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Abstract. The statistical behaviour and distribution of high- sufficient resolution is available only at a limited number of
resolution (6 min) rainfall intensity within the wet part of locations across Australia. On the other hand there is good
rainy days (total rainfall deptl-10 mm) is investigated for coverage of rainfall data at a daily time step, consequently
42 stations across Australia. This paper compares nine thenany models used to inform water managers use a daily time
oretical distribution functions (TDFs) in representing thesestep. The overall goal of this research is to establish a means
data. Two goodness-of-fit statistics are reported: the Roobdf estimating the within-day statistical distribution of rain-
Mean Square Error (RMSE) between the fitted and observedall intensity given the daily rainfall depth and other readily
within-day distribution; and the coefficient of efficiency for available hydrometeorological data (e.g. temperature, pres-
the fit to the highest rainfall intensities (average intensity of sure). This paper makes a first step in that by examining the
the 5 highest intensity intervals) across all days at a site. Thavithin-day statistical behaviour of rainfall intensity and its
three-parameter Generalised Parad@stribution was clearly  representation by different statistical distributions.
the best performer. Good results were also obtained Erm There are several ways of capturing the effects of short
ponential, Gammaand two-parameter Generalized Pareto timescale rainfall intensity variability in catchment mod-
distributions, each of which are two parameter functions,elling. The rainfall time series can be explicitly represented
which may be advantageous when predicting parameter valin a short time step model; however, running short time step
ues. Results of different fitting methods are compared fordistributed models on large catchments is impractical. Alter-
different estimation techniques. The behaviour of the statishatively model parameters can be modified (e.g. calibrated)
tical properties of the within-day intensity distributions was in an attempt to capture the effect of the short time scale pro-
also investigated and trends with latitudedgfen climate cesses but with a long (say daily) model time step; however,
zone (strongly related to latitude) and daily rainfall amount this effective parameter approach is not well suited to non-
were identified. The latitudinal trends are likely related to alinear processes. Another approach is to use the distribution
changing mix of rainfall generation mechanisms across the€unction (DF) approach in which the cumulative probability
Australian continent. density function (cdf) of short time step (say 6 min) rain-
fall intensity is input (Van Dijk and Bruijnzeel, 2004; Kandel
et al., 2005). This function is then modified to produce a
1 Introduction cdf of runoff rate by a typically non-linear runoff-intensity
relationship that can be updated on a daily basis depend-
Rainfall data at high temporal resolution are required to accuing on the catchment wetness or other states such as surface
rately model the dynamics of surface runoff processes and, igover. Point-scale work has shown that, from a water qual-
particular, sediment entrainment (e.g. Dodov and Foufoulaity/erosion perspective, the probability distribution of rainfall
Georgiou, 2005; Kandel et al., 2005; Mertens et al., 2002).intensity within the day and the total daily volume are of pri-
These processes respond to rainfall intensity variations ovefary importance, while the time sequence of intensity is of
shortintervals. However, measurement of rainfall intensity atsecondary value (Kandel et al., 2005). Van Dijk and Brui-
jnzeel (2004) reached similar conclusions for events. The

key meteorological input requirement of such models is the
Correspondence toA. W. Western cdf of rainfall intensity within the day.
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Fig. 1. Map showing the location of the selected 42 pluviograph stations together wittohyeel climate zones (Peel et al., 2007) for Aus-

tralia. The climate class symbols have the following meanings Aw =tropical, savannah; BWh = arid, dessert, hot; BWk = arid, dessert, cold;
BSh =arid, steppe, hot; BSk =arid steppe, cold; Csa=temperate, dry hot summer; Csb =temperate, dry warm summer; Cwa = temperate, dr)
winter, hot summer; Cfa=temperate, no dry season, hot summer; CFb =temperate, no dry season, warm summer.

The intention of this paper is to examine how to best rep-note that the paper is not aiming to develop a new rainfall
resent the cdf of 6 min rainfall using wet and dry fractions, disaggregation method as DF models do not require an ex-
coupled with an appropriate continuous distribution function plicit time sequence.
of rainfall intensities during the wet fraction. In the absence
of a comprehensive treatment of the TDF selection problem,
this paper aims to fill the gap for within-day rainfall intensity 2 Data and methods
distributions in Australia. Specifically, the aim of this inves-
tigation was to quantify how well a range of available TDFs High resolution rainfall data from pluviograph stations
fit the measured within-day rainfall intensity data and, in par-across Australia was obtained and a detailed analysis con-
ticular, fit the characteristics of rainfall that are most relevantducted to explore the distribution of within-day intensities.
to runoff generation and erosion, that is the high intensities.There were three stages to the analysis. First, the raw rain-
The principal aspects of the problem that are addressed bfall intensity records were filtered to ensure data quality and
this work include: to exclude days of small rainfall depth (not of interest for
runoff or erosion). Second, nine different theoretical distri-
butions were fitted to the measured cumulative density func-
tion (CDF) of rainfall intensity. Multiple methods for es-

— Which approach to parameter estimation shows thetimating the distribution parameter values were employed.
greatest skill: the method of moments, L-moments, LH- Third, two objective functions were employed to assess the
moments, or Least Squares (LS)? goodness-of-fit of the different distributions. Data process-

ing and analysis was principally achieved via custom rou-

tines written in Fortran-90. Each stage is described in more
detail in the following sections.

— How well does each of the TDFs perform and how do
they rank with respect to each other?

— Does the “best” TDF vary with location around Aus-
tralia (i.e. with climate zone) and how do characteristics
of the distribution relate to climatic characteristics?

It also aims to examine variation in the statistical behaviour2.1 Data

of the within-day intensity distributions between locations.

To address these aims we analysed high resolution (6 minPluviograph records were obtained from the Australian
rainfall data recorded at 42 Bureau of Meteorology plu- Bureau of Meteorology (BOM) from the 42 sites shown
viometer installations around Australia. It is important to in Fig. 1. The Kdppen climate zones for Australia
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(Peel et al., 2007) are also shown. Where stations are vergumber () of 6-min intervals where the intensity exceeded
close to a zone boundary the classification was checked wittRnmin on any day need to be at least four.

site data. Table 1 shows pertinent properties of the 42 me- The results of this censorship regime in terms of the num-
teorological stations used. This set of sites (identified by Luber of rainy days on the record and the percentage of the
and Yu (2002) for a separate study) provides a broad spatiafainfall depth that fell within the various categories is sum-
coverage across Australia, record lengths span at least 20 ynarised in Table 2. The bottom line describes the data anal-
and the mean annual rainfall ranges from 196 mm at Oodysed by this investigation, showing for example that in Dar-
nadatta to 2439 at Koombooloomba. Site elevations rangevin 12.3 % of analysed days (i.e. days with a complete plu-
from sea level to 760 m, nine of the telppen climate zones  viograph record) had sufficient rai® 10 mm) and that on
present in continental Australia are represented and there ighese days 88.2 % of the total rainfall depth was received. In
a selection of sites from each of winter dominated, summercontrast, almost half of Melbourne’s rainfall depth is deliv-

dominated and non-seasonal rainfall regimes. ered on days where the total accumulation is less than 10 mm.
Over all stations, the average rainfall depth retained in the
2.2 Quality control and censoring data after censorship was 74.7 % of the total rainfall depth,

which was considered reasonable given our interest in pro-
Rainfall intensity data for each station was supplied at thecesses sensitive to large events.

BOM standard 6-min time increment with each 24 h period  Rainfall was also censored if 6-min intensity was less

divided into 240 intervals (herEinaﬁer referred tomﬂi\/io- than 1 mm hl_ On average, this accounted for 5.5 % of the
graph datg. Prior to the early 1990s the BOM pluviometer rainfall depth at each station, with this proportion varying
network used Dines Pluviographs which recorded via a pafrom 1.8% to 9.2 %. We undertook sensitivity testing using
per chart and pen connected to a float and siphon mechanisifhresholds of 1 mmtt and 2 mm hL and found the fitted
Since that time, tipping bucket rain gauges with a 0.2 mm tipparameter values and quality of fits were insensitive to the
size have been used and the time of individual tips recorde@xact level of the threshold. The 1 mm’hthreshold is a rea-
(Srikanthan et al., 2002). Both these types of records argonable compromise given the discretisation inherent in tip-
prOVIded by the BOM a-S 6 m|n data. Srikanthan et al. (2002)p|ng bucket rain gauges (Wh|Ch is typ|Ca”y az2 mrﬁl-hjis_
showed that the short time interval data from these two gauggretisation i.e. 0.2 mm tip and 6 min intervals), the practical
type.S are Sta.tlstlca.”y similar. This is COﬂSlSt(-Ent with the CON-need to remove the artefact of Sing]e t|ps being Spread over
clusions of Fankhouser (1998), who found little dependencemany time increments in the data and our primary interest in

on measurement characteristics (e.g. bucket size) for tippingigher intensities that are significant to surface processes.
bucket gauges. For this analysis, a day was designated as the

period starting and finishing at 09:00 h (as per the Bureaw.3 General approach
standard). This investigation was concerned only with intra-
day characteristics; therefore inter-day relationships could bevith any analysis of information from multiple stations a de-
neglected and periods of record where data was missing wergision must be made as to whether a local (analysis by indi-
not used rather than being in-filled. Thus for this analysisvidual site) or a regional (all sites together) approach should
only days with a complete pluviograph record were used (i.ebe taken. There are advantages of both. A local approach
240 values, including zeroes, starting at 09:00 h). has the advantage of enabling a better understanding of local
Records of rainfall intensity measured using tipping behaviour and contrasts between those sites while a regional
bucket technology incur errors at very low rain rates due toanalysis will provide a more robust relationship over a region
resolution problems (see review by Nystuen, 1999). Thisdue to the inclusion of more data. Here we chose a local ap-
error is related to the inherent quantisation involved in tip- proach because we are more interested in understanding the
ping bucket technology (the finite volume bucket must fill site level behaviour and in exploring the variation between
and empty for rain to be recorded). In addition low inten- sjtes.
sity periods have been handled differently over time by the
Bureau of Meteorology, with earlier data having single tips 2.4 Theoretical Distribution Functions
spread across multiple 6 min periods and later data having the
tip assigned to a single 6n min period. As this work was con-Nine different theoretical distribution functions (TDFs) (Ta-
cerned with the upper end of the rainfall intensity spectrum,ble 3) were fitted to the data for the wet fraction of the
pluviograph records were censored in two ways to eliminateday. The wet fraction is calculated as the proportion of 6-
low intensity data from consideration. First, only days wheremin intervals in the day with rainfall intensity exceeding
the total rainfall depth®) equalled or exceeded 10 mm were 1 mmh L. The selection of TDFs was populated with distri-
considered. Second, only those 6-min intervals where intenbutions well known in the meteorological and hydrological
sity (R) exceeded a threshold minimurRin) of 1 mm b1 literature. The mathematical formulation of each TDF, and
(0.2 mm/6 min) were considered in fitting the CDF. Finally, the parameter estimation techniques employed, followed the
in order to numerically resolve the higher order moments, themethods presented in Stedinger et al. (1993) as identified in
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Table 1. Properties of the 42 study sites.

Station ~ Station Lati- Long Period Elev dpen Annual Max  Max Min  Min Annual
Code Name tude itude (m) Climate Rainfall Monthly Month Monthly Month Rain
Class Rainfall Rainfall Days

2012 Halls Creek —18.2 127.7 1955- 422 BSh 546 152.6 Jan 2.2 Aug 47
Airport 2005

3003 Broome —17.9 1222 1948- 7 BSh 593 177 Jan 15 Sep 35
Airport 2005

4032 Port Hedland —20.4 118.6 1953- 6 BWh 313 98.5 Feb 0.9 Sep 20
Airport 2005

6011 Carnarvon —24.9 1137 1956- 4 BWh 234 49.1 Jun 2.1 Dec 25
Airport 2005

7045 Meekatharra —26.6 1185 1953— 517 BWh 235 34.6  Jun 49 Sep 29
Airport 2005

8051 Geraldton —28.8 1147 1953- 33 Csa 467 107 Jun 5.7 Dec 60
Airport 2005

9021 Perth —-319 116.0 1961- 15 Csa 795 172.6  Jun 9.2 Jan 87
Airport 2005

9741 Albany —-34.9 117.8 1965- 68 Csb 804 123.2  Jul 23.4 Feb 82
Airport 2005

9789 Esperance —33.8 1219 1969- 25 Csb 625 98.5 Jul 17.4 Dec 91

2005

12038 Kalgoorlie-Boulder —30.8 121.5 1939- 365 BSh 271 314 Jun 144  Sep 40
Airport 2005

13017  Giles Meteorological —25.0 128.3 1956— 598 BWh 273 48.8 Feb 10.1 Aug 32
Office 2005

14015  Darwin —-12.4 1309 1953- 30 Aw 1715 428.5 Jan 1 Jul 94
Airport 2005

14508 Gove —12.3 136.8 1966— 52  Aw 1430 284.8 Feb 42 Sep 56
Airport 2005

15135  Tennant Creek —19.6 1342 1969- 376 BSh 435 119.6 Feb 1.6 Aug 37
Airport 2005

15590  Alice Springs —23.8 1339 1951- 546 BWh 282 44.4  Feb 9 Sep 30
Airport 2005

16001  Woomera —31.2 136.8 1955- 167 BWh 192 20.8 May 11.9 Apr 28
Aerodrome 2005

17043  Oodnadatta —27.6 1354 1961- 117 BWh 176 289 Feb 9 Aug 22
Airport 2004

18012 Ceduna —32.1 1337 1954- 15 BSk 304 411 Jul 11.9 Jan 57
AMO 2005

23034  Adelaide —35.0 1385 1967- 6 Csb 455 63 Jul 18.2 Jan 79
Airport 2005

26021  Mount Gambier —37.7 140.8 1942- 63 Csb 707 99.3  Jul 256 Feb 119
Airport 2005
AERO

27006  Coen —13.8 143.1 1967- 161 Aw 1192 308.5 Jan 0.9 Sep 75
Airport 2002

27022  Thursday —-10.6 1422 1961- 58 Aw 1746 418.6 Jan 35 Sep 84
Island MO 1993

29041  Normanton —-17.7 1411 1964- 8 Aw 919 259.5 Jan 1.7 Aug 44
Post Office 1999

29127  Mount Isa —20.7 139.5 1967- 340 BSh 443 102.9 Jan 3.8 Jun 37
AERO 2005

31083  Koombooloomba —-17.8 1456 1960- 760 Cfa 2739 481.7 Mar 85.6 Oct 138
Dam 2005
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Table 1. Continued.

2565

Station  Station Lati- Long Period Elev dppen Annual Max Max Min  Min Annual
Code Name tude itude (m) Climate Rainfall Monthly Month Monthly Month Rain
Class Rainfall Rainfall Days

32040  Townsville —19.2 146.8 1953- 8 Aw 1144 292.7 Feb 10.7 Sep 65
AERO 2005

33119  Mackay —21.1 149.2 1959- 30 Cwa 1606 316.9 Feb 16.4 Sep 97
MO 2005

36031 Longreach —23.4 1443 1964- 192 BSh 455 81.1 Feb 9.6 Sep 33
AERO 2005

39083  Rockhampton —23.4 1505 1939- 10 Cfa 819 141.2 Feb 235 Sep 62
AERO 2005

40223  Brisbane —27.4 1531 1949- 4 Cfa 1185 171.7 Feb 349 Sep 91
AERO 2000

44021  Charleville —26.4 146.3 1953— 303 BSh 493 722 Jan 20.3 Aug 44
AERO 2005

48027  Cobar —31.5 1458 1962- 260 BSh 415 49.9 Jan 24 Jun 46
MO 2005

55024  Gunnedah —31.0 150.3 1946- 307 Cfa 643 90.9 Jan 36.4 Aug 60
SCS 2005

59040  Coffs Harbour —30.3 153.1 1960- 5 Cfa 1704 2424 Mar 63.6 Sep 87
MO 2005

66037  Sydney Airport —33.9 1512 1962- 6 Cfa 1106 124.3  Jun 62.7 Sep 96
AMO 2005

70014 Canberra —35.3 1492 1937- 578 Cfb 630 65.8 Oct 39.9 Jun 72
Airport 2005

72150 Wagga Wagga —35.2 1475 1945~ 212 Cfa 583 60.5 Oct 37.1 Feb 73
AMO 2005

76031  Mildura —34.2 1421 1953- 50 BSk 294 315 Oct 18.8 Mar 45
Airport 2005

85072  East Sale —38.1 147.1 1953- 5 Cib 617 62.6 Nov 40.5 Feb 91
Airport 2005

86071  Melbourne Regional —37.8 145.0 1873- 35 Cfb 657 67.3 Oct 475 Feb 100
Office 2005

91104  Launceston —415 1472 1938- 170 Cfb 684 77.8 Aug 38.5 Mar 93
Airport 2005

94008  Hobart —42.8 1475 1960- 4 Cfb 510 56.7 Dec 29.3 Jun 85
Airport 2005

Table 2. Summary of data divided into categories based on daily total rainfall déptar{d the number of 6 min periods)(where rainfall

intensity exceeded the threshold (1 mmih The number of days and daily rainfall depth (mm) are listed for the stations in Melbourne and
Darwin individually, and for all stations combined.

Station Melbourne Darwin All Stations

Criteria Days (%) Depth (%) Days (%) Depth (%) Days (%) Depth (%)

P <0.2mm 10269 (68.3) 11664 (75.5) 473196 (80.9)

02<P<10 4056 (27) 12118 (47) 1886  (12.2) 8069  (11.6) 81416  (13.9) 274371 (25.2)
P>10,n<4 2 (0.01) 42 (0.16) 7 (0.05) 85 (0.2) 59 (0.01) 841 (0.08)
P>10,n>4 700 4.7) 13626 (52.8) 1894 (12.3) 61156 (88.2) 30418 (5.2) 813781 (74.7)
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Table 3. Theoretical Distribution Functions tested for skill in fitting the CDF of within-day rainfall intensity. This table also indicates the
short name assigned to each TDF, lists the parameters of the distribution and their function (scale, shape, or location), and indicates the
source for relationships used in the fitting process (pages from Stedinger et al., 1993).

TDF Name Short Name  Parameters Page Reference(s)
Stedinger et al. (1993)

Lognormal LOGN M location parameter (mean) p. 18.14-15
o scale parameter (std. dev.)

LGN3 W location parameter (mean)  p. 18.15-16
o scale parameter (std. dev.)
& location parameter

Exponential EXP B inverse scale parameter p. 18.19-21
& location parameter

Gamma GAMA a shape parameter p. 18.19-21
B inverse scale parameter

Generalized Pareto GPT2 « scale parameter p. 18.22
k& shape parameter

GPT3 « scale parameter p. 18.22
« shape parameter
& location parameter

Extreme Value Distributions

Generalized Extreme GEV «a scale parameter p.18.17-19
Value « shape parameter
& location parameter

Weibull WEBL « scale parameter p. 18.19
« shape parameter

Gumbel GMBL « scale parameter p. 18.16-17
& location parameter

Note*. Details for all TDFs can also be found in: Tables 18.1.2 and 18.2.1 Stedinger et al. (1993)

the right-most column of Table 3. Of these distributions it is values (i.e. maximum or minimum) taken from of each of a
worth noting that the generalised pareto distribution and itsset of realisations. The validity of including these EVDs is
special case, the exponential distribution, can be interpretedpen to question as the rainfall intensity data to which they
as peak-over-threshold distributions (Madsen and Rosberggre being fitted is not an extreme value data set, at least using
1997; Claps and Liao, 2003), which provides some theo-traditional ways of thinking about rainfall. However, a recent
retical justification for their suitability here. Other distri- analysis of heavy rainfall by Wilson and Toumi (2005) shows
bution functions with greater flexibility (more parameters) that the distribution is in fact “heavy tailed” in some cases —
have been used to describe rainfall (e.g. the two-componera characteristic feature of EVDs.
extreme value distribution (Rossi et al., 1984)); however, Parameter values for each of the distributions were com-
given that we aim subsequently to predict the parameteputed from the pluviograph data in three ways: first via the
values for distributions from daily meteorological observa- method-of-moments (product moments, denoted PM); sec-
tions, we limited distributions to those that have three or lessond by the computation of L-moments (Hosking et al., 1985;
parameters. Hosking and Wallis, 1997; Stedinger et al., 1993) (denoted
The final three TDFs in Table 3a are Extreme Value Dis-LM); and third using a least squares estimation (denoted
tributions (EVDs). These have been derived specifically toLS) technique. The LS algorithm implemented an auto-
represent the distribution of the largest observation drawmmatic pattern search optimisation method (Hooke and Jeeves,
from a large sample. The validity of including these EVDs is 1961; Monro, 1971) with the objective to minimise the Root
open to question as the full range of observed intensity (ig-Mean Square Error (RMSE — see next section) between the
noring the minor censoring at very low intensities) has beenmeasured rainfall intensity CDF and the fitted TDF. Note that
included, whereas EVDs describe distributions of extremefor the first iteration of the LS algorithm the parameter values
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of the fitted TDF were initialised using values calculated via number of 6-min intervals during the wet fractiomf{ of the
the product moment method. day (that is:n =240 wf). Note that for the LS fitting method,
The utility of Wang's (1997) LH-moment method (LH4 the objective function is to minimise the RMSE.
moments in this case) was also examined using the GEV dis- Given the ultimate aim of providing input to erosion mod-
tribution as a test case. This fitting method was not pursueckls, a second goodness-of-fit statistic was used to quantify the
even though it yielded a better fit to the upper tail of the dis-fit to the upper tail of the rainfall distribution. A number of
tribution than the L-moment estimates because the LH4 esalternatives were considered, including the maximum 6-min
timations were (for a large majority of pluviograph stations) intensity; the average of the 2, 3, 5 and 10 highest intensity 6
inferior to those produced by product moment and LS meth-min periods; and the 80th and 90th percentile intensities. Of
ods. Consequently, the results presented in this paper exangourse, many of these measures were highly cross-correlated
ine only the relative merit of the other three parameter esti-(i.e. r2 > 0.8). Inspection of fitting results for Melbourne
mation techniques. and Darwin showed that some degree of averaging was use-
It should be noted that there is temporal structure toful (to avoid over-emphasizing errors in the fit of the highest
within-day rainfall that involves both intermittency and serial one or two intensity values) but that averaging over long pe-
correlation during rainfall periods. This structure impacts onriods tended to reduce differences between the fit of different
fitting techniques and in particular uncertainty estimation for TDFs. The average of the five highest intensity periods, des-
fitted parameters (Willems et al., 2007). In this study we haveignated/y; [mm h~1], was selected as providing a reasonable
not attempted to estimate the uncertainty in the fit of param-balance between these competing factors. It should be noted

eters for each type of distribution because of this issue. that/y, captures 30 min of rainfall in total but not necessarily
. from consecutive intervals.
2.5 Assessment of fit Formal statistical testing of distribution fits was also con-

) sidered. Several alternatives exist for testing whether a sam-
There are two possuble ?‘pPFO‘%CheS to. assessme.nt_ of the pf‘dre comes from a hypothesised distribution. These include
formance of .dlff.erept d|str|bgt|ons'; either examining how the Anderson-Darling test (Stephens, 1974), the probability
closely the dlstrll_)utlon functions .f't t_he _data by some Sortplot correlation coefficient (PPCC) test (Filliben, 1975), the
of analysis of residuals from the distribution function, or ex- Kolmogorov-Smimnov test and Chi-squared goodness-of-fit
amining the uncertainty in the quantile estimates resultingtest. Of these, critical values only exist for a subset of the
from the fitted distribution. To estimate the uncertainties in ., jidate distributions for the Anderson-Darling (Lognor-
the quantile estimates requires either independent samples Bl Exponential and Weibull) and PPCC (Gamma, GEV,
a rigorous treatment of any temporal structure in the dataWeibuII and Gumbel) tests (Engineering Statistics Hand-

Rainfall over a day is both intermittent and exhibits (poten- book, Chapter 1.3.5.14, Heo et al., 2008) The Kolmogorov-
tially intensity dependent) serial correlation. This structureSmirr’mV requires the di,stribution to, be fully specified for the

would need to be incorporated into the uncertainty estima- | values to be valid (Engineering Statistics Handbook,

tion for the parameters of each of the distributions and forChapter 1.3.5.16). Because we wanted to test all the distribu-
each of the f|tt!ng methods. Because of 'thls comple>'<|ty Wetions consistently and needed to estimate the parameter val-
opted to examine the fits bas_ed on a residual analysis rath(ﬂes from the data, these three tests were not suitable. Thus
than uncertainty in the quantile estimates. we used the Chi-squared test and followed the Engineering

Two measures of goodness-of-fit were selected to quantifys;sistics Handbook (2011) recommendations. It should be
the fit of the distributions. First, the Root Mean Square Error \oted that any intermittency and serial correlation should be

(RMSE —defined by (1)) of the fitted TDF compared with the accounted for in implementing these tests. We did not do
observed rainfall intensity data was computed. RMSE quanipis and this means the power of the Chi-squared test is over-
tif_ies_ how well the sh_ape_ of each TPF matches_the re_corde stimated (i.e. more days are found to be statistically dif-
within-day data considering the entire range O_f |n'FenS|ty Val'ferent to the hypothesised distribution that is really the case
ues above the 1 mn,TH threshold. Note that this yields one given that there will be some temporal structure to the data).
R.MSE value per rain day analysed. A low RMSE.vaIu'e 'N" This is a limitation of the testing that was attempted.

dicates that the fitted TDF provides a good approximation to 1o Chi-square test requires continuous data to be discre-

t_he shape of the rainfall intensity (.:DF; sh_owing tha_t a gOOOItised into bins and it is recommended that there be at least 5
fit to both thevolumeand theduration of different rainfall data points in each bin and at least 5 bins. The upper limit of

rates has been achieved. the first bin was set arbitrarily to 1.5 mmvh (larger where

noo, 2 necessary to ensure that it contained at least 5 data points).

21(11' - IJ') The number of subsequent bins was setrtb“z wheren, is

(1) the number of remaining data points. For these bins, ranges
were allocated on an equal probability basis using the fitted

where: [ and[ are the fitted and measured rainfall intensity distribution. If bins existed with less than five data points, the

at the j'th probability of exceedance respectively; angthe number of bins was reduced and ranges recalculated until all

~

RMSE=
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bins had at least five observation points. Only days that me8 lllustrative results: Melbourne and Darwin

the above criteria were selected for testing, which were gen-

erally days with more than 3 h of rainfall (i.e. 30 observation Fits of Exponential, Gamma, and Generalised Pareto 2 and
points). This testing indicated that each candidate distribu-3 parameter TDFs for Melbourne and Darwin are shown in
tion was rejected on about half of the days tested. Subsequelfiigs. 2 and 3 for nine randomly selected days at each station.
analysis showed the lower half of the distribution contributed These distributions were fitted using the LS method (except
more than 50 % of the chi-square statistic on 70-75 percenfor the Gamma distribution which used PM). It is clear that
of days (except lognormal — 50 % of days) and that the statisfor some days (for example 2 January 1970 at Melbourne)
tic was insensitive to the upper tail. Given our greater interesthere is little difference between the quality of fit for the var-
in the upper tail, this testing was not useful for distinguishing ious TDFs, while for others there is a significant difference.

candidate distributions. This is largely controlled by the skewness of the rainfall in-
tensity distribution on the particular day, with the GPT2 and
2.5.1 Summary statistics for each station GPT3 distributions being more flexible in terms of matching

the variations in skewness. There also appears to be a wider
The results of fitting at a given pluviograph station are sum-range in observed distribution shapes at Melbourne than at
marised herein by one RMSE value and digg value for  Darwin. These figures give a qualitative idea of the range in
each rain day in the record-@0 000 following quality con- fit quality.
trol). In order to quantify the goodness-of-fit over all the rain-  More quantitative results of the fitting for Melbourne and
days at a given station, two summary statistics were comDarwin are shown in Figs. 4 and 5. The charts are paired
puted: mCOE and RMSE9O0. (referred to as “chart-pairs”), showing fitted versus observed
) i i I (top) and RMSE (bottom). A number of additional statis-
— The goodness-of-fit between the fittagl (from the it (ics are provided with these plots as described in detail by
ted TDF) and the observed data was quantified using theach figure heading. The charts in Fig. 4 facilitate compari-
Modified Coefficient of Efficiency (NCOE) (one value g4 of fitting skill using PM for three different TDFs (LGNS,
of mCOE per station) as defined by Legates and Mc-ganmA, and GEV) at two locations: Melbourne (left) and
Cabe (1999). The mCOE is essentially similar t0 the panyin (right). The charts in Fig. 5 show results for Darwin.
well known Coefficient of Efficiency (Nash and Sut- They compare the fitting skill achieved by the three different
cliffe, 1970), but instead of squaring the error between yarameter estimation methods (LM, PM and LS) and also
measqred and observed data (wh|ch gives extrg weightpow the improvement in fit when an additional degree of
to outliers), the absolute magnitude of the error is COM-greedom is available: i.e. GPT3 (right) versus GPT2 (left). In
puted instead (refer to Legates and McCabe (1999) forg,mmary, these two figures show that fitting skill varies as a
a thorough derivation and discussion). function of: (i) TDF; (ii) location; (iii) fitting method; and

. , éiv) number of TDF parameters.
— The range of RMSE values at a station was summarise

by the 90th percentile RMSE (i.e. 90 % of RMSE val- 31 Fit results for various TDFs
ues are less than or equal to this RMSE value). Herein
this statistic is denoted as RMSE90. The 90th percentilg Fig. 4 the amount of scatter around the line-of-perfect

V\r/]as chosen oln th? l:;asisfthat it provri]des an indication of, g eement is greater for the lognormal fit than either the
the minimum level of performance that can be expectedyamma or GEV distributions, and this is the case for both
from the majority of fits. Melbourne and Darwin. The mCOE statistics support this

observation, with the lognormal statistic more than 10%

The meaning of these two statistics will become clearer a . S :
some illustrative results are introduced in the next sectionﬁower than either other TDF. The variation in RMSE is of a

The equation used to compute mCOE was (as per Legate%im”ar magnitude for Melbourne; that is the 90th percentile
; 0 .
and McCabe (1999)): MSE is 2.8+ 15 %, with the lognormal TDF at the upper

end of this range. In contrast, the RMSE values associated
S . with the lognormal TDF in Darwin vary over a much wider
> ’[Hlk — In, range, with the lognormal fit (RMSE90 = 15.4) clearly infe-
MCOE=10_*=1 (2) rior compared with the other two TDFs (RMSE90=7.6 and
i \IH| —I_HI’ 8.3). This suggests that location-related differences in fit-
= ting skill may be important. In fact the source of the differ-
ence is most likely due to the fact that Darwin receives much
where: /i andly; are the fitted and measured mean intensi- heavier rainfall than Melbourne; approximately three times
ties of the 5 highest intensity intervals of the ddy; is the  heavier if the median or 90th percentilg, values are used
mean value of the set; arftis the number of rain days in the as the basis of comparison (e.g. medignis 30.2 mm !
pluviometer record for that station. in Darwin compared to 9.5 mnt# in Melbourne). Indeed,
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Fig. 2. Fitted cumulative density functions (CDFs) of EXP, GPT2, GPT3 and GAMA for nine events representative of varying daily rainfall
depths for Melbourne. TDFs were fitted using the LS technique.

the RMSE90 values for the GAMA and GEV distributions This is indicated by the negative bias and the position of the
are threefold larger in Darwin than in Melbourne, while the dashed regression lines being consistently below the line-of-
LGN3 value is fivefold higher (suggesting that LGN3 fits get perfect-agreement. Consequently, runoff and erosion predic-
poorer as rainfall intensity increases in general). tions using the fitted TDFs would tend to be underestimated
Given that the elevated RMSE values for Darwin are compared with the observed data.
driven by the higher rainfall intensity of monsoonal events,
should the data be normalised (e.g.Mpy) so as to facilitate 3.2 Impact of fitting method and number of TDF
comparison between stations (i.e. RMSE calculated for non- parameters
dimensional results)? It is the authors’ opinion that this was
not necessary as the objective of this work was to examingrigure 5 illustrates two trends in fitting skill: first, product
TDF fits at each station not between stations. For this tasknoments are more successful than L-moments while LS is
RMSE based on unscaled rainfall intensity data was suitablethe best of the three; and second, the extra degree of free-
and has the added advantage of indicating the error magnidom available to GPT3 noticeably improves the fitting in-
tude in units [mm '] that are readily comprehended (for dices. The best fit is shown by the chart-pair at the bottom
example: RMSE of 1.0mmH has more physical meaning right (GPT3S). Itis interesting to note that the middle-right
than a normalised RMSE of 0.1). Thus, from the RMSE data(GPTZM) has a very similar fit to the bottom-left chart-pair
in Fig. 4 it can be concluded that: (i) GAMA and GEV in (GPTZ2-S). Given this result, two conflicting conclusions can
Darwin and Melbourne have superior performance to LGN3;be drawn regarding the value of the additional degree of free-
(i) RMSEQ0 values computed for Darwin are more than dou-dom available to GPT3 over GPT2. The advantage of the
ble those in Melbourne; and (jii) Darwin experiences eventsthird parameter is most evident in the product moment fits
having far higher intensity than Melbourne (i.e. many events(middle chart-pairs), with the fit statistics for GPT3 far better
where the observetly exceeds 20 mmtt — putting result  than those of GPT2 (MCOE =0.891 compared to 0.741, and
(ii) into context). RMSE90=1.91 compared with 2.56). However, looking at
A final point to note from the fitted versus observed plots the bottom chart-pairs (LS fit), the improvement offered by
in Fig. 4 is that both the GAMA and GEV TDFs tend to the third parameter is less significant (nCOE =0.928 com-
slightly underestimatéy for higher observed values ofpl pared with 0.884, and RMSE90 = 1.58 compared with 2.03).
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Fig. 3. Fitted cumulative density functions (CDFs) of EXP, GPT2, GPT3 and GAMA for nine events representative of varying daily rainfall
depths for Darwin. TDFs were fitted using the LS technique.

The optimisation provided by the LS process narrows the gaglices (NCOE and RMSE90). Figure 6 summarises these
between the GPT2 and GPT3 goodness-of-fit to such an exgoodness-of-fit results for all 42 stations using two sets of
tent that the value of the third parameter must be questionedox plots (mMCOE top, RMSE90 bottom). Three boxes are
To summarise: the GPT8 combination clearly provides the shown for each of the nine TDFs, one for each fitting method
best fit of the combinations shown in Fig. 5 (and in fact later (see definitions in the figure legend). The results shown in
figures show this to be the case across all the pluviograplig. 6 were the primary tool for ranking the fitting methods
stations). However, the combination of GR¥Xhould not  and TDFs
be ruled out at this point as the fit is only marginally poorer  Note that LS fitting to GAMA and LGN3 caused technical
but is achieved with one less model parameter. Using ongroblems and hence results for these cases do not appear in
less parameter should lead to less parameter uncertainty arkélg. 6 . The impediments to LS calculation in these cases are
thus a reduction in the uncertainties of the rainfall intensity. as follows. For GAMA an analytic CDF is unavailable and so
In the present analysis it is not possible to decide whetheinstead an iterative numerical solution was required. Compu-
fewer model parameters are more desirable than maximisingation times became excessive when LS was attempted using
the potential goodness-of-fit, this will indeed be a questionthe pattern search algorithm coupled with the numerical so-
for work that follows this TDF selection study (i.e. attempt- lution to the GAMA CDF. In the case of LGN3, estimation
ing to predict TDF parameter values from daily climate mea-of the location parameter wasn't robust, with the denomina-
surements). However, it is an important consideration in thetor of the algorithm tending toward zero under some condi-
selection process in that it is important to choose not onlytions. This problem could be avoided by imposing a number
the best fitting TDF but also TDFs with two rather than three of constraints on the location parameter. However, given the
parameters. poor fitting performance of LGN3 obtained with L-moment
and product moment estimation, it was felt that the TDF was
unlikely to be selected and hence the effort required to im-
4 Results for all stations plement an LS solution was not justifiable.

Figures 4 and 5 looked at specific results for two pluviograph
stations and illustrate the meaning of the goodness-of-fit in-
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Fig. 4. Six paired scatter plots are shown to illustrate the skill of three selected TDF's: three parameter Lognormal (top); Gamma (middle);
and the Generalized Extreme Value (lower). The data is for two pluviograph stations: Melbourne on the left and Darwin on the right. The
plots are in pairs showing the fitteghland the RMSE for each event (both plotted versus the meassed/blues for mCOE, bias and the
square of Pearson’s correlation coefﬁcien’ﬁ)( as well as the line-of-perfect-agreement (solid) and the linear regression line (dashed) are
printed on thelzg charts. The RMSE plots indicate the 50th (solid line) and 90th (dashed line) percentile RMSE and megsuakebs,

and also indicate the percentage of RMSE values greater than 16 thankl are hence outside the vertical scale of the plot.

4.1 Ranking the fitting methods and smaller RMSE90 values (bottom) than either of the other

fitting methods. Furthermore, in all cases both the magnitude
The trends previously observed for individual pluviographs of the statistic is better .and.the range Qf values is smaller.
are reinforced by the results in Fig. 6. These show that the! € réduction in range implies that LS improves the poor-
LS method produces consistently higher mCOE values (topfSt fits by a greater extent than the better fits, with the fit at

www.hydrol-earth-syst-sci.net/15/2561/2011/ Hydrol. Earth Syst. Sci., 15, 25682011



2572 A. W. Western et al.: The within-day behaviour of 6 minute rainfall
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Fig. 5. Six paired scatter plots based on data from Darwin Airport are shown to illustrate first the relative skill of TDF’s having two (GPT2

— left side) or three parameters (GPT3 — right side) and second the success of three different fitting schemes: L-moments (top); Product
Moments (middle); and Least Squares Estimation (lower). The plots are in pairs showing th&jized the RMSE for each event (both

plotted versus the measurésgh). Values for mCOE, bias and the square of Pearson’s correlation coefficfongé well as the line-of-
perfect-agreement (solid) and the linear regression line (dashed) are printedigg¢harts. The RMSE plots indicate the 50th (solid line)

and 90th (dashed line) percentile RMSE and measiigdalues, and also show the percentage of RMSE values greater than 16 mmh

and are hence outside the vertical scale of the plot.

all stations an improvement over those achieved using othemnitialise the LS optimisation. The PM fits in Fig. 6 show
fitting methods. substantially higher mCOE values than the LM fits, and also
show lower RMSE90 values. Lower RMSE90 values are

The superiority of the LS fitting is founded on the success o i
of the PM fit in that the PM parameter values were used to'® P& €xpected as the objective of the LS algorithm was to
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reason (highlighted earlier) is that a two-parameter TDF may

0.5

09 L?% lT @% T - 5 E ?% be more identifiable (i.e. able to_ pg pr_edicted) than a three-

o — (¥ m L ;% l?hi } HTT m parameter TDF. A second possibility is that the parameters

07 ks %JT i% o -H - of one TDF may be more identifiable than the parameters of

06 9 #f | another TDF. For example, it may be that the two parameters
1

modified Coefficient of Efficiency

F of EXP are more readily predicted than the two parameters
. of GPT2, due perhaps to different structural relationships be-
tween the TDF parameters and the statistics of the distribu-
tion (i.e. mean, variance, skewness, and kurtosis).
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4.2.2 Elimination: Extreme Value Distributions

Legend:

Fit by Fit by: Fit by
L-Moments Product Moments Least Squares

The performance of the three EVDs (GEV, GMBL and
artle range WEBL) is mixed (consider results for fitting by LS). The box

plots for GEV and WEBL are second only to GPT3, while
the skill of the GMBL is not as good as the other TDFs (me-

Fig. 6. Box plots showing the spread of mCOE (upper chart) and . . . .
RMSEQO (lower chart) values across the 42 pluviograph stations.dlan mCOE is less than 0.9 and median RMSEQO is greater

The results indicate the spread of values associated with each of tHgan 1.0). The good results for the GEV and WEBL supports
nine TDFs and the three fitting methods (note that the least square€ notion that EVDs are suitable for representing within-day
estimation technique was not able to be employed for the GAMA rainfall intensity distributions. However, the skill shown can-
and LGNS distributions). High fitting skill is indicated by mCOE not be considered exceptional in that the EVDSs' fit is inferior
values close to 1.0 and by RMSE90 values close to zero. Note thato GPT3 (at all but one station). Thus, on balance it is not
while outliers are identified above, this does not imply data wasconsidered that there is a strong enough case to consider se-
removed from any subsequent analysis. lecting an EVD, given the concern that within-day rainfall is
not a classic extreme value distribution. Hence, the decision

N . was taken to exclude GEV, GMBL and WEBL distributions
minimise RMSE values. It is noteworthy that mCOE values .o further consideration.

are also substantially improved by the LS process by compar-
ison with the mCOE values achieved using the PM approach.2.3  Variability with location
(see especially GEV and GPT2 results — top of Fig. 6).

On the basis of these observations it is clear that the LSOne factor that cannot be discerned from Fig. 6 is whether
method represents the best fitting method, followed by PMfitting skill varies with location. To understand how much of
and then the LM method. Thus, the first conclusion that thisan influence location has two questions were asked:
study draws is with regard to fitting method:

Candidate TDFs should be first fit by PM and then opti-

mised by LS to obtain the highest fitting skill as measured by — Can spatial trends in the goodness-of-fit statistics be dis-
mCOE and RMSE90. cerned?

— Which TDF fits best at each pluviograph station?

4.2 Ranking the TDFs The results shown in Fig. 6 suggest that GPT3 provides the

best fit to the data. However because the range of mCOE and
In this section the focus is on ranking the fit provided by RMSE90 values overlaps with the box plots of other TDFs,
the nine TDFs. The objective was to reduce the number oft is possible that at particular stations one of the other TDFs
candidates from nine down to the best three or four TDFsyields a better fit. Thus, on a station-by-station basis the
with the ultimate aim to then use these in a subsequent studyDF and fitting method showing the highest mCOE and, in-
to predict the parameters of these TDFs from daily climatedependently, the lowest RMSE90 were identified. The aggre-
variables. gated results are summarised in Table 4 and demonstrate that

The desire to identify multiple candidate TDFs, as well asGPT3 is unequivocally the best fitting TDF, with GPT2

the TDF with the best fit, is that the parameter values of someédnd WEBL distributions providing a lower RMSE90 resullt
TDFs may be more amenable to prediction than others. On@t only 3 and 1 pluviometer stations, respectively.
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Table 4. Combination of TDF and fitting method with the highest
fitting skill for mMCOE and RMSEQO statistics, indicating the per-
centage of stations for which each combination is the best.

Fit Statistic  TDF Fit % Stations

Method
coe s FSEo s mCOE GPT3 LS 100 %
son ™ W g ¥ RMSE90  GPT3 LS 90.5%
s e GPT2 LS 7.0%
WEBL LS 2.5%

Fig. 7. Maps indicating the spatial variation of mCOE (left) and
90"t percentile RMSE (right) for GPT3 fitted using least squares
estimation. Note that smaller circle sizes indicate a better fit (i.e.
maximum mCOE and minimum RMSE).

varies systematically with location. To examine this pos-

sibility, maps showing the spatial variation of mCOE and
; RMSE-90 such as Fig. 7 were constructed. Symbol size
o on these maps indicates the goodness-of-fit, with larger cir-
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LS not ayailable
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== = cle diameters indicating a poorer fit (i.e. low mCOE or high
0 = = = = RMSE-90). Maps were constructed for the four TDFs not
EXP CAMA ep2 ePTs yet eliminated (GPTS, GPT2S, EXP-S and GAMAPM)

and from a qualitative, visual inspection the pattern of circle
- sizes looked similar for each TDF. One pattern observed by
the authors was that larger RMSE-90 values were concen-
trated in the North-East and lower values in the South and
‘ South-West. This is a similar spatial pattern, albeit with a
o larger proportional difference between the high and low val-
Exp GAVA GPT2 GPT3 ues, to the pattern of mean wet period rainfall intensities and
it reflects the higher magnitude of rainfall intensity in the
e : B North of Australia (as discussed with respect to Melbourne
DE’%?’Y“:“M"“”‘S ngabsy‘:s‘*“a'“ ?:Lsedize"mme and Darwin earlier). To investigate whether this clustering

RMSE90 - RMSE90(best)
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- 25t percentile

- whisker < 1.5 x interquartie range could be quantified, spatial statistics were employed.

O - outlier > 1.5 x interquartile range

. . . _ , 4.2.4 Final ranking
Fig. 8. Box plots showing the marginal error associated with choos-

ing an alternate TDF and fitting method than the best available COM~r1 rank the remaining four TDFs (EXP, GAMA, GPT2 and

bination at each pluviograph. Error is very low forthe GPTS/MLE '~ pray o 16 aqditional statistics were calculated which fo-
combination as at most locations this combination exhibits the high-

est fitting skill (therefore zero error). The upper box plot indicates cus on the marginal error a.ssomated.WIth selecting one TDF
the spread of error for mCOE and the lower plots error in RMSE90.OVer another, rather than simply looking at the magnitude of

The most attractive TDF and fitting method combinations are thoseNCOE and RMSE90. Marginal error is defined as the di_f'
displaying low values in both the upper and lower plots. Note thatference between the best performed TDF and the TDF of in-

while outliers are identified above, this does not imply data was re-terest on a station-by-station basis. That is, for the ith TDF
moved from any subsequent analysis. (TDF;) at a given pluviograph station:

— marginal error in mCOE for

The fact that GPT3 consistently provides the best fit, rather 1 DFi = MCOE[best fit] -mCOE[TDA

than different TDFs being better at different locations, sug- marginal error in RMSEQO for

gests that GPT3 has sufficient flexibility to accommodate a TDF,; = RMSEQ0[TDF]— RMSE90[best fif]

range of within-day rainfall intensity distributions, and per- ! '

haps that the shape of rainfall CDFs does not vary strongly The box plots shown in Fig. 8 depict the range of each

with location. The answer is probably a combination of both marginal error statistic across all the pluviometer stations

factors, with GPTSS clearly the first choice distribution for  with the TDFs fitted by both product moments and LS. Note

fitting within-day rainfall intensity. that the error for GPT is zero or close to zero in both
While GPT3 provides the best fit across almost all the stathe upper and lower charts because at most stations it gives

tions, the next question is whether the level of fitting skill the best fit. Consider the mCOE results first (top of Fig. 8).
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Fig. 9. Box plots showing variation in daily mean wet period intensity, daily wet period intensity coefficient of variation, extreme intensity
In1, and wet fraction. Boxes are arranged from highest (most southerly) to lowest latitude and are labelled with station number and latitude.
Colours show Kppen climate classification of the stations (see Fig. 1). All intensity statistics use 6-min data. Boxes show the inter-quatrtile
range, whiskers extend 1.5 times the inter-quartile range and notches show confidence limits on the median.

These results reinforce the fact that GPT3s the best-fit be made from the fitted parameters for GPT3. First0,
benchmark, followed by GP#2 and EX®S, which exhibit ~ « =0 andk > 0 implies light, normal and heavy tailed distri-
the next lowest (and very similar) marginal error magnitudes.butions respectively. Light tails are not expected as they im-
Turning to the lower box plot, the GP¥3result is followed  ply an upper bound, which is unlikely for rainfall intensity.
by GPT2-S, then GAMA™M and then EXPS. We examined the results from both Melbourne and Darwin
Based on their performance as measured by the goodnesand foundc varied from slightly negative{0.23 and-0.24,
of-fit statistics MCOE and RMSE90, we suggest that the tworeéspectively) to strongly positive (a few valued and>2
best performing TDFs were GPT3 and GPT2, where GPTJespectively) with the average being 0.11 and 0.15, respec-
has a slightly better fit but GPT2 has the advantage of onhytively. This indicates a slight tendency towards heavy tailed
two parameters. In selecting between two and three paranfdistributions. Second the location parametgrfor GPT3
eter distributions there is likely a trade-off between highercan be interpreted as a threshold above which the distribu-
bias in the two parameter distribution (due to less flexibility) tion holds. We thresholded the data a 1mm/h before fitting
and higher uncertainty in parameter estimation in the thre¢he distributions. For Melbourne and Darwin respectively,
parameter distribution. The main advantage of GPT2 ovewe found 35% and 7 % of fitted values exceeded 1mm/h
GAMA and EXP is that it outperforms GAMA and EXP at but only 1% and 2% exceeded 2mm/h respectively, which
the higher intensities. Although the GPT3 distribution pro- indicates that our thresholding was at a reasonable value from
vided clearly the best fit, the performance penalty for choos-the perspective of our fitting of GPT3.
ing GPT2, exponential or gamma distributions is only small.
Therefore, it would be incorrect to interpret their ranking be-
low GPT3 as a recommendation against their utility; in point5  Qverview of within day intensity behaviour
of fact because they rely on only two parameters they are

viewed as quite attractive options. The TDFs are essentially representing three aspects of the
It is worth briefly discussing the results from a more the- statistical distribution of within day 6-min rainfall intensity
oretical perspective. First the GPT3 (and by inference itsdistributions: the mean; standard deviation; and skewness.
special cases) are peak-over-threshold distributions, whichn addition, the wet fraction parameter represents the dura-
matches with the analysis undertaken here, albeit with a lowtion of rainfall within the day exceeding the 1mm/h inten-
threshold. Also the GPT2 and EXP are both special cases ddity threshold. The data are discussed in terms of these stan-
GPT3, with GPT2 being equivalent to GPT3 with the loca- dard statistical parameters rather than the GPT3 distribution
tion parameter set to zero and EXP being equivalent to GPT®arameters for clarity of interpretation. In addition the be-
with x =zero (Claps and Liao, 2003). Some inferences carhaviour of the highest intensities in the day, as characterised
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Fig. 10. Box plots showing variation in daily mean wet period intensity, daily wet period intensity, coefficient of variation, extreme intensity
Iy, and wet fraction with daily rainfall accumulation for variou®ppen climate zones. Daily rainfall has been categorised into 10 mm

bins with a lower limit of 10 mm i.e. bin 1 includes daily rainfalls of 1020 mm. Only some bins are labelled to maintain clarity and labels
represent the middle of the bin range. Note, boxes are only drawn where at least 10 days fall in the observation bins, bins are missing for the
second highest accumulation amount in some cases and some observations exist above the maximum plotted box due to this.

by Iy, are considered. To understand how these parametersally below a latitude of about 3. Very similar patterns
vary between rainfall stations an exploratory analysis was unef behaviour were evident for the within-day wet period stan-
dertaken and the existence of relationships witippen cli-  dard deviation (not shown) of 6-min intensities and also for
mate zone, annual rainfall depth, annual rain days, mean raity, (Fig. 9c).
day rainfall depth, elevation, and latitude considered. The re- The one site that is a consistent and significant exception
lationship between the within-day statistics and daily rainfall to the above trends is Koombooloomba (31083). This site is
amount was also examined. located on the Great Dividing Range near Cairns, Queens-
Figure 9a shows box plots of daily mean wet period in- land. This is an area with extremely high rainfall gradients
tensity. Latitude and station numbers are shown on the xassociated with Orographic effects acting on the prevailing
axis. Boxes are organised by latitude from south to north anceasterly winds blowing off the Pacific Ocean and up the es-
are coloured by Kppen climate zone. Similar figures were carpment of the Great Dividing Range. The site is at 760 m,
drawn for each of the explanatory variables and each of theand the terrain rises from near sea leveRQ m) over the
statistics. Box order was varied both according toplien  15km east (i.e. upwind) of the site. No other sites in the data
class first and then the explanatory variable and also accordset are subject to orographic effects even approaching this
ing to the explanatory variable (as in Fig. 9). This enabledmagnitude.
assessment both of differences betwe@pjpen classes and  Figure 9b shows that the coefficient of variation of within
also with each of the explanatory variables. All the examplesday wet period 6-min intensity grows smoothly with lati-
shown use latitude as the explanatory variable as it consistude, although the proportional change across the continent
tently showed the strongest relationship with the rainfall be-is smaller than for any of the mean, standard deviation or
haviour. There are, however, significant correlations betweery,,. It can be concluded from this trend that the standard de-
the explanatory variables, most notably latitude arigpen  viation grows more quickly than the mean towards the equa-
class, so attributing the behaviour to a particular explanatorytor. Again, weaker patterns were observed with mean wet-
variable is difficult. day rainfall and with Koppen class. The inter-quartile range
Figure 9a shows a trend of increasing rainfall intensity to-in CV remains approximately constant across all stations.
wards the equator, particularly for latitudes less thahSSA Skewness (not shown) was observed to be very consistent be-
similar but noisier pattern was observed with wet day meantween stations with an inter-quartile range from about 1.1 to
rainfall depth (annual rainfall/annual rain days). By consid- 2.4 and a median of 1.7. The wet fraction tends to decrease
ering the groups of colours in Fig. 9a differences betweentowards the equator but has a slightly higher inter-quartile
Koppen classes become evident. It is also clear from theange in the intermediate latitudes consideredpen zones
rapid expansion in inter-quartile range compared with theBWh, Bsh, Cfa and Cwa). The opposing trends in intensity
median that the between-day variability in within-day inten- and wet period partially offset each other in terms of daily
sity distributions becomes larger towards the equator, esperainfall accumulation, although there is an increasing trend
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in daily rainfall accumulation towards the equator. 6 Summary and conclusions

Taken together the changes in within-day statistical be-
haviour of rainfall intensity probably reflect a shift in domi- This study was conducted as a precursor to a detailed investi-
nation from frontal rainfall systems to convective rainfall sys- gation into the question of whether within-day rainfall char-
tems towards the equator_ The Changes in inter-day Variab”acteristiCS and intensity distributions can be inferred from
ity (inter-quartile range) of the wet fraction possibly reflect daily measurements of climatic variables. Given this con-
a mix of frontal and convective systems in the intermediatetext the study focussed primarily on identifying the most ap-
latitudes, with increasing dominance of frontal systems inPropriate theoretical distribution function(s) with which to
southern Australia and convective systems in northern Ausfepresent within-day rainfall intensities. In respect of this
tralia. In interpreting these data it should be remembered®im, the analysis demonstrated that the three-parameter Gen-
that they only reflect days with rainfall accumulations greatereralised Pareto Distribution provides the best fit, followed
than 10mm, which accounts for most of the rainfall at theseby the two-parameter Generalised Pareto, Exponential and
sites. Gamma distributions. The ranking was made on the basis of

Figure 10 shows how the within day statistics of rainfall Performance with respect to two objective functions: the root
vary with da||y rainfall amount for the Various'dppen cli- mean square error of the fitted theoretical distribution com-
mate classes. Individual boxes represent all days within @ared to the measured within-day pluviograph data; and the
10mm range in daily rainfall, beginning with the 10-20 mm fitted versus the mean of the measured 5 highest 6-min rain-

range. As daily rainfall amount increases there is an increaséll intensities across the dak, where the intervals did not

in mean intensity (Fig. 10a) and also standard deviation andave to be consecutive

skewness (not shown) for all climate zones. These combine In addition to these specific conclusions, the study pro-
together to result in a proportionally greater increase in thevides a range of other more general insights into the nature
highest intensities observed during the rain day Fig. 10c)0f within-day rainfall intensity data and information on fit-
The most northerly Kppen zones (Aw and BSh — see Fig. 1) ting distribution functions to it.

show the highest mean intensities and also the greatest inter- _ pgrameter Estimation Methods:

day variability in mean intensity for a given daily rainfall ac-
cumulation, while the most southerly zones (BSk, Csa, Csb,
Cfb) show the lowest intensity and inter-day variability. This
indicates that the trends in intensity with latitude are not just
due to differing daily rainfall accumulations. The coefficient
of variation shows interesting behaviour with daily accumu-
lation, first increasing, then reaching a plateau or beginning
to decrease. This behaviour results from the changes in stan-
dard deviation, which increases with daily rainfall accumu-
lation but tends to asymptote towards constant behaviour at
large daily rainfalls. Skewness shows similar patterns to stan-
dard deviation but the changes are less pronounced. The wet
fraction (Fig. 10d) shows an almost linear growth with daily
rainfall accumulation, as does the inter-day variability (inter-
quartile range) in wet fraction. Considering both the mean
intensity and wet fraction together, it is clear that most of
the increase in daily rainfall accumulation is due to growing
rainfall duration rather than increases in intensity.

It is clear from the relationships shown in Figs. 9 and 10
that the parameter values for the intensity distributions will
change with both latitude and the amount of rainfall on a
given day. Both these factors could be incorporated into a
predictive model for the parameters that is based on location
and daily rainfall depth. However the results in Fig. 9 also
indicate that there is considerable variability between days
with similar amounts of rain at a station, which suggests it
may also be valuable to explore other predictors.

www.hydrol-earth-syst-sci.net/15/2561/2011/

The utility of fit-
ting theoretical distribution functions using L-moment
methods was found to be consistently inferior to the
standard product moment method. The best fit was
achieved by first estimating parameter values by prod-
uct moments, then improving the fit performance us-
ing a optimisation to minimise root mean square error
(Eq. 1).

Variability of Fit Performance with Location: The im-
portance of location in fitting a theoretical distribution
function was found to be small with the same distribu-
tion (GPT3) being consistently identified as best per-
forming between sites. However, the root mean square
error statistic was noted to increase as rainfall intensity
increased.

Implications of Distribution Function Ranking: the rel-
atively poor fit of the lognormal (2 and 3 parameter)
distribution function suggest that it should not be used
as the basis for modelling within-day rainfall patterns.

Extreme Value Distributions: The skill of the GEV and
Weibull distributions (and to a lesser degree the Gumbel
distribution) provided fits to the within-day rainfall data
of a quality that approaches but does not exceed that
of the GPT3 distribution. Given that the extreme value
distributions provide no clear performance advantage,
coupled with the doubt over the validity of using them
to describe within-day rainfall data, it is recommended
that extreme value distributions not be used for this
purpose.
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It is important to note that in absolute terms the quality of tics from several probability distributions, J. Hydrol., 355, 1-15,
the calibrated TDF fits to the measured rainfall intensity data  doi:10.1016/j.jhydrol.2008.01.022008.
is very high. This suggests that the TDFs are an excellentiooke, R. and Jeeves, T. A.: “Direct Search” solution of numerical
means to summarise the distribution of within-day data (240 and statistical problems, J. Assoc. Comput. Mach., 8, 212-229,
points) by only 2 or 3 TDF parameter values plus the wet 951' _ o
fraction statistic (giving a 3 or 4 parameter model). Hosking, J. R. M., Wallis, J. R., and Wood, E.F.." Estimation

. . L . . of the generalized extreme value distribution by the method
The analysis has also provided insight into the within-day of probability-weighted moments, Technometrics, 27, 251-261,
statistical behaviour of rainfall and the inter-day variation in  1ggg
this behaviour. Clear trends with latitude (increasing acrossqosking, J. R. M. and Wallis, J. R: Regional frequency analysis:

the continent towards the equator) were identified for key an approach based on L-moments, Cambridge University Press,
within-day statistical properties including the mean, standard 1997.
deviation and coefficient of variation of wet period 6-min in- Kandel, D. D., Western, A. W., and Grayson, R. B.: Scal-
tensity variation and maximum intensitie(). Mean in- ing from process timescales to daily timesteps: a distribution
tensity, standard deviation and maximum intensities also be- function approach, Water Resour. Res., 41, 16 pp., W02003,
came more variable between days for locations closer to the 00i:02010.01029/02004WR003380, 2005, .
equator. Skewness remained approximately constant. Thk292tes, D. R.and McCabe, G. J.: Evaluating the use of “goodness

. . . - of fit” measures in hydrologic and hydroclimatic model valida-
duration of rainfall during rain days tended to decrease to- .

. . . . tion, Water Resour. Res., 35, 233-241, 1999.

wards the equ.ator. Tren'ds with daily rainfall a}cqumulatlon Lu, H. and Yu, B.: Spatial and seasonal distribution of rainfall ero-
demonstrated increases in mean, standard deviation and max-jyity in Australia, Aust. J. Soil Res., 40, 887-901, 2002.
imum intensities, more complex behaviour for the coefficientmadsen, H. and Rosbjerg, D.: The partial duration series method in

of variation and skewness and strongly increasing rainfall du- regional index-flood modeling, Water Resour. Res., 33, 737-746,

ration. Most of the difference in daily accumulation is dueto  doi:10.1029/96wr03847.997.

duration rather than intensity changes. The spatial trends itMertens, J., Raes, D., and Feyen, J.: Incorporating rainfall intensity

within-day rainfall behaviour are believed to be linked to a into daily rainfall records for simulating runoff and infiltration

shift in dominance of frontal and convective rainfall mecha-  into soil profiles, Hydrol. Process., 16, 731-739, 2002. _

nisms across the continent. Monro, J. C.: Direct search optlm_lsat_lon in ma_thematlcal m_odelllng
and a watershed model application., National Oceanic Atmo-
spheric Administration, National Weather Service, U.S. Dept.
of Commerce, NOAA, Silver Spring, MDTech. Memo. NWS
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