦C, divided by the total number of days
per year with precipitation. This value provides an indicator
of the amount of precipitation that falls and is stored as snow.
It can be related to the seasonality of the catchment response
(Woods, 2003). The ratio is defined as,

RSD=
NS

NP
(8)

whereNS is the number of days with precipitation and a daily
average temperature below 2◦C, andNP is the number of
days with precipitation. A high value ofRSD suggests more
snow storage with a significant impact on the intra-annual
variability of streamflow.

3.6 Rising limb density

The sixth signature considered in this study is called Ris-
ing Limb Density (RLD). RLD describes the flashiness of the
catchment response and is defined as the ratio of the number
of rising limbs (NRL) and the total amount of time the hydro-
graph is rising (TR) (Morin et al., 2002; Shamir et al., 2005).
The equation is given as,

RLD =
NRL

TR
(9)

RLD is a descriptor of the hydrograph shape and smoothness
without consideration for the flow magnitude. A small the
signature value indicates a smooth hydrograph.

4 Methods: cluster analysis

Cluster analysis is the process of grouping similar entities
(catchments) according to one or more chosen similarity
measures (signatures in our case), while concurrently sep-
arating those entities that are different. There are three com-
mon types of clustering algorithms: agglomerative hierarchi-
cal clustering, k-means clustering, and fuzzy partition clus-
tering. All three strategies of unsupervised clustering require
some subjective choices that define the clustering process,
e.g., the distance metric used, and there is consequently not
one single solution to this kind of analysis. The objective in
this study is therefore to use an empirical analysis to inves-
tigate how the similarity between catchments defined by the
six signatures might create groupings, and is not to derive at
an ultimate classification result, which would always depend
on the choices we made and the dataset used anyway. To
account for the uncertainty in the classification process, we
used a fuzzy partitioning algorithm that enables us to analyze
the uncertainty in the resulting classification.

The method chosen for this study is a fuzzy partition-
ing Bayesian mixture clustering algorithm implemented in

the AutoClass C software package (version 3.3.4) (Stutz and
Cheeseman, 1995; Cheeseman and Stutz, 1996; Archcar et
al., 2009; Kennard et al., 2010). Bayesian mixture modeling
is a probabilistic approach in which marginal likelihoods for
different classification realizations are estimated and ranked
against all other realizations. The classification with the
highest posterior probability is ultimately chosen as the most
likely realization (Webb et al., 2007). Each catchment is
therefore assigned to a particular class with a certain prob-
ability, called here the probability of class assignment. The
number of classes is automatically decided during the classi-
fication process. A catchment could be allocated to different
classes due to the probabilistic nature of the algorithm, and
it is only the primary class assignment that is listed, which
pertains to the class assignment with the highest probability.
The input variables characterizing the catchments, i.e., the
signatures, were log transformed and modeled as normally
distributed continuous variables with an associated degree of
uncertainty. Additionally, these variables are scaled such that
the magnitude differences between signatures do not cause
any additional weighting in the calculation of distance met-
ric. The output of the clustering process is analyzed with re-
spect to the probability of each catchment being member of
a particular class, the class strength (calculated as a heuris-
tic measurement, where a high class strength means a nar-
row range of signature values), and the importance of each
signature in separating the different classes (calculated using
the Kullback-Leibler distance metric (Kullback and Leibler,
1951)). Another advantage of the clustering algorithm used
here is the ability to consider correlation between signatures.
We account for the covariate information from two correlated
similarity measures, in our case signatures SFDC and IBF,
using a multi-normal model. We therefore chose this partic-
ular algorithm due to its ability to consider uncertainty and
correlation in contrast to other clustering strategies (Jain et
al., 1999).

Due to the probabilistic nature of the AutoClass-C algo-
rithm, classification realizations will change over multiple
runs. To test for the stability of the results across these dif-
ferent realizations, we use the Adjusted Rand Index (ARI,
Rand, 1971; Hubert and Arabie, 1985), which takes a value
of 0, if the agreement between two classification schemes is
no better than mere chance, and 1, indicating perfect agree-
ment between the two classification schemes. We use ARI to
test the similarity of classification results when the algorithm
is initiated multiple times.

5 Results and discussion

5.1 Signature relationships and spatial variability

Figure 1 shows the relationships between the signatures both
visually and numerically. In addition to the linear coef-
ficient of correlation,CLin , the Spearman rank correlation
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Figure 1

Fig. 1. Distributions of individual signatures shown as histograms and correlations between the signatures shown as scatter plots as well as
numerical values. Correlation(C) is calculated using linear correlation (Lin) and Spearman Rank (SR) correlation coefficients, both ranging
from zero to one.

coefficient, CSR, has also been calculated to show poten-
tial non-linear relationships. In the set of signatures used,
Baseflow Index (IBF) and Slope of the Flow Duration Curve
(SFDC) show the highest linear correlation (0.67). While the
correlation between these two signatures is partially created
by a smaller number of very highSFDC values, the correlation
is considered during clustering as discussed in the methods
section.

The different spatial patterns that the six signatures pro-
duce across the study domain can be seen in Fig. 2. Runoff
ratio, RR, shows high values in the humid region along the
Appalachian mountain and connected plateau regions, which
decrease with increasing distance from this area, especially
towards the central US (see also Sankarasubramanian and
Vogel, 2003). Figure 2b shows that the smallest values of the
slope of the FDC are located on the southeastern side of the
Appalachian mountain range and west of this area. Values
of streamflow elasticity and rising limb density show much
greater heterogeneity than the first two signatures (Fig. 2c
and f). High values of baseflow index can be found along
the Eastern coastal US and around the Great Lakes region
(Fig. 2d), where more permeable soils and bedrock dominate
(Wolock et al., 2004; Santhi et al., 2008). Values decrease
when moving towards the east where soils and bedrock are
more impermeable. As expected, the ratio of snow days cor-
relates highly with latitude (Fig. 2e). These spatial patterns
further underline the relative independence of the different

signatures and attest to their suitability for the similarity anal-
ysis. Figure 2 also shows that, taken individually, there are
strong regional patterns in the variations of several of the sig-
natures (Runoff Ratio, Ratio of Snow Days, Baseflow Index,
Slope of FDC). The variability in the spatial patterns seen
also suggests a difference in the variables that control the sig-
natures. Some characteristics change slowly in space (e.g.,
Runoff Ratio), which is likely due to the spatially slowly
changing climate. Other signatures show much more abrupt
changes, which suggests controls related to soil or geological
characteristics.

5.2 Cluster analysis

The cluster analysis was applied to all 280 catchments within
the six-dimensional signature space. The analysis aimed at
addressing the following questions: (1) how do the catch-
ments group with respect to the signatures used? (2) What
spatial patterns of clusters emerge? (3) What hypotheses re-
garding the function of catchments and what physical or cli-
matic controls on this functional behavior can be derived?

The cluster analysis identified 9 different classes of vary-
ing size for the most likely classification. The classification
process was repeated 20 times and the Adjusted Rand Index
(ARI) between classification schemes of 15 of the 20 runs
was above 0.90. Furthermore, 7 of these 20 runs were found
to be nearly identical and one of these 7 runs was therefore
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Figure 2

Fig. 2. Maps showing the spatial distribution of signatures for each of the study catchments. The color of the catchment corresponds to the
high (red) and low (blue) values, as shown by the colorbar. Plots show spatial distributions of:(a) mean annual runoff ratio (RQP). (b) Slope
of the FDC (SFDC). (c) Streamflow elasticity (EQP). (d) Base flow index (IBF). (e)Ratio (or fraction) of snow days (RSD). (f) Rising Limb
Density (RLD). The actual range in values can be found in the Supplement.

used as the final classification. Results were also screened
for extremely small or large classes, and for generally pro-
viding high probability of class memberships to ensure that
no unreasonable solutions were used.

The heuristic measures describing the algorithm and clas-
sification performance (discussed in the methods section) are
visualized in Fig. 3 for the chosen result. Figure 3a shows a
histogram of the probabilities that a catchment belongs to the
assigned class. The histogram indicates that the vast major-
ity of catchments is assigned with probabilities above 0.9 and
hence that they are very likely classified correctly. The num-

ber of catchments per class varied between 5 and 82 (Fig. 3b).
All classes show a relatively high class strength (Kennard et
al., 2010), i.e., the variability of signature values within each
class is rather low. Classes 2 and 3 have the highest values,
while those for class 5, 8, and 9 are somewhat lower.

The relative value of attribute influence of each signature
describes the contribution of each signature to the classifi-
cation. This measure represents the separation of classes
due to each signature, and is calculated from the average
Kullback-Leibler distance between attribute distributions in
individual classes and the overall distribution found in the
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Figure 3
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Fig. 3. (a)Distribution of the primary class membership probability
for all 280 catchments.(b) Histogram of the number of catchments
within each class.(c) Relative class strength. Measure of how sim-
ilar catchments are in a particular class normalized to the strongest
class (value of 1 is the strongest value, all other classes are less).

full dataset (Webb et al., 2007). The attribute influence in-
creases as the variance between the signature means of each
class increases. Its values range from 1 (highest contribution)
to 0 (no contribution). The order of signature influence on
the clustering result was: Streamflow Elasticity (1), Ratio of
Snow Days (0.98), Runoff Ratio (0.862), Slope of the FDC
(0.462), Baseflow Index (0.462), and Rising Limb Density
(0.201). These values suggest that all the signatures provided
information for the classification, though RLD was not very
influential. It also suggests that mainly climate-controlled
signatures dominate the classification, further adding to the
evidence supporting the dominant role climate has in con-
trolling catchment behavior (see also Rosero et al., 2010).

Cluster results regarding the distribution of signature val-
ues in each cluster are shown as a box and whisker plots in
Fig. 4. The catchments in Fig. 4 are sorted from left to right
by increasing median value of the signature shown. The spa-
tial distribution of the clusters is shown as a map with a cor-
responding heatmap in Fig. 5. The heatmap shows the distri-
bution of signature values indicated by colors for all catch-
ments. Figures 6 and 7 are used to analyze possible controls
on the signature-based classes identified. Geographic loca-
tion is used to structure the discussion of the resulting classi-
fication, starting in the Northeastern US.

Figure 4
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Fig. 4. Distribution of signature values for each class. Classes are
sorted by median value from low to high (left to right).(a) Mean an-
nual runoff ratio (RQP). (b) Slope of the FDC (SFDC). (c) Stream-
flow elasticity (EQP). (d) Base flow index (IBF). (e) Ratio (or
fraction) of snow days (RSD). (f) Rising Limb Density (RLD).

Catchments in the northeastern United States (class C2)
are characterized by high ratios of streamflow to precipitation
(high RQP) and large amounts of snow (high RSD) (Fig. 4).
These catchments are located in humid continental climate
with low energy availability and hence low evapotranspira-
tion. Snow storage is important in controlling seasonal vari-
ability of runoff, i.e., these catchments have the highest ratio
of snow days in the dataset. Catchments located in class C2
can be found in an area ranging from Maine to Pennsylvania.
These catchments have the smallest basin sizes in the dataset
with the highest slope (max SLOPE and min DA), with long
and frequent storms (max SD and NP), and the lowest max-
imum temperatures (TMAX). This class consists mainly of
catchments with a very low precipitation seasonality index
(PSI; Figs. 6 and 8), meaning that precipitation amounts are
distributed relatively evenly throughout the year (a uniform
distribution would be 0). PSI values are generally low for the
eastern US (less than 0.6) and lowest in the Northeastern US,
compared to the southwestern US where rain falls mainly
in winter (Pryor and Schoof, 2008). All catchments in this
class are energy limited with the smallest aridity indices in
the study region (AI = PE/P below 1), suggesting that these
catchments are controlled by low average energy availability
throughout the year, but with strong seasonal variability, as
well as a relative uniform distribution of moisture input in
time.

Catchments slightly further to the south (in Pennsylvania
and Virginia), cluster C3, extend westward to Indiana with
lower runoff ratios (median of 40 % versus about 55 % for
class C2) and less dominant snow storage, while the values
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Figure 5
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Fig. 5. The top figure represents the spatial distribution of catchments according to their classes. The catchments are color coded according
to Class # as shown in the lower part of the recursive pattern plot below (this plot type is also sometimes called a heat map). The first 6 rows
of the recursive pattern plot show signature values (high values shown as red, low being blue). The 7th row indicates the probability of a
catchment’s primary class assignment. The 8th and last row represents the class color code used the in the map above.

of SFDC stay relatively similar to those catchments further
north (Fig. 4). There are generally strong similarities in phys-
ical and climatic characteristics between the catchments of
classes C3 and C2: they are the smaller catchments, with a
high fraction of poorly drained soils (high HGC), the longest

storm durations and the lowest aridity indices. Differences to
the previous class are mainly topography and land use, since
C3 catchments are at a lower elevation, with less slope, and
have more agricultural land use and therefore lower root zone
depths (Figs. 6 and 8).
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Figure 6
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Fig. 6. Box-Whisker plots of the clusters with respect to landscape and climatic characteristics. Explanations of abbreviations can be found
in Table 1.

Within the extent of C3 catchments, a small collection
of catchments from C9 can be found in Northwest Ohio.
This class is separated by very low streamflow elasticity val-
ues, along with the smallest variability of this signature in
any class. Class 9 does show the lowest median value of
Slope of the FDC, and the highest median value of Base-
flow Index, however the variability of these signatures within
this class is the largest of any class. Class 9 also shows a
larger amount of snow than C3, suggesting a climatic sepa-
ration between these regions. Climatically, C9 experiences
the lowest temperatures and shortest storm duration in the
dataset, along with some of the highest precipitation season-
ality found within our dataset.

Continuing southeastward down the Appalachian Moun-
tain entering North Carolina, we witness a decrease in the
values of Ratio of Snow Days in class C1, although the vari-
ability of this signature increases in this class, which also
contains the largest number of catchments. We also see a
small decrease in the Slope of the FDC (and conversely, a
slightly higher baseflow index). Catchments belonging to
this class are spread along the same latitude and are mainly
separated from classes C2 and C3 by a lower snow day ratio
attributable to their location (median of about 20 %, Fig. 4).
From Fig. 6, we can also see that these catchments expe-
rience low precipitation seasonality indices, a low fraction
of poorly drained soil along with high percentage of sand,
and hence high soil permeability, as well as the lowest relief
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Table 1. Explanation of physical and climatic properties used.

Minimum Maximum
Variable Description [units] Value Value

AG Fraction of land used as agriculture within 800 m of the stream [-] 0.04 91.87

AI Aridity Index, defined as the ratio between mean annual Potential Evapotranspiration
(PE) and Precipitation (P ). PE was calculated using a modified Hamon algorithm
(Dingman, 2002) [-]

0.490 2.95

DA Contributing drainage area [km2] 67 10096

ELEV Mean elevation of the catchment [m] 21.9 1212

HGA Percentage of soil within the “A” Hydrologic Group (well drained soiled). Soils are
deep and well drained and, typically, have high sand and gravel content [%]

0 35.04

HGC Percentage of soil within the “C” Hydrologic Group (poorly drained soiled). The soil
profiles include layers impeding downward movement of water and, typically, have
moderately fine or fine texture [%]

0 91.77

HGD Percentage of soil within the “D” Hydrologic Group (very poorly drained soiled). Soils
are clayey, have a high water table, or have a shallow impervious layer [%]

0 88.01

LAI DIFF Difference between the maximum Leaf Area Index (LAIMAX ) and the minimum Leaf
Area Index (LAIMIN ) based on vegetation type [-]

1.619 5.146

LAI MAX Maximum Leaf Area Index based on vegetation type [-] 3.46 6.04

MAP Mean annual precipitation [mm yr−1] 46.6 207.2

NO200SIEVE Percent soil passing through the No. 200 sieve. [%] 10.5 94.4

NP Number of days with measurable precipitation per year [days] 46.7 167

P -PE The difference between mean annual Precipitation and Potential Evapotranspiration.
Used in hydrologic landscapes and included as a reference [m]

−0.564 1.083

PSIAE Capillary fringe height [cm] 12.2 71.36

PSI Precipitation seasonality index, as defined
by PSI = 1

MAP
∑n=1

12 |Xn −
MAP

12 | .
A high value means that precipitation is seasonal, and a low value means that the
precipitation is uniformly distributed throughout the year.Xn is the monthly
precipitation for month n [-]

0.017 0.434

RRM Relief ratio (Elevmedian-Elevmin)/(Elevmax – Elevmin) [-] 0.059 0.705

RZD Mean rootzone depth [m] 0.732 1.243

TMAX Mean maximum monthly temperature within the dataset [◦C] 10.4 28.7

SAND Percentage of sand found within the catchment. Used as a metric in hydrologic
landscape regions and included as comparison [%]

4.60 89.45

SLOPE Mean slope found within the catchment. Used as a metric in hydrologic landscape
regions and included as comparison [%]

0.10 34

SD Mean Storm duration, defined as when the precipitation starts and zero, increases, and
decreases back to zero [hours]

3.88 6.93

ratio (RRM) of all classes. Classes C1 and C5 (the next class
further south) are the baseflow dominated catchments in the
dataset.

In the catchments further south of class C1, i.e., cluster
C5, we find a persistence of high IBF and low SFDC val-
ues. The “number of snow days’ ” signature decreases even
further, suggesting a climate-based separation between the
classes C1 and C5. Catchments in C5 also have some of the
lowest elasticity values (Fig. 4c), which is in line with their
low flow duration curve slope (suggesting high storage in the
catchment). The higher baseflow fraction creates a smaller
streamflow response to changes in precipitation. Catchments

within this class experience high maximum temperatures and
large amounts of rainfall (>1200 mm yr−1).

West of class C5, in the southern Mississippi river basin,
are catchments of class C6. While climatically similar, e.g.,
similarly water limited with negligible snow as class C5, the
baseflow index decreases, with decreasing percentage sand
levels and deeper mean root zone depths (Fig. 6). This
class is also quite similar to the catchments grouped in class
C1, even though located further north, with respect to ge-
ologically controlled signatures (e.g.,IBF), but with lower
runoff ratio.
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Figure 7

Fig. 7. Parallel coordinate plot in which the median signature val-
ues of the individual clusters are connected. This plot visualizes
relationships between the signature values of the different clusters.
E.g., inverse relation between EQP and IBF can be identified by the
cluster lines crossing each other.

The catchments located furthest west in the study region
(belonging to classes C8, C7 and C4) are characterized by
the lowest runoff ratios. Generally less than 20 percent of
precipitation is released from the catchments as streamflow
(Fig. 4a). These are water-limited catchments (AI> 1) that
receive less precipitation than the other areas of the study
region, while the fraction of snow increases when moving
from south to north (C8 to C7 to C4) (Fig. 4e). The catch-
ments of this class, along the western boundary of the study
region, are approaching a more arid area of the Köppen clas-
sification system (Peel et al., 2007). This area also exhibits
a high precipitation seasonality index, i.e., a non-uniform
distribution of precipitation through the year. These catch-
ments are located in areas that are primarily cultivated land
use, demonstrated by a very higher percentage of agriculture
found within 800 m of the stream (riparian zone) (Figs. 6 and
8). Catchments south of Iowa, class C7, exhibit the high-
est flow duration curve slopes, SFDC, and elasticity values,
EQP, as well as the lowest baseflow indices in the dataset.
The latter is likely related to the very low percent of soils
classified as sand, and the highest fraction of very poorly
drained soils.

5.3 Discussion

Overall it seems that signatures, which vary along a cli-
matic gradient (RQP, EQP, RSD) are exerting a stronger con-
trol on separating the catchments into different classes than
the signatures that are likely to be more impacted by topo-
graphic, geological and land cover variability (IBF, SFDC,
RLD). This highlights one problem with this type of empiri-
cal analysis in which the result is controlled by the particular

gradients present in the analyzed dataset, hence making it
difficult to generalize beyond the data at hand. This result
further suggests that a general regionalization of signatures
across the region might not be the best strategy for some of
the signatures, but that the region has to be broken up into
smaller subregions (see the example by Laaha and Blöschl,
2006). The degree of equifinality of controls might also be
reduced if further variables characterizing the functional be-
havior of the catchments would be included. For example,
one would expect tracer data to provide a better separation of
flowpaths/residence times and hence enable a refinement of
the hydrologic function of the catchments.

This conclusion was not unexpected and, as stated on the
outset of this paper, no cluster analysis can produce a general
classification system because the results are depending on the
dataset used and subjective decisions made (mainly choice of
algorithm and distance metric). However, the clustering re-
sults help to understand controls across the study region, and
potentially enable us to derive a small number of hypothe-
ses. One should analyze these hypotheses further in a more
idealized setting (i.e., not empirical) to understand the gen-
erality of the results found here. Multiple authors have advo-
cated the use of “virtual experiments” for this purpose, i.e.,
by analyzing modeled or synthetic realities rather than actual
systems (e.g., Bashford et al., 2002; Weiler and McDonnell,
2004; Winter et al., 2004; van Werkhoven et al., 2008). So
what does the empirical analysis above suggest? The main
issue we focus on is the suggested variability of controls on
similar hydrologic signatures, and hence on hydrologic func-
tion in the context of this paper.

Streamflow elasticity with respect to precipitation is mod-
ified by the permeability characteristics of a catchment. Our
results suggest that high elasticity values (clusters 8 and 7)
relate to lowIBF values and vice versa (clusters 9, 5, 2, 1)
(Figs. 4 and 7). Cluster 8 and 7 have low % Sand and the
highest percentage poorly drained soils (HGD), and hence
the smallest potential for buffering precipitation variability.
Clusters 5, 2 and 9 have high % Sand, and 5 and 2 also have
a high percentage well drained soils (HGA), and therefore a
high potential for buffering. This result is similar to the con-
clusions of Sankarasubramanian and Vogel (2003) who ana-
lytically derived a parameter (parameterb of the abcd model)
they refer to as soil moisture holding capacity, which they
found to buffer streamflow variability and that they consider
regionalizable using soil permeability. The classes with the
highest elasticity values (8, 4, 7) are also the classes with the
shallowest roots (lowest RZD) and the lowest runoff ratio
(highest fraction of evaporated precipitation). Class C2 on
the other hand has the highest root zone depth and the high-
est runoff ratio (highest of precipitation becoming stream-
flow). This interaction between climate, soils and vegetation
is also shown in the five-dimensional plot of Fig. 9. It shows
that deep-rooted vegetation coincides with high runoff ratios
(energy limited catchments), but only if the catchments have
mainly poorly or very poorly drained soils. Results like these

Hydrol. Earth Syst. Sci., 15, 2895–2911, 2011 www.hydrol-earth-syst-sci.net/15/2895/2011/



K. Sawicz et al.: Catchment classification 2907
Figure 8
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Fig. 8. Spatial map of selected climatic and physical characteristics of the study catchments.
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Figure 9
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Fig. 9. Five-dimensional plot of signature runoff ratio versus soil,
vegetation and climate characteristics. Triangles are color coded
by Runoff Ratio. Size of triangles is proportional to drainage
area (large point means large value). Triangles pointed upwards
mean water limited catchments (pointed down means energy lim-
ited [AI > 1], upwards means water limited).

hint at a co-evolution of soil-climate-vegetation, which is fur-
ther explored numerically in the parallel classification study
by Carillo et al. (this issue).

Spatial proximity is a valuable first indicator of hydrologic
similarity because it reflects the strong climatic control on
catchment behavior, which varies slowly in space. Many re-
searchers have commented on the value (Merz and Blöschl,
2004, 2005; Parajka et al., 2005; Oudin et al., 2008) or lack
of value (for example with respect to drought characteris-
tics, see Tallaksen and van Lanen, 2004) of catchment spatial
proximity in predicting hydrological similarity. The empiri-
cal results shown here suggest that spatial proximity clearly
plays an important role as an indicator of similarity. How-
ever, the results also suggest that spatial proximity is gen-
erally reflecting similarity in other characteristics. The dif-
ferent clusters show strong spatial connectedness (clusters
4, 7, and 2), show large patches with “outliers” (6, 5, 3, 8,
9), or are relatively widely distributed (1 and 6). Combin-
ing Figs. 4, 5 and 7, we can see that cluster 4 is a connected
group of catchments with very low (high) values of runoff ra-
tio (ratio of snow days), and with very little variability in both
signatures. An analysis of Fig. 6 shows little variability and
extreme (within the dataset) values in landscape (lowest root
zone depth, highest % HGC and HGD) and climatic (lowest
MAP, highest PSI) characteristics for this cluster. This result
suggests that the catchments in this cluster are very different
from the rest. Another connected cluster is C2 in the north-
eastern US, which exhibits the highest runoff ratio and the
highest ratio of snow days. This cluster also shows extreme
values with little variability, but this time mainly for climatic
characteristics (lowestTMAX and aridity index, AI; low PSI

and highestNP). It does also have the highest root zone
depth. Cluster C5, on the other hand, has distributed patches
in different parts of the study region. This cluster has the
highest baseflow index values in the dataset (aside from C9),
and shows little variability as well as the highest values for %
Sand. At the same time, it shows considerable variability in
climate (e.g.,TMAX and MAP) and landscape characteristics
(% AG and RZD).

The discussion in this section supports the earlier state-
ment that such an empirical analysis cannot be the endpoint
for classification, but rather a step along the way. The fo-
cus on streamflow means that we are limited in the degree
of detail regarding hydrologic function that we can extract
from such an integrated measure. However, it also allows
for the regionalization of the signatures used, and enables
an extension of the classification scheme to ungauged basins
(Yadav et al., 2007). The limited availability of detailed de-
scriptors of geology (certainly for a dataset covering a large
region) suggests that we are also limited with respect to un-
derstanding subsurface controls (see similar issues in Oudin
et al., 2008). And finally, the variability and environmental
gradients in the dataset define what controls could even oc-
cur. There is of course no guarantee that different datasets,
with different gradients, would not show other relationships
between signatures and climate/landscape; or that these rela-
tionships would not change with the scale of analysis (Ken-
nard et al., 2010). Therefore it is in the physical interpreta-
tion where the potential for generalization lies, rather than in
the actual empirical result, and therefore more model/theory
based analyses such as that of Carrillo et al. (2011) can be
very useful as a supplement to the empirical studies.

6 Conclusions

The lack of a generally accepted catchment classification
framework brought the question of what defines hydrologic
similarity to the forefront of hydrologic science. Wagener et
al. (2007) suggested that a classification framework, which is
both descriptive and predictive, can be derived if it is based
on the notion of catchment function and contains an explicit
mapping between function (as observed in so-called signa-
tures), climate and landscape characteristics. Here we pro-
vide a first test of this proposition in an empirical study uti-
lizing 280 catchments across the Eastern US. This work pro-
vides insight into hydrologic similarity of catchments in the
Eastern United States, and offers suggestions for controls of
their hydrologic behavior.

We defined six signatures that can be derived from
precipitation-temperature-streamflow data and used a
Bayesian clustering algorithm to identify groups of similar
catchments. Nine clusters with a relatively clear separation
were identified. Spatially, most of the clusters exhibited
some degree of connectivity suggesting that spatial prox-
imity is a good indicator of similarity. It is likely that this
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result is due to climatic and some landscape characteristics
changing slowly in space. Further, the results suggest that
permeable soils provide a buffer to how strongly a catchment
responds to variability in climate. Our result therefore
suggests that soil properties will modify the impacts of
climate change on hydrologic regimes, which means that
changes in precipitation and temperature will not impact
the streamflow response equally. Assessing the implications
of climate variability and change on hydrologic similarity
will be the content of future research. Overall, the physical
interpretation of why the members of a particular class
behave similarly is very encouraging and demonstrates the
merit of this kind of clustering analysis for understanding
hydrological similarity and its causes. Expanding this kind
of study using much larger, even global, datasets has the
potential to provide further insight into catchment similarity,
and, in combination with numerical modeling, can result in
a general catchment classification framework.

Limitations of the study presented here are its purely em-
pirical nature and the focus on streamflow as the only hydro-
logic response variable. However, signatures such as flow
duration curves have been used for many years to define the
hydrologic character of catchments and hence provide an ex-
cellent starting point for catchment classification. We fur-
ther believe that the limitations of empirical studies can be
aided by numerical experiments in which idealized systems
are tested using catchment models. See the companion paper
by Carrillo et al. (2011) for further an example application of
this type.

Supplementary material related to this
article is available online at:
http://www.hydrol-earth-syst-sci.net/15/2895/2011/
hess-15-2895-2011-supplement.pdf.
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Laaha, G. and Blöschl, G.: A comparison of low flow regionaliza-
tion methods – catchment grouping, J. Hydrol., 323, 193–214,
2006.

Lim, K. J., Engel, B. A., Tang, Z., Choi, J., Kim, K., Muthukrish-
nan, S., and Tripathy, D.: Automated web GIS based hydrograph
analysis tool, WHAT, J. Am. Water Resour. Ass., 04133, 1407–
1416, 2005.

Lyon, S. W. and Troch, P. A.: Development and application of a
catchment similarity index for subsurface flow, Water Resour.
Res., 46, W03511,doi:10.1029/2009WR008500, 2010.

McDonnell, J. J. and Woods, R. A.: On the need for catchment
classification, J. Hydrol., 299, 2–3, 2004.

McGlynn, B. L., McDonnell, J. J., Seibert, J., and Stewart, M. K.:
On the relationships between catchment scale and streamwater
mean residence time, Hydrol. Process., 17, 175–181, 2003.

McGuire, K. J., McDonnell, J. J., McGlynn, B. L., Weiler, M.,
Kendall, C., Welker, J. M., and Seibert, J.: Watershed resi-
dence time and the role of topography, Water Resour. Res., 41,
W05002,doi:10.1029/2004WR003657, 2005.

McIntyre, N., Lee, H., Wheater, H. S., Young, A., and Wagener, T.:
Ensemble prediction of runoff in ungauged watersheds, Water
Resour. Res., 41, W12434,doi:10.1029/2005WR004289, 2005.

McMillan, H. K., Clark, M. P., Bowden, W.B., Duncan, M., and
Woods, R. A.: Hydrological field data from a modeller’s per-
spective: Part 1. Diagnostic tests for model structure, Hydrol.
Proc, 25, 511–522,doi:10.1002/hyp.7841, 2010.

McNeil, V. H., Cox, M. E., and Preda, M.: Assessment of chemical
water types and their spatial variation using multi-stage cluster
analysis, Queensland, Australia, J. Hydrol, 310, 181–200, 2005.

Merz, R. and Bl̈oschl, G.: Regionalisation of catchment model pa-
rameters, J. Hydrol., 287, 95–123, 2004.

Merz, R. and Bl̈oschl, G.: Flood frequency regionalisation – spa-
tial proximity vs. catchment attributes, J. Hydrol., 302, 283–306,
2005.

Merz, R. and Bl̈oschl, G.: A regional analysis of event
runoff coefficients with respect to climate and catchment
characteristics in Austria, Water Resour. Res., 45, W01405,
doi:10.1029/2008WR007163, 2009.

Milly, P. C. D.: Climate, soil water storage, and the average water
balance, Water Resour. Res., 30, 2143–2156, 1994.

Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M.,
Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J.: Sta-
tionarity is dead: Whither water management?, Science, 319,
573–574, 2008.

Moliere, D. R., Lowry, J. B. C., and Humphrey, C. L.: Classifying
the flow regime of data limited streams in the wet–dry tropical
region of Australia, J. Hydrol, 367(12), 1–13, 2009.

Monk, W. A., Wood, P. J., Hannah, D. M., and Wilson, D. A.: Selec-
tion of river flow indices for the assessment of hydroecological
change, River Res. Appl., 23, 113–122, 2007.

Morin, E., Georgakakos, K. P., Shamir, U., Garti, R., and Enzel,
Y.: Objective, observations-based, automatic estimation of the
catchment response timescale, Water Resour. Res., 38(10), 1212,
doi:10.1029/2001WR000808, 2002.

Olden, J. D. and Poff, N. L.: Redundancy and the choice of hydro-
logic indices for characterizing streamflow regimes, River Res.
App., 19, 101–121, 2003.

Omernik, J. M.: Ecoregions of the conterminous United States,
Ann. Ass. Am. Geog., 77, 118–125, 1987.
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