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Abstract. In this paper, a technique is presented for assessreal-time context safeguards operational users from issuing
ing the predictive uncertainty of rainfall-runoff and hydraulic false alarms and institutional decision-makers from calling
forecasts. The technique conditions forecast uncertainty offior unwarranted action. Real-time flood forecasting systems
the forecasted value itself, based on retrospective Quantilare currently operational in many parts of the world, in-
Regression of hindcasted water level forecasts and forecasfuding England and Wales where the National Flood Fore-
errors. To test the robustness of the method, a number of regasting System (NFFS) is used by the Environment Agency
rospective forecasts for different catchments across Englan@Werner et al., 2009).

and Wales having different size and hydrological characteris- Following the 2007 summer floods in England and Wales,
tics have been used to derive in a probabilistic sense the relahe Pitt Review (Pitt, 2008) recommended that “The Met
tion between simulated values of water levels and matchingDffice and the Environment Agency should issue warnings
errors. From this study, we can conclude that using Quantileagainst a lower threshold of probability to increase prepara-
Regression for estimating forecast errors conditional on thejon lead times for emergency responders”. This implies that
forecasted water levels provides a relatively simple, efficientthe Environment Agency shifts its flood forecasting opera-
and robust means for estimation of predictive uncertainty.  tions from a deterministic to a probabilistic approach.

While flood warning systems have the potential to sig-
nificantly reduce flood risk, uncertainty in water level fore-
1 Introduction casts may cause imperfect flood warning system perfor-
mance. This uncertainty has multiple causes including uncer-

Real-time flood forecasting, warning and response system#in future boundary conditions of precipitation, evaporation
(often referred to simply as “flood warning systems”) aim and temperature from numerical weather prediction mod-
to give property owners, floodplain residents and responsibl&ls, imperfect model schematisations, incorrect parameter
authorities time to respond to a flood threat before a criti-€Stimates and unknown initial states or imperfect estimates
cal threshold is exceeded, thus allowing for mitigation of ad-thereof. A large body of research over the past decades has
verse consequences. As such, they constitute a non-structurditempted to reduce these individual sources of uncertainty.
flood risk management measure. Extending the forecastind his research includes reduction, characterisation, assess-
lead time allows for time allocation for mitigating actions. ment and modeling of parametric uncertainty, determinis-

A reliable assessment of certainty of predicted events in dic state updating or data assimilation (Moore, 2007; Serban
and Askew, 1991), error correction (Broersen and Weerts,

2005; Shamseldin and O’Connor, 2001), ensemble data as-
Correspondence toA. H. Weerts similation (Clark et al., 2008; Seo et al., 2009; Weerts et al.,
m (albrecht.weerts@deltares.nl) 2010b), and various probabilistic post-processing techniques
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for deterministic forecasts (Krzysztofowicz and Maranzano, This probability distribution may serve as an estimate for pre-
2004; Reggiani and Weerts, 2008; Seo et al., 2006) andlictive hydrological uncertainty. Other geophysical applica-
for multimodel and/or NWP ensemble prediction based fore-tions of Quantile Regression can be found in meteorology
casts (Raferty et al., 2003; Reggiani et al., 2009; Sloughter e(Bremnes, 2004), wind forecasting (Bremnes, 2006; Juban
al., 2007; Todini, 2008; Wood and Schaake, 2008). et al., 2007; Nielsen et al., 2006) and the prediction of ozone
While this research has led to considerable progress in reeoncentrations (Baur et al., 2004; Sousa et al., 2009).
ducing uncertainties related to these sources, there will al- The applicability of Quantile Regression is demonstrated
ways be a residual uncertainty that cannot be fully elim-by applying it on a number of catchments in England and
inated. Although this uncertainty in flood forecasting is Wales. The catchments vary in size and in dominant hy-
widely recognised, many if not most of the existing flood drological processes. A stand-alone version of the National
warning systems are based on deterministic forecasts, implyFlood Forecasting System (NFFS, Werner et al., 2004, 2009)
ing a certain, accurate prediction of water levels. In con-was adapted to serve as a prototype of the probabilistic fore-
trast, probability forecasts explicitly estimate predictive un- casting system.
certainty about future flows or water levels. This paper first describes the theory of Quantile Regres-
For a number of reasons, the move from deterministicsion and its application to flood forecasting. Subsequently,
forecasting to probability forecasting constitutes an improve-the application to the NFFS catchments is described. This is
ment to flood warning systems. First of all, hydrological followed by the results and discussion section showing veri-
forecasts are inherently uncertain. Deterministic forecastingication metrics. The paper ends with conclusions.
does not acknowledge inherent uncertainties either in a quali-
tative or quantitative manner, whereas probabilistic forecasts
explicitly show the certitude of a prediction. Communicating 2 Material and methods
that level of certitude then allows for the decision to be made
by a decision maker rather than a decision being implicitly2.1  Uncertainty estimation of water level forecasts using
taken by forecasters. Probability forecasts can then be used  quantile regression
to take a risk-based decision, where the consequences of pos-
sible outcomes can be weighted by their probability of oc- With increasing lead time, many sources of uncertainty im-
currence function (Raiffa and Schlaifer, 2000; Todini, 2007). pact the accuracy of forecasts, with different uncertainty
Also, depending on these consequences, decision makers canmponents dominating at different lead times. In an op-
set a threshold of probability against which to decide, thuserational setting, forward modelling of all these uncertain-
choosing an appropriate balance between false alarms arites can be infeasible because it requires many data (e.g.
missed floods. meteorological ensemble forecasts) or many model runs
Montanari and Brath (2004) report three approaches for(e.g. Beven, 2006).
estimating predictive uncertainty. The first option is that the The stochastic approach used in this study estimates ef-
model used for forecasting may be structured as a probabilfective uncertainty due to all uncertainty sources. The ap-
ity model that generates probability distributions. A secondproach is implemented as a post-processor on a deterministic
option is to estimate predictive uncertainty by analysing theforecast. We estimate the probability distribution of the fore-
statistical properties of the forecast error series (that is, theast error at different lead times, by conditioning the fore-
difference between the prediction and the observation). Theast error on the predicted value itself. Once this distribution
third option is to use simulation and re-sampling techniquesjs known, it can be efficiently imposed on forecast values
thus applying Monte Carlo analyses. When choosing an apas a post-processor. We estimate the relationship between
proach to be implemented in an operational, real-time floodthe probability distribution of the errors and the forecasted
forecasting system, computational efficiency and data availvalues at a given lead time by means of Quantile Regres-
ability need to be taken into account. sion. Quantile Regression is a method for estimating condi-
The present paper proposes the use of “Quantile Retional quantiles (Koenker, 2005; Koenker and Basset, 1978;
gression” (Koenker, 2005; Koenker and Basset, 1978) as &oenker and Hallock, 2001). This requires conditioning of
method to estimate predictive uncertainty. Quantile Regresthe Quantile Regression relationships on a calibration dataset
sion as applied in this study is an example of the second opef forecast values and associated errors at the lead time of
tion mentioned above. The here developed Quantile Regrednterest. To keep the methodology as objective and parsi-
sion approach aims to assess the relationship between the hgronious as possible, the degrees of freedom of the Quantile
drological forecast and the associated forecast error. In conRegression relationships are kept to a minimum by pursuing
trast with “classical” regression methods, Quantile Regres-a linear regression for each quantile of interest. In order to do
sion does not optimise on the mean of the dependent variablpistify a linear relationship, the heteroscedasticity of the error
(the forecast error) but rather on the quantiles (e.g. the meprocess, typically associated with rainfall-runoff or hydraulic
dian). By thus estimating quantiles, an estimate of the fullmodels, needs to be taken into account. This is done by mak-
probability distribution of the forecast error may be achieved.ing the training population of forecast values and associated
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errors Gaussian, prior to linear Quantile Regression. In thesamples in the Gaussian domain can be discretely described
Gaussian domain, we may assume that the forecast — errday the inverse@ ! of the normal distribution

relationship may be estimated as a linear function. For each 1

lead time of interest, a different set of Quantile RegressionF(sN) =0 F() @)
relationships nee_ds to be derived. 'I_'his is becau_se the m_agn('b-r for individual samples

tude of the effective forecast error increases with lead time.

Below, the method to derive the Quantile Regressions is forsnot (1) = Q1 (Prs < s (1)]) (4)

mulated in detail. The method can be used when a suffi-

ciently large sample of hindcasted water levels or flows and}N heresnor is the Gaussian-transformed discharge or water
concurrent observed values is available. evel. Equation (4) describes the NQTsofThe same can be

done for the error series, which results in a discrete popula-
2.1.1 Transformation of forecast errors from the tion of errors in the Gaussian domain here denotee\as-
original domain to the Gaussian domain To apply the inverse of the NQT, i.e. to convert any value in
between the sampled points @igT or engT to associated

Let us denote the process of flow or water levels with a cer-valuess ande, we use linear interpolation for points within

tain lead time as follows: the domain covered by the populations. If values are sought
outside this domain linear extrapolation is applied on a num-
s®)=5()+e(t) 1) ber of points in the tails of the distribution. Equation (1) can

_ _ now be applied in the normal domain,
wheres is the real process of river flow or water levels at

timer, § is the forecasted value ards the error estimate, all  SNQT (1) = SNQT (f) +engT (7) (5)
at a certain time and with a certain lead time (not explicitly
denoted here). In practice, we approximate the procéss
collecting a population of observations andy simulation
or hindcasting with the lead time of interest, at concurrent, 1 » Quantile regression in the Gaussian domain

time stamps. These estimates can be provided by (a combi-

nation of) hydrological and hydraulic models. Let us assumeif one assumes that the residuals of a relation between errors
that the error may be estimated by means of a probabilistiaand forecasted values (such as defined in Eq. (2).) are Gaus-

where the subscript “NQT” refers to variables that have been
transformed into the Gaussian domain.

error model based on the following functional form: sian, an estimate of the sample mean of the relation can be
R defined as the solution to the problem of minimizing a sum
e(®) Zf[s (t)] (2) of squared residuals. This approach has been followed by

Montanari and Brath (2004) who consequently estimate the

Once this relation is found, it allows a user to apply the error """ f th lation t timate effecti tainty. If
model in any case, without any additional data requirementsv"’m"’mce otthe refation fo estimate eflective uncertainty.

besides the estimate of the procéssThis is convenient in Gaussianity of the residuals of Eq. (2) cannot be assumed,

a real-time operational context, where the availability of ad—o?he can tutr_? to_ thte edstlrprﬁtlolnttof the sam[r)]Ieh meglan azd
ditional data besides to estimate uncertainty is not trivial. other quantiies instead. € 1atter approach has been cho-
Now let us assume that the error structure is both ergodicsen in this study by using Quantile Regression, which .does
and stationary (i.e. no significant changes in the hydrologicalnOt make any assumpuon; abogt the nature (.Jf the re3|dgals

f the forecast — error relationship. The Quantile Regression

or hydraulic processes or measurements have taken place). . .
There is no warrant however, that the error structure is ho- _ethodology is further explained below based on the Gaus-
ian samples aingT andsnoT.

. . . . . S
moscedastic. In fact, residual time series of rainfall-runoff The sample median (as opposed to the sample mean) can
models are known to be heteroscedastic and non-linear in P PP P

nature. In order derive an objective and reliable probabilisticbe estlrr(;atted by m|r(11|m|2|_gg t?e Slli/lm 9f gpsolute re&d}yals (as
relation as given in Eqg. (2), a transformation of the regresso pposed to squared residuals). Minimizing a sum of asym-

and the concurrent associated errors to the Gaussian domame'trically Weighted absolutg residyals (by givipg diﬁ‘eren't
is applied through the normal quantile transform (NQT). Thewelghts to positive and negative residuals) can yield other (in

NQT (van der Waerden, 1952, 1953a, b) is a non-parametri(fCt’ any) quantiles besides the med_ian (f(_)r more details, see
method to map a variable, having any distribution, to a Gaus- oenker and Hallock, 2001). Applymg .th|s to.the samplgd
sian distribution and has been described for hydrological apyalues Ofingr andengr at a certain lead time of interest, this
plications by Kelly and Krzysztofowicz (1997). Applica- can be formulated as

tions of the NQT in error estimation have been performed & & R R

by Krzysztofowicz and Maranzano (2004) and by Montanari minY _pr ["’NQT,r (1) —éngr,« (£, Snqr (¢ ))] )

and Brath (2004). In effect, the plotting positions of the cu- =1

mulative distribution function of the available samples are as-with &gt ; the estimate of the Gaussian-transformed error
sociated with their counterparts in the Gaussian domain. Thet a certain quantile intervalandp, the weighting function
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that pusheénort - to its associated quantile location. In case
7 =0.5 this would yield the unconditional median. Other val-
ues ofr can be used to determine other quantiles.

We assume that estimates of the conditional quantiles in
the Gaussian domain can be described by the linear equation

4e+05  5e+05
! !

3e+05
!

eNQT,« (1) =arSngT (1) + b (7)

wherea, andb; are the regression constants, valid for the
lead time of interest. After substitution of Eq. (7) into Eq. (6),
a,; andb, can be found efficiently by linear programming
(Koenker, 2005; Koenker and Hallock, 2001).

Northing [m]
2e+05
!

1e+05
!

2.1.3 Imposing the error models in operational 4
forecasts
B Upper Calder
“| @ Ravensbourne

T T T T T T T T

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05

-le+05 0e+00

To describe the distribution of errors, conditional on the fore-
casted values, Quantile Regression programming functions
within the R-packageuantreg(Koenker, 2010) were used.
To transform quantile estimates from the Gaussian domain

to the untransformed (original) domai'n, Ii'near interpolation Fig. 1. Overview of the locations of the case study areas relative
has beer_1 used to conrlect the com_blnatlons of NQT _transt-o the coastline of England and Wales. At the top the catchment
formed simulated valuetqr and estimated error quantiles ot the Upper Calder, in the middle the Upper Severn with multiple

éngr,r in the Gaussian domain, to their counterparts in thejnterconnected catchments and at the bottom the two Ravensbourne
untransformed domain, using the following relationship: catchments.

§: (1) =5() +NQT HarSngr(t) +b: ] (8)

This yields calibrated discrete quantile relationships in thetributaries flow through steep and relatively narrow valleys.
untransformed domain, which can be imposed on any foreAbout 18% of the area (i.e. 26 Kndrains to reservoirs.
casted value by means of linear interpolation or, if fore- Typically these are reservoirs for direct water supply, re-
casted values are found outside the domain of the calibratiofeasing only compensation flows unless spilling at times of
dataset, with linear extrapolation. flood. The natural flow regime has also been modified by

The quantile error models can be derived at several leadrarious channel improvements and flood defences, includ-
times. The derived error models can consequently be appliethg schemes at Todmorden and Mytholmroyd. Upper Calder
in an operational context. An experimental module setupwith forecast location Todmorden is part of the NFFS North-
for imposing the error models in the standalone version ofEast Region (England, Environment Agency, NorthEast).
NFFS has been developed in the statistical computing lanThe Upper Calder is a fast responding catchment and is mod-
guage R (R Development Core Team, 2010). This R baseelled with a PDM rainfall runoff model (Moore, 2007). The
module can be executed from within Delft-FEWS (Weerts etPDM model is forced by the input created by a snow model.
al., 2010a).

Easting [m]

o 2.2.2 Midlands Region, Upper Severn, various locations
2.2 Case study descriptions and basin sizes (150—-1000 k)

Figure 1 shows the locations of the case study areas rEIati.V‘Ia‘he River Severn rises in the Cambrian mountains at Plyn-

o the coast line of England and Wa_les. The (_:atchment Mimon at a height of 741 m AOD and flows in northeasterly
the North is the Upper Calder, the middle part is the Upperdirection through Llanidloes, Newtown and Welshpool be-

Severn with multiple interconnected catchments and the tw : .
. ore meeting the Vyrnwy tributary upstream of Shrewsbury.
catchments South are used in the Ravensbourne case stud A Y ;
he valley is wide and flat in this confluence area, with a

2.2.1 North East Region, Upper Calder, Todmorden considerable extent of floodplain.
(147 ka) The river then flows through Montford to Shrewsbury, and

is joined at Montford Bridge by the River Perry which flows
The Upper Calder catchment drains an area of 147tan  from the Oswestry area to the North. The lowest point in the
the river gauging station at Mytholmroyd, just upstream of Upper Severn catchment is defined by Midlands Region as
Caldene Bridge. It is underlain by Carboniferous rocks ofthe gauge at Welshbridge in Shrewsbury. There are also sig-
Millstone Grit and Coal Measures, with the former pre- nificant areas of floodplain in the reach from Shrawardine,
dominating in the high moorland areas. The river and itsupstream from Montford, to Welshbridge. Average annual
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rainfall can exceed 2500 mm in the Cambrian mountains in QR error models at Welshbridge LT = 12 hr QR error models at Welshbridge LT = 24 hr
the upper reaches of the Severn, and in Snowdonia National | "1
Park, in the upper reaches of the Vyrnwy catchment. The
catchment area to Welshbridge is approximately 2284 km
including 778kné for the Vyrnwy catchment to the flow
gauge at Llanymynech. The main reservoirs in the Upper
Severn catchment are Lake Vyrnwy in the upper reaches

~ o~

1
Il

Il
Il

Il
Il

NQT residuals [-]
NQT residuals [-]

Il
Il

-3 -2 -1 0

L

-3 -2 -1 0

L

of the Vyrnwy, and the Clywedog Reservoir in the upper 4 2 1 0 1 2 3 4 2 1 0 1 2 3
reaches of the Severn. There are no significant flow control NQT predicted water level -] NQT predicted water level [-]
structures downstream of Welshbridge in the remainder of

the Upper Severn catchment. The Upper Severn catchment QR error models at Welshbridge LT = 36 hr QR error models at Welshbridge LT = 48 hr
is represented in NFFS by a combination of MCRM rainfall- | O o Medan

runoff models (Bailey and Dobson, 1981; Wallingford Water,

1
Il

1994) and DODO routing models (Wallingford Water, 1994).

Il

Il

NQT residuals [-]

NQT residuals [-]

2.2.3 Thames Region, Ravensbourne, two locations (32
and 68 kn?)

Il

-3 -2 -1 0

L

T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

The River Ravensbourne and tributaries drain highly ur-

banised areas from the south of London towards Lewisham

before joining the Thames at Deptford Creek. The to-Fig. 2. Transformed forecast errors versus transformed forecasted

tal Ravensbourne catchment area equals approximatelyater levels (both in Gaussian domain) together with the derived

180kn?. The more slowly responding rural part of the Quantile Regressions for the different confidence levels.

Ravensbourne South Branch catchment makes up around

55km?, which does not contribute significantly to flood

events and is therefore generally discarded from analyses of The datawas splitin a calibration data set (2006 and 2007)

flood hydrology (as verified by historic calibration data over and a validation data set (2008 and 2009). Both the cali-

many events). bration and validation datasets contain several major flood
The remaining 125 kfis highly urbanised and has a very €vents. Unfortunately, this is not the case for the validation

rapid response to rainfall and, due to the large proportion ofdata set for the Thames region as, here, only few events were

paved surfaces, there is very little hydrological memory (an-observed in 2008 and 2009.

tecedent storage). As a result, hydrographs throughout the

catchment often rise steeply from baseflow to threshold lev- . .

els in around 30 min (sometimes even less), and fall agair‘i3 Results and discussion

almos'g as rapidly at the upstregm locations, whilst Iocations.?).1 Derivation of forecast error models

lower in the catchment take slightly longer to recede (due

to later arrival of upstream contributions). The NFFS intg- The Quantile Regression methodology to describe the pre-
grated catchment model for Ravensbourne (Thames Region)ictive uncertainty as described in Sect. 2 has been applied
comprises 16 TCM models (Greenfield, 1984; Wilby et al., 4 \yater levels at several forecast locations in the National

1994) providing inputs to an ISIS hydrodynamic model.  Fj504 Forecasting System (NFFS). In the calibration phase,
the forecast error models are derived. Figure 2 shows an ex-
ample of the calibration for the Upper Severn forecast loca-

For both the calibration and validation only operationally fion Welshbridge (2077) in the Gaussian domain. Figure 3

available data are used. The data available from the archivénoWws the example of the derived forecast error model in the
consist of RTS data (observed level data, rain gauge datd!ntransformed domain. The effect of the NdTon_ the de-

air temperature and catchment average rainfall data), Raddfved 50% and 90% quantiles is evident: the fitted Quan-

Actuals, Radar Forecast, and Numerical Weather Predictiofi!® Regression relationships change from linear to nonlinear
data (all three from UK Met Office) and is available from under influence of the back-transformation, while describing

2006 onwards. The operational forecasts of river dischargeg‘e heteroscedastic behaviour of the forecast errors in water
and water levels benefit from the availability of (near) real- levels as function of predicted water level. When fitting the

time observations. These are propagated into the model b?iﬁerent quantiles during calibration, sometimes the quan-
means of data assimilation, prior to forecasting. iles were found to cross at low water levels. This is an arte-

fact of the fitting procedure and this problem has been over-
come by using a fixed error model below certain water lev-
els in the Gaussian domain as is visible in Fig. 2. This fixed

NQT predicted water level [-] NQT predicted water level [-]

2.3 Data used in the case studies
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QR error models at Welshbridge LT = 12 hr QR error models at Welshbridge LT = 24 hr 2 hour leadtime 6 hour leadtime
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Predicted water level [m] Predicted water level [m]
date date
Fig. 3. Forecast errors versus forecasted water levels together with

the derived Quantile Regressions for the different confidence levelsFi9- 4. Validation of Quantile Regression method for water level
forecasts at Todmorden for the January 2008 events for 2, 6, 12, and

24 h leadtimes. The dark grey area represents the 50% confidence
interval and the light grey area represents the 90% confidence inter-
val, the black dashed line the 50% estimate, and the black dots the
observations.

error model is hardly visible after the NQ¥ (see Fig. 3), be-
cause it describes only a small portion of the full flow regime
domain.

The effect of fitting the quantiles on forecast values — in-
stead of on forecast errors — was also investigated. We foungepresenting a wide variety of hydrological conditions and
(not shown) that the regressions based on forecast errors prgatchment sizes.
duced more reliable results, while the regression based on
forecast values resulted in more unreliable results (especiall.2.1  North East Region, Upper Calder
in the high water level domain).

The advantage of doing the Quantile Regression in the~igure 4 shows the validation of the Quantile Regression
Gaussian domain is that no subjective assumptions on thenethod for the January 2008 events for 4 leadtimes (2, 6, 12
regression have to be made, which limits the number of paand 24 h). Most of the time, the observations fall within the
rameters to be fitted — 2 per quantile, see Eq. (7). Other ap90% predictive confidence interval. It is also clear that the
proaches may be even more parsimonious than the approacimcertainty increases with leadtimes as was to be expected.
taken here, such as for instance the Model Conditional ProOne can also see that the uncertainty increases and decreases
cessor (MCP, Todini, 2008), which requires the estimationdepending on the forecasted water level and lead time. In
of 1 parameter in order to determine the full density of the Fig. 4, it is also visible that some observed values lie outside
predictive uncertainty. This method, however, assumes thathe confidence interval. For a 90% confidence interval, and
the residuals of the forecast — error relationship are normallyfor each forecasted water level, this should happen in only
distributed. Making this assumption is not necessary usingl0% of all cases. Because the sample size at high forecasted
the approach described here. and observed water level in both the calibration and valida-

After deriving these distributions for all forecast locations tion phase is small (only few major and minor events, see for
and at all lead times used in the case studies, they can sulgxample Fig. 2) it is very difficult to make strong statements
sequently be used in NFFS in real-time or hindcast modeabout the performance of the Quantile Regression method at
For all case studies, the 5%, 25%, 50%, 75%, 95% quantileigher water levels. Unfortunately, this is the area of main

were derived and used for validation. interest.
Figure 5 shows the validation results for the January 2009
3.2 \Validation of forecast error models events. The forecasted water levels for January 2009 for

longer leadtimes are not as good as in January 2008 (as
Below, the application of Quantile Regression to provide acan be seen by the 50% estimate). There are several events
probabilistic forecast is presented for the three case studie$precasted that did not occur especially at longer leadtimes.
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Fig. 5. Validation of Quantile Regression method for water level Fig. 6. Validation of Quantile Regression method for water level
forecasts ?t Todmorden for the January 2009 events fog 2,6, 1_2 an{%recasts at Welshbridge (2077) for the November 2009 events for
.24h leadtimes. The dark grey area represents the 50@ conﬁ(_jen%’ 24, 36 and 48h leadtimes. The dark grey area represents the
interval and the light grey area represents the 90% confidence intez o, confidence interval and the light grey area represents the 90%

V‘El’ the t?'a‘* dashed line the 50% estimate, and the black dots thSonfidence interval, the black dashed line the 50% estimate, and the
observations. black dots the observations.

Table 1. Percentage of observations within respective predictive
confidence intervals for period January 2008-July 2009 for forecasB.2.2 Midlands Region, Upper Severn
location Todmorden (North East Region).

The case study on the Upper Severn using Quantile Regres-
sion is focused on several locations (see Figs. 1 and 7). These
interval locations consist of both upstream (modelled with MCRM)
and downstream (modelled using DODO) forecast locations
TODMDN1 25%-75% 61.8 655 66.4 48.0 415 399 . X
Todmorden  5%-95% 892 902 906 897 901 904 andwere chosen to show how Quantile Regression can be
used to derive predictive confidence intervals in an end-to-
end forecasting system. Figure 6 shows the validation for
the flood events of November 2009 at Welshbridge (2077) at
The reason for this is not yet clear. The wider confidencel2 24, 36 and 48h lead time. This figure shows how Quan-
bounds at the peak values also indicate that this behaviour, tHle Regression can give estimates of the confidence intervals
some degree, was present in the calibration data set. Ho\,\p_lurlng floqd e\_/ents. Val|dat|0_n results forthe other locations
ever, it is also possible that it is related to changes over timé'® given in Fig. 7 as Quantile-Quantile (Q-Q) plots. Most
(i.e. between calibration and validation periods) in numericalQ-Q plots follow the 1:1 line closely. Figure 7 also shows
weather prediction products used for the forecast. poor performance at Caersws and to some degree at Welsh-
Both Figs. 4 and 5 show that the Quantile RegressionP00l- The reason for the poor performance at Caerws is the
method tested here can not correct “bad” forecasts. Gencombination of the relatively large bias in the simulation of
erally, the confidence intervals are accurately estimated evef'® DODO model for Caerws and the internal error correc-
though they were only estimated from a hindcast covering dion procedure that is applied for this location. This internal
short period (2006-2007). The Quantile Regression metho@'TOr correction procedure causes the forecast at Caerws to
closely resembles the confidence interval wherein one exiUmp; often one or two hours into the forecast, from the error
pects the observation. The performance is further illustratecOTected foreast to the biased forecast. This happens more

by Table 1 which shows the percentage of the observation&ften in the validation than in the calibration period, therefore
within the confidence intervals at various lead times. when switching the validation with the calibration period this

results in exactly the opposite figure (all lines above 1:1 line)

Location id predictive  2h 4h 6h 12h 18h 24h
& name confidence
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Fig. 7. Reliability Q-Q plots (predicted non-exceedence probabilities versus the fraction of observations that are lower than the corresponding
estimated value indicated by “observed quantiles”) for all Upper Severn locations for all lead times considered for the validation period (2008
and 2009). Bracketed numbers are unique station identifiers.

Table 2. Percentage of observations within respective predictive confidence intervals for period January 2008-July 2009 for forecast locations
Ravensbourne (Thames Region).

Location predictive 3h 6h 9h 12h 15h 18h 21h 24h
id & name confidence

interval
3470TH 25%-75% 56.4 511 444 412 425 425 428 56.4
Catford Hill 5%-95% 96.7 96.2 955 954 943 935 923 96.7
3489TH 25%-75% 65.1 58.7 56.2 554 557 551 550 651

Manor House Gardens 5%-95% 96.0 948 945 944 94 93.8 94.2 96

for Caerws (not shown). To improve the performance atlevel. The performance is further illustrated by Table 2 which
Caerws the DODO model and the error correction procedureshows the percentage of the observations within the confi-

should be improved. dence intervals at various lead times. Table 2 shows that
for these two locations the derived forecast error models are
3.2.3 Thames Region, Ravensbourne somewhat too wide (underconfident) as too many observa-

tions lie within the 50% and 90% confidence limits. How-
Figure 8 shows the validation results of the method for the€Ver, this could be resulting from the fact that the period
February 2009 event for Manor House Gardens (3489TH)2008-2009 was dissimilar to the calibration period 2006—

Most of the time the observations fall within the 90% confi- 2007. In 2008 and 2009, there were relatively few small,
dence interval. It is also clear that the uncertainty increase§n@dium and major flood events for the whole of the Thames

with lead times as expected. One can also see that the uncei€gion. This should be furthe_r tested with a_Ionger_record that
tainty increases and decreases depending on the forecasté@rresponds more closely with the calibration period.
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3 hour leadtime 6 hour leadtime behaviour) and hydrological models. From the results, we
© — can conclude that the Quantile Regression method to pro-
1 1 vide predictive uncertainty estimates of water level forecasts
is promising. We showed that the derived Quantile Regres-
sion relationships predict the error quantiles satisfactorily at

all lead times. Moreover, the developed method is simple to
. . ; ; apply, requires very few assumptions and is easy to under-
oo oo oo s ouenes eaes oaoros ey Stand by both scientists and forecasters.

However, there are also some limitations. The method,
like all post-processing methods, requires a long (homoge-
neous) calibration and validation set. In the case studies,
only short calibration and validation sets were available, con-
taining only few extreme events. This compromised error
descriptions at higher predicted water levels, which could
only be made through extrapolation of the derived quan-
tile regressed relations. The case study containing a valida-
. _ _ : tion period without extreme events (e.g. Ravensbourne case
= — = — study) indicated that currently available data records may

0.8
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date date Furthermore, homogeneity of data sets can be an issue

(observed in particular in the Upper Calder case study).

Fig. 8. Validation of Quantile Regression method for water level . o :
forecasts at Manor House Gardens for the February 2009 event fo?UCh inhomogeneities may be caused by a number of fac

3, 6, 12 and 18h lead times. The dark grey area represents th%ors’ such as (a) changes in th.e hydraulllcs/hydrplog)_/ of the
50% confidence interval and the light grey area represents the 90(%|verlcatchment changes considerably (in fact, in this case

confidence interval, the black dashed line the 50% estimate, and thEe hydrological/hydraulic modgl itself needs re-calibration')
black dots the observations. and (b) changes in the forecasting system (e.g. by adaptation

of state updating procedures or models used) or (c) changes
in external data sources used to drive the forecasting sys-
4 Conclusions tem (e.g. meteorological models or external observed bound-
ary conditions). Like any other statistical post-processing
A method to provide predictive uncertainty estimates of wa-method, the developed method requires recalibration if such
ter level or flow forecasts is presented. The method aims tanhomogeneities occur.
characterise the distribution of the water level or flow fore-  If these limitations are considered by the user, the Quantile
cast error conditioned on the value of the predicted waterRegression method can be straightforwardly employed in op-
level or flow by means of Quantile Regression relationshipserational forecasting because (a) the required data is always
at quantiles of interest. The method does not consider thavailable in the operational context and (b) the methodology
independent sources of uncertainty but instead considers thequires little computation time.
effective uncertainty of the forecast process only, which can
be a result of input or output uncertainty, model structuralAcknowledgementsThe authors would like to acknowledge
uncertainty or parameter uncertainty. The quantile error reAndrew Wood (NOAA-NWS) for bringing Quantile Regression

lationships are estimated in the Gaussian domain. To thido our attention during the June 2008 HEPEX workshop in Delft

end, both the available forecast population and error popupn hydrological ensemble post-processing methods. The authors

lation are made Gaussian by means of a Normal Quantil would also like to thank R. Koenker, E. Todini and an anonymous
y Feviewer who helped to improve our manuscript considerably. This

Transform. Several sets of Quantile Regression relationshipg,o . described in this paper was carried out under R&D project
may be derived at specific lead times that are of interest ta5c0g0030 “risk based probabilistic flood forecasting for integrated
the user. The Quantile Regression relationships can straightatchment models” under the joint Environment Agency/Defra
forwardly be implemented as a post-processor in a real-timeflood and Coastal Risk Management R&D programme.
operational forecasting system.

The method was tested by deriving Quantile RegressiorEdited by: F. Pappenberger
relations for several lead times using a calibration hindcast
set and consequently predicting forecast errors of water lev-
els using an independent validation set in three case studies
in a stand alone version of the National Flood Forecasting
System of England and Wales. The three case studies across
England and Wales contain a variety of catchments (size and
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