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Abstract. World water resources have primarily been anal-
ysed by global-scale hydrological models in the last decades.
Runoff generation in many of these models are based on pro-
cess formulations developed at catchments scales. The divi-
sion between slow runoff (baseflow) and fast runoff is pri-
marily governed by slope and spatial distribution of effec-
tive water storage capacity, both acting at very small scales.
Many hydrological models, e.g. VIC, account for the spatial
storage variability in terms of statistical distributions; such
models are generally proven to perform well. The statistical
approaches, however, use the same runoff-generation param-
eters everywhere in a basin. The TOPMODEL concept, on
the other hand, links the effective maximum storage capac-
ity with real-world topography. Recent availability of global
high-quality, high-resolution topographic data makes TOP-
MODEL attractive as a basis for a physically-based runoff-
generation algorithm at large scales, even if its assumptions
are not valid in flat terrain or for deep groundwater systems.
We present a new runoff-generation algorithm for large-scale
hydrology based on TOPMODEL concepts intended to over-
come these problems. The TRG (topography-derived runoff
generation) algorithm relaxes the TOPMODEL equilibrium
assumption so baseflow generation is not tied to topography.
TRG only uses the topographic index to distribute average
storage to each topographic index class. The maximum stor-
age capacity is proportional to the range of topographic index
and is scaled by one parameter. The distribution of storage
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capacity within large-scale grid cells is obtained numerically
through topographic analysis. The new topography-derived
distribution function is then inserted into a runoff-generation
framework similar VIC’s. Different basin parts are parame-
terised by different storage capacities, and different shapes of
the storage-distribution curves depend on their topographic
characteristics. The TRG algorithm is driven by the Hy-
droSHEDS dataset with a resolution of 3′′ (around 90 m at
the equator). The TRG algorithm was validated against the
VIC algorithm in a common model framework in 3 river
basins in different climates. The TRG algorithm performed
equally well or marginally better than the VIC algorithm with
one less parameter to be calibrated. The TRG algorithm also
lacked equifinality problems and offered a realistic spatial
pattern for runoff generation and evaporation.

1 Introduction

Environmental disturbances, population growth, and eco-
nomic globalisation all address questions at a global level.
The water resources of the world are vital to many of these
which call for global-scale hydrological models. One big
challenge in global hydrology is that much of the earth’s land
surface is covered with ungauged basins. This makes region-
alisation central to global water-balance modelling. Another
challenge is the dearth of globally covering hydrological and
climate data and the low quality of such data. Large-scale
models are therefore generally assumed data-limited. Some
global data, e.g. topographical data and products derived
from them, are however available with high resolution and
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quality. Parameterisation of small-scale hydrological pro-
cesses based on such data could be one way to future mod-
elling progress.

Rainfall-runoff models can be classified as conceptual
or physically-based, and lumped or distributed. Fully-
distributed models require much input data and complex
model structures. Semi-distributed models, on the other
hand, group areas in a basin that behave in a hydrologically
similar way and can be given simpler model structures and
a smaller number of parameters to reduce the input-data re-
quirements. Grouping of hydrologically similar areas is done
either by statistical or data-based methods. A basic idea be-
hind the statistical methods is that the response of a basin
can be represented by a probability distribution of conceptual
water stores beyond a certain spatial scale. Statistical meth-
ods do not explicitly represent the stores in space, and do not
make any assumptions about the physics that controls their
distribution. The statistical methods use the same parameter
values everywhere in a basin because it is difficult to account
for their spatial auto-correlation. PDM (Moore and Clarke,
1981), macro-PDM (Arnell, 1999), and VIC (Wood et al.,
1992; Liang et al., 1994) are examples of semi-distributed
models based on statistical distributions. The VIC (variable
infiltration capacity) model is based on the idea that infiltra-
tion capacity varies across a basin and that it can be repre-
sented with the addition of a shape parameter to Manabe et
al.’s (1969) bucket model. In this way, the VIC model can
simulate runoff generation from saturated areas and hetero-
geneous evaporation rates controlled by the sub-grid distri-
bution of available soil moisture. Data-based methods aim
at mapping the actual stores in space. TOPMODEL (Beven
and Kirkby, 1979) is based on an index derived from to-
pography. Under the assumption of a kinematic wave and
successive steady states, areas with same topographic index
behave in hydrologically similar ways. TOPMODEL maps
the distribution of soil-moisture deficit over a specified basin
and thus allows prediction of the actual spatial distribution
of saturated areas. Sivapalan et al. (1997) combine the two
concepts, i.e. VIC’s variable-infiltration concept and the to-
pographic index to model the distributed water storage in a
26.1 km2 catchment. The combination makes use of the re-
laxed VIC assumptions and TOPMODEL’s capacity to dis-
tribute water storage to each area in the catchment.

The VIC model and TOPMODEL combine computational
efficiency with a distribution-function approach to runoff
generation. This makes them interesting for large-scale
water-balance applications. Global-scale versions of VIC
are presented by Nijssen et al. (1997, 2001a,b), and of TOP-
MODEL as TOPLATS by Famiglietti and Wood (1991), and
Famiglietti et al. (1992). Topographic-index algorithms are
also presented as efficient parameterisations of land-surface
hydrological processes at the scale of GCM grids (Famiglietti
and Wood, 1991). Application of TOPMODEL concepts at
large scales has received criticism because TOPMODEL was
developed for non-arid catchments with moderate to steep

Fig. 1. Schematic hillslope section.Dmax is the average storage
deficit under the driest condition,Dmax is the largest storage deficit
under the driest condition,Zi is the water table depth, and9c the
height of the capillary fringe.

slopes and shallow soils overlaying impermeable bedrock
where topography plays a major role for runoff generation.
The TOPMODEL assumptions are not valid in places with
dry climate, flat terrain, or deep groundwater. The VIC
model is built on fewer assumptions and is therefore easier
to generalise (Kavetski et al., 2003).

The objective of this study was to provide a physically-
based runoff-generation algorithm that could be used in dif-
ferent global hydrological and land-surface models. The
physical basis should be derived from high-resolution, glob-
ally covering topographic data. The hypothesis was that the
combination method of Sivapalan et al. (1997) could be ex-
tended to large scales. In order to function at the global scale,
the runoff-generation algorithm had to be computationally
efficient and only have as many parameters as could be sub-
stantiated by available data.

2 The TRG (topography-derived runoff generation)
algorithm

2.1 Concepts

When water flows down a hillslope (Fig. 1), TOPMODEL
assumes that the response from the groundwater system
(i.e. change in water table and discharge rate) to a change
in recharge/infiltration rate reaches a steady state within each
time step. The temporal dynamics can then be represented
by a succession of steady states. The kinematic-wave as-
sumption states that the effective hydraulic gradient equals
the local surface slope at every point. The two assumptions
mean that the groundwater table moves up and down in par-
allel. This is also an (implicit) assumption behind the VIC
model.

The parallel water tables indicate that the deviation of stor-
age deficit from basin average at any point is always fixed
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except under surface saturation. This feature offers a way
to distribute the average storage deficit to every point in the
basin. In other words, the topography distribution determines
the water-table distribution and thus the storage deficit. The
spatial distribution of the storage deficit determines the parti-
tion between fast runoff, slow runoff/baseflow, and evapora-
tion when the basin wets up or dries out. The TOPMODEL
steady-state assumption leads to a simple mathematical form
that gives the average groundwater discharge as an exponen-
tial decay function of the average storage deficit.

The consequence of the two assumptions is that a topo-
graphic analysis is sufficient to derive groundwater-discharge
patterns, i.e. runoff generation. As a consequence, the evolu-
tion of saturated areas, water stores, and other water-balance
components is strongly influenced by topography.

The meaning of storage capacity must be clearly defined in
order to combine TOPMODEL and VIC concepts. The VIC
model uses the term “infiltration capacity” whereas TOP-
MODEL uses “deviation from average storage deficit”. An
intuitive way to understand storage capacity is to define it
at any location as the amount of water that can be held in
vertical soil column down to the bedrock. This requires de-
tailed and seldom available data of soil depths. So methods
based on this definition can only be used as conceptual rep-
resentations of a storage distribution. In TOPMODEL there
is neither an explicit limit for the bedrock depth nor a max-
imum cut-off for the storage deficit. The water-table loca-
tion at each time uniquely controls the amount of water that
can infiltrate before the surface is saturated and fast runoff
generated. So the effective maximum storage capacity corre-
sponds to the location of the deepest water table that occurs
in a dry period. Here we will use the term “storage capacity”
to describe the “maximum storage deficit” in TOPMODEL.

2.2 Mathematical representation of the new
combination method

We relaxed the TOPMODEL equilibrium assumption so
baseflow generation should not be tied to topography. We
used the topographic analysis only as a way to derive the
distribution of storage capacity. The topography-derived
storage distribution was fed into the VIC model framework
of soil-moisture distribution to generate runoff and control
evaporation. The method was constructed to differ from the
original VIC model in: (1) the storage-distribution function
was derived from topographic data, and as a result, there is a
spatial correspondence between a storage value and a point or
an area (pixel) in the basin; (2) all grid cells in the large-scale
model were assigned different storage-distribution functions
given by topography so each cell could be given its own aver-
age storage capacity; and (3) the new algorithm needed less
parameters than VIC.

The storage deficitDi at any point (Fig. 1) is defined as:

Di = (Zi − 9c) · θ (1)

whereZi is the water table depth,9c the height of the capil-
lary fringe andθ the effective porosity. With the topographic
index TI defined as:

TI = ln
α

tanβ
(2)

whereα is the upstream contributing area, andβ the local
surface slope. We assumed transmissivity constant over the
whole basin. The spatial distribution ofDi can then be de-
rived from the average valueD by the following relationship:

Di = D + m
(
TI − TI

)
(3)

whereTI is the area-weighted average of TI, andm is a scal-
ing parameter controlling the rate of decline of transmissivity
with increasing storage deficit.

Di obtained by Eq. (3) describes the profile of storage
deficit under the driest condition whenD takes the maxi-
mum valueDmax. This defines the storage capacity in every
point in the basin. The storage deficit (Di) is determined by
one single moisture value (D), the topographic index, and the
deepest water table in each point where the river channel acts
as a boundary condition. If a basin continuously generates
runoff, part of it is always saturated, i.e. has zero storage ca-
pacity even under the driest condition (“Driest condition 2”
in Fig. 1). When the basin is modelled as grid cells, some
upstream cells may have seasonal channel or no channel at
all, in which case all parts of the cell may have positive stor-
age capacity. There will be a certain area in the basin that
is saturated to the surface under the driest condition. If this
area corresponds to a critical topographic-index value TIc,
areas with values larger than this will always be saturated. In
VIC, the simplification is made that the river channels are just
barely saturated under the driest condition, so TIc = max(TI)
(“Driest condition 1” in Fig. 1).

We defineDmax
∗

for the average storage deficit in the un-
saturated area under the driest condition, i.e. with TI smaller
than TIc in order to avoid the potential problem introduced
by surface saturation in TOPMODEL. After insertingDmax

∗

into Eq. (3) and rearranging, we get:

Dmax
∗

= m
(
TIc − TI

)
(4)

wherem is a scale parameter andTI is the area-weighted
average topographic index of the basin, i.e. the topographic
constant.

The largest storage deficit under the driest condition, or
the maximum storage capacity, is obtained by substitution of
DTI

∗
and the minimum topographic index TImin into Eq. (3):

Dmax = Dmax
∗

+ m
(
TI − TImin

)
= m (TIc − TImin). (5)

The storage deficit in the driest condition at every point of
the water table is:

Dimax = Dmax
∗

+ m
(
TI − TI

)
= m (TIc − TI). (6)
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This allowed us to define a dimensionless deficit, similar to
Sivapalan et al. (1997), which is only a function of topogra-
phy:

Dimax

Dmax
=

TIc − TI

TIc − TImin
. (7)

The actual storage capacity is scaled by parameterm. In the
new algorithm it is used to scale the topographic-index range
to the maximum storage capacity of the basin. Equation (7)
guarantees that a given TI value will mean the same storage
capacity in different grid cells in a large-scale hydrological
model, and that any upstream cell without a channel will be
properly represented.

2.3 Estimation of critical TI values and derivation of
effective storage capacity

The operational definitions of TIc and TImin that determine
the permanently saturated area becomes crucial in the algo-
rithm since they control the storage distribution. Quinn et
al. (1995) present a way to define a river channel from to-
pographic information and show a systematic change in TI
distribution when removing the largest values representing
river channels. They use a trial-and-error approach, grad-
ually decreasing the channel-initiation threshold (CIT) area
and allowing the channel to extend into the hillslope. The
peak of the TI distribution shows a rapid shift to the left at
some point, indicating upstream channels rapidly extending
into the hillslope. This shifting point is reported by Quinn et
al. (1995) to be the CIT value giving the best TI representa-
tion.

We used Eq. (6) to transfer TI values into 100 storage-
capacity classes. The conversion from TI values to effec-
tive storage capacity is illustrated in Fig. 2. The TI distri-
bution is first transformed into a storage frequency distri-
bution, and then to a cumulative distribution. Parameteri,
the i-th of the 100 storage-capacity classes represent the ef-
fective extent of the river channels or permanently saturated
area (Fig. 2d). We then removed saturated areas by setting
all storage-capacity classes belowi to zero. The driest part
of the basin is represented by parameterj , the j -th of the
100 storage-capacity classes (Fig. 2d). This parameter repre-
sents the maximum frequency value, used by us as a cut-off
value to allow removal of the right tail of the distribution.
Whenj increases, less information from the right tail is used
and the distribution gradually approaches the VIC algorithm.
We tested the influence ofi andj on model performance by
varying their values in ranges judged physically reasonable.
The complete distribution was used wheni = 1 andj = 1 and
less tail information wheni andj increased. The range of the
distribution of effective storage capacity was derived from
the range of the topographic index scaled by parameterm,
whereas the shape of the distribution was obtained from the
distribution of the topographic index itself. The cell-average

Fig. 2. Schematic illustration of the conversion from topographic-
index distribution to storage-capacity distribution. TImin, TIc, and
TImax in (a) give minimum, critical, and maximum values of the
topographic index. Graphs(b) and(c) give storage-capacity distri-
butions when the original information of the entire TI distribution
is used, whereas(d) and(e)give the distributions when information
in the 2 tails of the distributions are nullified. Parametersi andj

define the cutoff values for the two tails. In(c) and(e) the horizon-
tal lines depict groundwater levels during baseflow conditions (S0
being the total storage), and during conditions of excess infiltration
(1S being additional storage going to fast runoff).

storage capacity was obtained by integrating the storage fre-
quency distributions of all individual pixels.

2.4 Representation of water table and basin water
storage

When TOPMODEL assumptions are fulfilled, the water table
and its corresponding storage,S0, for each point in the basin
can be obtained from Eq. (6) by transforming back from the
TI distribution (Fig. 2c and e). If the available storage, but
not explicitly the water table, is of interest we can use this
back-transformation to conceptualise the runoff generation
from the hillslope (Fig. 1). A straight line represents the
water table under the driest condition whereas the storage-
capacity curve represents the ground surface (Fig. 2c and e).
Any horizontal line below the curve represents a given wa-
ter table and the area below it saturated storage,S0. When
excess rainfall infiltrates into the hillslope, the excess stor-
age1S will generate fast runoff. There is a 1-to-1 rela-
tion between storage capacity, basin moisture and saturated
area. This relation creates the core of the storage dynamic
and can be used to update the basin average storage through
back calculation of the storage capacity. The redistribution
from basin average moisture to storage is not done only with
Eq. (2) as in TOPMODEL because the storage can be neg-
ative in the original formulation. Instead, the relation is im-
plemented numerically and the updating is explicit.
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Table 1. Model parameters for the common model framework used to evaluate the VIC and TRG runoff-generation algorithms.

Parameters
Algorithm Runoff generation Common

VIC Shape Max. infiltration capacity Baseflow Snow Evaporation
B (−) im (mm) Kb (day−1) a1, a2 (◦C) Be (−)

TRG Scaling
m (m)

3 Algorithm evaluation

3.1 Hydrological model framework

To compare the TRG algorithm and the corresponding VIC
algorithm (Eqs. 8–9), both were inserted into the same hy-
drological model framework. The framework was of a mix-
ture of the one-layer version of VIC (Wood et al., 1992),
to allow for distribution of the runoff generation and water
storage, and WASMOD-M/WASMOD components (Widén-
Nilsson et al., 2007; Xu, 2002), including the recently devel-
oped NFR routing algorithm (Gong et al., 2009, 2010).

The VIC runoff-generation algorithm is given by:

i0 = im − im · exp

−

log
(
−

im
−im + w0 + B · w0

)
1 + B

 (8)

A = 1 −

(
1 −

i0

im

)B

(9)

wherei0 is the infiltration capacity,im is the maximum stor-
age capacity for the saturated fraction of a model grid cell,
w0 the current average storage of the cell,A the fraction of a
cell for which the storage capacity is less thani0, andB is a
shape parameter. The two equations represent the partition-
ing of fast and slow runoff. As a result, excess rain falling on
saturated area will generate fast runoff.

The snow algorithm was taken from the WASMOD catch-
ment model (Xu et al., 1996; Xu, 2002), whereas the evapo-
ration part was given by VIC (Wood et al., 1992). The total
number of model parameters was 6 for the model version
using the VIC algorithm and 5 for the version using TRG
(Table 1).

The NRF algorithm of Gong et al. (2009, 2010) was used
to route the simulated runoff. This algorithm extracts a time-
delay distribution from HydroSHEDS (Lehner et al., 2008)
flow-direction data at its native resolution (3′′, around 90 m at
the equator). The time-delay distribution is then aggregated
to network-response functions for the 0.5◦ grid cells of the
two hydrological models. Discharge is finally achieved by
convoluting the runoff at each cell with the corresponding
network-response functions.

Modelled basins were registered in the HydroSHEDS flow
network overlaid with 0.5◦ grid cells. Only the active part of
boundary cells, as delineated by HydroSHEDS pixels, con-
tributed discharge to the downstream gauging station; the rest
of the boundary cells (blank area in Fig. 3) were not included.

3.2 Test basins

The performance of the two models was evaluated in 3 basins
with different climates in China and North America (Figs. 3–
4). The well-documented Dongjiang (East River) basin
is a tributary of the Pearl River in southern China. Its
25 325 km2 drainage area above the Boluo gauging station
is large enough to retain generality of the result in a study
of global hydrology. The basin has a dense network of me-
teorological and hydrological gauging stations. The climate
is sub-tropical with an average annual temperature of around
21◦C and the winter temperature only occasionally goes be-
low zero in the mountains. The 1960–1988 average annual
precipitation is 1747 mm, and the average annual runoff is
935 mm or 54 % of the average annual precipitation. About
80 % of the annual rainfall and runoff occur during the wet
season from April to September. The basin is forest-covered
at higher altitudes whereas intensive cultivation dominates
hills and plains. Daily hydro-meteorological data, includ-
ing discharge, were obtained from local sources for the
Dongjiang River basin. Local daily hydro-meteorological
data were retrieved for the period of 1982–1983. The Na-
tional Climate Centre of the China Meteorological Adminis-
tration provided data on air temperature, sunshine duration,
relative humidity, and wind speed from 7 weather stations in-
side or close to the basin. Precipitation data from 51 gauges
and discharge data from 15 gauging stations were retrieved
from the Hydrological Yearbooks of China issued by the
Ministry of Water Resources. Potential evaporation was cal-
culated from air temperature, sunshine duration, relative hu-
midity, and wind speed with the Penman-Monteith equation
in the form recommended by FAO (Allen et al., 1998).

Two North American basins (Eel River and Willamette
River basins) were selected to represent climates different
to the Dongjiang basin. The Eel River enters the Pacific
Ocean just north of Cape Mendicino, in northern Califor-
nia. Its discharge is generally small, but it usually has one
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Fig. 3. Digital elevation models for(a) Willamette River basin,(b) Eel River basin, and(c) Dongjiang River basin (left row). Average storage
capacity for 0.5◦ × 0.5◦ grid cells derived from topographic analysis for the same basins (right row). Only the active parts of the boundary
cells, as delineated by HydroSHEDS pixels, were used in model calculation.

or more large flows, lasting for several days during the pas-
sage of winter storms (Brown and Ritter, 1971). The Eel
River at the Scotia gauging station has an area of 8062 km2.
The Willamette River valley, the upstream of the Columbia
River at Portland has an area of around 29 000 km2. The
Willamette is mostly a gravel-bed river basin (Hughes and
Gammon, 1987), which drains a humid alluvial valley with
extensive active and relict floodplains (Parsons et al., 1970).
The Willamette Valley lies roughly 80 km from the Pa-
cific Ocean, and prevailing westerly marine winds are a pri-
mary determinant of its Mediterranean climate (Taylor et al.,
1994). Winters are cool and wet, summers are warm and
dry. Most runoff and flooding are caused by winter rains,
with winter rainfall on melting snow the primary mecha-
nism for generation of floods (Waananen et al., 1971; Hub-
bard et al., 1993). Melting snow at higher elevations of
the Cascade Range adds a seasonal runoff component dur-
ing April and May. Meteorological data from several global

remotely-sensed or reanalysis datasets were used to drive the
models for the Eel and Willamette River basins. Precipita-
tion data was constructed by combining TRMM (Tropical
Rainfall Measuring Mission) 3B42 (Huffman et al., 2007),
which has semi-global coverage from 50◦ N to 50◦ S, and
GPCP 1DD (Huffman et al., 2001) which covers the globe
with 1◦ resolution. TRMM provides precipitation estimation
from space and involves a combination of infrared measure-
ments from geostationary satellites and passive microwave
measurements from polar-orbiting satellites. It has time and
space scales of 3 h and 0.25◦ lati◦. Air and dew-point tem-
peratures were obtained from ERA-Interim reanalysis data
(Simmons et al., 2007). Discharge data for Willamette and
Eel River basins were taken from GRDC (2010).

3.3 Calibration of model parameters

Values for the wave-velocity parameter in the routing algo-
rithm were obtained before calibration of the other model
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Fig. 4. Observed daily average temperature (◦C), precipitation (mm), and discharge (m3 s−1) for (a) Willamette River basin,(b) Eel River
basin, and(c) Dongjiang River basin. The y-axes ticks for daily average temperature show minimum, mean, and maximum values.

parameters. For each test basin, one thousand runoff
time series were generated from a one thousand uniformly-
distributed and randomly-combined parameter-value sets for
both models. The initial snow parameter-value ranges
were selected from previous modelling experiences (Widén-
Nilsson et al., 2009). Other parameters were tuned inside
their initial physical ranges before the final simulations. The
4 common parameters (Table 1) were set to the same param-
eter range for both models. All parameters were calibrated
with the Nash efficiency criterion, and the top 1 % parameter-
value sets chosen as behavioural in the GLUE sense (Beven
and Binley, 1992). Validation of VIC and TGR algorithm
were performed by splitting discharge time series in half, us-
ing the first half for calibration and second half for validation.

4 Results

4.1 Identification of dry and permanently wet areas

Model performance showed different sensitivity to parame-
tersi andj (Fig. 5). The best performance was not achieved
whenj was identified as the maximum frequency andi = 1,
as in the traditional VIC algorithm. The best result for all
three basins was given byj = 1, showing the value of all the
information in the right tail of the distribution. The impor-
tance of allowing a certain part of the catchment to always
be saturated was indicated by the best performance fori that
was 37 for the Willamette River basin, 24 for the Eel River
basin, and 40 for the Dongjiang River basin. The sensitiv-
ity to i andj was largest in the warm and humid Dongjiang
basin.

www.hydrol-earth-syst-sci.net/15/2481/2011/ Hydrol. Earth Syst. Sci., 15, 2481–2494, 2011
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Fig. 5. Nash efficiencies for the TRG algorithm in the Dongjiang River basin,(a) as function ofi andj , (b) as function ofi for j = 1, and(c)
asfunction ofj for i = 4.

Fig. 6. Frequency distribution of effective storage capacity for whole basins (thick line) and for each individual model grid cell (dashed lines)
derived from topographic analysis for(a) Willamette River basin(b) Eel River basin, and(c) Dongjiang River basin.

4.2 Storage-capacity distributions and averages

The distributions of storage capacities, for the whole basin
and for all individual grid cells, for the three river basins were
all skewed to the right (Fig. 6), whereas the topographic-
index distributions were always skewed to the left (Fig. 2).
The skewness of the storage-capacity distributions indicated
a rapid increase of storage capacity from river channel to hill-
slope in all three basins. The Eel River basin showed less
spatial variation in the storage distribution compared to the
Willamette and Dongjiang River basins, where the distribu-
tions in individual cells varied a lot from the average basin
distribution. This could likely be explained by the Eel River
basin being smaller and more homogeneous than the other
two (Fig. 3). The spatial variability of the storage distribu-
tion concerned both the cell-average storage capacity, which
determines the partitioning between fast and slow runoff, and
the shapes of the distributions, which define the dynamics of
the partitioning. Sharp high peaks can be seen (Fig. 6) in the
distributions for the Dongjiang and Willamette River basins.
These peaks come from local topographic features, indicat-
ing a rapid fast-runoff response in those parts of the basins.

There was a significant spatial variation in cell-average
storage capacity in all three river basins, starting with a small
variation along the river valleys and an increase towards
headwater regions. There was also a large increase in the
average basin storage capacity when going from the temper-
ate North American basins to the warm and humid southern
Chinese basin (Fig. 3).

4.3 Model performance

Only small differences could be seen between the best simu-
lated discharge with the TRG algorithm and VIC algorithms
(Fig. 7). The snow parametersa1 anda2 showed a strong
equifinality (as also noted by Widén-Nilsson et al., 2009)
whereas the baseflow parameterKb, and the scaling parame-
ter m both showed well-defined parameter-value ranges for
all three basins. The evaporation parameterBe and two
VIC parametersim andB showed an intermediate behaviour
(Fig. 8). The best Nash efficiency for the model with the
VIC algorithm was 0.92 for the Eel River basin, 0.84 for
the Willamette River basin and 0.88 for the Dongjiang River
basin. The corresponding efficiencies were 0.92, 0.85, and
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Fig. 7. Observed (gray lines) and best simulated discharge with the
TRG algorithm (black lines), and the VIC algorithm (black dots) for
the Willamette River basin at Portland (top), the Eel River basin at
Scotia (middle), and the Dongjiang River basin at Boluo (bottom).

0.89 for the TRG algorithm. Validation split-sample test
showed similar results for the VIC and TRG algorithms. For
the Dongjiang River basin, the average Nash efficiency for
the validation period was 10 % higher than the calibration
period for both algorithms. For Eel River basin, and the
Willamette River basin, a decrease of 27 % and 15 % of Nash
efficiency was observed for VIC algorithim and a decrease of
23 % and 17 % was observed for the TRG algorithm.

5 Discussion

5.1 Combined data-driven and statistical approaches

O’Loughlin (1981) and Sivapalan et al. (1997) present com-
bination approaches based on analytical functions fitted to
the cumulative distribution of the storage capacity. By doing
so, they introduce 2 or 3 parameters, which makes their so-
lutions less useful for large-scale hydrological models where
the lack of hydrological data is a major limitation. We limited
the number of parameters by choosing a numerical instead
of an analytical approach. Saulnier and Datin (2004) com-
ment that the implicit neglect of surface-saturation areas in
the derivation of TOPMODEL equations leads to a system-
atic underestimation of catchment water storage deficit. They
also show that the bias problem can potentially change the
predicted ratio between surface and subsurface water fluxes.
They point out that Eq. (2) is only valid for unsaturated areas.
It was on the basis of this comment that we choose to develop
an analytical/numerical solution to solve the bias problem.
In this study, the expansion and contraction of saturated ar-
eas were represented numerically, to ensure that the storage
deficit was only calculated for unsaturated areas.

5.2 Where is the river?

River-channel identification is important for the implemen-
tation of the TRG algorithm. The starting point for the TRG
identification was taken from TOPMODEL, where the defi-
nition of a river channel, or effectively the part of the basin
that is always saturated, is done by assuming a cut-off CIT
(channel-initiation threshold) value (Quinn et al., 1995). The
parts of the basin with the largest TI values are then classified
as river channels, and the TI distribution gets less positively
skewed. Quinn et al. (1995) show that the optimal CIT value
depends on grid resolution and that it has a significant ef-
fect on the simulated basin dynamics. Quinn et al. (1995)
identify the CIT value by manually finding the critical point
where the number of river channels extending into the hill-
slope starts to grow rapidly. They present a test of their al-
gorithm on a small catchment with a 50-m DEM. We tested
the same algorithm with the 90-m HydroSHEDS data. Since
our pixel area was more than triple, we found that too many
pixels containing river channels were included as river chan-
nels started to extend into upstream areas. The trial-and-error
nature of the Quinn et al. (1995) method is also unsuitable at
a global scale. Our sensitivity study showed that neglecting
river channels in the TRG algorithm, i.e. usingi = 1 as in
the VIC algorithm, gave acceptable results, but that the best
results were found withi in the range 20–40 (Fig. 5). The
existence or not of a river channel is a concrete real-world
property and should not be considered as a free parameter
but the value ofj , the cut-off CIT value for the 90-m Hy-
droSHEDS data remains to be further investigated. On the
basis of our 3 basins, this cut-off value was identified in a
relatively narrow range. We also showed the value of main-
taining the full distribution in the dry end of the spectrum,
i.e. j = 1, contrary to VIC where a right tail does not exist.

The maximum storage capacity of a grid cell is propor-
tional to the TI range in the unsaturated area so both max-
imum and average storage capacities are reduced when the
river-channel area expands. This means that a smaller part of
the left tail of the storage distribution will be used to simulate
basin dynamics. In the VIC model, all parts of a basin are al-
located a storage capacity, and the existence of river channels
is ignored. If the VIC assumptions are used (as by Sivapalan
et al., 1997), that the wettest part of the basin is just barely
saturated under the driest conditions then TIc = TImax.

5.3 The non-linear basin response

The runoff-generation process is non-linear because of un-
even distribution of storage capacity in most, if not all basins.
A distribution that captures the real-world distribution should
theoretically be better than one that only describes the aver-
age conditions of a whole basin. This makes it interesting to
compare properties of the data-based TRG and the statisti-
cal VIC algorithms, especially their storage distributions that
determine the dynamic response of a basin.
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Fig. 8. Nash efficiencies as function of model parameter (gray dots) and 1 % best simulations (black circles) for the Willlamette River basin:
snow parametersa1 (−) anda2 (−), evaporation parameterBe (−), baseflow parameterKb (day−1), TRG scaling parameterm (m), VIC
maximum storage capacity im (mm), and VIC shape parameterB (−). The top line gives the efficiencies for the model with the TRG
algorithm and the bottom line the efficiencies for the VIC-algorithm model.

The slope of the cumulative storage distribution is a key
to the response of a basin to excess rainfall. A small slope
means that a small rise of the groundwater table will saturate
a large part of the basin thus triggering a large amount of fast
runoff. The VIC storage distribution increases monotonically
as a function of storage capacity whereas the TRG distribu-
tion has a sharply decreasing right tail. The VIC distribution
implies that the larger the storage capacity, the larger area
it occupies in a basin. The VIC distribution results in a cu-
mulative distribution with a monotonically decreasing slope
(when the abscissa is probability and the ordinate is storage
capacity). So basin response speeds up when the water ta-
ble rises, i.e. more area gets saturated and more fast runoff
is generated for a given rainfall input. The TRG distribution,
derived from topographic data, always has a decreasing right
tail indicating that the driest, most remote headwater areas
always occupy a small part of the basin. The slope of the
TRG cumulative function decreases first and then increase
when the whole basin is nearly saturated (Fig. 9).

The m parameter values that gave the highest Nash effi-
ciency for the TRG algorithm was used to construct a cu-
mulative storage distribution for each grid cell in all three
test basins. The same held true for theB and im parame-
ter values for the VIC algorithm, but here for the cumulative
distribution for the whole basin. The two models (VIC and
TRG) happened to get the same maximum storage capacity
for the Eel and Dongjiang River basins when the parame-
ter values were set. The maximum storage capacities dif-
fered considerably between VIC and TRG for the Willamette
River basin. The cumulative TRG distribution always rose
faster than VIC‘s, indicating a stronger non-linearity for
runoff generation in the Eel and Dongjiang River basins. The
Dongjiang River basin can be taken as example of the TRG-
distribution properties. When the basin gradually wets up,
a small amount of fast response will be observed initially.

A fast response will then occur when around 800 mm of the
storage has been filled. Close to basin saturation, at around
1000 mm, the response speed will slow down again. The VIC
distribution generates a much more linear response (Fig. 9).

5.4 Spatial variability and equifinality

The evaporation process is non-linear because of uneven dis-
tribution of storage capacity, i.e. moisture available for evap-
oration. A distribution that captures the real-world distri-
bution should also in this case be theoretically better than
one that only describes a statistical moisture distribution of a
whole basin.

Stamm et al. (1994) report, in a sensitivity study of GCM-
simulated global climate to representation of land-surface
hydrology, that the storage capacity of the 1-layer VIC model
is relatively insensitive to simulated climate in northern Eura-
sia and northern America. They attribute the finding to the
fact that the VIC soil moisture is not used for evaporation,
but for drainage to baseflow during dry periods. This is a
general problem with most single-layer land-surface models,
commonly addressed by the addition of a root zone that is
only depleted by evaporation and an unsaturated zone which
delays the infiltration of rain water to saturated zone, or like
Liang et al. (1994), the addition of the deep groundwater
layer. Such structural additions add a number of parameters
to a model and make it more prone to equifinality.

The TRG and VIC algorithms gave different equifinality
in the three test basins in this study. The two parameters
defining the statistical distribution of the storage capacity in
VIC algorithm, the maximum storage capacityim and the
shape parameterB, could be given a range of values produc-
ing behavioural model performance (Fig. 8). These different
values represent different storage distributions and average
storage capacities. One might speculate if this equifinality
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Fig. 9. Cumulative distributions of storage capacity for the VIC and
TRG algorithms for(a) Willamette River basin(b) Eel River basin,
and(c) Dongjiang River basin.

is caused by the shape of the curve compensating the total
storage amount. Other reasons could be that weather and
discharge data are uncertain and that the algorithm is insen-
sitive in parts of the world (Stamm et al., 1994). The TRG
algorithm showed a well-determined range of behavioural
values for its scaling parameterm (Fig. 8) indicating well-
defined ranges for the storage distributions in the individual
grid cells. The TRG algorithm thus better reflected the ac-
tual spatial variation of storage capacity, both within the three
river basins and between them when compared with the VIC
algorithm where the storage depended on a predefined statis-
tical distribution with less well calibrated parameters.

The TRG algorithm requires one parameter less than the
VIC algorithm, which reduces the equifinality problem for
simulated storage capacity. The cost of reducing an already
low-dimensional parameter space, i.e. reducing the degrees
of freedom, are diminished possibilities to adjust a model to
observed discharge if the prescribed storage distribution is

wrong. This was not the case for the three basins. We could
also see that the TRG algorithm was sensitive to changes in
either tail of the distribution which could be taken as sign
that the algorithm correctly describes the physics behind the
runoff response. The large spatial variability between grid
cells in a basin and between basins, as well as the reproduc-
tion of local areas that affect fast and slow response differ-
ently, produced by the TRG algorithm, but not by VIC, thus
likely reflect real-world features (Figs. 3 and 6).

5.5 Model performance

The model using the TRG algorithm performed equally well
or slightly better than the model using the VIC algorithm.
It did so with one parameter less, without equifinality prob-
lems, and was in the same time able to reproduce realistic
spatial patterns of water storage and water available for evap-
oration. Further studies are required to see if these are gen-
eral features for basins worldwide and if they help in achiev-
ing better performance in other models.

One crucial question concerns the applicability of the TRG
algorithm in basins not fulfilling TOPMODEL assumptions,
i.e. basins in dry areas, with flat terrain, and with deep
groundwater. It is obvious that the cost of the diminished
equifinality is lacking possibilities to tune a model where to-
pographic control is weak and where it will have less con-
trol on generation of fast and slow runoff, and evaporation.
We relaxed the TOPMODEL assumptions and did not con-
nect baseflow generation to topography. In the present model
framework we already had theKb parameter to tune base-
flow. In a model framework like this it should be possible
to calibrate the TRG algorithm also for “non-TOPMODEL”
basins.

5.6 Sensitivity of predicted discharge to the shape of
storage distribution curves

The left-tail of the storage distribution curve has a direct in-
fluence on the predicted fast runoff. Preserving more infor-
mation in the left tail would significantly increase the part of
the basins that has small to medium storage capacity, results
in steeper slope in the storage distribution curve (Fig. 10a),
and, a slower response when the catchment is wetting up
and reduced fast runoff generation (Fig. 10b). During the
calibration this reduction in fast runoff is compensated by
enhance the baseflow with increased storage parameterm.
Good agreement between observed and simulated flow dura-
tion curves were shown with well-trimmed (i = 50) left tail
(Fig. 10c). Inclusion of extra information in the left tail
(i = 35) produced underestimation for large flows and overes-
timation of medium flows. This bias might have been caused
by an overestimation of the storage capacity for area that are
nearly always saturated for the humid Dongjiang river basin,
so that the extra storage would dampen the peaks and en-
hance recession.

www.hydrol-earth-syst-sci.net/15/2481/2011/ Hydrol. Earth Syst. Sci., 15, 2481–2494, 2011



2492 L. Gong et al.: Large-scale runoff generation – parsimonious parameterisation using high-resolution topography

Fig. 10. (a)Basin average cumulative distributions of storage capacity for Dongjiang river basin withi = 35 andi = 50. (b) Basin average
relationship between the maximum storage depth and fast runoff in the Dongjiang river basin derived from(a). (c) Flow duration curve of
observed discharge and TRG simulated discharge.

Fig. 11. (a) Basin average storage distribution for Dongjiang
river basin by the TRG method, and the fitted VIC model curve.
(b) Basin average relationship between the maximum storage depth
and fast runoff in the Dongjiang river basin.

The TRG-derived storage capacity distribution curve
showed similarity with the VIC infiltration capacity curve,
especially in the left tail before the frequency peak of the
storage capacity is reached. Considering the fact that even
in the humid Dongjiang basin, in more than 50 % of time
less than half of the storage capacity is filled, the left tail
of the storage distribution curve has more control over the
predicted discharge, especially for small and medium flows.
We fitted the VIC infiltration curve to left tail of the basin-
average TRG storage distribution for the Dongjiang basin
(Fig. 11), allowing the VIC parameter to vary until best
model performance is reached and the fitting still holds. The
TRG distribution showed much flatter slope as it approaches
the maximum storage capacity (Fig. 11a), indicating a much
flusher response to large precipitation event in the rainy sea-
son (Fig. 11b). Calibrated discharge for the Dongjiang basin
using both TRG storage distribution and fitting VIC infiltra-
tion curve was shown in Fig. 12. The similarity in the left tail
distribution of the TRG storage distribution and VIC infiltra-
tion curve is clear reflected by the similarly of the simulated

Fig. 12. Observed and simulated discharge for Dongjiang river
basin both TRG storage distribution and fitting VIC infiltration
curve shown in Fig. 11.

small to medium flows; while the difference in the right tail
of the two curved is shown by the distinctly higher flood
peaks predicted by the TRG curve, especially in the begin-
ning of the rainy reason.

6 Conclusions

We developed a simple, physically-based topographic
runoff-generation (TRG) algorithm to describe runoff gen-
eration at sub-cell and cell levels for global hydrological
models. TOPMODEL concepts were used to numerically
derive sub-cell distributions of storage capacities from high-
resolution topographic data. The TRG algorithm was incor-
porated into a VIC model framework to form a new large-
scale hydrological model. The new model was successfully
validated in three river basins with different climate. It per-
formed equally well or marginally better than the original
VIC algorithm with one parameter less to be calibrated and
without equifinality problems. It was capable to realistically
reproduce large- and local-scale spatial features that control
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the generation of fast and slow runoff, as well as evapora-
tion. These facts indicate the potential for application of the
TRG algorithm to model discharge in ungauged basins. More
studies are needed before these results can be shown gener-
ally applicable, especially in basins not fulfilling traditional
TOPMODEL assumptions and when it comes to algorithms
for identification of river channels.
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