Hydrol. Earth Syst. Sci., 15, 2729446 2011 Dy -K

www.hydrol-earth-syst-sci.net/15/2729/2011/ Hydr°|°gy and
do0i:10.5194/hess-15-2729-2011 Earth System
© Author(s) 2011. CC Attribution 3.0 License. Sciences

Operational assimilation of ASCAT surface soil wethess at the Met
Office

I. Dharssit, K. J. Bovis?, B. Macphersor?, and C. P. Jone$

1Centre for Australian Weather and Climate Research, Australian Government Bureau of Meteorology, Melbourne, Australia
2Met Office, Exeter, UK

Received: 1 March 2011 — Published in Hydrol. Earth Syst. Sci. Discuss.: 29 April 2011
Revised: 15 August 2011 — Accepted: 24 August 2011 — Published: 31 August 2011

Abstract. Currently, no extensive, near real time, global soil 1 Introduction

moisture observation network exists. Therefore, the Met Of-

fice global soil moisture analysis scheme has instead use§0il moisture can have a significantimpact on screen temper-
observations of screen temperature and humidity. A num-ature and humidity, low clouds and precipitation by influenc-
ber of new Space-borne remote Sensing Systems’ Operatirigg the exchange of heat and water between the land surface
at microwave frequencies, have been developed that proand the atmosphere. Soil moisture can vary significantly over
vide a more direct retrieval of surface soil moisture. Theseshort distances so that measurements made at one location
systems are attractive since they provide global data covercontain little information about neighbouring locations. The
age and the horizontal resolution is similar to weather fore-Variabi“ty in soil moisture is due to the spatial distribution of
Casting models. Several studies show that measurements mlnfall and also the spatial variation of the soil texture, vege-
normalised backscatter (surface soil wetness) from the Adtation and topography. The high degree of spatial variability
vanced Scatterometer (ASCAT) on the meteorological operdimits the utility of ground based point observations of soil
ational (MetOp) satellite contain good quality information moisture. Currently, no extensive global soil moisture ob-
about surface soil moisture. This study describes method§ervation network exists. Some regional near real-time soil
to convert ASCAT surface soil wetness measurements tdnoisture observing networks do exist, such as the USDA:
volumetric surface soil moisture together with bias correc-SCAN (US Department of Agriculture: soil climate analysis
tion and quality control. A computationally efficient nudg- network). The International Soil Moisture Network initiative
ing scheme is used to assimilate the ASCAT volumetric sur-iS trying to establish and maintain a global in-situ soil mois-
face soil moisture data into the Met Office global soil mois- ture databasedorigo et al, 2011).

ture analysis. This ASCAT nudging scheme works along- Many numerical weather prediction (NWP) centres use
side a soil moisture nudging scheme that uses observatior@dservations of screen temperature and humidity to anal-
of screen temperature and humidity. Trials, using the Metyse soil moisture, e.g. the Met OfficBgst and Maisey
Office global Unified Model, of the ASCAT nudging scheme 2003, ECMWF (Drusch and Viterbp2007), Meteo-France
show a positive impact on forecasts of screen temperaturéGiard and Bazile2000 and the German Weather Service
and humidity for the tropics, North America and Australia. (Hess et al.2008. Drusch and Viterbd2007) have exam-

A comparison with in-situ soil moisture measurements fromined the performance of the ECMWF soil moisture nudg-
the US also indicates that assimilation of ASCAT surface soiling scheme that uses observations of screen temperature and
wetness improves the soil moisture analysis. Assimilation ofnumidity (they call it an optimal interpolation scheme) and

ASCAT surface soil wetness measurements became oper&oncluded that soil moisture nudging significantly improves
tional during July 2010. weather forecasts on large geographical domains. Temper-

ature forecasts for the Northern Hemisphere were signifi-
cantly improved for up to nine days and to a level of 700 hPa.
However, by comparison with in-situ soil moisture observa-
tions from the Oklahoma mesonet they also conclude that
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A number of new space-borne remote sensing systems, ogomputationally efficient method. Only a few other works
erating at microwave frequencies, have been developed thdtave looked at assimilating together both remotely sensed
provide a more direct retrieval (than using screen level ob-data and screen level observations for soil moisture analy-
servations) of surface soil moisture, e.g. ASCAT (Advancedsis (for exampleDraper et al. 2011 Albergel et al, 201Q
Scatterometer, C bandBartalis et al. 2007), SMOS (Soil  de Rosnay et gl2009 Seuffert et al. 2004. In addition,
Moisture and Ocean Salinity, L bandKerr et al, 2001), this paper is one of a few to examine the impact of assimilat-
AMSR-E (Advanced Microwave Scanning Radiometer on ing satellite derived soil moisture on forecasts of screen tem-
the Earth Observing System, C and X ban®we et al, perature and humidity (other examples &tahfouf, 201Q
2008 Njoku et al, 2003 and WindSat (C and X band. Scipal et al. 20083 Drusch 2007). The Met Office is the
et al, 2010. These systems are attractive since they providdfirst to operationally use satellite derived soil moisture for
global data coverage and the horizontal resolution is similamumerical weather prediction. Although several other NWP
to global NWP models. At microwave frequencies the di- centres are actively researching this area.
electric constant of liquid water(70) is much higher than This work builds on the previous study &tipal et al.
that of the soil mineral particles<(5) or ice. An increase (20083, who examined the impact of assimilating ERS scat-
in soil moisture leads to an increase in the dielectric con-terometer derived soil moisture in the ECMWF NWP system.
stant of the soil which leads to a decrease in soil emissivityThree experiments were performed; a control (CTRL) where
and an increase in soil reflectivity. Therefore, satellite basedsoil moisture is unconstrained and free-wheels, a test experi-
measurements of microwave brightness temperature (passivaent (Ol) with a soil moisture nudging scheme that uses ob-
system) or backscatter (active system) can be used to deriveervations of screen temperature and humidity and a second
estimates of surface soil moisture using a retrieval algorithmtest experiment (NDG) that only uses ERS scatterometer de-
However, using these additional sources of data is challengrived soil moisture to nudge the model level 1 soil moisture.
ing since: Scipal et al(20083 find that the NDG experiment provides

o _ better forecasts of screen temperature and humidity than the

I. Microwave sensors only sense the top few cms of soil. cTRL pbut poorer forecasts than the Ol experiment. Our tri-

NWP requires knowledge of soil moisture through- g5 giffer fromScipal et al(20083 in one crucial way; our

out the plant root zone, since plants extract soil wa-test experiments use observations of screen temperature and
ter through their roots which then evaporates from theirhumidity AND also ASCAT data to analyse the soil mois-
leaves. ture. The UM T/q soil moisture nudging scheme that uses

ii. Satellite microwave measurements can also be affecte? bservations of screen temperature and humidity is applied

. Irst to correct the model soil moisture in all four soil lay-
by numerous other factors such as vegetation water con- .
. . . ers. Next, ASCAT data is used to correct the model level 1

tent and single scattering albedo, soil roughness, to-_ : . . :
X . soil moisture (see Figl). Our control experiments are like

pography, soil texture, salinity and surface temperature,

. ) . the Ol experiment oScipal et al.(20083. No experiments
Consequently, retrieval algorithms can produce very bi- . . . .
. : . . are performed, in this study, where the model soil moisture
ased estimates of surface soil moistuiRReithle et al. . . . . .
. : ) is unconstrained and free-wheels (no soil moisture analysis).
2004). Intercomparison of several different retrieval al- L )
. . . . Free-wheeling is expected to show a degradation (as found
gorithms for the passive microwave AMSR-E instru- by Scipal et al, 2008a Draper et al. 2017. Our control
ment find large differences in the quality of the retrieval y P - 3 P : '

algorithms Draper et al. 2009 Rudiger et al. 2009 experlment mcludgs the 'I_'/q soil moisture nudging sc_heme
and so is more difficult to improve upon than an experiment
Jackson et gl2010.

without any soil moisture analysis. The pertinent question to

iii. Improvements to the parameters and processes in lan@SK is, what is the added value of using satellite derived sur-
ilation of satellite derived soil moisture shows signifi- |€vel observation of temperature and humidity to analyse soil

cant benefit. For example, the operational implemen-moisture for NWP. . _
tation of the Unified Model T/q soil moisture nudging ~ Reichle etal(2004 show that strong biases exist between
scheme uncovered many deficiencies in the land surfac&atellite derived and model derived surface soil moisture. In
model and prompted the work @fharssi et al(2009. ~ addition, model simulated soil moisture values are highly
This work resulted in large improvements to Unified Model specific. For exampl&oster et al(2009 show that
Model (UM) forecasts of screen temperature and hu-direct transfer of soil moisture values from one land surface
midity through better specification of the UM soil phys- Model to a different land surface model is inappropriate and
ical properties. likely to lead to problems. Therefor&eichle and Koster
(2009 argue that the satellite derived surface soil moisture
This paper describes the assimilation of both satellite devalues must be bias corrected to be consistent with the model
rived soil moisture and screen level observations of temperused for assimilation. The bias correction accounts for model
ature and humidity for soil moisture analysis using a simple,assumptions such as those about soil texture and vegetation
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Fig. 1. Schematic view of the soil moisture analysis scheme used by the Test experiments in this study. The Test experiments use ASCAT
surface soil wetness measurements and screen level temperature and humidity observations to analyse soil moisture.

parameters and the parametrisation of bare soil evaporatior2 Met Office numerical weather prediction system

Consequently, data assimilation of the bias corrected surface

soil moisture is more likely to improve model surface fluxes The Met Office uses the Unified Model (UNDavies et al.

and lead to better weather forecasts. Many studies use a bi@909 for both numerical weather prediction and climate re-

correction technique called cumulative distribution function search. The version of the UM used in this work for the pre-

(CDF) matching Reichle and Koster2004 Drusch et al.  operational trials has a horizontal resolution of about 40 km

2009 that requires a long time-series (at least one year) ofwith 70 (or 50) vertical levels for the atmosphere and is based

satellite and model data. Any significant changes to the landn the version of the global UM which became operational

surface model and/or satellite retrieval algorithm would ne-for NWP in March 2010. The 4DVAR data assimilation

cessitate a recalculation of the bias correction parameters. scheme is used for the atmospheRawlins et al.2007) and
Mahfouf (2010 provides a good explanation of the dif- an atmosphere analysis is produced every six hours.

ficulty in obtaining appropriate long time-series of model

and satellite data for the bias correction of the satellite de2.1 Representation of land surface processes

rived surface soil moisture, for NWP. Therefore, we have

used ERS soil wetness measurements together with modd|"® UM uses the MOSES 2 (Met Office Surface Exchange
surface soil moisture from the Global Soil Wetness Project 25¢cheme version 2) land surface scheiesery et a).200])

(GSWP2 Dirmeyer et al, 2006 simulations for the bias cor- and there is full and direct two way coupling between
rection. The GSWP2 simulations are performed by forcingMOSES 2 and the atmosphere component of the UM. The
the UM off-line land surface model with observations basedSCll 1S discretised into four layers of 0.1, 0.25, 0.65 and
driving data (precipitation, short-wave and long-wave down-2 M thickness (from top to bottom). The soil hydrology is

ward surface radiation, surface pressure, screen temperaturg2sed on a finite difference form of the Richards equation
humidity and wind speed). Driving an off-line land sur- @nd Darcy’s law. Thean Genuchterf1980 equations are

face model with NWP forcing data will not reproduce the used to describe the relationship of soil hydraulic conductiv-

NWP soil moisture climatology. The reason is that the NWP ity and soil suction to the unfrozen volumetric soil moisture.

suite contains land data assimilation such as the soil moisJ N€ van Genuchten soil parameters depend on the soil tex-

ture nudging scheme, soil temperature nudging scheme aniyre (size distribution of the soil particles and the soil organic

snow analysis scheme. The land data assimilation correct§@Pon content). The UM uses a new high resolution soil _
not only the random errors in the model but also persistenf€Xtures map that merges data from three separate sources;

systematic errors in the model (see for exanipiasch and ~ Harmenised World Soil Database (HWSEAO et al, 2008,
Viterbo, 2007). State Soil Geographic Database (United States retyfldier

and White 1998 and point observations of soil sand, silt and
clay fractions. The UM doesn’t allow any vertical variation
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of soil texture, consequently data averaged over the 30 cm tdhe ASCAT descending and ascending equator crossings oc-

1 m depth of soil (subsoil) are used. cur at about 09:30 and 21:30 mean LST. Backscatter prod-
ucts are delivered at two horizontal resolutions For this study
2.2 UM T/q soil moisture nudging scheme the higher resolution product provided by EUMETSAT, on

a 12.5km grid is used.
The UM T/q soil moisture nudging scheme uses observations
of screen temperature and humidity to analyse soil moisture3.1  Conversion of ASCAT backscatter measurements to
(Best and Maisey2002. Because errors in the UM initial surface soil wetness
soil moisture field cause errors in forecasts of daytime screen ) ) ,
temperature and humidity, knowledge of errors in forecasts”® time-series based, change detection algoritiagner
of screen temperature and humidity can be used to slowlyt &> 1999 is used to convert satellite backscatter mea-
correct (nudge) the UM initial soil moisture. A reasonable Surements to a surface S_OII wetnesg(r). It is assumed
simplification would be to state that the UM T/q soil moisture that the surf_ace volgmetrlc soil moisture is linearly related
nudging scheme adijusts the model soil moisture to minimisd® s(1)-  First, a triplet of nearly co-located backscatter
the errors in six hour forecasts of daytime screen temperaturg'€asurements are extrapolated to a reference angle®of 40
and humidity. Errors in forecasts of screen temperature and® (40", 1)) to eliminate any angular dependence. Soil rough-
humidity are due to many factors. Therefore, the UM T/q N€SS and topography are assumed to provide a time invari-
soil moisture nudging scheme seeks to identify and correc@nt contribution tar (40°, ) while vegetation effects are as-
for those errors in screen temperature and humidity forecast8Umed to vary seasonally. Therefore, the effects of soil
that are due to the model soil moisture. The UM T/q soil 'oughness, topography and vegetation are removed by sub-
moisture nudging scheme is only active where there is evaptracting a dry reference functianyry (40°, ) that is annually
oration, where the errors in screen temperature and humidi?’e”Od'C- adry(40°, 1) is estimated at each spatial grid point
are of opposite sign (i.e. model boundary layer too warm and"om the lowest recorded values @40, 1) in a long time
dry or model boundary layer too cold and moist), in unstableSeries (at least 10yr long) of measurements from ERS-1/2.
conditions (negative Richardson number) and where there i§ Wet reference valueyet(40°) that is time invariant, is esti-
an absence of snow. The UM T/q soil moisture nudging on|ymated at each spgtlal grid p_omt from the highest recorded
adjusts model soil moisture during daylight. Therefore, it is Value 0fo(40°,7) in a long time-series of measurements.
performed four times a day to update the whole globe. AThus the conversion af (40°, 1) to ms(t) is given by:
significant advantage of the UM T/q soil moisture nudging o (40°, 1) — oary (40P, 1)
scheme is that it can correct the model soil moisture not only”s(t) = 40) —oan@0 1) (1)
for random errors but also for persistent systematic errors in Owet dry ’
the model (e.g. errors in model soil moisture due to per-
sistent systematic errors in the model precipitation). A sig-3.2 Comparison of ERS/ASCAT soil moisture products
nificant disadvantage of the UM T/q soil moisture nudging with ground based soil moisture observations
scheme is that the model soil moisture can become updated

for model errors that are actually unrelated to soil moisture Al€rgel et al.(2009, Rudiger et al(2009, Naeimi et al.
The UM T/q soil moisture nudging scheme has been used2009 and Scipal (2003 have found good agreement be-
operationally at the Met Office since 2005. tween ERS or ASCAT derived soil moisture and ground

based soil moisture observationsAlbergel et al.(2009
compare ASCAT soil wetness with in-situ observations for
South-Western Francelbergel et al.(2009 find that AS-
CAT observations are well correlated with the in-situ data

(r ~0.56) and no systematic dry or wet bias is observed.

The advanced scatterometer (ASCAT) is an active C-band'\l o )
5.3 GHz microwave sensor on board the polar-orbiting satel/a€imi et al(2009 compare the ERS scatterometer derived

lite METOP, launched during October 2006. ASCAT is the soil wetness with in-situ measurements at 5 cm from the Ok-
successor system to the ERS-1 (1991 to 1996) and ER§_ahoma Mesonet, for the three year period (2004-2006) and

2 (launched 1996) C-band, 5.3 GHz microwave scatterome!—cind high correlations between the derived soil wetness and

ters. ASCAT measures microwave backscatter with two setén's'tu measurementsNaelml et al.(2009 a_Iso f'nd, high

of three antennas on each side of the satellite ground trackc_orrelatlon between the scatterometer derived soil wetness
At each spatial point, a set of three antennas make thre@nd ECMWF ERA-Interim reanalysis surfat_:e soil moisture
nearly co-located backscatter measurements at incidence af2t@- Scipal (2009 has compared ERS derived volumetric
gles ranging between 25 to BOASCAT covers two swaths soil moisture with in-situ observations from China, Russia,

of 550 km width each separated by a gap of about 670 km_Ukraine, lllinois and IndiaScipal (2002 finds that the ERS

Daily global coverage is 82% which is double that of the derived voléjmetric soil m03isture has an accuracy of between
ERS-1/2 systems that use only one set of three antenna®-05 M m~310 0.07 ¥ m™3,

3 Scatterometer data
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Fig. 2. Plots of UM level 1 volumetric soil moisture monthly climatologym vs. the ASCAT surface soil wetness monthly climatolagy
for the UK region (10 W to 5° E; 47° N to 60° N), Madagascar region (4Z to 52 E; 30° S to 10 S) and SW Australia region.(11% to
12¢° E; 35° Sto 30 S). Each plot contains 12 data points, one data point for each month of the year.

4 Conversion of surface soil wetness to surface Combining Egs. 2)—(4) then gives the equation used to
volumetric soil moisture convert ASCAT surface soil wetness to volumetric soil mois-

ture:

Before the ASCAT surface soil wetnessgj can be assim- L

ilated, it must be converted to surface volumetric soil mois-68scaft) = 0um (¢) +b x (ms(t) —ms(t)>. (5)

ture @sca) and bias corrected. Followirigcipal et al(20083

a linear relationship is assumed, From Egs. 8) and @), the parameteb can be estimated
from the slope of the line of best fit through a scatter plot of

Oscalt) =a+b xmg(t), (2)  Buw () againstns(r). Figure2 shows example scatter plots

with lines of best fit for three different regions. Sirggy (¢)
andms(r) are monthly climatologies, there are twelve data
points on each plot of Fig, one for each month. The scat-
ter plots indicate that for regions with significant vegetation
cover (such as the UK and Madagascar) the slope of the line
of best fit is shallower and >~ (65— 6,,) while for regions
with significant amounts of bare soil (such as SW Australia)
Oscalt) =a+b x ms(t), (3) the slope of the line of best fit is steeper d@nd 6s. The use
. of scatter plots to derive thi2 parameter only works where
wherems(t) is the monthly climatology of ERS surface soil the surface soil moisture has a distinct seasonal cycle and

wetnessms(r) is derived from a long time-perioiof ERS  where the soil is unfrozen for most of the year. Therefore,
backscatter data and is provided by the ASCAT level 2 soilinstead, we assume

wetness BUFR (Binary Universal Form for the Representa-
tion of meteorological data) product. In an analogous manneb = (6s— v6y), (6)
to CDF matching, we impose the condition that

wherea andb are spatially varying, time invariant, matching
parameters. At each UM land point,is related to the local
minimum occurring value of the model surface soil moisture
while b is related to the local dynamic range of the model
surface soil moisture. From E@)( the monthly climatology

of the ASCAT surface volumetric soil moisture is given by:

whereds is the volumetric soil moisture at saturatiah, is
Oscalt) =0Oum (1), (4)  the volumetric soil moisture at the wilting point ands the
fraction of vegetation cover. Thus theparameter is de-
termined using UM soil texture and vegetation cover data.
The b parameter is time invariant and has the same hori-
zontal resolution as the UM. The UM vegetation fractions
are derived from the International Geosphere Biosphere Pro-

£ 15 latitude/lonaitude. Th " d ¢ _. r&;ramme (IGBP) global land cover dataset. The choicg of
0 atituderiongitude. 1he parameters and parameterisag, Eqg. (6) is similar to that used b$cipal(2002 andCebal-

tions used by the off-line GSWP2 simulations, including van los et al.(2005 who useb = (0.565 + 0.56c — fy), Wherefse

S&nﬂf’c;en §t0|I hydraulics, are similar to those used by theis the volumetric soil moisture at field capacity. The use of
suite. Eqg. 6) gives larger values fab which is justified since we

are considering surface soil moisture wisleipal(2002 and
Ceballos et al(2005 consider root zone soil moisture.

1The years 1991 to 2001 with a limited amount of data from  Figure 3 compares histograms of the distribution of AS-
2003 to 2007 Bartalis 2009. CAT surface soil wetnessig with the distribution of UM

where6ym(¢) is the climatology of UM level 1 volumet-
ric soil moisture that is derived by driving the UM off-line
land surface model with observation based driving data pro
vided by GSWP2DQirmeyer et al. 2006 that covers the pe-
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Fig. 3. Histograms of ASCAT surface soil wetness, UM level 1 soil wetnessyy.1/6s and converted ASCAT soil wetne8say/6s. Data
is for the NW Europe region, 23V to 15° E; 37° N to 60° N and time period May to July 2009.

level 1 soil wetnes®um 1/6s for the NW Europe region one QC check it is not tested by any other QC check, the QC
(bum.1 is output from the UM T/q soil moisture nudging checks are performed in the following order:

scheme of a Control experiment). The shapes ofithand
6um,1/6s distributions are significantly different. Also shown
is the histogram of the distribution of converted ASCAT soill
wetnes®scay/0s. The histogram fobuym 1/6s is similar to the
histogram forfscay/6s, although the histogram fatum, 1/6s Frost. ASCAT data is rejected where the UM screen temper-
contains a small second mode which is not present in the hisature analysis has temperatures below 275.15K.

togram forfscay/6s. The model soil wetness is calculated as L . .

a fraction of saturation because the UM surface soil moisture\/\/e“ands'ASCAT data is rejected where the inundation and

0, i -
has a large dynamic range and can fall significantly beIOWwetland amount has a value greater than 15%. The inunda

the wilting point or rise significantly above the field capac- tpn and wetland amount is prov!ded by the ASCAT level 2
ity. Figure3 can be compared with Figs. 5 and 7Mé&hfouf soil wetness BUFR producBrtalis et al, 200§..

(2010 who also defines model surface soil wetness as a fracMountains. ASCAT data is rejected where the topographic
tion of saturation. complexity has a value greater than 20%. The topo-

Note that we are not using CDF matching. The reason isgraphic complexity is derived from the US Geological Sur-
that van Genuchten soil hydraulics was only introduced intovey GTOPO30 global digital elevation data. The topographic
the operational global UM during March 2010 and its intro- COmplexity is provided by the ASCAT level 2 soil wetness
duction has a significant impact on the global UM soil mois- BUFR product.

ture climatology. Co_nseq_uently, we don’t have a long enqughASCAT estimated errorASCAT data is rejected where the

period of model soil moisture data for the CDF matching. oo i the ASCAT surface soil wetness is estimated to be
However, the constraint thaca(t) = 6um(t) ensures that  greqier than 7%. This check rejects ASCAT data from re-
Oscaf ) will be consistent with the assumptions made by the gions \ith dense vegetation (e.g. the Amazon) and sand
UM land surface model and unbiased in a similar sense {Qynes. The estimated error is provided by the ASCAT level 2
CDF matching (CDF matching, in addition, allows the con- soil wetness BUFR product. The ASCAT estimated error is

straint of higher order moments such as variance, skewnesgiher 100 optimistic so a low value for the QC threshold is
and kurtosis). appropriate.

Snow. ASCAT data is rejected where the UM snow analy-
sis (Pullen et al. 2010 indicates snow amounts greater than
0.05kg 2.

Cross track cell numberFigure4 shows the error in the AS-
CAT surface soil wetness as a function of cross track cell
5 Quality control of the ASCAT data number. To generate the figures, ASCAT data is extracted for
a 3day period, quality controlled and re-gridded onto a grid
A quality control (QC) step is implemented to deal with miss- W.Ith ~25km horizontal spacing. The root mean square
. ) . . difference between the quality controlled ASCAT measure-
ing data and to filter out measurements from regions with sea . X
. . ments and the re-gridded data is then calculated for each
snow cover, frost, mountains, dense vegetation, sand dunes . T
. A . —ttoss track cell. Based on Fig, ASCAT data is rejected
wetlands and open water. There is also a facility to rejectfor cells 1 to 4. 40 to 43 and 79 o 82
data based on cross-track cell number. Once the ASCAT sur- ' '
face soil wetness measurements have been converted to Background quality control checkThe background qual-
surface volumetric soil moisturcg; a background quality ity control check is performed after the ASCAT surface soll

control check is performed. If an observation is rejected bywetness measurements have been converted to volumetric
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soil moisture. For the quality control, we assume that the ASCAT soil wetness: RMS(0-avg(0)) : 20090501 to 20090503
observation errow, = 0.07nPm~3 , the background er- CET T T T T T T T T T T T
ror op = 0.07 e m~3, the prior probability of gross error 18
p(G) =0.05 and the observation is rejected if the posterior
probability of gross errop(Glo) > 0.5. Following Lorenc
and Hammor{1989,

16

14

12

RMS (ob-timeavg(obs))

lllllllIllllllllllllllllll

lllllllllllllll llllllllll

p©l|G)p(G) kp(G)
p(Glo) = = > ) 10
p(o) kp(G)+N(y,09)(1—p(G))
8
wherex =1/6s, y = Oscar—bib, 1, o?= 002+sz and l 1 1 1 1
, 6 011120111k4c|)|1b1 16011180
1 _ X-track cell number
2 y
N(y, o ) = WeXp( 202 ) . (8) 20AfCIAT'soi! W(?tne]ss:' RI\'/IS('o—aI\/g('o)) ' 2(309?50'5 tc[) 2(')09?5137

.1 is the UM intermediate soil moisture background for 18

soil level 1. 6 1 is calculated by the UM T/q soil moisture
nudging scheme.

The specified values of, and o, are quite large and
this will result in fewer ASCAT observations rejected by
the background quality control check. The assumption that £
0, =03 = 0.07 m® m~3 means that an ASCAT observation

16

14

(ob-timeavg(obs))

12

10

lllllllIllllllllllllllllll

lllllllllllllll llllllllll

is rejected if|y| > 0.26 m? m~3. For example, an alternative 8
assumption that, = o, = 0.05 n® m~3 would mean that an N T S R B
ASCAT observation is rejected jif| > 0.20 m? m~3. ° 2 tackcelnumber O 8

Fig. 4. Error in ASCAT surface soil wetness measurements as
6 Assimilation of ASCAT derived soil moisture a function of cross track cell number. The upper panel shows er-
rors for the 3day period; 1 May 2009 to 3 May 2009. On 4 May

The ASCAT surface volumetric soil moisture valigsythat 2009, EUMETSAT implemented an operational improvement to the
have passed all the QC checks are gridded onto the UMASCAT backscatter bias correction. The lower panel shows errors
grid. No thinning is performed, instead super-obing is used.for the 3day period; 5 May 2009 to 7 May 2009. The benefit of the
Since the ASCAT data has a higher spatial resolution than th:#”proved bias correction by EUMETSAT is clearly visible in the
model (12.5km vs 40 km), a model grid square can contain®"®" panel, showing significantly smaller errors.
severabscaivalues in any six hour time period. The super-ob
valuefscatis the arithmetic mean of afkcq; values that fall
within the same model grid square in a six hour time period.
A simple nudging scheme is used to nudge the UM level 1
volumetric soil moisture (output by the UM T/q soil moisture water added= 0.82 x py,d1 K (Fscat— 0ib.1) (10)
nudging schem&ji, 1 towards the ASCAT derived super-ob
valuefsca: Such a scheme is computationally very cheap.Where 082 is the ASCAT daily global coverages, =

1 mmday . The amount of water added per day by the AS-
CAT nudging scheme can be calculated as:

The soil moisture analysis is given by 1000 kg nr3 is the density of water and/; = 0.1 m
_ is the thickness of UM soil layer 1. Assuming that
g = { Oib.1+ K Oscar—0ib.1) (=1 ©) RMS(@scat—6ip.1) =~ 0.06 ¥ m~2 then provides the estimate
ol Oib.1 I>1" that RMSwater addey~1 mmday L.

where! is the model soil level. The assimilation time window

is six hours long and the soil moisture analysis is performed;7 Trials of ASCAT soil wetness assimilation

four times a day. See Fid.for a schematic overview of the

soil moisture analysis schemBrocca et al(2010h applied  The soil moisture analysis scheme described in this paper

a similar ASCAT nudging scheme to improve the prediction is computationally very cheap. However, testing will be

of runoff from a land surface model. computationally very expensive. The reason is that there
K is a constant scalar value that is user specified andvill be feedbacks between the soil moisture analysis, the

doesn’t vary spatially or temporally. The trials described in land surface model, the atmosphere model and the 4DVAR

this paper assum& = 0.2. This value was chosen so that atmosphere data assimilation. Therefore, for comprehen-

the root mean square (RMS) size of ASCAT nudges is abousive testing, the full Global UM NWP suite must be run.
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(O o s e LI B I S B S i B e towards the ASCAT valuescy; such that the RMS values
level off at about 0.05 fm—3. This value is very similar to
the expected accuracy of the ASCAT volumetric soil mois-
ture. Figureb shows results from trial 1, the other trials also
show similar results.

0.10

0.08

O1) (M/M?°)

7.2 Soil moisture nudges

RMS (Bcar

Figure 6 shows the RMS and mean size of soil moisture
nudges (mmdayt) from trial 1 for the July 2009 period.
The RMS size of soil moisture nudges by both schemes is
similar in trial 1.
(oYY AT S S S S T N AN SN SN ST S T TN ST S [N SN T T S T ST . . . .
May 2009 Jun 2009 Jul 2009 It may seem inconsistent to compare UM T/q soil moisture
nudges in the top 1 m of soil with ASCAT nudges in the top
Fig. 5. Time series of RMS differences betwe@atand the UM 10cm of soil, at first sight. However, the UM T/q scheme
level 1 volumetric soil moisturéjy 1, from the Test experiment of  gdds water throughout the plant root zone and generally only
trial 1. The statistics are calculated every six hours and the domaiyqds a small amount of water to the top 10 cm of soil. Conse-
is the varying.region covered by the ASCAT measurements duringquently, only comparing water added to the top 10 cm of soil
asix hour period. would give the misleading impression that ASCAT nudges
are much bigger than UM T/qg soil moisture nudges. The
ASCAT nudges in the top 1 m of soil are equal to the AS-

Other researchers testing soil moisture analysis schemes '8AT nudges in the top 10 cm of soil. Therefore, there is no

a NWP context have run trials which are typically one . : . . :
to three months long and cover the northern hemispherémonS'StE'\nCy in comparing ASCAT nudges in the top 10cm

Spring/Summer time period (e.gDraper et al.201%; Mah- 2:;;0“ with UM T/q soil moisture nudges in the top 1 m of
fouf, 201Q Scipal et al. 2008a Drusch 2007). ¥

Listed below are the trials whose results are described ir{ri;hf g?iﬂ;liﬁlgf;gggm;)j}géethuowii;:nir:if?gr%rgrth_

0.06

this paper. ern Hemisphere middle-latitude regions there is a general
: . : moistening of the soil by the UM T/q soil moisture nudging
Trial Period | TnaL UM | K scheme. The ASCAT nudges do show a different pattern, in
ength  vertica particular for the Western United States (US) where the AS-
(days) levels CAT nudging dries the soiDraper et al(2011) also find that
Trial 1 May to Jul 2009 79 70 0.2 nudges due to satellite derived soil moisture measurements
Trial 2 Aug to Sep 2009 38 50 0.2 can often be of different sign to the nudges due to the screen

observations. This might indicate that the model surface and

. . . . sub-surface soil moisture have errors with opposite sign. Or
Each trial consists of two experiments using the global NWPit may indicate that the T/qg soil moisture nudging is correct-

suite; a Control experiment and a Test experiment. The Con: ; ?
) ; ; . ._Iing for model errors that are unrelated to soil moisture. Such
trol uses the T/qg soil moisture nudging to analyse soil mois-

. . . onflicting updates will tend to increase the vertical gradient
ture. The Test uses both the T/q soil moisture nudging ancgf the model soil moisture. However, this doesn’t appear to

g:)?l '?‘nso(i:s'grglzgglengiS(;h%r?ﬁerrl\jvri‘génglz?gﬁt?gfgzéo_rzgfzsecause any problems. Observed soil moisture profiles often
. > . d). . . show significant vertical gradients and the model appears to
each trial are identical. For the longer trial 1, the UM six day . . : ; .
) under-estimate the vertical gradient of soil moisture.
forecasts start at 12Z each day, for the shorter trial 2, UM~ _. . . . .

: Figure 7 shows the average difference in volumetric soil
six day forecasts start from both 00Z and 12Z each day. Be-_ . _3 .
cause trialling is computationally very expensive and takes amOISture (=) between the Test and Control exper-
long time wegfirst ranpsome sho>;t ty);;icalrl)y one month long ments of trial 1 for the July 2009 period. The differences
trials to check that the ASCAT nudging scheme works Cor_are biggest for soil level 1 and become progressively smaller

. ) . .. forthe deeper soil levels. For trial 1, ASCAT nudging moist-
rectly. The short trials as well some quality control statlstlcsens the soil over much of the Southern Hemisphere. tropics
are described in a technical repditharssi et al.2010. P » TP

and Eastern US. ASCAT nudging dries the soil over much of
North Africa, Western US and Central Asia. ASCAT nudg-

7.1 ASCAT minus UM background statistics . o . . .
ing has little impact on soil moisture for the European region.

Figure5 shows that the land surface model is able to retain

the information from the ASCAT soil wetness assimilation.
Within a few weeks, the UM level 1 soil moistu#g 1 adjusts
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Fig. 6. RMS (top panels) and mean (lower panels) size of soil moisture nudges (nTrﬁ)daym trial 1 for the July 2009 period. The left
panels shows nudges in the top 1 m of soil by the UM T/q soil moisture nudging scheme in the Control experiment. The right panels shows
nudges in the topmost UM soil level by the ASCAT nudging in the Test experiment.

7.3 Impact of assimilating ASCAT soil wetness on than at 12Z. While for Europe the errors are larger at 127
forecasts of screen temperature and humidity than at 0Z. The diurnal variation in forecast skill can also
be due to other sources such as errors in model clouds and
Soil moisture influences the partitioning of net surface ra-surface albedo.
diation into sensible, latent and ground heat fluxes. Conse- Figure 10 shows screen verification results for trial 2.
quently, soil moisture can have a significant impact on fore-Trial 2 starts forecasts from both 00Z and 12Z as compared
casts of screen temperature and humidity. Fig&esd9 to trial 1 where forecasts are only started from 12Z. This is
show verification of UM screen temperature and screen relathe reason that trial 2 screen verification doesn’t show the
tive humidity forecasts against observations for trial 1, which diurnal variation in forecast skill seen in the trial 1 screen
covers the May to July 2009 time period. These figuresverification. Again ASCAT soil wetness assimilation gives
shows that ASCAT soil wetness assimilation has a positivea positive impact in the tropics and Australia. This time,
impact in the tropics and Australia. For Europe (results notthere is also a positive impact for North America and the
shown), North America and the Northern Hemisphere theNorthern Hemisphere. Again, for Europe the impact is
impact is neutral.Mahfouf (2010 has assimilated ASCAT neutral.
derived soil moisture using a simplified Extended Kalman The land surface has a much longer memory than the at-
Filter into a limited area NWP model covering Western Eu- mosphere and so improvements to the soil moisture analysis
rope and finds a broadly neutral impact on forecasts. often show bigger improvements at the longer forecast times
Trial 1 (Figs.8 and9) show a diurnal variation in fore- (Figs.8, 9 and10). Errors in screen temperature and humid-
cast skill. Such a diurnal variation should be expected. Soility are small at the start of a UM forecast since the 4DVAR
moisture affects transpiration from plants and transpirationatmosphere data assimilation scheme assimilates screen level
is strongly linked to photosynthesis. Therefore, errors duetemperature and humidity observations.
to soil moisture are expected to be larger during the day and
smaller at night. For north America, errors are larger at 0Z
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Soil moisture difference: level= 1
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Fig. 7. Trial 1, Test minus Control differences in volumetric soil moisturé (m_3) for the July 2009 period. The top panel shows differences
for the topmost UM soil level, the lower panel shows differences for UM soil level 2.

Koster et al.(2006 suggest that both the north Amer- soil moisture measurements hourly at soil depths of 5¢cm,
ica and Tropics regions contain hot-spots of high land-10cm, 20cm, 50cm and 100cm. USDA SCAN sites use
atmosphere coupling. This may be the reason for a positivéStevens vitel hydra probes that measure the dielectric con-
benefit of ASCAT assimilation in those regions. Bigger im- stant of the soil to determine soil moistur8efyfried and
provements from ASCAT soil wetness assimilation are ex-Murdock 2004 Seyfried et al.2005. According to the user
pected in those regions where screen level temperature amanual, the probes have an accuracy of 0.88&m?3. Since
humidity observations are sparse. Many areas of the tropthese are point observations (and we are interested in the grid
ics have sparse screen observation coverage and this woultjuare average) they also contain errors of representativity.
also explain the good results seen in the tropics. The spars&ccording toFamiglietti et al.(2008 the error of represen-
screen observation coverage in the interior of Australia mighttativeness depends on the length scale of interest. “Results
explain the good results from ASCAT soil wetness assimila-showed that variability generally increases with extent scale.
tion found for Australia. Europe has very dense screen obThe standard deviation increased fron@36 cn? cm~2 at
servation coverage and this most likely explains the neutrathe 2.5m scale to 0.071 ¢ram=23 at the 50km scale.” In
impact from ASCAT soil wetness assimilation for Europe. this study, the UM has a horizontal resolution of about 40 km

and therefore an error of representativity of 0.06n12 in
the USDA SCAN observations is assumed. This error of rep-

8 Comparison of model with in-situ soil moisture resentativity value is consistent witiralles et al.(2010
measurements who consider smaller spatial scales ranging from 12km to

. o . 25km and_oew and Schlenf201]). Since USDA SCAN is
The US Department of Agriculture, Soil Climate Analysis 5 gnarse network, it is not possible to use spatial averaging

Network (USDA SCAN) is a sparse network that consists, requce the error of representativity in the USDA SCAN
of about 100 automated sites, spread over the US that take
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Fig. 8. Trial 1 verification of UM screen temperature forecasts against observations for land points only and the time period 5 May 2009 to
24 July 2009. The solid red lines (dashed blue lines) show RMS differences for the Control experiment (Test experiment that also assimilates
ASCAT surface soil wetness measurements). Results are shown for the trofiSst?PC N), Australia (58 Sto 10 S, 9C E to 180 E),

North America (28 N to 60° N, 145 W to 50° W) and Northern Hemisphere regions {20to 9¢° N).

observations. Therefore the total error in the USDA SCAN US regions, the assimilation of ASCAT surface soil wetness
observations is about 0.07m 3. reduces the random difference between the UM soil moisture
A comparison has been made of the UM soil moistureanalyses and the USDA SCAN observations. The exception
analyses, from both the Control and Test experiments ofs the East coast region of the US where more USDA SCAN
trial 1, with USDA SCAN observations for the June to July stations show an increase in the SD. The explanation for this
2009 period. Reichle et al.(2007) have also used USDA is that there is greater vegetation cover over the East coast
SCAN observations for verification. 91 USDA SCAN sta- region and consequently the ASCAT surface soil wetness is
tions have sufficient data for the June to July 2009 periodlikely to be less accurate there.
for a comparison. For each station, the standard deviation Very limited quality control is applied at source to mea-
(SD), RMS, Bias and Correlation between the UM analysessurements from USDA SCAN stations and it is thought that,
and USDA SCAN observations are calculated. The USDAat least for older measurements, there are significant prob-
SCAN observations are used only for verification and thuslems with the data (seReichle et al. 2007). Therefore,
have independent errors from the UM. In addition, exactly a simple objective quality control (QC) scheme has been im-
the same USDA SCAN observations are used to verify bothplemented to identify USDA SCAN stations where the soll
the Test and Control experiments. Assimilation of bias cor-moisture sensors may be malfunctioning. The objective QC
rected satellite derived surface soil moisture measurements ischeme rejects USDA SCAN stations where in either the Test
expected to reduce the random errors in the UM soil moistureor Control experiment, the correlation is less than 0.3 or the
analyses. Therefore, some impact on SD, RMS and CorrelaSD is higher than 0.1&m~2 or the RMS is higher than
tion is expected. The SD is a measure of the random errors if.2 m® m—3. The objective QC of the USDA SCAN stations
both the UM and USDA SCAN observations while the RMS is rather strict and has probably removed some good stations.
is a measure of random errors and biases in both the UM an@he objective QC of the USDA SCAN stations does not alter
USDA SCAN observations. Figurgl shows that for most the conclusions of this paper. 60 USDA SCAN stations pass
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Fig. 9. Trial 1 verification of UM screen relative humidity forecasts against observations for land points only and the time period 5 May
2009 to 24 July 2009. The solid red lines (dashed blue lines) show RMS differences for the Control experiment (test experiment that also
assimilates ASCAT surface soil wetness measurements). Results are shown for the tr6@8d® (20 N), Australia (55 Sto 10 S, 90 E

to 180 E), North America (23N to 60° N, 145 W to 50° W) and Northern Hemisphere regions {20to 90¢° N).

the QC (Fig.12). Table1 shows the verification statistics impact on model performance, it is not possible to ascribe
both with and without QC. The uncertainty in the verifica- improvements at PS24 to any particular change.

tion statistics is also given using the 95 % confidence inter-

vals. The verification statistics suggest that assimilation of

ASCAT surface soil wetness improves the agreement of thelO  Conclusions

UM soil moisture analyses with the USDA SCAN observa- ) ]
tions (see also Figl1). Appendix A describes the equations e have developed a simple and computationally cheap anal-

used to calculate the verification statistics. ysis method to assimilate ASCAT surface soil wetness mea-
surements, that has been implemented operationally. The
chief strength of the method presented here is that it al-
lows the assimilation of satellite derived surface soil mois-
9 Operational implementation ture with screen level observations of temperature and hu-
midity for soil moisture analysis. Our trial results indicate
Assimilation of ASCAT surface soil wetness has been im-that assimilation of ASCAT surface soil wetness has a posi-
plemented operationally at the Met Office in the global UM tive benefit on forecasts of screen temperature and humidity
at Parallel Suite 24 (PS24) that started in May 2010 andfor the tropics, North America and Australia. A comparison
became operational in July 2010. The operational scheme&vith ground based observations of soil moisture indicates
uses the valu& =0.2 in Eq. @). As is usual, PS24 com- that generally assimilation of ASCAT surface soil wetness
bines together a number of model changes. In particulaimproves the agreement between in-situ and model soil mois-
PS24 implemented a new cloud parameterisation scheme dare. Other research has found only a modest, often neutral,
well as changes to the radiation parameterisation and aeros@hpact on weather forecasts from assimilating surface soil
climatology. Since these changes will all have a significantmoisture measurements. This is the case even when complex
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Fig. 10. Trial 2 verification of UM screen relative humidity forecasts against observations for land points only and the time period 22 Au-
gust 2009 to 30 September 2009. The solid red lines (dashed blue lines) show RMS differences for the control experiment (test experiment
that also assimilates ASCAT surface soil wetness measurements). Results are shown for the troBits ZZDN), Australia (55 S to

10° S, 90 E to 180 E), North America (28N to 60° N, 145° W to 50° W) and Northern Hemisphere regions {20to 9C° N).

Kalman Filter based approaches have been used for the saihodel root zone soil moisture with the surface soil moisture
moisture analysis. observations providing a much weaker constraint. Work is
The simple analysis method presented here uses the satgiso underway at the Met Office and Australian Government
lite data to only correct the model surface soil moisture. It Bureau of Meteorology on the development of a new land
is unclear whether this is a significant disadvantage sincd?A system based around the Met Office off-line land surface
the land surface model will propagate surface changes to thgodel and the EKF. The new land DA system is expected to
deeper soil layersivalker et al (2007) have performed athe- be able to make optimal use of a wide variety of observation
oretical study using perfect synthetic surface soil moisturetypes such as screen level observations and satellite data and
observations to compare a direct insertion technique with ario propagate information from the surface into the deeper soil
Extended Kalman Filter (EKF) for the analysis of a verti- layers.
cal soil moisture profile. For the idealised test case, both The soil moisture variations in the tapl cm are much
methods are found to give good results although the EKFmore pronounced than at a soil depth of 5cm. The topmost
converges more quickly to the known truth. The ability of ~1 cm layer of the soil is subjected to much more rapid dry-
surface soil moisture measurements to update the model roatg and wetting. Albergel et al.(2009 give an example of
zone soil moisture will be determined by the strength of cou-a rainfall event which leads to a rapid increase in the AS-
pling between the surface and root zone soil moisture andCAT soil moisture estimate. Whereas at a depth of 5c¢cm the
this will depend on many factors and is still an active areaincrease in soil moisture only occurs a day after the rain-
of research (see for exampkumar et al, 2009. Draper fall event. Since the UM top soil layer has a thickness of
et al. (2011 have used an EKF to assimilate together both10cm it may be more appropriate to use an exponential fil-
surface soil moisture and screen level observations. Theyer to estimate the ASCAT soil water index (SWI) for the
find that the screen level observations primarily constrain thetop 10 cm of soil Albergel et al, 2008 Brocca et al.20103
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Table 1. Verification statistics for trial 1 of UM level 1 soil moisture analyses compared with in-situ USDA SCAN soil moisture observations.
The Test experiment assimilates ASCAT surface soil wetness measurements while the Control experiment doesn’t use ASCAT measurements
Results are shown both with and without an objective quality control of the USDA SCAN stations. The verification shows that assimilation
of ASCAT surface soil wetness improves the agreement between the UM soil moisture analyses and USDA SCAN in-situ soil moisture
observations, this is the case regardless of whether the USDA SCAN stations are quality controlled.

Test experiment  Control experiment  Number of USDA SCAN stations

ASCAT assim. No ASCAT assim.  Better Same Worse

With objective quality control of USDA SCAN stations

SD (mPm—3) 0.041+0.003 0.046£ 0.003 45 1 14
RMS (mm~3)  0.075+0.007 0.082:0.008 38 1 21
Correlation 0.79£0.01 0.73+0.02 25 5 30
Bias (m? m—3) 0.01+0.02 0.01+0.02 24 9 27
Without any quality control of USDA SCAN stations

SD (M m™3) 0.045+ 0.003 0.051 0.004 62 2 27
RMS (m®m~3)  0.108+0.011 0.114+0.011 55 2 34
Correlation 0.590.02 0.52+0.02 41 5 45
Bias (m? m—3) 0.03+0.02 0.03:0.02 41 15 35

— /“i Quality Control

A \ N
Fig. 11. Location of USDA SCAN stations measuring soil moisture.
Green squares (red triangles) show locations where ASCAT surfac&ig. 12. Green squares (red triangles) show USDA SCAN stations
soil wetness assimilation reduces (increases) the random differend@assed (failed) by the objective quality control scheme. The ob-
(SD) between the UM level 1 soil moisture analyses and USDA jective quality control scheme is used during the calculation of the
SCAN in-situ soil moisture observations. Most locations show an Verification statistics shown in Table.
improvement in the UM soil moisture analyses (green squares).

However, a degradation of the UM soil moisture analyses for the

US East coast is suggested by the concentration of red triangles in ) ] ] )
that area. To obtain robust estimates of the bias correction parame-

ters requires appropriate long time-series of model and satel-

lite data. This is challenging since NWP models are up-
and assimilate the SWI instead of the ASCAT surface soildated frequently (typically 4 times a year at the Met Office)
wetness ifis). Brocca et al (20103 shows that in-situ soil  and consequently the climatology of the model soil mois-
moisture observations at a depth of 10cm have a higher corture is not constant for long time periods. Similarly, updates
relation with SWI than withns. However, the major prob- also occur to the satellite data processing algorithms, such
lem with using an exponential filter is the determination of as the changes to the ASCAT backscatter bias correction ap-
the “characteristic time length” parame®r Albergel etal.  plied by EUMETSAT in May 2009 (see Fig) and the up-
(2008 find that the optimal value df varies from locationto  grade to the ASCAT level 2 soil wetness algorithm in August
location and year to year. Brocca (personal communicationp011. To circumvent the difficulty in obtaining long time-
has suggested using a global constant valu& ef4 or 5  series of data we have chosen to use ERS surface soil wet-
days. We pIan future trials investigating the assimilation of ness measurements and model soil moisture from GSWP2
SWI. simulations. This is the best choice that could be made at

the time our ASCAT soil wetness assimilation studies started

‘)l =
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Fig. 13. Comparison of the UM level 1 soil moisture analyses with USDA SCAN observations for six selected sites during June and
July 2009. The red curves shows the in-situ USDA SCAN soil moisture observations (mean of 5cm and 10 cm measurements). The
dark blue curves shows the UM level 1 soil moisture from the Test experiment of trial 1 that assimilates ASCAT surface soil wetness.
The light blue curves shows the UM level 1 soil moisture from the Control experiment of trial 1. The selected sites are in the the states
of Nebraska (NE; latitude = 40.850, longitude-96.467, elevation==1215 feet), Mississippi (MS; latitude =34.683, longitud®3417,

elevation =260 feet), Virginia (VA; latitude =38.233, longitude#8.117, elevation=520 feet), Alabama (AL, latitude =34.433, longi-

tude =—86.683, elevation =635 feet), Montana (MT; latitude =47.517, longitud&@7.133, elevation=2820 feet) and Utah (UT; lati-

tude =37.667, longitude =109.367, elevation = 6451 feet).

in late 2008, the alternative would have been to use only a The weighting given to the ASCAT derived surface soil
few months of data for the bias correction (as dondviah- moisture during assimilation is determined by the parameter
fouf, 2010. However, additional difficulties are raised since K in Eqg. (). Currently we do not allowk to vary spatially.

the ERS data primarily covers the years from 1991 to 2001,The accuracy of the model and satellite derived surface soil
while the GSWP2 simulation cover the years from 1986 tomoisture does vary spatially and therefore the optimal value
1995. Furthermore, our assimilation trials cover periods dur-of K should also have a spatial variation. We plan to use the
ing 2009. The mismatch in dates is likely to reduce the effec-triple-colocation methodorigo et al, 201Q Scipal et al.
tiveness of the bias correction and hence the ASCAT assim2008Hh to derive the optimal, spatially varying, value of K.
ilation. As more model and satellite data becomes available

the bias correction scheme will be improved in the future and

most likely we will use CDF matching.
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t and depthz. The average of SCAN observations at depthsCrown Copyright.
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my,; is UM level 1 volumetric soil moisture interpolated to draft of the paper. Thanks go to Mike Thurlow, David Walters and
observation space. The following equations are used to calPaul Earnshaw for help with the pre-operational global UM NWP
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