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Abstract. The performance of the ensemble Kalman filter
(EnKF) in soil moisture assimilation applications is inves-
tigated in the context of simultaneous state-parameter esti-
mation in the presence of uncertainties from model parame-
ters, soil moisture initial condition and atmospheric forcing.
A physically based land surface model is used for this pur-
pose. Using a series of identical twin experiments in two
kinds of initial parameter distribution (IPD) scenarios, the
narrow IPD (NIPD) scenario and the wide IPD (WIPD) sce-
nario, model-generated near surface soil moisture observa-
tions are assimilated to estimate soil moisture state and three
hydraulic parameters (the saturated hydraulic conductivity,
the saturated soil moisture suction and a soil texture empiri-
cal parameter) in the model. The estimation of single imper-
fect parameter is successful with the ensemble mean value
of all three estimated parameters converging to their true val-
ues respectively in both NIPD and WIPD scenarios. Increas-
ing the number of imperfect parameters leads to a decline
in the estimation performance. A wide initial distribution
of estimated parameters can produce improved simultaneous
multi-parameter estimation performances compared to that
of the NIPD scenario. However, when the number of esti-
mated parameters increased to three, not all parameters were
estimated successfully for both NIPD and WIPD scenarios.
By introducing constraints between estimated hydraulic pa-
rameters, the performance of the constrained three-parameter
estimation was successful, even if temporally sparse obser-
vations were available for assimilation. The constrained es-
timation method can reduce RMSE much more in soil mois-
ture forecasting compared to the non-constrained estimation
method and traditional non-parameter-estimation assimila-
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tion method. The benefit of this method in estimating all im-
perfect parameters simultaneously can be fully demonstrated
when the corresponding non-constrained estimation method
displays a relatively poor parameter estimation performance.
Because all these constraints between parameters were ob-
tained in a statistical sense, this constrained state-parameter
estimation scheme is likely suitable for other land surface
models even with more imperfect parameters estimated in
soil moisture assimilation applications.

1 Introduction

Soil moisture is a key state variable controlling the partition-
ing of water and energy fluxes at the land surface. It influ-
ences the surface water cycle, and, consequently, the latent
heat flux and surface energy balance. As a numerical simula-
tion to the realistic land surface state, the land surface model
(LSM) is a popular tool providing proper soil moisture ini-
tial conditions for numerical weather prediction models and
climate models. However, given its simplified physical and
mathematical processes, LSM only approximates actual pro-
cesses in nature. Uncertainties in hydrodynamic processes,
model variables and model parameters lead to large errors in
the simulation of soil moisture condition. The proper initial-
ization of soil moisture conditions in LSMs remains an open
issue in meteorological and hydrological research.

Modern data assimilation technique effectively accounts
for this issue. Merging information from uncertain soil mois-
ture observations and uncertain land model predictions opti-
mally, this technique can improve the estimation of the soil
moisture state in LSMs (Houser et al., 1998; Reichle et al.,
2001a, b). As a Monte Carlo approximation to the tradi-
tional Kalman filter (Kalman and Bucy, 1961), the ensemble
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Kalman filter (EnKF) method, first introduced by Evensen
(1994), has received an increasing attention and been widely
used in recent years. By propagating an ensemble of state
vectors in parallel, such that each state vector represents a
particular realization of generated model replicates, it pro-
vides a flow-dependent background error covariance ob-
tained at each update and adjusts the background optimally
to newly available observations. In recent years, the EnKF
has been successfully applied to different soil moisture as-
similation problems (Walker and Houser, 2001; Reichle et
al., 2002a, b, 2008; Reichle and Koster, 2005; Crow and Van
Loon, 2006; Crow and van den Berg, 2010; Ni-Meister et
al., 2006; Zhang et al., 2010). In most of these studies, how-
ever, the EnKF was only used for estimating time-varying
state variables under the presumption that model parameters
were specified in advance by calibrations. In common cal-
ibration methods, model parameters are adjusted by a his-
torical batch of measurements so that the behavior of model
approximates, as closely and consistently as possible, the ob-
served behavior of the real land system over some period of
time (Niyogi et al., 2002; Xia et al., 2002; Coudert et al.,
2006). There exist two main weaknesses in these calibration
approaches: (i) they cannot include information from new
observations, and (ii) as commonly practiced, they ignore er-
rors from initial condition and atmospheric forcing data. Be-
cause the EnKF accounts for a wide range of possible model
errors easily (Evensen, 2003), it has the potential to over-
come these two drawbacks by explicitly accounting for all
sources of uncertainty and developing a simultaneous treat-
ment of state and parameter estimation to refine its assimila-
tion performance.

By means of the state augmentation technique (Anderson,
2001), model parameter estimation can easily be included
in the framework of the EnKF. The principle of state aug-
mentation is that model parameters can be considered as
“pseudo” model states along with conventional state vari-
ables, and then the error covariance sampled by ensemble
members can be used directly to update those model pa-
rameters in exactly the same manner as for the conventional
state variables. Recently, the state-parameter estimation ap-
proach was successfully applied in atmospheric (Aksoy et al.,
2006), oceanic (Annan et al., 2005), and ecological (Chen et
al., 2008) assimilation fields. In the hydrological field, the
idea of state-parameter estimation was first introduced by
Moradkhani et al. (2005a, b), using the EnKF and particle
filter. The results were promising, and nearly all of the pa-
rameters were well estimated. Subsequently, this approach
was widely used in many hydrological studies (Franssen and
Kinzelbach, 2008; DeChant and Moradkhani, 2010; Leisen-
ring and Moradkhani, 2010; Wang et al., 2009; Montzka et
al., 2011). However, similar simultaneous estimations of soil
moisture and hydraulic parameters are few at present, except
for certain studies available using the particle filter method
(Qin et al., 2009; Montzka et al., 2011). Hence, the applica-
bility of simultaneous state-parameter estimation approach

in soil moisture assimilation under the EnKF framework re-
quires careful study. As soil hydraulic parameters in many
LSMs are generally difficult to measure at regional scales,
they are usually estimated according to soil texture class by
pedotransfer functions (Dickinson et al., 1993; Wosten et al.,
2001). Because such functions are obtained from experimen-
tal data under specific conditions, uncertainty arises from the
extrapolation of these functions to other regional or global
LSM scales (Cornelis et al., 2001). According to the study
of Montaldo et al. (2007), when key LSM soil hydraulic pa-
rameter are estimated poorly, large errors in these parameters
can result in a persistent bias in soil moisture prediction and
cause soil moisture assimilation approaches to fail. There-
fore, this paper first investigates the capability of the EnKF
in reducing errors in posterior values of hydraulic parameters
by simultaneous state-parameter estimation approach in soil
moisture assimilation.

Despite promising results obtained from the applications
of the EnKF in parameter estimation, some deficiencies still
exist in these studies. The noticeable decline of estimation
performance occurs when multiple imperfect parameters are
estimated simultaneously. When the number of estimated pa-
rameters increases to a certain extent, it is difficult for all es-
timated parameters to converge to their “true” values entirely
even with long enough estimation periods (Moradkhani et al.,
2005a; Aksoy et al., 2006; Jung et al., 2010; Montzka et al.,
2011). One possible reason is that constraints among differ-
ent parameters, arising from different physical relationships,
are often neglected in the data assimilation framework (Wang
et al., 2009). Because most of studies applied for simul-
taneous state-parameter estimation in hydrologic field are
based on unconstrained assimilation methods (Moradkhani
et al., 2005a, b; Franssen and Kinzelbach, 2008; DeChant
and Moradkhani, 2010; Leisenring and Moradkhani, 2010;
Montzka et al., 2011), this problem remains a challenge in
the application of multiple parameter estimation in hydro-
logic data assimilation. Currently, only a few studies have
considered constraints in hydrologic data assimilation field.
Pan and Wood (2006) used a two-step EnKF approach to deal
with the water balance constraint in the estimation of the ter-
restrial water budget. Wang et al. (2009) compared three
methods that deal with inequality constraints in the EnKF
framework by a conceptual hydrologic model for state es-
timation and sequential parameter learning. However, re-
lated studies for the application of equality constraints be-
tween hydrologic parameters using the EnKF assimilation
approach based on a physical LSM are few in number at
present. Therefore, this paper also discusses the applicability
of a new constrained parameter estimation procedure for si-
multaneous multi-parameter estimation in soil moisture data
assimilation under the EnKF framework.
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2 Land surface model and parameter estimation
framework

2.1 Land surface model

The land surface model used is the Atmosphere-Vegetation
Interaction Model (AVIM) (Ji, 1995), which contains a phys-
ical process mode and a vegetation biological process mode.
Detailed descriptions of this model are given by Ji and
Hu (1989) and Ji (1995). The version used in this study
only considers the physical process mode, a typical soil-
vegetation-atmosphere (SVAT) type model developed by Ji
and Hu (1989). This model includes three soil layers with
thicknesses of 0.1, 0.9, and 3.6 m from ground. The layer-
averaged soil moisture is modeled for each of the three soil
layers. The free drainage assumption is used for the bot-
tom layer. The change of soil moisture in the near surface
layer and root zone layer over a time step is controlled by the
change in water flux over these two layers. Richards’ equa-
tion for unsaturated flow is used for the simulation of this
flux, expressed as:

F(z)= −k(z)
dψ(z)

dz

∣∣∣∣ z +k(z)z 6= 0 (1)

wherez is the depth andF(z) is the soil water flux. The
unsaturated hydraulic conductivityk(z) and unsaturated soil
water suctionψ(z) are defined in Clapp and Hornberger
(1978):

k(z)= ksat(
δ

δsat
)2b+3 (2)

ψ(z)=ψsat(
δ

δsat
)−b (3)

whereδ and δsatare the unsaturated and saturated soil mois-
ture; ksat andψsat are the saturated hydraulic conductivity
and soil moisture suction respectively; andb is a soil texture
empirical parameter. In this paper, parametersksat, ψsat and
b were chosen for estimation.

2.2 Parameter estimation framework using the EnKF

Parameter estimation frameworks used in this paper are
based on the EnKF. The comprehensive presentation of the
standard EnKF is given by Evensen (2003), and this subsec-
tion represents primarily the modifications to the standard
EnKF after considering simultaneous state-parameter esti-
mation in its framework.

2.2.1 State-parameter estimation without constraint

To extend the applicability of the EnKF to state-parameter
estimation, building an evolution of parameter similar to that
of the model state variable is needed. By adding mean-zero

Gaussian random noiseτ it−1 with covarianceQθ
t−1 to param-

eterθ i , the evolution of parameter can be expressed in the
form of:

θ i−t = θ i+t−1+τ it−1,τ
i
t−1 ∼N(0,Qθ

t−1) (4)

The superscripts “–” and “+” refer to states in the forecast
step and update step, respectively; the superscript “i” indi-
cates the ensemble members. When multiple parameters are
estimated simultaneously, perturbations on different param-
eters are considered as mutually independent without cross-
parameter constraint. The covariance ofθ i−t is a diagonal
matrix.

With artificially perturbed parameters, the time evolution
for each ensemble member of state vectorxi in the EnKF is:

xi−t = f t (x
i+
t−1,u

i
t−1,θ

i+
t−1),i= 1,2,...,n. (5)

wherexi−t is the i-th forecast ensemble member at timet
andxi+t−1 is thei−th updated ensemble member at timet−1.
The nonlinear operatorf (.) denotes the land surface model
processes containing state vectorsxi , forcing data vectors
ui , and model parameter vectorsθ i . The forcing data pertur-
bations are made by adding mean-zero Gaussian noiseµit−1
with covarianceQu

t−1 to the forcing data at each time step:

uit−1 = ut−1+µit−1,µ
i
t−1 ∼N(0,Qu

t−1) (6)

When observations are available, each ensemble member of
state vector and parameter vector is updated as follows:(

xi+t
θ i+t

)
=

(
xi−t
θ i−t

)
+K θ,x

t (yit −Htx
i−
t ) (7)

whereHt is the measurement operator andyit is the i−th
member of observation ensemble generated by adding mean-
zero random measurement errorηit with covarianceQy

t to
actual observation (Burgers et al., 1998):

yit = yt +ηit ,η
i
t ∼N(0,Q

y
t ) (8)

K θ,x
t is the Kalman gain matrix that considers state-

parameter estimation. It is obtained by:

K θ,x
t = Pθ,x,−t HT

t (HtP
θ,x,−
t HT

t +Rt )−1 (9)

wherePθ,x,−t andRt are forecast error covariance matrix and
observation error covariance matrix respectively.Pθ,x,−t is
computed as the sample covariance from forecast ensemble
of model state variables and parameters. It is an ensemble
covariance matrix around the ensemble mean:

Pθ,x,−t =
1

n−1
XtXTt (10)

where, Xt = [x1−
t − x̄−

t ,...,x
n−
t − x̄−

t ;θ1−
t − θ

−

t ,...,θ
n−
t −

θ
−

t ] and x̄−
t =

1
n

∑n
i=1xi−t , θ

−

t =
1
n

∑n
i=1θ i−t denote the en-

semble mean of forecast state variables and parameters, re-
spectively.
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2.2.2 State-parameter estimation with constraint

In fact, some statistical relationships exist between differ-
ent model parameters (e.g., Cosby et al., 1984; Rawls et al.,
1982; Schaap and Leij, 2000; van Genuchten, 1980; Zhuang
et al., 2001). As additional information, these statistical con-
straints between parameters require assessment in the frame-
work of the EnKF to perform better state-parameter estima-
tion.

In the general case, the constraints are nonlinear, ex-
pressed as:

g∗
t = Gt (θ

∗
t ) (11)

where g∗
t denotes nonlinear constraints between different

model parametersθ∗
t at time t . Without losing generality,

the parameters, which are not contained ing∗
t , are defined

asθ
′′

. The constrained update to each ensemble member of
state vectorsxi is computed as follows:(

xi+t
θ i+t

)
=

(
xi−t
θ i−t

)
+K θ

′′
,g∗

t (yit −Htx
i−
t ) (12)

where K θ
′′
,g∗

t is the Kalman gain matrix including con-
straints. It is obtained as follows:

K θ
′′
,g∗

t = Pθ
′′
,g∗,−

t HT
t (HtP

θ
′′
,g∗,−

t HT
t +Rt )−1 (13)

wherePθ
′′
,g∗,−

t is the constrained error covariance matrix of
state ensembles and parameter ensembles. Each ensemble
member will satisfy the constraints. When constraints exist
among parameters, the definition ofQ in Eq. (4) should have
cross-parameter correlations and the generation of perturba-
tionsτ should be taken the constraints into consideration. In
Sect. 3 we provide a detailed description of how to generate
perturbations according to the specified constraints consid-
ered in this paper.

3 Experiments background and approach

This study is based on a series of identical twin experiments
taking soil moisture in the top two layers and parametersksat,
ψsat andb as state variables in the EnKF. The design of the
identical twin experiment is similar to that of Crow and Van
Loon (2006), with the assumptions that the “true” states are
model-generated and the source and magnitude of model er-
rors and observation errors are perfectly known statistically.
This approach avoids a number of key complexities facing
to assimilate actual soil moisture observations and makes the
parameter estimation behavior of the EnKF more transparent.
Note that little information about the statistical properties of
errors in realistic soil moisture assimilation may degrade the
performance of the EnKF in parameter estimation.

Because this study investigates the feasibility of EnKF-
based parameter estimation in soil moisture assimilation,

all experiments were conducted at point scale for compu-
tational simplification. Jiangji station (the outlet of the
Shiguanhe sub-basin in the Huaihe River Basin) of the
HUaihe river Basin EXperiment (HUBEX, China’s contri-
bution to GEWEX Asian Monsoon Experiment, Fujiyoshi
et al., 2006) was chosen as the experiment site due to its
comprehensive meteorological forcing data sets. In this sta-
tion, the soil texture is sandy loam, and the vegetation type is
broadleaf shrubs with bare soil. The experiment period cov-
ered all of 1998. During the Intensive Observation Period in
1998 (from 21 May to 31 August), hourly gauge-based pre-
cipitation, once daily air temperature, humidity, surface pres-
sure and wind speed data sets were available in Jiangji. Dur-
ing other period in the year, daily observations of these me-
teorological forcing from the Gushi meteorological site (ap-
proximately 15 km from Jiangji) was used. Without incom-
ing radiation observation, the radiation forcing data from the
NCEP (National Centers for Environmental Prediction) re-
analysis dataset version 1 was used as a substitute. All these
forcing data sets were used to force the AVIM in Jiangji in all
identical twin experiments with a time step of half hours for
the model and one-day frequency for assimilating soil mois-
ture “observations”.

The “true” soil moisture state was obtained by integrating
the AVIM from 1 January 1998 to 31 December 1998 (after
a 2-yr spinup period from 1 January 1996 to 31 December
1997) with standard AVIM parameters (Ji and Hu, 1989; Ji,
1995) and the atmospheric forcing data described above. To
obtain “prior” state of soil moisture, model error from three
sources (i) parameters (ksat,ψsatandb), (ii) soil moisture ini-
tial conditions, and (iii) precipitation and short-wave (long-
wave) radiations (Margulis et al., 2002; Reichle et al., 2002b)
were considered in prior model integration. Errors in param-
eters were generated by replacing the “truth states” values
with assumed imperfect parameter values. These prior pa-
rameter values were distant from the true values within the
parameter range of the AVIM for testing the validity of pa-
rameter estimation frameworks even when all estimated pa-
rameters had large parameter errors compared to their true
values. Errors in soil moisture initial condition were gen-
erated by replacing the “truth states” values with assumed
imperfect values and adding zero mean Gaussian noise with
a standard deviation of 50 % of the assumed values. Er-
rors in precipitation and radiation were imposed by adding
mean-zero Gaussian random noises (Eq. 6) to the true forcing
fields. Specific differences between “true” and “prior” inte-
grations are listed in Table 1. Collectively, these differences
in parameter, initial condition and forcing data were consid-
ered as “actual errors” and represent our imperfect under-
standing to the true soil moisture states. In all identical twin
experiments, the “actual observation” assimilated was the
near surface soil moisture. It was derived from the true state
by adding mean-zero Gaussian random errors with a standard
deviation of 0.02 cm3 cm−3 once a day. Figure 1 displays the
precipitation forcing, the “true” and “prior” soil moisture for
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Table 1. Specific differences of soil hydraulic parameters, initial soil moisture condition, and meteorological forcing data between “true”
and “prior” model integrations in the identical twin experiments.

Variables & Parameters Units True Prior

Saturated hydraulic conductivity ms−1 5.23× 10−6 5.0× 10−5

Empirical parameterb – 4.74 12.0
Saturated soil moisture suction m −0.218 −0.7
Initial soil moisture cm3 cm−3 2-yr spinup values 0.12 for both two layers and

adding zero mean Gaussian noise
with a standard deviation of
50 % of this initial value

Precipitation mm (day)−1 Gauge-based data and Adding Gaussian noise with mean
NCEP dataset 1 square deviation of 20 % to

the true values once daily and the
minimum mean square deviation
is limited to 2 mm (day)−1

Long- and short-waves radiations Wm−2 NCEP dataset 1 Adding Gaussian noise with
mean square deviation of 30 %
to the true values once daily

top two layers and the “actual observation” of near surface
soil moisture used in identical twin experiment. For errors in
hydraulic parameters, initial condition and atmospheric forc-
ing data, there were significant deviations from prior states
to true states of soil moisture in both layers. Perturbations on
forcing data, soil moisture initial conditions and forcing data
created large enough ensemble spreads on prior soil moisture
for both two layers to maintain the uncertainty in the model-
ing prediction. In both soil layers, the ensemble spreads nar-
rowed slowly with time and finally maintained an approxi-
mate a value of 0.02 cm3 cm−3, comparable to the “observed
error” in the soil moisture observations.

Given the statistical properties of model errors and ob-
servation errors, the EnKF attempts to modify prior state
back to the true state by assimilating “actual observations”
(Crow and Van Loon, 2006). In the filter, the number of
ensemble size was set to 100 in all experiments, achieving
a balance between the computational effort of processing a
large number of runs and the need for having a sufficiently
large set of ensembles to characterize the ensemble distribu-
tion. The ensemble of soil moisture initial values was gen-
erated by adding zero mean Gaussian noise with a standard
deviation of 50 % to the prior values at the first time step.
The ensemble of forcing data was generated by perturbing
prior forcing data with the same statistical properties as the
actual forcing data errors once a day. The random pertur-
bation method was also applied to obtain the ensemble of
model parameters. A noticeable issue here was the magni-
tude of standard deviation of perturbation on model parame-
ters because no straightforward guidance exists for the proper
range of estimated parameter deviation. Given the difficulty
of accurately estimating prior parameter uncertainty in real
soil moisture assimilation settings, two kinds of initial pa-

rameter distribution scenarios (hereafter denoted as IPD sce-
nario), the narrow IPD (NIPD) scenario and the wide IPD
(WIPD) scenario, were considered in this study to fully ex-
plore the capability of the EnKF in estimating all these cho-
sen hydraulic parameters. In NIPD scenario, initial ensemble
spreads of all estimated parameters were small and unable to
cover their true values, representing our insufficient knowl-
edge about first guess error of these hydraulic parameters.
In WIPD scenario, initial ensemble distributions of all pa-
rameters were large enough for covering their true values,
indicating our satisfactory knowledge about first guess error
of all parameters. The prior ensemble mean, standard devi-
ation and uncertainty range of all these three parameters in
both two IPD scenarios are listed in Table 2. Furthermore,
because parameters were not dynamical variables, the vari-
ances of them were reduced at the update step but remained
constant at the forecast step. This caused the variances of
parameters to decrease progressively and may lead to filter
divergence in parameters. To avoid filter divergence, there-
fore, a small perturbation was implemented on parameters
continually in a similar way as that on forcing data according
to Eq. (4) with a time interval of 10 days. The standard devia-
tions of the small perturbations onksat,ψsat, andb were cho-
sen as 0.8× 10−6 ms−1, 0.01 m, and 0.08 respectively, which
are much smaller than the orders of parameters themselves.
Small standard deviation and sparse perturbation interval on
these parameters in the filter processes avoids the behavior of
the model being shocked for sharp changes of parameters in
model integration.

In a non-constrained parameter estimation framework,
perturbations on different parameters were considered mu-
tually independent. In constrained estimation framework,
statistical relationships between these hydraulic parameters
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Fig. 1. The precipitation forcing(a) and soil moisture evolution of the near surface layer(b) and the root zone layer(c) in the identical twin
experiment during 1998 at Jiangji station. The solid line represents the “true” state, the long dash line represents the “prior” state, the short
dash line represents the “actual observation” of near surface soil moisture, and the shaded area represents the ensemble spread of the “prior”
soil moisture.

Table 2. Specific values of uncertainty range, initial ensemble mean and standard deviation for parametersksat, ψsat andb in both narrow
initial parameter distribution (NIPD) scenarios and wide initial parameter distribution (WIPD) scenarios.

Parameter Units Min Max NIPD scenario WIPD scenario

Mean Std. dev. Mean Std. dev.

ksat ms−1 1.1× 10−6 8.2× 10−5 5.0× 10−5 8.0× 10−6 5.0× 10−5 3.3× 10−5

ψsat m −0.95 −0.02 −0.7 0.05 −0.7 0.7
b – 1.4 15.5 12.0 0.8 12.0 8.0

were taken into account in the assimilation processes. All
constrained relationships considered in this study were soft
equality constraints that exist physically for which the model
can run through despite these constraints violations. Al-
though these constraints differed from hard constraints re-
quiring satisfaction in model integration (e.g., inequality con-
straints in Wang et al., 2009), it might retain benefits for con-
sideration in the multi-parameter estimation processes un-
der ensemble assimilation framework of the EnKF. Given
that some studies (e.g., Rawls et al., 1982; Zhuang et al.,
2001) did not have all relationships between these three hy-
draulic parameters and others (e.g., Schaap and Leij, 2000;
van Genuchten, 1980) did not have enough soil classifica-
tions as that in the AVIM model, the literature of Cosby
et al. (1984) was selected in this study for its unified soil

samples to obtain statistical relationships between parame-
tersksat, ψsat andb. Table 5 in Cosby et al. (1984) can be
formulated to explicitly display equality constraints between
these three parameters:

1ksat= (β
1b
1 −1)ksat (14)

1ψsat= (β
1b
2 −1)ψsat (15)

where1ksat,1ψsat and1b are the perturbations of parame-
tersksat, ψsat andb respectively, andβ1, β2 are constrained
coefficients assigned as 1.2474 and 0.827, respectively ac-
cording to statistical relationships obtained from Cosby et
al. (1984). These two equations are included in the error co-
variance matrix in Eq. (13) to constrain random perturbations
of parameters in constrained estimation experiments.
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Fig. 2. Time evolution of the ensemble mean parameter values (solid black line) vs. the true parameter values (solid gray line) from single-
parameter estimation experiments in NIPD and WIPD scenarios. Estimated parameters are(a1), (a2) the saturated hydraulic conductivity;
(b1), (b2) the saturated soil moisture suction; and(c1), (c2) a soil texture empirical parameterb. The area between two dashed gray lines
represents the 1-standard deviation (1-σ ) intervals of the parameter spread.

4 Results

4.1 Single-parameter estimation results

Results from the individual estimation of these three hy-
draulic parameters in both NIPD and WIPD scenarios are
presented in Figs. 2 and 3. In each experiment, only one such
parameter was perturbed around its imperfect mean value,
and other parameters were kept unperturbed at their true val-
ues.

Figure 2 illustrates that the one year evolution (once-daily
analyses) of the ensemble mean parameter values along with
the true parameter values remain constant in time. The area
between two dash gray lines around the estimated mean pa-
rameter value represents the 1-σ (one standard deviation)
limits of the parameter ensemble spread. These standard
deviation limits were computed by averaging the standard
deviations of each 100-member ensembles at each forecast
step. Successful parameter estimation should indicate that
the error of the estimated parameter is smaller than or very
close to the 1-σ limit. The estimated mean parameter val-
ues of all three parameters for both NIPD and WIPD sce-
narios converge to their true values within several months,
and the true values remain stable within the 1-σ limit sub-
sequently. When these model parameters were included in
the augmented state vectors of the EnKF, the perturbation of
parameter led to the update of soil moisture state to a certain

extent. We assumed the general form of the relationship be-
tween the perturbations of these parameters and the update
of soil moisture as follows:

1sm∼ f 1(1ksat)+f 2(1ψsat)+f 3(1b) (16)

where1ksat, 1ψsat and1b are the perturbations of param-
etersksat, ψsat andb, and1sm is the update of soil mois-
ture. Nonlinear operatorsf 1(·), f 2(·) andf 3(·) denote the
sampled relationships between1sm and1ksat, 1ψsat and
1b, respectively. In each single-parameter estimation exper-
iment, one of these operators in Eq. (16) is considered in the
EnKF update process. In assimilation processes, therefore,
the available near surface soil moisture observation informa-
tion can be transferred by the operator to correct the error in
corresponding imperfect parameter and estimate it success-
fully. Further analysis found that the convergence rate of ap-
proach to the true values varied among different parameters
and different IPD scenarios. We defined “convergence time”
as the time taken for a true parameter value to fall first within
the 1-σ limit around the estimated mean parameter. The con-
vergence times of parametersksat andb were much less than
that of parameterψsat in both NIPD and WIPD scenarios.
Because the convergence time can scale the efficiency of the
EnKF to estimate each parameter to a certain extent, this re-
sult implies that near surface soil moisture observations con-
tain more useful for parameterksat andb than for parame-
ter ψsat, leading to errors in parameterksat and b that are
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Fig. 3. The time evolution of the root mean squared error (RMSE) of near surface layer soil moisture(a1–f1), and root zone layer soil
moisture(a2–f2) for soil moisture forecasting from single-parameter estimation experiments (solid black lines) compared with that of non-
parameter-estimation benchmark experiments (solid gray lines) in both NIPD and WIPD scenarios. Parameters shown are(a1), (a2), (d1),
(d2) the saturated hydraulic conductivity;(b1), (b2), (e1), (e2)the saturated soil moisture suction;(c1), (c2), (f1), (f2) a soil texture empirical
parameterb.

easier to correct than those in parameterψsatby assimilating
the same soil moisture observation in individual parameter
estimation experiments. Moreover, for the same estimated
parameter, the convergence time in WIPD scenario was less
that in NIPD scenario, indicating that a wider prior distribu-
tion of imperfect parameters can make estimated parameter
converge to its true value easier under the same conditions.

In addition to the mean parameter values, the root mean
squared error (RMSE) of soil moisture in each forecast step
compared to soil moisture “true state” was calculated to de-
scribe errors in soil moisture forecasting:

RMSEt =

√√√√ 1

n−1

n∑
i=1

(smi−t −smtrue
t )2 (17)
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Fig. 4. The time evolution of ensemble soil moisture forecasting of near surface layer(a1–f1), and root zone layer(a2–f2)in WIPD scenario.
(a1), (a2), (c1), (c2), (e1), (e2)are for non-parameter-estimation benchmark experiments and(b1), (b2), (d1), (d2), (f1), (f2) are for single-
parameter estimation experiments. The estimated parameters shown are(a1), (a2), (b1), (b2) the saturated hydraulic conductivity;(c1),
(c2), (d1), (d2) the saturated soil moisture suction;(e1), (e2), (f1), (f2) a soil texture empirical parameterb. The solid line represents the
“true” values, the long dash line represents the ensemble mean values, and the shaded area represents the ensemble spread of soil moisture
forecasting.

where the subscript “t” represents time step (every day in the
experiment period), n is the ensemble member,smi−t is the
soil moisture forecast states of thet time step, based on pos-
terior soil moisture states and parameters of the last assimi-
lation time step with perturbed precipitation and radiations.
smtrue

t is the “true state” of soil moisture for thet time step.
The evolution of RMSE for soil moisture forecasting in top

two soil layers for both NIPD and WIPD scenarios are dis-
played in Fig. 3. In all panels, the RMSE from respective es-
timation experiments are plotted along with the RMSE from
corresponding non-parameter-estimation benchmark experi-
ments. The results of benchmark experiments were obtained
by considering imperfect parameters but no parameter esti-
mation in assimilation processes. In both NIPD and WIPD
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Table 3. Summary of time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three single-parameter estimation experiments and corresponding non-parameter-
estimation experiments in both NIPD and WIPD scenarios with individual imperfect parameters of the saturated hydraulic conductivityksat,
the saturated soil moisture suctionψsat, and a soil texture empirical parameterb, respectively.

Scenarios Imperfect Estimation RMSE Non-estimation RRE
parameter RMSE

(cm3 cm−3) (cm3 cm−3)

SM1 SM2 SM1 SM2 SM1 SM2

NIPD ksat 0.014 0.009 0.020 0.025 30.0 % 64.0 %
ψsat 0.014 0.009 0.015 0.010 6.7 % 10.0 %
b 0.015 0.018 0.022 0.037 31.8 % 51.4 %

WIPD ksat 0.013 0.007 0.019 0.022 31.6 % 68.2 %
ψsat 0.012 0.007 0.015 0.010 20.0 % 30.0 %
b 0.013 0.015 0.028 0.048 53.6 % 68.8 %

scenarios, the RMSE of both two soil layers in parameter es-
timation experiments were lower than that in non-parameter-
estimation benchmark experiments for all three parameters.
In these identical twin experiments, parameter error was con-
sidered one of the main error sources of soil moisture simula-
tion. With parameter errors reduced by estimation processes
in the EnKF, fewer error contributions from imperfect param-
eters can refine the performance of soil moisture forecasting
in each estimation experiment.

Figure 3 also depicts that the behavior of RMSE evalua-
tion of soil moisture forecasting in parameterψsatestimation
case is less identifiable than that of parameterksat andb in
both scenarios. Taking WIPD scenario as an example, Fig. 4
compares the time evolution of soil moisture forecasting and
its ensemble uncertainty in these three single parameter esti-
mation experiments. Because the root zone layer is less af-
fected by atmosphere forcing and soil moisture observation,
the uncertainty of soil moisture forecasting in this layer can
reflect the impact of parameter errors to a large extent. The
uncertainty of soil moisture forecasting in near surface layer
primarily reflects the impact of errors of atmosphere forcing.
Errors associated with imperfect parameterksat andb are re-
flected in soil moisture forecasting more significantly than
those associated with parameterψsat (Fig. 4a2, e2), which
leads to large biases in soil moisture ensemble forecasting
values compared to their true values. This result implies that
errors in these two parameters are comparable to those in
soil moisture initial condition and forcing data. For param-
eterψsat, because the uncertainty of soil moisture forecast-
ing caused by parameter error (Fig. 4c2) was much smaller
than that by errors in initial condition (the first two months in
Fig. 4c2) and forcing data (Fig. 4c1), the RMSE evaluation
of soil moisture forecasting was less correlated with the error
in parameterψsat. Therefore, even when parameterψsat did
not converge to its true value (before April in Fig. 2b2), the
RMSE evolution of soil moisture forecasting was reduced

reasonably (Fig. 4e1, e2) by assimilating near surface soil
moisture observation using the EnKF.

Further analysis revealed that the decrease of RMSE from
non-parameter-estimation experiments to estimation experi-
ments varied among parameters. To quantify relative estima-
tion performance, we defined the “relative root mean squared
error”, as follows:

RRE=
〈RMSENo-Estimation〉−〈RMSEEstimation〉

〈RMSENo-Estimation〉
×100% (18)

where the operation〈·〉 denotes time average over the en-
tire experiment period. The RRE was a relative measure
of how much error has been reduced by parameter estima-
tion compared to non-parameter-estimation benchmark ex-
periments. The results of time average RMSE and RRE for
single-parameter estimation experiments in both NIPD and
WIPD scenarios are summarized in Table 3. The estima-
tion experiments in the WIPD scenario had smaller RMSE
and larger RRE than those in the NIPD scenario. One possi-
ble reason might be that estimation experiments in the WIPD
scenario all have less convergence time than that in the NIPD
scenario, causing more parameter error reduced by the EnKF
estimation processes. The smallest RRE was exhibited by pa-
rameterψsat in both NIPD scenario (6.7 %, 10 %) and WIPD
scenario (20 %, 30 %). The RRE of parameterksat and b
were much larger than that of parameterψsat, which were
both over 30 % for the near surface layer and even more than
60 % for the root zone layer. This result implies that the soil
moisture forecasting is more sensitive to the error in param-
eterksat andb than that in parameterψsat, consistent with
the sensitivity analysis of Wen et al. (1998). The RRE for
the root zone layer, in which no soil moisture observations
were assimilated in the EnKF, was larger than that for the
near surface layer for all three parameters and IPD scenar-
ios. As only near surface soil moisture observations were
used in these experiments, observation error in near surface
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Fig. 5. Same as in Fig. 2 but for three sets of dual-parameter estimation experiments, which are(a1), (a2), (b1), (b2) for ksat andψsat
set; (c1), (c2), (d1), (d2) for ksat andb set; and(e1), (e2), (f1), (f2) for ψsat andb set, in both NIPD and WIPD scenarios with mutually
independent parameter perturbations.

soil layer had less effect on soil moisture forecasting in the
root zone layer. Therefore, with the error in the imperfect pa-
rameter reduced by the EnKF, soil moisture forecasting in no
observation soil layer can be improved more significantly in
any corresponding parameter estimation processes. Combin-
ing the previous analyses of ensemble mean parameter val-
ues and RMSE, the EnKF-based single-parameter estimation
performed successfully in soil moisture assimilation.

4.2 Multi-parameter estimation results

To obtain a comprehensive picture of the EnKF’s capabil-
ity and limits in parameter estimation when multiple imper-
fect parameters are involved, the results from three sets of
dual-parameter estimation experiments and subsequently the
three-parameter estimation experiments are presented here.

The dual-parameter experiments were performed with
ψsat and b, ksat and ψsat, ksat and b as the three sets of
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Table 4. Summary of the time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three sets of dual-parameter estimation (DPE) experiments (withψsatandb, ksatand
ψsat, andksat andb as imperfect parameters respectively) and corresponding non-parameter-estimation (NPE) experiments in both NIPD
and WIPD scenarios.

Scenarios Imperfect DPE RMSE NPE RMSE RRE
parameter set (cm3 cm−3) (cm3 cm−3)

SM1 SM2 SM1 SM2 SM1 SM2

NIPD ψsat, b 0.018 0.024 0.025 0.032 28.0 % 25.0 %
ksat, ψsat 0.018 0.015 0.024 0.034 25.0 % 55.9 %
ksat, b 0.022 0.016 0.023 0.020 4.3 % 20.0 %
Set average 0.019 0.018 0.024 0.029 19.1 % 33.6 %

WIPD ψsat, b 0.012 0.012 0.024 0.034 50.0 % 64.7 %
ksat, ψsat 0.013 0.01 0.022 0.026 40.9 % 61.5 %
ksat, b 0.014 0.012 0.034 0.054 58.8 % 77.8 %
Set average 0.013 0.011 0.027 0.038 49.9 % 68.0 %

imperfect parameters, respectively. Figure 5 shows the evo-
lution of ensemble mean parameter values from these dual-
parameter experiments for both NIPD and WIPD scenarios.
The performances of simultaneous dual parameter estimation
have some deterioration compared to that of individual esti-
mations. In the NIPD scenario, only one parameter was es-
timated to the true value in setsψsat, b (Fig. 5a1) andksat,
ψsat (Fig. 5f1). For theksat andb set, both imperfect param-
eters failed estimation, although some convergence of the es-
timated value of parameterb to its true value was still notice-
able. The estimation performance in the WIPD scenario was
better than that in the NIPD scenario. Except for parameter
ψsat in theψsat, b set (Fig. 5e2), all other imperfect param-
eters in these three dual-parameter sets were estimated suc-
cessfully. Unlike single-parameter estimation case, sampled
relationships of two parameters in Eq. (16) need to be consid-
ered simultaneously in the EnKF for an increase of imperfect
parameters here. Therefore, the degree of freedom in assim-
ilation processes increased and made the dual-parameter es-
timation unstable and intractable. The comparative results
between NIPD and WIPD scenarios imply that wide enough
initial perturbation on estimated parameters has positive in-
fluences on the performance of estimation. In other words,
more ensemble sampling information content in the wide
prior distribution of estimated parameters is used to identify
the parameters properly.

Table 4 illustrates the time average RMSE and RRE of
these three dual-parameter estimation sets. Similar to the sin-
gle parameter estimation experiments, the RMSE of all three
dual-parameter estimation experiment sets in both NIPD
and WIPD scenarios were lower than of non-parameter-
estimation benchmark experiments, despite not all incorrect
parameters converging to their true values in some cases
(Fig. 5). For more error associated with incorrect parameters
being reduced by estimation processes, the RRE in WIPD

scenario (49.9 % and 68 % for two layers on set average)
was also much larger than that in NIPD scenario (19.1 %
and 33.6 % on set average). In general, although some esti-
mated parameters had worse estimations compared to single-
parameter estimation cases, the estimation with two imper-
fect parameters using the EnKF was still beneficial to reduce
the parameter-related model error in soil moisture forecast-
ing, especially when the prior distribution of estimated pa-
rameters was wide enough to cover true values.

When the uncertainty extended to the entire set of three
parameters, some significant deterioration of estimation per-
formance is occurred (Fig. 6). The estimated ensemble mean
values of all three parameters did not converge to their true
values throughout the entire experiment period in the NIPD
scenario. When the prior distribution of parameter was nar-
row, small parameter uncertainty reflected by ensemble sam-
pling was not enough for the EnKF to build reasonable en-
semble statistical relationships between the ensembles of soil
moisture observation and all estimated parameters simulta-
neously. In the WIPD scenario, as a wider prior distribution
of estimated parameters led to more appropriate sampling in-
formation included in parameter ensembles, better estimation
performances withksat andb converging to their respective
true values successfully were obtained compared to that in
the NIPD scenario. However, independent random perturba-
tions added to different estimated parameters during the up-
date process of assimilation may still break the complicated
relationships between hydraulic parameters and soil moisture
observations easily and may cause the failure in simultaneous
estimation of all incorrect parameters. For dealing with all
imperfect parameters properly, constraints in Eqs. (14) and
(15) (obtained from Cosby et al., 1984) were taken into ac-
count for further improving estimation performance.

Next, we discuss the three-parameter estimation case in
the NIPD and WIPD scenarios with constrained parameter
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Fig. 6. Same as in Fig. 2 but for the three-parameter estimation experiments in both NIPD and WIPD scenarios with mutually independent
parameter perturbations.

Fig. 7. Same as in Fig. 2 but for the three-parameter estimation experiments in both NIPD and WIPD scenarios with constrained parameter
perturbations.

perturbation. The evolutions of the ensemble mean parame-
ter values are shown in Fig. 7. The estimated ensemble mean
values for all three parameters converge to their true values
successfully in both NIPD and WIPD scenarios with almost
the same convergence time of five months. From the view-
point of adding information, imposing constraints between
model parameters also adds new information to the EnKF

assimilation system in addition to the available soil moisture
observation. Moreover, constraints also transfer observation
information to all estimated parameters in a balanced way
and correct these parameters in a coordinated and consis-
tent way during the whole update process of assimilation.
Therefore, even if more imperfect parameters require esti-
mation, these equality constraints that represent additional
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correlation between parameters effectively offset the decline
in the estimation power of the EnKF and make all parameters
converge to their true values effectively.

The RMSE evolution of constrained estimation, non-
constrained estimation and non-parameter-estimation exper-
iments are displayed in Fig. 8. The smallest RMSE for two
soil layers are exhibited by constrained estimation experi-
ments in both NIPD and WIPD scenarios. In the NIPD sce-
nario, the RMSE of soil moisture forecasting were almost the
same for those three experiments before May. The reason for
coincident RMSE was attributed to the key role of soil mois-
ture observation in updating of soil moisture states in this
scenario. The evaluation of posterior soil moisture ensembles
(Fig. 9) displayed that observation information was enough
for the EnKF reducing most of error in soil moisture fore-
casting in this assimilation period, even if all estimated pa-
rameters had imperfect values (Fig. 9a1, a2). Whereas after
the convergence time of all parameters in the constrained es-
timation experiment (Fig. 7a1, b1, c1), because all three pa-
rameters failed to be estimated in non-constrained estimation
experiment in this period (after June in Fig. 6a1, b1, c1), the
cumulative effects of parameter error caused positive biases
in the ensemble mean of soil moisture forecasting in the dry-
ing down periods (Fig. 9a1, a2). The constrained estimation
case had more benefits in RMSE evolution compared to its
non-constrained counterpart (Fig. 8a1, a2). In the WIPD sce-
nario, because more parameter prior uncertainties were in-
troduced and kept in the whole EnKF assimilation processes,
much large uncertainties were contained in the posterior en-
sembles of soil moisture forecasting in the non-parameter-
estimation experiment (Fig. 9d1, d2). The RMSE in non-
estimation experiments (Fig. 8b1, b2) were much larger than
that of the NIPD scenario (Fig. 8a1, a2). With larger prior
parameter error in this scenario, the soil moisture forecasting
errors (combined errors of initial condition, parameter and
atmosphere forcing) were much larger than the error in the
near surface soil moisture observations at the early stage of
the EnKF assimilation processes (Fig. 9e1, e2, f1, f2). In
this case, although all three parameters did not converge to
their true values in both constrained and non-constrained es-
timation experiments before April (Figs. 6 and 7), the RMSE
of soil moisture forecasting in these two experiments can
also converge to an equivalent low level as observation er-
ror within several assimilation cycles (Fig. 8b1, b2). After
June, as all three parameters in constrained estimation exper-
iment (Fig. 7a2, b2, c2) and two key parameterksat andb
in non-constrained estimation experiment (Fig. 6a2, c2) was
successfully estimated by the EnKF, the performance of con-
strained estimation experiment actually benefited little from
these additional constraints between parameters in the last
half year in the WIPD scenario. Figures 8b1, b2 indicate that
the RMSE of constrained estimation experiment was slightly
smaller compared to corresponding non-constrained estima-
tion experiment, although it was still significantly smaller
than that of non-parameter-estimation experiment.

4.3 Sparse observation assimilation results

Actual conventional in situ soil moisture observations in
China and other areas in the world were sparse in time with a
measurement interval of about 10 days (Robock et al., 2000;
Nie et al., 2008). For the future application of the constrained
multi-parameter estimation method in assimilating actual in
situ soil moisture, its performance with temporally sparse
observation conditions were tested and are discussed in this
subsection.

Results from experiments with 10-day assimilation inter-
val are shown in Figs. 10 and 11. Figure 10 illustrates that
the performances of ensemble mean values for all parameters
were similar to that of one-day assimilation interval experi-
ments, especially in the NIPD scenario, even if much less
soil moisture observation information was assimilated in this
case. In constrained estimation experiments, all three param-
eters successfully converged to true values in both NIPD and
WIPD scenarios. However, the situation was not satisfied for
the non-constrained experiments, in which the estimations
for most of estimated parameters failed. Less available soil
moisture observation information assimilated in the EnKF
weakened the role of the EnKF on reducing uncertainties in
wide prior parameter distributions. Therefore, the 1-σ in-
tervals in the WIPD scenario here (e.g., Fig. 10a2, d2) were
larger than those of corresponding one-day assimilation in-
terval experiments. The RMSE evolution in Fig. 11 depicts
that the smallest RMSE were exhibited by constrained es-
timation experiments in both NIPD and WIPD scenarios as
that in one-day assimilation interval case. With much less
soil moisture observation information used to reduce model
errors and improve the performance of the EnKF, the RMSE
of soil moisture forecasting was always larger than that in
one-day assimilation interval case.

Further analyses with 20-, 30- and 40-day assimilation
intervals illustrated similar results as that of the 10-day
intervals. Table 5 provides a summary of RMSE and
RRE for simultaneous three-parameter estimation experi-
ments with different assimilation intervals. In general, the
constrained estimations in both NIPD and WIPD scenar-
ios produce consistently improved performances relative to
non-constrained-estimation experiments and non-parameter-
estimation benchmark experiments. For all assimilation in-
tervals, the RMSE of the constrained estimation experiments
in both two soil layers were significantly smaller than that of
the non-parameter-estimation experiments. Meanwhile, the
RRE of the constrained estimation experiments were always
larger than that of the non-constrained-estimation experi-
ments for more error reduced by proper parameter estima-
tion. However, the increases of RRE from non-constrained
estimation experiment to constrained estimation experiment
were different between the NIPD and WIPD scenarios. In the
NIPD scenario, because all parameters of non-constrained
estimation experiments lacked estimates, the constrained es-
timation method fully demonstrated its benefits of estimating
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Fig. 8. Same as in Fig. 3 but for the time evolution of RMSE of near surface layer soil moisture(a1), (b1) and root zone layer soil moisture
(a2), (b2) from the constrained (solid black lines) and non-constrained (solid gray lines) three-parameter estimation experiments in both
NIPD and WIPD scenarios corresponding to Figs. 5 and 6, respectively. Short dashed gray lines represent RMSE from non-parameter-
estimation benchmark experiment.

all imperfect parameters simultaneously, causing significant
increases of RRE from the non-constrained estimation exper-
iment (less than 10 %) to the constrained estimation experi-
ment (more than 30 %). In the WIPD scenario, as the non-
constrained estimation experiments already have good esti-
mation performance (e.g., Fig. 10e2, f2), the advantage of the
constrained estimation method compared to unconstrained
method in the RMSE of soil moisture forecasting was not
as significant as that in the NIPD scenario. In this scenario,
the RRE of constrained estimation experiments were slightly
larger than that of non-constrained estimation experiments
for all assimilation intervals.

Table 5 also shows that the changes of RRE with assimila-
tion intervals in constrained estimation experiments were dif-
ferent between the NIPD and WIPD scenarios. In the NIPD
scenario, the largest RRE was exhibited by the 10- and 20-
day assimilation intervals for near surface layer (39.1 %) and
root zone layer (41.9 %), respectively. When assimilation in-
terval was as small as one day, frequent corrections from soil
moisture observations to model state may have weakened
the effects of proper parameter estimation in soil moisture
forecasting. Whereas in the extremely sparse observation
cases (≥30 days here), too little information was available
to update model state from soil moisture observations over a
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Fig. 9. The time evolution of ensemble soil moisture forecasting of near surface layer(a1–f1), and root zone layer(a2–f2) in both NIPD
(a–c)and WIPD(d–f) scenarios.(a1), (a2), (d1), (d2) are for non-parameter-estimation benchmark experiments,(b1), (b2), (e1), (e2)are for
non-constrained three parameter estimation experiments and(c1), (c2), (f1), (f2) are for constrained three parameter estimation experiments.
The solid line represents the “true” values, the long dash line represents the ensemble mean values, and the shaded area represents the
ensemble spread of soil moisture forecasting.

certain period (e.g., one month), making it difficult to over-
come the accumulation of errors in soil moisture state in the
process of model integration. Therefore, when the parameter
uncertainties reflected by ensemble were insufficient, proper
assimilation frequency (about once 10 or 20 days here) dis-
played the greatest advantages of this constrained estima-
tion method in soil moisture assimilation using the EnKF.
Whereas in WIPD scenario, the 1-day assimilation interval

experiment displayed the largest RRE for both near surface
layer (66.7 %) and root zone layer (81.3 %). When param-
eter uncertainties were large enough with a wide prior en-
semble sampling distribution, the estimation procedures ex-
tracted more useful information from soil moisture observa-
tions. In this case, therefore, frequent corrections to model
soil moisture state obtained the biggest advantage of the con-
strained estimation method.
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Fig. 10.Same as in Fig. 2 but for the constrained three-parameter estimation experiments(a1), (a2), (b1), (b2), (c1), (c2)and non-constrained
three-parameter estimation experiments(d1), (d2), (e1), (e2), (f1), (f2) in both NIPD and WIPD scenarios with 10-day assimilation interval.

5 Conclusions

This study explores the applicability of the EnKF-based
state-parameter estimation in soil moisture data assimilation
using a physical process land surface model by a series of
identical twin experiments. Uncertainties in model parame-
ters, soil moisture initial condition and atmospheric forcing
data were considered primary sources of model errors. By
the means of state augmentation, model-based pseudo near
surface soil moisture observations estimated model param-

eter and soil moisture state simultaneously. Three key hy-
draulic parameters: the saturated hydraulic conductivityksat,
the saturated soil moisture suctionψsatand a soil texture em-
pirical parameterb, were subjected to estimation attempts
in various experiments. Because an accurate estimate of
prior uncertainty of hydraulic parameters in nature differed
greatly, two kinds of initial parameter distribution (IPD) sce-
narios were considered in this study to explore fully the pa-
rameter estimation capability of the EnKF. These included
the narrow IPD (NIPD) scenario representing our insufficient
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Fig. 11. Same as in Fig. 3 but for the time evolution of RMSE of near surface layer soil moisture(a1), (b1) and root zone layer soil moisture
(a2), (b2) from the constrained (solid black lines) and non-constrained (solid gray lines) three-parameter estimation experiments in both
NIPD and WIPD scenarios with 10-day assimilation interval corresponding to Fig. 8. Short dashed gray lines represent RMSE from the
non-parameter-estimation benchmark experiment.

knowledge about the first guess error of these hydraulic pa-
rameters and the wide IPD (WIPD) scenario indicating we
know enough about the first guess error of all parameters.

The estimation of single imperfect parameter was suc-
cessful for all three estimated parameters in both NIPD and
WIPD scenarios. The ensemble mean value of each esti-
mated parameters converge to its true value successfully. In-
creasing the number of imperfect parameters led to a de-
cline in the performance of parameter estimation, especially

for the NIPD scenario. A wide initial distribution of es-
timated parameters made more appropriate sampling infor-
mation included in parameter ensembles, improving simul-
taneous multi-parameter estimation performances compared
to that of the NIPD scenario. However, when the number
of estimated parameters increased to three, experiments in
both NIPD and WIPD scenarios could not lead all estimated
parameters to converge to their true values validly, although
the overall performance of the EnKF in terms of soil moisture
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Table 5. Summary of the time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three-parameter constrained estimation (CE) experiments, non-constrained estimation
(NCE) experiments, and non-parameter-estimation (NPE) experiments in both NIPD and WIPD scenarios with assimilation intervals of 1
day, 10 days, 20 days, 30 days and 40 days, respectively.

Scenarios Assimilation CE RMSE NCE RMSE NPE RMSE CE RRE NCE RRE
intervals (cm3 cm−3) (cm3 cm−3) (cm3 cm−3) (%) (%)

SM1 SM2 SM1 SM2 SM1 SM2 SM1 SM2 SM1 SM2

NIPD 1 day 0.015 0.009 0.021 0.013 0.022 0.014 31.8 35.7 4.5 7.1
10 days 0.028 0.020 0.042 0.031 0.046 0.034 39.1 41.2 8.7 8.8
20 days 0.034 0.025 0.053 0.041 0.054 0.043 37.0 41.9 1.9 4.7
30 days 0.039 0.031 0.056 0.045 0.059 0.047 33.9 34.0 5.1 4.3
40 days 0.043 0.035 0.060 0.049 0.063 0.052 31.7 32.7 4.8 5.8

WIPD 1 day 0.012 0.011 0.014 0.014 0.036 0.059 66.7 81.3 61.1 76.3
10 days 0.026 0.021 0.029 0.026 0.045 0.053 42.2 60.4 35.6 50.9
20 days 0.032 0.027 0.035 0.029 0.055 0.059 41.8 54.2 36.4 50.8
30 days 0.035 0.029 0.036 0.031 0.057 0.058 38.6 50.0 36.9 46.6
40 days 0.036 0.031 0.037 0.031 0.059 0.059 39.0 47.5 38.3 47.5

RMSE was still superior to the non-parameter-estimation
benchmark experiments with parameter error reduced in the
estimation processes. The failure of estimation was ascribed
to independent perturbations on different estimated parame-
ters, causing the increase of degree of freedom of assimila-
tion system and the breakage of the statistical relationships
between these parameters in assimilation processes.

A strategy of considering constraints between estimated
hydraulic parameters in the filter was introduced to improve
the performance of estimating all three imperfect parameters
simultaneously. The constraints used were obtained from
Cosby et al. (1984), and are the approximation to actual
statistical relationships between these parameters. The per-
formance of the constrained three-parameter estimation was
successful, even if observations were available with tempo-
rally sparse intervals such as 10 days or much longer. From
the viewpoint of adding information, imposing the equality
constraints between estimated parameters also adds new in-
formation to the EnKF assimilation system and the available
observations, namely, the statistical balance correlation be-
tween these parameters. For this reason, the constrained esti-
mation method effectively overcame the negative impacts of
the non-closure problem in the multi-parameter estimation,
especially for the NIPD scenario which features an insuffi-
cient guess for the prior error of estimated parameters.

Compared to non-parameter-estimation and non-
constrained estimation cases, the constrained three-
parameter estimation case can reduce RMSE in soil moisture
forecasting much more. The benefits of this constrained
estimation method in estimating all imperfect parameters
simultaneously are fully demonstrated when the corre-
sponding non-constrained estimation case has a relatively
poor performance for parameter estimation as in the NIPD

scenario. Given that true values of these hydraulic param-
eters (and also most of other parameters in LSM) cannot
be obtained in nature, the constrained estimation method
may provide an effective way for reducing parameter related
uncertainties in actual soil moisture assimilation with its
poor parameter settings. Moreover, the greatest advantages
of the constrained estimation method in improving soil
moisture forecasting were displayed with different assimila-
tion intervals for the NIPD and WIPD scenarios. When the
first guess of these hydraulic parameters are insufficient, 10-
to 20- days may be a proper assimilation frequency. Once
the first guess error of parameters is given correctly in the
EnKF assimilation processes, however, frequent corrections
using soil moisture observation are able to utilize the greatest
advantage of this constrained estimation method. Although
obtained from identical twin experiments, these results still
provide an instructive analysis of the advantages of this
constrained estimation method in soil moisture assimilation.

Because all constraints considered in this study were al-
ways in a statistical sense and obtained from literature or
standard parameter tables of the model, this constrained pa-
rameter estimation method is applicable to other land sur-
face models with even more imperfect parameters for esti-
mation. Due to its superiorities to the non-constrained esti-
mation method and the traditional non-parameter-estimation
method in the performance of soil moisture forecasting, even
if available observations are rare in time, this method is suit-
able well for assimilating actual temporally sparse in situ soil
moisture observations in China. The application of this con-
strained multi-parameter estimation method in assimilating
temporally sparse in situ soil moisture observations in China
will be studied in the future.
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