
Hydrol. Earth Syst. Sci., 15, 2729–2746, 2011
www.hydrol-earth-syst-sci.net/15/2729/2011/
doi:10.5194/hess-15-2729-2011
© Author(s) 2011. CC Attribution 3.0 License.

Hydrology and
Earth System

Sciences

Operational assimilation of ASCAT surface soil wetness at the Met
Office

I. Dharssi1, K. J. Bovis2, B. Macpherson2, and C. P. Jones2

1Centre for Australian Weather and Climate Research, Australian Government Bureau of Meteorology, Melbourne, Australia
2Met Office, Exeter, UK

Received: 1 March 2011 – Published in Hydrol. Earth Syst. Sci. Discuss.: 29 April 2011
Revised: 15 August 2011 – Accepted: 24 August 2011 – Published: 31 August 2011

Abstract. Currently, no extensive, near real time, global soil
moisture observation network exists. Therefore, the Met Of-
fice global soil moisture analysis scheme has instead used
observations of screen temperature and humidity. A num-
ber of new space-borne remote sensing systems, operating
at microwave frequencies, have been developed that pro-
vide a more direct retrieval of surface soil moisture. These
systems are attractive since they provide global data cover-
age and the horizontal resolution is similar to weather fore-
casting models. Several studies show that measurements of
normalised backscatter (surface soil wetness) from the Ad-
vanced Scatterometer (ASCAT) on the meteorological oper-
ational (MetOp) satellite contain good quality information
about surface soil moisture. This study describes methods
to convert ASCAT surface soil wetness measurements to
volumetric surface soil moisture together with bias correc-
tion and quality control. A computationally efficient nudg-
ing scheme is used to assimilate the ASCAT volumetric sur-
face soil moisture data into the Met Office global soil mois-
ture analysis. This ASCAT nudging scheme works along-
side a soil moisture nudging scheme that uses observations
of screen temperature and humidity. Trials, using the Met
Office global Unified Model, of the ASCAT nudging scheme
show a positive impact on forecasts of screen temperature
and humidity for the tropics, North America and Australia.
A comparison with in-situ soil moisture measurements from
the US also indicates that assimilation of ASCAT surface soil
wetness improves the soil moisture analysis. Assimilation of
ASCAT surface soil wetness measurements became opera-
tional during July 2010.

Correspondence to:I. Dharssi
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1 Introduction

Soil moisture can have a significant impact on screen temper-
ature and humidity, low clouds and precipitation by influenc-
ing the exchange of heat and water between the land surface
and the atmosphere. Soil moisture can vary significantly over
short distances so that measurements made at one location
contain little information about neighbouring locations. The
variability in soil moisture is due to the spatial distribution of
rainfall and also the spatial variation of the soil texture, vege-
tation and topography. The high degree of spatial variability
limits the utility of ground based point observations of soil
moisture. Currently, no extensive global soil moisture ob-
servation network exists. Some regional near real-time soil
moisture observing networks do exist, such as the USDA:
SCAN (US Department of Agriculture: soil climate analysis
network). The International Soil Moisture Network initiative
is trying to establish and maintain a global in-situ soil mois-
ture database (Dorigo et al., 2011).

Many numerical weather prediction (NWP) centres use
observations of screen temperature and humidity to anal-
yse soil moisture, e.g. the Met Office (Best and Maisey,
2002), ECMWF (Drusch and Viterbo, 2007), Meteo-France
(Giard and Bazile, 2000) and the German Weather Service
(Hess et al., 2008). Drusch and Viterbo(2007) have exam-
ined the performance of the ECMWF soil moisture nudg-
ing scheme that uses observations of screen temperature and
humidity (they call it an optimal interpolation scheme) and
concluded that soil moisture nudging significantly improves
weather forecasts on large geographical domains. Temper-
ature forecasts for the Northern Hemisphere were signifi-
cantly improved for up to nine days and to a level of 700 hPa.
However, by comparison with in-situ soil moisture observa-
tions from the Oklahoma mesonet they also conclude that
soil moisture nudging fails to improve the analysis and fore-
casts of soil moisture itself.
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A number of new space-borne remote sensing systems, op-
erating at microwave frequencies, have been developed that
provide a more direct retrieval (than using screen level ob-
servations) of surface soil moisture, e.g. ASCAT (Advanced
Scatterometer, C band,Bartalis et al., 2007), SMOS (Soil
Moisture and Ocean Salinity, L band,Kerr et al., 2001),
AMSR-E (Advanced Microwave Scanning Radiometer on
the Earth Observing System, C and X band,Owe et al.,
2008; Njoku et al., 2003) and WindSat (C and X band,Li
et al., 2010). These systems are attractive since they provide
global data coverage and the horizontal resolution is similar
to global NWP models. At microwave frequencies the di-
electric constant of liquid water (' 70) is much higher than
that of the soil mineral particles (< 5) or ice. An increase
in soil moisture leads to an increase in the dielectric con-
stant of the soil which leads to a decrease in soil emissivity
and an increase in soil reflectivity. Therefore, satellite based
measurements of microwave brightness temperature (passive
system) or backscatter (active system) can be used to derive
estimates of surface soil moisture using a retrieval algorithm.
However, using these additional sources of data is challeng-
ing since:

i. Microwave sensors only sense the top few cms of soil.
NWP requires knowledge of soil moisture through-
out the plant root zone, since plants extract soil wa-
ter through their roots which then evaporates from their
leaves.

ii. Satellite microwave measurements can also be affected
by numerous other factors such as vegetation water con-
tent and single scattering albedo, soil roughness, to-
pography, soil texture, salinity and surface temperature.
Consequently, retrieval algorithms can produce very bi-
ased estimates of surface soil moisture, (Reichle et al.,
2004). Intercomparison of several different retrieval al-
gorithms for the passive microwave AMSR-E instru-
ment find large differences in the quality of the retrieval
algorithms (Draper et al., 2009; Rudiger et al., 2009;
Jackson et al., 2010).

iii. Improvements to the parameters and processes in land
surface models are likely to be necessary before assim-
ilation of satellite derived soil moisture shows signifi-
cant benefit. For example, the operational implemen-
tation of the Unified Model T/q soil moisture nudging
scheme uncovered many deficiencies in the land surface
model and prompted the work ofDharssi et al.(2009).
This work resulted in large improvements to Unified
Model (UM) forecasts of screen temperature and hu-
midity through better specification of the UM soil phys-
ical properties.

This paper describes the assimilation of both satellite de-
rived soil moisture and screen level observations of temper-
ature and humidity for soil moisture analysis using a simple,

computationally efficient method. Only a few other works
have looked at assimilating together both remotely sensed
data and screen level observations for soil moisture analy-
sis (for exampleDraper et al., 2011; Albergel et al., 2010;
de Rosnay et al., 2009; Seuffert et al., 2004). In addition,
this paper is one of a few to examine the impact of assimilat-
ing satellite derived soil moisture on forecasts of screen tem-
perature and humidity (other examples areMahfouf, 2010;
Scipal et al., 2008a; Drusch, 2007). The Met Office is the
first to operationally use satellite derived soil moisture for
numerical weather prediction. Although several other NWP
centres are actively researching this area.

This work builds on the previous study ofScipal et al.
(2008a), who examined the impact of assimilating ERS scat-
terometer derived soil moisture in the ECMWF NWP system.
Three experiments were performed; a control (CTRL) where
soil moisture is unconstrained and free-wheels, a test experi-
ment (OI) with a soil moisture nudging scheme that uses ob-
servations of screen temperature and humidity and a second
test experiment (NDG) that only uses ERS scatterometer de-
rived soil moisture to nudge the model level 1 soil moisture.
Scipal et al.(2008a) find that the NDG experiment provides
better forecasts of screen temperature and humidity than the
CTRL but poorer forecasts than the OI experiment. Our tri-
als differ fromScipal et al.(2008a) in one crucial way; our
test experiments use observations of screen temperature and
humidity AND also ASCAT data to analyse the soil mois-
ture. The UM T/q soil moisture nudging scheme that uses
observations of screen temperature and humidity is applied
first to correct the model soil moisture in all four soil lay-
ers. Next, ASCAT data is used to correct the model level 1
soil moisture (see Fig.1). Our control experiments are like
the OI experiment ofScipal et al.(2008a). No experiments
are performed, in this study, where the model soil moisture
is unconstrained and free-wheels (no soil moisture analysis).
Free-wheeling is expected to show a degradation (as found
by Scipal et al., 2008a; Draper et al., 2011). Our control
experiment includes the T/q soil moisture nudging scheme
and so is more difficult to improve upon than an experiment
without any soil moisture analysis. The pertinent question to
ask is, what is the added value of using satellite derived sur-
face soil moisture measurements in addition to using screen
level observation of temperature and humidity to analyse soil
moisture for NWP.

Reichle et al.(2004) show that strong biases exist between
satellite derived and model derived surface soil moisture. In
addition, model simulated soil moisture values are highly
model specific. For example,Koster et al.(2009) show that
direct transfer of soil moisture values from one land surface
model to a different land surface model is inappropriate and
likely to lead to problems. Therefore,Reichle and Koster
(2004) argue that the satellite derived surface soil moisture
values must be bias corrected to be consistent with the model
used for assimilation. The bias correction accounts for model
assumptions such as those about soil texture and vegetation
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Fig. 1. Schematic view of the soil moisture analysis scheme used by the Test experiments in this study.
The Test experiments use ASCAT surface soil wetness measurements and screen level temperature and
humidity observations to analyse soil moisture.
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Fig. 1. Schematic view of the soil moisture analysis scheme used by the Test experiments in this study. The Test experiments use ASCAT
surface soil wetness measurements and screen level temperature and humidity observations to analyse soil moisture.

parameters and the parametrisation of bare soil evaporation.
Consequently, data assimilation of the bias corrected surface
soil moisture is more likely to improve model surface fluxes
and lead to better weather forecasts. Many studies use a bias
correction technique called cumulative distribution function
(CDF) matching (Reichle and Koster, 2004; Drusch et al.,
2005) that requires a long time-series (at least one year) of
satellite and model data. Any significant changes to the land
surface model and/or satellite retrieval algorithm would ne-
cessitate a recalculation of the bias correction parameters.

Mahfouf (2010) provides a good explanation of the dif-
ficulty in obtaining appropriate long time-series of model
and satellite data for the bias correction of the satellite de-
rived surface soil moisture, for NWP. Therefore, we have
used ERS soil wetness measurements together with model
surface soil moisture from the Global Soil Wetness Project 2
(GSWP2,Dirmeyer et al., 2006) simulations for the bias cor-
rection. The GSWP2 simulations are performed by forcing
the UM off-line land surface model with observations based
driving data (precipitation, short-wave and long-wave down-
ward surface radiation, surface pressure, screen temperature,
humidity and wind speed). Driving an off-line land sur-
face model with NWP forcing data will not reproduce the
NWP soil moisture climatology. The reason is that the NWP
suite contains land data assimilation such as the soil mois-
ture nudging scheme, soil temperature nudging scheme and
snow analysis scheme. The land data assimilation corrects
not only the random errors in the model but also persistent
systematic errors in the model (see for exampleDrusch and
Viterbo, 2007).

2 Met Office numerical weather prediction system

The Met Office uses the Unified Model (UM,Davies et al.,
2005) for both numerical weather prediction and climate re-
search. The version of the UM used in this work for the pre-
operational trials has a horizontal resolution of about 40 km
with 70 (or 50) vertical levels for the atmosphere and is based
on the version of the global UM which became operational
for NWP in March 2010. The 4DVAR data assimilation
scheme is used for the atmosphere (Rawlins et al., 2007) and
an atmosphere analysis is produced every six hours.

2.1 Representation of land surface processes

The UM uses the MOSES 2 (Met Office Surface Exchange
Scheme version 2) land surface scheme (Essery et al., 2001)
and there is full and direct two way coupling between
MOSES 2 and the atmosphere component of the UM. The
soil is discretised into four layers of 0.1, 0.25, 0.65 and
2 m thickness (from top to bottom). The soil hydrology is
based on a finite difference form of the Richards equation
and Darcy’s law. Thevan Genuchten(1980) equations are
used to describe the relationship of soil hydraulic conductiv-
ity and soil suction to the unfrozen volumetric soil moisture.
The van Genuchten soil parameters depend on the soil tex-
ture (size distribution of the soil particles and the soil organic
carbon content). The UM uses a new high resolution soil
textures map that merges data from three separate sources;
Harmonised World Soil Database (HWSD,FAO et al., 2008),
State Soil Geographic Database (United States region,Miller
and White, 1998) and point observations of soil sand, silt and
clay fractions. The UM doesn’t allow any vertical variation
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of soil texture, consequently data averaged over the 30 cm to
1 m depth of soil (subsoil) are used.

2.2 UM T/q soil moisture nudging scheme

The UM T/q soil moisture nudging scheme uses observations
of screen temperature and humidity to analyse soil moisture
(Best and Maisey, 2002). Because errors in the UM initial
soil moisture field cause errors in forecasts of daytime screen
temperature and humidity, knowledge of errors in forecasts
of screen temperature and humidity can be used to slowly
correct (nudge) the UM initial soil moisture. A reasonable
simplification would be to state that the UM T/q soil moisture
nudging scheme adjusts the model soil moisture to minimise
the errors in six hour forecasts of daytime screen temperature
and humidity. Errors in forecasts of screen temperature and
humidity are due to many factors. Therefore, the UM T/q
soil moisture nudging scheme seeks to identify and correct
for those errors in screen temperature and humidity forecasts
that are due to the model soil moisture. The UM T/q soil
moisture nudging scheme is only active where there is evap-
oration, where the errors in screen temperature and humidity
are of opposite sign (i.e. model boundary layer too warm and
dry or model boundary layer too cold and moist), in unstable
conditions (negative Richardson number) and where there is
an absence of snow. The UM T/q soil moisture nudging only
adjusts model soil moisture during daylight. Therefore, it is
performed four times a day to update the whole globe. A
significant advantage of the UM T/q soil moisture nudging
scheme is that it can correct the model soil moisture not only
for random errors but also for persistent systematic errors in
the model (e.g. errors in model soil moisture due to per-
sistent systematic errors in the model precipitation). A sig-
nificant disadvantage of the UM T/q soil moisture nudging
scheme is that the model soil moisture can become updated
for model errors that are actually unrelated to soil moisture.
The UM T/q soil moisture nudging scheme has been used
operationally at the Met Office since 2005.

3 Scatterometer data

The advanced scatterometer (ASCAT) is an active C-band,
5.3 GHz microwave sensor on board the polar-orbiting satel-
lite METOP, launched during October 2006. ASCAT is the
successor system to the ERS-1 (1991 to 1996) and ERS-
2 (launched 1996) C-band, 5.3 GHz microwave scatterome-
ters. ASCAT measures microwave backscatter with two sets
of three antennas on each side of the satellite ground track.
At each spatial point, a set of three antennas make three
nearly co-located backscatter measurements at incidence an-
gles ranging between 25 to 60◦. ASCAT covers two swaths
of 550 km width each separated by a gap of about 670 km.
Daily global coverage is 82 % which is double that of the
ERS-1/2 systems that use only one set of three antennas.

The ASCAT descending and ascending equator crossings oc-
cur at about 09:30 and 21:30 mean LST. Backscatter prod-
ucts are delivered at two horizontal resolutions For this study
the higher resolution product provided by EUMETSAT, on
a 12.5 km grid is used.

3.1 Conversion of ASCAT backscatter measurements to
surface soil wetness

A time-series based, change detection algorithm (Wagner
et al., 1999) is used to convert satellite backscatter mea-
surements to a surface soil wetnessms(t). It is assumed
that the surface volumetric soil moisture is linearly related
to ms(t). First, a triplet of nearly co-located backscatter
measurements are extrapolated to a reference angle of 40◦

(σ(40◦, t)) to eliminate any angular dependence. Soil rough-
ness and topography are assumed to provide a time invari-
ant contribution toσ(40◦, t) while vegetation effects are as-
sumed to vary seasonally. Therefore, the effects of soil
roughness, topography and vegetation are removed by sub-
tracting a dry reference functionσdry(40◦, t) that is annually
periodic. σdry(40◦, t) is estimated at each spatial grid point
from the lowest recorded values ofσ(40◦, t) in a long time
series (at least 10 yr long) of measurements from ERS-1/2.
A wet reference valueσwet(40◦) that is time invariant, is esti-
mated at each spatial grid point from the highest recorded
value of σ(40◦, t) in a long time-series of measurements.
Thus the conversion ofσ(40◦, t) to ms(t) is given by:

ms(t) =
σ(40◦,t)−σdry(40◦,t)

σwet(40◦)−σdry(40◦,t)
. (1)

3.2 Comparison of ERS/ASCAT soil moisture products
with ground based soil moisture observations

Albergel et al.(2009), Rudiger et al.(2009), Naeimi et al.
(2009) and Scipal (2002) have found good agreement be-
tween ERS or ASCAT derived soil moisture and ground
based soil moisture observations.Albergel et al. (2009)
compare ASCAT soil wetness with in-situ observations for
South-Western France.Albergel et al.(2009) find that AS-
CAT observations are well correlated with the in-situ data
(r ' 0.56) and no systematic dry or wet bias is observed.
Naeimi et al.(2009) compare the ERS scatterometer derived
soil wetness with in-situ measurements at 5 cm from the Ok-
lahoma Mesonet, for the three year period (2004–2006) and
find high correlations between the derived soil wetness and
in-situ measurements.Naeimi et al.(2009) also find high
correlation between the scatterometer derived soil wetness
and ECMWF ERA-Interim reanalysis surface soil moisture
data. Scipal (2002) has compared ERS derived volumetric
soil moisture with in-situ observations from China, Russia,
Ukraine, Illinois and India.Scipal(2002) finds that the ERS
derived volumetric soil moisture has an accuracy of between
0.05 m3 m−3 to 0.07 m3 m−3.
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Fig. 2. Plots of UM level 1 volumetric soil moisture monthly climatology θUM vs. the ASCAT surface
soil wetness monthly climatology ms for the UK region (10W to 5E; 47N to 60N), Madagascar region
(42E to 52E; 30S to 10S) and SW Australia region.(115E to 120E; 35S to 30S). Each plot contains 12
data points, one data point for each month of the year.
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Fig. 2. Plots of UM level 1 volumetric soil moisture monthly climatologyθUM vs. the ASCAT surface soil wetness monthly climatologyms
for the UK region (10◦ W to 5◦ E; 47◦ N to 60◦ N), Madagascar region (42◦ E to 52◦ E; 30◦ S to 10◦ S) and SW Australia region.(115◦ E to
120◦ E; 35◦ S to 30◦ S). Each plot contains 12 data points, one data point for each month of the year.

4 Conversion of surface soil wetness to surface
volumetric soil moisture

Before the ASCAT surface soil wetness (ms) can be assim-
ilated, it must be converted to surface volumetric soil mois-
ture (θscat) and bias corrected. FollowingScipal et al.(2008a)
a linear relationship is assumed,

θscat(t) = a+b×ms(t), (2)

wherea andb are spatially varying, time invariant, matching
parameters. At each UM land point,a is related to the local
minimum occurring value of the model surface soil moisture
while b is related to the local dynamic range of the model
surface soil moisture. From Eq. (2), the monthly climatology
of the ASCAT surface volumetric soil moisture is given by:

θscat(t) = a+b×ms(t), (3)

wherems(t) is the monthly climatology of ERS surface soil
wetness.ms(t) is derived from a long time-period1 of ERS
backscatter data and is provided by the ASCAT level 2 soil
wetness BUFR (Binary Universal Form for the Representa-
tion of meteorological data) product. In an analogous manner
to CDF matching, we impose the condition that

θscat(t) = θUM(t), (4)

where θUM(t) is the climatology of UM level 1 volumet-
ric soil moisture that is derived by driving the UM off-line
land surface model with observation based driving data pro-
vided by GSWP2 (Dirmeyer et al., 2006) that covers the pe-
riod January 1986 to December 1995 at a spatial resolution
of 1◦ latitude/longitude. The parameters and parameterisa-
tions used by the off-line GSWP2 simulations, including van
Genuchten soil hydraulics, are similar to those used by the
UM NWP suite.

1The years 1991 to 2001 with a limited amount of data from
2003 to 2007 (Bartalis, 2009).

Combining Eqs. (2)–(4) then gives the equation used to
convert ASCAT surface soil wetness to volumetric soil mois-
ture:

θscat(t) = θUM(t)+b×

(
ms(t)−ms(t)

)
. (5)

From Eqs. (3) and (4), the parameterb can be estimated
from the slope of the line of best fit through a scatter plot of
θUM(t) againstms(t). Figure2 shows example scatter plots
with lines of best fit for three different regions. SinceθUM(t)

andms(t) are monthly climatologies, there are twelve data
points on each plot of Fig.2, one for each month. The scat-
ter plots indicate that for regions with significant vegetation
cover (such as the UK and Madagascar) the slope of the line
of best fit is shallower andb ' (θs− θw) while for regions
with significant amounts of bare soil (such as SW Australia)
the slope of the line of best fit is steeper andb ' θs. The use
of scatter plots to derive theb parameter only works where
the surface soil moisture has a distinct seasonal cycle and
where the soil is unfrozen for most of the year. Therefore,
instead, we assume

b = (θs−νθw), (6)

whereθs is the volumetric soil moisture at saturation,θw is
the volumetric soil moisture at the wilting point andν is the
fraction of vegetation cover. Thus theb parameter is de-
termined using UM soil texture and vegetation cover data.
The b parameter is time invariant and has the same hori-
zontal resolution as the UM. The UM vegetation fractions
are derived from the International Geosphere Biosphere Pro-
gramme (IGBP) global land cover dataset. The choice ofb

in Eq. (6) is similar to that used byScipal(2002) andCebal-
los et al.(2005) who useb = (0.5θs+0.5θfc −θw), whereθfc
is the volumetric soil moisture at field capacity. The use of
Eq. (6) gives larger values forb which is justified since we
are considering surface soil moisture whileScipal(2002) and
Ceballos et al.(2005) consider root zone soil moisture.

Figure3 compares histograms of the distribution of AS-
CAT surface soil wetnessms with the distribution of UM
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Fig. 3. Histograms of ASCAT surface soil wetness ms, UM level 1 soil wetness θUM,1/θs and converted
ASCAT soil wetness θscat/θs. Data is for the NW Europe region, 15◦ W to 15◦ E; 37◦ N to 60◦ N and
time period May to July 2009.
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Fig. 3. Histograms of ASCAT surface soil wetnessms, UM level 1 soil wetnessθUM,1/θs and converted ASCAT soil wetnessθscat/θs. Data
is for the NW Europe region, 15◦ W to 15◦ E; 37◦ N to 60◦ N and time period May to July 2009.

level 1 soil wetnessθUM,1/θs for the NW Europe region
(θUM,1 is output from the UM T/q soil moisture nudging
scheme of a Control experiment). The shapes of thems and
θUM,1/θs distributions are significantly different. Also shown
is the histogram of the distribution of converted ASCAT soil
wetnessθscat/θs. The histogram forθUM,1/θs is similar to the
histogram forθscat/θs, although the histogram forθUM,1/θs
contains a small second mode which is not present in the his-
togram forθscat/θs. The model soil wetness is calculated as
a fraction of saturation because the UM surface soil moisture
has a large dynamic range and can fall significantly below
the wilting point or rise significantly above the field capac-
ity. Figure3 can be compared with Figs. 5 and 7 ofMahfouf
(2010) who also defines model surface soil wetness as a frac-
tion of saturation.

Note that we are not using CDF matching. The reason is
that van Genuchten soil hydraulics was only introduced into
the operational global UM during March 2010 and its intro-
duction has a significant impact on the global UM soil mois-
ture climatology. Consequently, we don’t have a long enough
period of model soil moisture data for the CDF matching.
However, the constraint thatθscat(t) = θUM(t) ensures that
θscat(t) will be consistent with the assumptions made by the
UM land surface model and unbiased in a similar sense to
CDF matching (CDF matching, in addition, allows the con-
straint of higher order moments such as variance, skewness
and kurtosis).

5 Quality control of the ASCAT data

A quality control (QC) step is implemented to deal with miss-
ing data and to filter out measurements from regions with sea,
snow cover, frost, mountains, dense vegetation, sand dunes,
wetlands and open water. There is also a facility to reject
data based on cross-track cell number. Once the ASCAT sur-
face soil wetness measurementsms have been converted to
surface volumetric soil moistureθscat, a background quality
control check is performed. If an observation is rejected by

one QC check it is not tested by any other QC check, the QC
checks are performed in the following order:

Snow. ASCAT data is rejected where the UM snow analy-
sis (Pullen et al., 2010) indicates snow amounts greater than
0.05 kg m−2 .

Frost. ASCAT data is rejected where the UM screen temper-
ature analysis has temperatures below 275.15 K.

Wetlands.ASCAT data is rejected where the inundation and
wetland amount has a value greater than 15 %. The inunda-
tion and wetland amount is provided by the ASCAT level 2
soil wetness BUFR product (Bartalis et al., 2008)..

Mountains. ASCAT data is rejected where the topographic
complexity has a value greater than 20 %. The topo-
graphic complexity is derived from the US Geological Sur-
vey GTOPO30 global digital elevation data. The topographic
complexity is provided by the ASCAT level 2 soil wetness
BUFR product.

ASCAT estimated error.ASCAT data is rejected where the
error in the ASCAT surface soil wetness is estimated to be
greater than 7 %. This check rejects ASCAT data from re-
gions with dense vegetation (e.g. the Amazon) and sand
dunes. The estimated error is provided by the ASCAT level 2
soil wetness BUFR product. The ASCAT estimated error is
rather too optimistic so a low value for the QC threshold is
appropriate.

Cross track cell number.Figure4 shows the error in the AS-
CAT surface soil wetness as a function of cross track cell
number. To generate the figures, ASCAT data is extracted for
a 3 day period, quality controlled and re-gridded onto a grid
with ' 25 km horizontal spacing. The root mean square
difference between the quality controlled ASCAT measure-
ments and the re-gridded data is then calculated for each
cross track cell. Based on Fig.4, ASCAT data is rejected
for cells 1 to 4, 40 to 43 and 79 to 82.

Background quality control check.The background qual-
ity control check is performed after the ASCAT surface soil
wetness measurements have been converted to volumetric
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soil moisture. For the quality control, we assume that the
observation errorσo = 0.07 m3 m−3 , the background er-
ror σb = 0.07 m3 m−3, the prior probability of gross error
p(G) = 0.05 and the observation is rejected if the posterior
probability of gross errorp(G|o) > 0.5. Following Lorenc
and Hammon(1988),

p(G|o) =
p(o|G)p(G)

p(o)
=

κp(G)

κp(G)+N(y,σ 2)(1−p(G))
(7)

whereκ = 1/θs, y = θscat−θib,1, σ 2
= σ 2

o +σ 2
b and

N(y,σ 2) =
1

√
2πσ 2

exp

(
−y2

2σ 2

)
. (8)

θib,1 is the UM intermediate soil moisture background for
soil level 1. θib,1 is calculated by the UM T/q soil moisture
nudging scheme.

The specified values ofσo and σb are quite large and
this will result in fewer ASCAT observations rejected by
the background quality control check. The assumption that
σo = σb = 0.07 m3 m−3 means that an ASCAT observation
is rejected if|y| > 0.26 m3 m−3. For example, an alternative
assumption thatσo = σb = 0.05 m3 m−3 would mean that an
ASCAT observation is rejected if|y| > 0.20 m3 m−3.

6 Assimilation of ASCAT derived soil moisture

The ASCAT surface volumetric soil moisture valuesθscatthat
have passed all the QC checks are gridded onto the UM
grid. No thinning is performed, instead super-obing is used.
Since the ASCAT data has a higher spatial resolution than the
model (12.5 km vs 40 km), a model grid square can contain
severalθscatvalues in any six hour time period. The super-ob
value θ̃scat is the arithmetic mean of allθscat values that fall
within the same model grid square in a six hour time period.

A simple nudging scheme is used to nudge the UM level 1
volumetric soil moisture (output by the UM T/q soil moisture
nudging scheme)θib,1 towards the ASCAT derived super-ob
value θ̃scat. Such a scheme is computationally very cheap.
The soil moisture analysis is given by

θa,l =

{
θib,1+K(θ̃scat−θib,1) l = 1

θib,l l > 1
, (9)

wherel is the model soil level. The assimilation time window
is six hours long and the soil moisture analysis is performed
four times a day. See Fig.1 for a schematic overview of the
soil moisture analysis scheme.Brocca et al.(2010b) applied
a similar ASCAT nudging scheme to improve the prediction
of runoff from a land surface model.

K is a constant scalar value that is user specified and
doesn’t vary spatially or temporally. The trials described in
this paper assumeK = 0.2. This value was chosen so that
the root mean square (RMS) size of ASCAT nudges is about

ASCAT soil wetness: RMS(o-avg(o)) : 20090501 to 20090503
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Fig. 4. Error in ASCAT surface soil wetness measurements as a function of cross track cell number. The
upper panel shows errors for the 3 day period; 1 May 2009 to 3 May 2009. On 4 May 2009, EUMETSAT
implemented an operational improvement to the ASCAT backscatter bias correction. The lower panel
shows errors for the 3 day period; 5 May 2009 to 7 May 2009. The benefit of the improved bias correction
by EUMETSAT is clearly visible in the lower panel, showing significantly smaller errors.
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Fig. 4. Error in ASCAT surface soil wetness measurements as
a function of cross track cell number. The upper panel shows er-
rors for the 3 day period; 1 May 2009 to 3 May 2009. On 4 May
2009, EUMETSAT implemented an operational improvement to the
ASCAT backscatter bias correction. The lower panel shows errors
for the 3 day period; 5 May 2009 to 7 May 2009. The benefit of the
improved bias correction by EUMETSAT is clearly visible in the
lower panel, showing significantly smaller errors.

1 mm day−1. The amount of water added per day by the AS-
CAT nudging scheme can be calculated as:

water added= 0.82×ρwd1K(θ̃scat−θib,1) (10)

where 0.82 is the ASCAT daily global coverage,ρw =

1000 kg m−3 is the density of water andd1 = 0.1 m
is the thickness of UM soil layer 1. Assuming that
RMS(θ̃scat−θib,1) ' 0.06 m3 m−3 then provides the estimate
that RMS(water added) ' 1 mm day−1.

7 Trials of ASCAT soil wetness assimilation

The soil moisture analysis scheme described in this paper
is computationally very cheap. However, testing will be
computationally very expensive. The reason is that there
will be feedbacks between the soil moisture analysis, the
land surface model, the atmosphere model and the 4DVAR
atmosphere data assimilation. Therefore, for comprehen-
sive testing, the full Global UM NWP suite must be run.
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Fig. 5. Time series of RMS differences between θ̃scat and the UM level 1 volumetric soil moisture θib,1,
from the Test experiment of trial 1. The statistics are calculated every six hours and the domain is the
varying region covered by the ASCAT measurements during a six hour period.
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Fig. 5. Time series of RMS differences betweenθ̃scatand the UM
level 1 volumetric soil moistureθib,1, from the Test experiment of
trial 1. The statistics are calculated every six hours and the domain
is the varying region covered by the ASCAT measurements during
a six hour period.

Other researchers testing soil moisture analysis schemes in
a NWP context have run trials which are typically one
to three months long and cover the northern hemisphere
Spring/Summer time period (e.g.Draper et al., 2011; Mah-
fouf, 2010; Scipal et al., 2008a; Drusch, 2007).

Listed below are the trials whose results are described in
this paper.

Trial Period Trial UM K

length vertical
(days) levels

Trial 1 May to Jul 2009 79 70 0.2
Trial 2 Aug to Sep 2009 38 50 0.2

Each trial consists of two experiments using the global NWP
suite; a Control experiment and a Test experiment. The Con-
trol uses the T/q soil moisture nudging to analyse soil mois-
ture. The Test uses both the T/q soil moisture nudging and
the ASCAT nudging scheme running sequentially to analyse
soil moisture (see Fig.1). Otherwise the Control and Test of
each trial are identical. For the longer trial 1, the UM six day
forecasts start at 12Z each day, for the shorter trial 2, UM
six day forecasts start from both 00Z and 12Z each day. Be-
cause trialling is computationally very expensive and takes a
long time, we first ran some short, typically one month long,
trials to check that the ASCAT nudging scheme works cor-
rectly. The short trials as well some quality control statistics
are described in a technical report (Dharssi et al., 2010).

7.1 ASCAT minus UM background statistics

Figure5 shows that the land surface model is able to retain
the information from the ASCAT soil wetness assimilation.
Within a few weeks, the UM level 1 soil moistureθib,1 adjusts

towards the ASCAT values̃θscat, such that the RMS values
level off at about 0.05 m3 m−3. This value is very similar to
the expected accuracy of the ASCAT volumetric soil mois-
ture. Figure5 shows results from trial 1, the other trials also
show similar results.

7.2 Soil moisture nudges

Figure 6 shows the RMS and mean size of soil moisture
nudges (mm day−1) from trial 1 for the July 2009 period.
The RMS size of soil moisture nudges by both schemes is
similar in trial 1.

It may seem inconsistent to compare UM T/q soil moisture
nudges in the top 1 m of soil with ASCAT nudges in the top
10 cm of soil, at first sight. However, the UM T/q scheme
adds water throughout the plant root zone and generally only
adds a small amount of water to the top 10 cm of soil. Conse-
quently, only comparing water added to the top 10 cm of soil
would give the misleading impression that ASCAT nudges
are much bigger than UM T/q soil moisture nudges. The
ASCAT nudges in the top 1 m of soil are equal to the AS-
CAT nudges in the top 10 cm of soil. Therefore, there is no
inconsistency in comparing ASCAT nudges in the top 10 cm
of soil with UM T/q soil moisture nudges in the top 1 m of
soil.

The mean size of soil moisture nudges (mm day−1) from
trial 1 for the July 2009 period show that in the North-
ern Hemisphere middle-latitude regions there is a general
moistening of the soil by the UM T/q soil moisture nudging
scheme. The ASCAT nudges do show a different pattern, in
particular for the Western United States (US) where the AS-
CAT nudging dries the soil.Draper et al.(2011) also find that
nudges due to satellite derived soil moisture measurements
can often be of different sign to the nudges due to the screen
observations. This might indicate that the model surface and
sub-surface soil moisture have errors with opposite sign. Or
it may indicate that the T/q soil moisture nudging is correct-
ing for model errors that are unrelated to soil moisture. Such
conflicting updates will tend to increase the vertical gradient
of the model soil moisture. However, this doesn’t appear to
cause any problems. Observed soil moisture profiles often
show significant vertical gradients and the model appears to
under-estimate the vertical gradient of soil moisture.

Figure7 shows the average difference in volumetric soil
moisture (m3 m−3) between the Test and Control experi-
ments of trial 1 for the July 2009 period. The differences
are biggest for soil level 1 and become progressively smaller
for the deeper soil levels. For trial 1, ASCAT nudging moist-
ens the soil over much of the Southern Hemisphere, tropics
and Eastern US. ASCAT nudging dries the soil over much of
North Africa, Western US and Central Asia. ASCAT nudg-
ing has little impact on soil moisture for the European region.
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Fig. 6. RMS (top panels) and mean (lower panels) size of soil moisture nudges (mm day−1) from trial 1
for the July 2009 period. The left panels shows nudges in the top 1 m of soil by the UM T/q soil moisture
nudging scheme in the Control experiment. The right panels shows nudges in the topmost UM soil level
by the ASCAT nudging in the Test experiment.
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Fig. 6. RMS (top panels) and mean (lower panels) size of soil moisture nudges (mm day−1) from trial 1 for the July 2009 period. The left
panels shows nudges in the top 1 m of soil by the UM T/q soil moisture nudging scheme in the Control experiment. The right panels shows
nudges in the topmost UM soil level by the ASCAT nudging in the Test experiment.

7.3 Impact of assimilating ASCAT soil wetness on
forecasts of screen temperature and humidity

Soil moisture influences the partitioning of net surface ra-
diation into sensible, latent and ground heat fluxes. Conse-
quently, soil moisture can have a significant impact on fore-
casts of screen temperature and humidity. Figures8 and9
show verification of UM screen temperature and screen rela-
tive humidity forecasts against observations for trial 1, which
covers the May to July 2009 time period. These figures
shows that ASCAT soil wetness assimilation has a positive
impact in the tropics and Australia. For Europe (results not
shown), North America and the Northern Hemisphere the
impact is neutral.Mahfouf (2010) has assimilated ASCAT
derived soil moisture using a simplified Extended Kalman
Filter into a limited area NWP model covering Western Eu-
rope and finds a broadly neutral impact on forecasts.

Trial 1 (Figs.8 and 9) show a diurnal variation in fore-
cast skill. Such a diurnal variation should be expected. Soil
moisture affects transpiration from plants and transpiration
is strongly linked to photosynthesis. Therefore, errors due
to soil moisture are expected to be larger during the day and
smaller at night. For north America, errors are larger at 0Z

than at 12Z. While for Europe the errors are larger at 12Z
than at 0Z. The diurnal variation in forecast skill can also
be due to other sources such as errors in model clouds and
surface albedo.

Figure 10 shows screen verification results for trial 2.
Trial 2 starts forecasts from both 00Z and 12Z as compared
to trial 1 where forecasts are only started from 12Z. This is
the reason that trial 2 screen verification doesn’t show the
diurnal variation in forecast skill seen in the trial 1 screen
verification. Again ASCAT soil wetness assimilation gives
a positive impact in the tropics and Australia. This time,
there is also a positive impact for North America and the
Northern Hemisphere. Again, for Europe the impact is
neutral.

The land surface has a much longer memory than the at-
mosphere and so improvements to the soil moisture analysis
often show bigger improvements at the longer forecast times
(Figs.8, 9 and10). Errors in screen temperature and humid-
ity are small at the start of a UM forecast since the 4DVAR
atmosphere data assimilation scheme assimilates screen level
temperature and humidity observations.
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Fig. 7. Trial 1, Test minus Control differences in volumetric soil moisture (m3 m−3) for the July 2009 period. The top panel shows differences
for the topmost UM soil level, the lower panel shows differences for UM soil level 2.

Koster et al.(2006) suggest that both the north Amer-
ica and Tropics regions contain hot-spots of high land-
atmosphere coupling. This may be the reason for a positive
benefit of ASCAT assimilation in those regions. Bigger im-
provements from ASCAT soil wetness assimilation are ex-
pected in those regions where screen level temperature and
humidity observations are sparse. Many areas of the trop-
ics have sparse screen observation coverage and this would
also explain the good results seen in the tropics. The sparse
screen observation coverage in the interior of Australia might
explain the good results from ASCAT soil wetness assimila-
tion found for Australia. Europe has very dense screen ob-
servation coverage and this most likely explains the neutral
impact from ASCAT soil wetness assimilation for Europe.

8 Comparison of model with in-situ soil moisture
measurements

The US Department of Agriculture, Soil Climate Analysis
Network (USDA SCAN) is a sparse network that consists
of about 100 automated sites, spread over the US that take

soil moisture measurements hourly at soil depths of 5 cm,
10 cm, 20 cm, 50 cm and 100 cm. USDA SCAN sites use
Stevens vitel hydra probes that measure the dielectric con-
stant of the soil to determine soil moisture (Seyfried and
Murdock, 2004; Seyfried et al., 2005). According to the user
manual, the probes have an accuracy of 0.03 m3 m−3. Since
these are point observations (and we are interested in the grid
square average) they also contain errors of representativity.
According toFamiglietti et al.(2008) the error of represen-
tativeness depends on the length scale of interest. “Results
showed that variability generally increases with extent scale.
The standard deviation increased from 0.036 cm3 cm−3 at
the 2.5 m scale to 0.071 cm3 cm−3 at the 50 km scale.” In
this study, the UM has a horizontal resolution of about 40 km
and therefore an error of representativity of 0.06 m3 m−3 in
the USDA SCAN observations is assumed. This error of rep-
resentativity value is consistent withMiralles et al.(2010)
who consider smaller spatial scales ranging from 12 km to
25 km andLoew and Schlenz(2011). Since USDA SCAN is
a sparse network, it is not possible to use spatial averaging
to reduce the error of representativity in the USDA SCAN

Hydrol. Earth Syst. Sci., 15, 2729–2746, 2011 www.hydrol-earth-syst-sci.net/15/2729/2011/



I. Dharssi et al.: Operational assimilation of ASCAT soil wetness 2739

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

1.6

1.8

2.0

2.2

2.4

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Temperature (Kelvin) at Station Height:  Surface Obs

Tropics (CBS area 20N-20S) (land points only)
Equalized and Meaned from 5/5/2009 00Z to 24/7/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

1.8

2.0

2.2

2.4

2.6

2.8

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Temperature (Kelvin) at Station Height:  Surface Obs

Australia / NZ (CBS area 10S-55S, 90E-180E) (land points only)
Equalized and Meaned from 5/5/2009 00Z to 24/7/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Temperature (Kelvin) at Station Height:  Surface Obs

North America (CBS area 60N-25N, 145W-50W) (land points only)
Equalized and Meaned from 5/5/2009 00Z to 24/7/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

1.5

2.0

2.5

3.0

3.5

4.0

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Temperature (Kelvin) at Station Height:  Surface Obs

Northern Hemisphere (CBS area 90N-20N) (land points only)
Equalized and Meaned from 5/5/2009 00Z to 24/7/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging
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RMS differences for the Control experiment (Test experiment that also assimilates ASCAT surface soil
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Fig. 8. Trial 1 verification of UM screen temperature forecasts against observations for land points only and the time period 5 May 2009 to
24 July 2009. The solid red lines (dashed blue lines) show RMS differences for the Control experiment (Test experiment that also assimilates
ASCAT surface soil wetness measurements). Results are shown for the tropics (20◦ S to 20◦ N), Australia (55◦ S to 10◦ S, 90◦ E to 180◦ E),
North America (25◦ N to 60◦ N, 145◦ W to 50◦ W) and Northern Hemisphere regions (20◦ N to 90◦ N).

observations. Therefore the total error in the USDA SCAN
observations is about 0.07 m3 m−3.

A comparison has been made of the UM soil moisture
analyses, from both the Control and Test experiments of
trial 1, with USDA SCAN observations for the June to July
2009 period. Reichle et al.(2007) have also used USDA
SCAN observations for verification. 91 USDA SCAN sta-
tions have sufficient data for the June to July 2009 period
for a comparison. For each station, the standard deviation
(SD), RMS, Bias and Correlation between the UM analyses
and USDA SCAN observations are calculated. The USDA
SCAN observations are used only for verification and thus
have independent errors from the UM. In addition, exactly
the same USDA SCAN observations are used to verify both
the Test and Control experiments. Assimilation of bias cor-
rected satellite derived surface soil moisture measurements is
expected to reduce the random errors in the UM soil moisture
analyses. Therefore, some impact on SD, RMS and Correla-
tion is expected. The SD is a measure of the random errors in
both the UM and USDA SCAN observations while the RMS
is a measure of random errors and biases in both the UM and
USDA SCAN observations. Figure11 shows that for most

US regions, the assimilation of ASCAT surface soil wetness
reduces the random difference between the UM soil moisture
analyses and the USDA SCAN observations. The exception
is the East coast region of the US where more USDA SCAN
stations show an increase in the SD. The explanation for this
is that there is greater vegetation cover over the East coast
region and consequently the ASCAT surface soil wetness is
likely to be less accurate there.

Very limited quality control is applied at source to mea-
surements from USDA SCAN stations and it is thought that,
at least for older measurements, there are significant prob-
lems with the data (seeReichle et al., 2007). Therefore,
a simple objective quality control (QC) scheme has been im-
plemented to identify USDA SCAN stations where the soil
moisture sensors may be malfunctioning. The objective QC
scheme rejects USDA SCAN stations where in either the Test
or Control experiment, the correlation is less than 0.3 or the
SD is higher than 0.1 m3 m−3 or the RMS is higher than
0.2 m3 m−3. The objective QC of the USDA SCAN stations
is rather strict and has probably removed some good stations.
The objective QC of the USDA SCAN stations does not alter
the conclusions of this paper. 60 USDA SCAN stations pass
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Fig. 9. Trial 1 verification of UM screen relative humidity forecasts against observations for land points
only and the time period 5 May 2009 to 24 July 2009. The solid red lines (dashed blue lines) show RMS
differences for the Control experiment (test experiment that also assimilates ASCAT surface soil wetness
measurements). Results are shown for the tropics (20S to 20N), Australia (55S to 10S, 90E to 180E),
North America (25N to 60N, 145W to 50W) and Northern Hemisphere regions (20N to 90N).
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Fig. 9. Trial 1 verification of UM screen relative humidity forecasts against observations for land points only and the time period 5 May
2009 to 24 July 2009. The solid red lines (dashed blue lines) show RMS differences for the Control experiment (test experiment that also
assimilates ASCAT surface soil wetness measurements). Results are shown for the tropics (20◦ S to 20◦ N), Australia (55◦ S to 10◦ S, 90◦ E
to 180◦ E), North America (25◦ N to 60◦ N, 145◦ W to 50◦ W) and Northern Hemisphere regions (20◦ N to 90◦ N).

the QC (Fig.12). Table1 shows the verification statistics
both with and without QC. The uncertainty in the verifica-
tion statistics is also given using the 95 % confidence inter-
vals. The verification statistics suggest that assimilation of
ASCAT surface soil wetness improves the agreement of the
UM soil moisture analyses with the USDA SCAN observa-
tions (see also Fig.11). Appendix A describes the equations
used to calculate the verification statistics.

9 Operational implementation

Assimilation of ASCAT surface soil wetness has been im-
plemented operationally at the Met Office in the global UM
at Parallel Suite 24 (PS24) that started in May 2010 and
became operational in July 2010. The operational scheme
uses the valueK = 0.2 in Eq. (9). As is usual, PS24 com-
bines together a number of model changes. In particular
PS24 implemented a new cloud parameterisation scheme as
well as changes to the radiation parameterisation and aerosol
climatology. Since these changes will all have a significant

impact on model performance, it is not possible to ascribe
improvements at PS24 to any particular change.

10 Conclusions

We have developed a simple and computationally cheap anal-
ysis method to assimilate ASCAT surface soil wetness mea-
surements, that has been implemented operationally. The
chief strength of the method presented here is that it al-
lows the assimilation of satellite derived surface soil mois-
ture with screen level observations of temperature and hu-
midity for soil moisture analysis. Our trial results indicate
that assimilation of ASCAT surface soil wetness has a posi-
tive benefit on forecasts of screen temperature and humidity
for the tropics, North America and Australia. A comparison
with ground based observations of soil moisture indicates
that generally assimilation of ASCAT surface soil wetness
improves the agreement between in-situ and model soil mois-
ture. Other research has found only a modest, often neutral,
impact on weather forecasts from assimilating surface soil
moisture measurements. This is the case even when complex

Hydrol. Earth Syst. Sci., 15, 2729–2746, 2011 www.hydrol-earth-syst-sci.net/15/2729/2011/



I. Dharssi et al.: Operational assimilation of ASCAT soil wetness 2741

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

8

9

10

11

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Relative humidity (%) at Station Height:  Surface Obs

Tropics (CBS area 20N-20S) (land points only)
Equalized and Meaned from 22/8/2009 00Z to 30/9/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

10

12

14

16

18

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Relative humidity (%) at Station Height:  Surface Obs

Australia / NZ (CBS area 10S-55S, 90E-180E) (land points only)
Equalized and Meaned from 22/8/2009 00Z to 30/9/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

8

10

12

14

16

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Relative humidity (%) at Station Height:  Surface Obs

North America (CBS area 60N-25N, 145W-50W) (land points only)
Equalized and Meaned from 22/8/2009 00Z to 30/9/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

0 12 24 36 48 60 72 84 96 108 120 132 144

Forecast Range (hours)

8

10

12

14

16

F
C

-O
b
s
 R

M
S

 E
rr

o
r

Relative humidity (%) at Station Height:  Surface Obs

Northern Hemisphere (CBS area 90N-20N) (land points only)
Equalized and Meaned from 22/8/2009 00Z to 30/9/2009 12Z

Cases:  CTRL: UM T/q nudging TEST: ASCAT nudging + UM T/q nudging

Fig. 10. Trial 2 verification of UM screen relative humidity forecasts against observations for land points
only and the time period 22 Aug 2009 to 30 Sep 2009. The solid red lines (dashed blue lines) show RMS
differences for the control experiment (test experiment that also assimilates ASCAT surface soil wetness
measurements). Results are shown for the tropics (20S to 20N), Australia (55S to 10S, 90E to 180E),
North America (25N to 60N, 145W to 50W) and Northern Hemisphere regions (20N to 90N).
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Fig. 10. Trial 2 verification of UM screen relative humidity forecasts against observations for land points only and the time period 22 Au-
gust 2009 to 30 September 2009. The solid red lines (dashed blue lines) show RMS differences for the control experiment (test experiment
that also assimilates ASCAT surface soil wetness measurements). Results are shown for the tropics (20◦ S to 20◦ N), Australia (55◦ S to
10◦ S, 90◦ E to 180◦ E), North America (25◦ N to 60◦ N, 145◦ W to 50◦ W) and Northern Hemisphere regions (20◦ N to 90◦ N).

Kalman Filter based approaches have been used for the soil
moisture analysis.

The simple analysis method presented here uses the satel-
lite data to only correct the model surface soil moisture. It
is unclear whether this is a significant disadvantage since
the land surface model will propagate surface changes to the
deeper soil layers.Walker et al.(2001) have performed a the-
oretical study using perfect synthetic surface soil moisture
observations to compare a direct insertion technique with an
Extended Kalman Filter (EKF) for the analysis of a verti-
cal soil moisture profile. For the idealised test case, both
methods are found to give good results although the EKF
converges more quickly to the known truth. The ability of
surface soil moisture measurements to update the model root
zone soil moisture will be determined by the strength of cou-
pling between the surface and root zone soil moisture and
this will depend on many factors and is still an active area
of research (see for exampleKumar et al., 2009). Draper
et al. (2011) have used an EKF to assimilate together both
surface soil moisture and screen level observations. They
find that the screen level observations primarily constrain the

model root zone soil moisture with the surface soil moisture
observations providing a much weaker constraint. Work is
also underway at the Met Office and Australian Government
Bureau of Meteorology on the development of a new land
DA system based around the Met Office off-line land surface
model and the EKF. The new land DA system is expected to
be able to make optimal use of a wide variety of observation
types such as screen level observations and satellite data and
to propagate information from the surface into the deeper soil
layers.

The soil moisture variations in the top'1 cm are much
more pronounced than at a soil depth of 5 cm. The topmost
'1 cm layer of the soil is subjected to much more rapid dry-
ing and wetting.Albergel et al.(2009) give an example of
a rainfall event which leads to a rapid increase in the AS-
CAT soil moisture estimate. Whereas at a depth of 5 cm the
increase in soil moisture only occurs a day after the rain-
fall event. Since the UM top soil layer has a thickness of
10 cm it may be more appropriate to use an exponential fil-
ter to estimate the ASCAT soil water index (SWI) for the
top 10 cm of soil (Albergel et al., 2008; Brocca et al., 2010a)
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Table 1. Verification statistics for trial 1 of UM level 1 soil moisture analyses compared with in-situ USDA SCAN soil moisture observations.
The Test experiment assimilates ASCAT surface soil wetness measurements while the Control experiment doesn’t use ASCAT measurements.
Results are shown both with and without an objective quality control of the USDA SCAN stations. The verification shows that assimilation
of ASCAT surface soil wetness improves the agreement between the UM soil moisture analyses and USDA SCAN in-situ soil moisture
observations, this is the case regardless of whether the USDA SCAN stations are quality controlled.

Test experiment Control experiment Number of USDA SCAN stations
ASCAT assim. No ASCAT assim. Better Same Worse

With objective quality control of USDA SCAN stations
SD (m3 m−3) 0.041± 0.003 0.046± 0.003 45 1 14
RMS (m3 m−3) 0.075± 0.007 0.082± 0.008 38 1 21
Correlation 0.79± 0.01 0.73± 0.02 25 5 30
Bias (m3 m−3) 0.01± 0.02 0.01± 0.02 24 9 27

Without any quality control of USDA SCAN stations
SD (m3 m−3) 0.045± 0.003 0.051± 0.004 62 2 27
RMS (m3 m−3) 0.108± 0.011 0.114± 0.011 55 2 34
Correlation 0.59± 0.02 0.52± 0.02 41 5 45
Bias (m3 m−3) 0.03± 0.02 0.03± 0.02 41 15 35

Fig. 11. Location of USDA SCAN stations measuring soil moisture. Green squares (red triangles) show
locations where ASCAT surface soil wetness assimilation reduces (increases) the random difference (SD)
between the UM level 1 soil moisture analyses and USDA SCAN in-situ soil moisture observations.
Most locations show an improvement in the UM soil moisture analyses (green squares). However, a
degradation of the UM soil moisture analyses for the US East coast is suggested by the concentration of
red triangles in that area.
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Fig. 11.Location of USDA SCAN stations measuring soil moisture.
Green squares (red triangles) show locations where ASCAT surface
soil wetness assimilation reduces (increases) the random difference
(SD) between the UM level 1 soil moisture analyses and USDA
SCAN in-situ soil moisture observations. Most locations show an
improvement in the UM soil moisture analyses (green squares).
However, a degradation of the UM soil moisture analyses for the
US East coast is suggested by the concentration of red triangles in
that area.

and assimilate the SWI instead of the ASCAT surface soil
wetness (ms). Brocca et al.(2010a) shows that in-situ soil
moisture observations at a depth of 10cm have a higher cor-
relation with SWI than withms. However, the major prob-
lem with using an exponential filter is the determination of
the “characteristic time length” parameterT . Albergel et al.
(2008) find that the optimal value ofT varies from location to
location and year to year. Brocca (personal communication)
has suggested using a global constant value ofT = 4 or 5
days. We plan future trials investigating the assimilation of
SWI.

Quality Control

Fig. 12. Green squares (red triangles) show USDA SCAN stations passed (failed) by the objective quality
control scheme. The objective quality control scheme is used during the calculation of the verification
statistics shown in table 1.
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Fig. 12. Green squares (red triangles) show USDA SCAN stations
passed (failed) by the objective quality control scheme. The ob-
jective quality control scheme is used during the calculation of the
verification statistics shown in Table1.

To obtain robust estimates of the bias correction parame-
ters requires appropriate long time-series of model and satel-
lite data. This is challenging since NWP models are up-
dated frequently (typically 4 times a year at the Met Office)
and consequently the climatology of the model soil mois-
ture is not constant for long time periods. Similarly, updates
also occur to the satellite data processing algorithms, such
as the changes to the ASCAT backscatter bias correction ap-
plied by EUMETSAT in May 2009 (see Fig.4) and the up-
grade to the ASCAT level 2 soil wetness algorithm in August
2011. To circumvent the difficulty in obtaining long time-
series of data we have chosen to use ERS surface soil wet-
ness measurements and model soil moisture from GSWP2
simulations. This is the best choice that could be made at
the time our ASCAT soil wetness assimilation studies started
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Fig. 13. Comparison of the UM level 1 soil moisture analyses with USDA SCAN observations for six selected sites during June and
July 2009. The red curves shows the in-situ USDA SCAN soil moisture observations (mean of 5 cm and 10 cm measurements). The
dark blue curves shows the UM level 1 soil moisture from the Test experiment of trial 1 that assimilates ASCAT surface soil wetness.
The light blue curves shows the UM level 1 soil moisture from the Control experiment of trial 1. The selected sites are in the the states
of Nebraska (NE; latitude = 40.850, longitude =−96.467, elevation= = 1215 feet), Mississippi (MS; latitude = 34.683, longitude =−90.417,
elevation = 260 feet), Virginia (VA; latitude = 38.233, longitude =−78.117, elevation = 520 feet), Alabama (AL; latitude = 34.433, longi-
tude =−86.683, elevation = 635 feet), Montana (MT; latitude = 47.517, longitude =−107.133, elevation = 2820 feet) and Utah (UT; lati-
tude = 37.667, longitude =−109.367, elevation = 6451 feet).

in late 2008, the alternative would have been to use only a
few months of data for the bias correction (as done byMah-
fouf, 2010). However, additional difficulties are raised since
the ERS data primarily covers the years from 1991 to 2001,
while the GSWP2 simulation cover the years from 1986 to
1995. Furthermore, our assimilation trials cover periods dur-
ing 2009. The mismatch in dates is likely to reduce the effec-
tiveness of the bias correction and hence the ASCAT assim-
ilation. As more model and satellite data becomes available
the bias correction scheme will be improved in the future and
most likely we will use CDF matching.

The weighting given to the ASCAT derived surface soil
moisture during assimilation is determined by the parameter
K in Eq. (9). Currently we do not allowK to vary spatially.
The accuracy of the model and satellite derived surface soil
moisture does vary spatially and therefore the optimal value
of K should also have a spatial variation. We plan to use the
triple-colocation method (Dorigo et al., 2010; Scipal et al.,
2008b) to derive the optimal, spatially varying, value of K.
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Appendix A

The notationok,t,zcm is used to describe an observation of
volumetric soil moisture from USDA SCAN stationk at time
t and depthz. The average of SCAN observations at depths
of 5 cm and 10 cm are used, thus we define

ok,t = 0.5(ok,t,5cm+ok,t,10cm). (A1)

mk,t is UM level 1 volumetric soil moisture interpolated to
observation space. The following equations are used to cal-
culate the verification statistics for each station:

RMS2
k =

1

T

T∑
t=1

(
mk,t −ok,t

)2
, (A2)

Biask =
1

T

T∑
t=1

(mk,t −ok,t ) = mk −ok , (A3)

wheremk =
1

T

T∑
t=1

mk,t andok =
1

T

T∑
t=1

ok,t .

SD2
k =

1

T

T∑
t=1

{
(mk,t −mk)−(ok,t −ok)

}2

= RMS2
k −(Biask)

2 . (A4)

T = 54 is the verification time period in days. The overall
verification statistics are given by equations:

RMS2
=

1

n

n∑
k=1

RMS2
k , (A5)

Bias=
1

n

n∑
k=1

Biask , (A6)

SD2
=

1

n

n∑
k=1

SD2
k = RMS2

−
1

n

n∑
k=1

(Biask)
2 . (A7)

The uncertainty in the verification statistics is calcu-
lated using the 95 % confidence intervals. For SD, RMS
and Bias, the 95 % confidence intervals are calculated
as ±1.96σ/

√
n where σ is the standard deviation of the

SDk, RMSk or Biask station values andn is the number of
SCAN stations used (n = 60 with QC or n = 91 without
QC). For correlation, the 95 % confidence intervals are
calculated as±1.96(1− r2)/

√
N (Jolliffe, 2007) wherer is

the correlation calculated using all the observations andN is
the total number of observations used (N = 3240 with QC or
N = 4914 without QC).
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