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Abstract. The performance of the ensemble Kalman filter tion method. The benefit of this method in estimating all im-
(EnKF) in soil moisture assimilation applications is inves- perfect parameters simultaneously can be fully demonstrated
tigated in the context of simultaneous state-parameter estiwhen the corresponding non-constrained estimation method
mation in the presence of uncertainties from model paramedisplays a relatively poor parameter estimation performance.
ters, soil moisture initial condition and atmospheric forcing. Because all these constraints between parameters were ob-
A physically based land surface model is used for this pur-tained in a statistical sense, this constrained state-parameter
pose. Using a series of identical twin experiments in two estimation scheme is likely suitable for other land surface
kinds of initial parameter distribution (IPD) scenarios, the models even with more imperfect parameters estimated in
narrow IPD (NIPD) scenario and the wide IPD (WIPD) sce- soil moisture assimilation applications.

nario, model-generated near surface soil moisture observa-
tions are assimilated to estimate soil moisture state and three

hydraulic parameters (the saturated hydraulic conductivity, )

the saturated soil moisture suction and a soil texture empiri-l  Introduction

cal parameter) in the model. The estimation of single imper-

fect parameter is successful with the ensemble mean valu®0il moisture is a key state variable controlling the partition-
of all three estimated parameters converging to their true valing of water and energy fluxes at the land surface. It influ-
ues respectively in both NIPD and WIPD scenarios. Increas€nces the surface water cycle, and, consequently, the latent
ing the number of imperfect parameters leads to a declindeat flux and surface energy balance. As a numerical simula-
in the estimation performance. A wide initial distribution tion to the realistic land surface state, the land surface model
of estimated parameters can produce improved simultaneou$-SM) is a popular tool providing proper soil moisture ini-
multi-parameter estimation performances compared to thatial conditions for numerical weather prediction models and
of the NIPD scenario. However, when the number of esti-Climate models. However, given its simplified physical and
mated parameters increased to three, not all parameters wef@athematical processes, LSM only approximates actual pro-
estimated successfully for both NIPD and WIPD scenarios C€SS€S in nature. Uncertainties in hydrodynamic processes,
By introducing constraints between estimated hydraulic pamodel variables and model parameters lead to large errors in
rameters, the performance of the constrained three-parametéfe simulation of soil moisture condition. The proper initial-
estimation was successful, even if temporally sparse obseization of soil moisture conditions in LSMs remains an open
vations were available for assimilation. The constrained esiSSue in meteorological and hydrological research.

timation method can reduce RMSE much more in soil mois- Modern data assimilation technique effectively accounts
ture forecasting compared to the non-constrained estimatiofPr this issue. Merging information from uncertain soil mois-
method and traditional non-parameter-estimation assimilature observations and uncertain land model predictions opti-
mally, this technique can improve the estimation of the soll
moisture state in LSMs (Houser et al., 1998; Reichle et al.,

Correspondence tdS. Nie 2001a, b). As a Monte Carlo approximation to the tradi-
BY (niesp@cma.gov.cn) tional Kalman filter (Kalman and Bucy, 1961), the ensemble
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Kalman filter (EnKF) method, first introduced by Evensen in soil moisture assimilation under the EnKF framework re-
(1994), has received an increasing attention and been widelguires careful study. As soil hydraulic parameters in many
used in recent years. By propagating an ensemble of stateSMs are generally difficult to measure at regional scales,
vectors in parallel, such that each state vector represents they are usually estimated according to soil texture class by
particular realization of generated model replicates, it pro-pedotransfer functions (Dickinson et al., 1993; Wosten et al.,
vides a flow-dependent background error covariance ob2001). Because such functions are obtained from experimen-
tained at each update and adjusts the background optimallial data under specific conditions, uncertainty arises from the
to newly available observations. In recent years, the EnKFextrapolation of these functions to other regional or global
has been successfully applied to different soil moisture asL SM scales (Cornelis et al., 2001). According to the study
similation problems (Walker and Houser, 2001; Reichle etof Montaldo et al. (2007), when key LSM soil hydraulic pa-
al., 2002a, b, 2008; Reichle and Koster, 2005; Crow and Varrameter are estimated poorly, large errors in these parameters
Loon, 2006; Crow and van den Berg, 2010; Ni-Meister et can result in a persistent bias in soil moisture prediction and
al., 2006; Zhang et al., 2010). In most of these studies, how€ause soil moisture assimilation approaches to fail. There-
ever, the EnKF was only used for estimating time-varying fore, this paper first investigates the capability of the EnKF
state variables under the presumption that model parameteis reducing errors in posterior values of hydraulic parameters
were specified in advance by calibrations. In common cal-by simultaneous state-parameter estimation approach in soil
ibration methods, model parameters are adjusted by a hignoisture assimilation.
torical batch of measurements so that the behavior of model Despite promising results obtained from the applications
approximates, as closely and consistently as possible, the olnf the EnKF in parameter estimation, some deficiencies still
served behavior of the real land system over some period oéxist in these studies. The noticeable decline of estimation
time (Niyogi et al., 2002; Xia et al., 2002; Coudert et al., performance occurs when multiple imperfect parameters are
2006). There exist two main weaknesses in these calibratioestimated simultaneously. When the number of estimated pa-
approaches: (i) they cannot include information from newrameters increases to a certain extent, it is difficult for all es-
observations, and (ii) as commonly practiced, they ignore ertimated parameters to converge to their “true” values entirely
rors from initial condition and atmospheric forcing data. Be- even with long enough estimation periods (Moradkhani et al.,
cause the EnKF accounts for a wide range of possible mode2005a; Aksoy et al., 2006; Jung et al., 2010; Montzka et al.,
errors easily (Evensen, 2003), it has the potential to over2011). One possible reason is that constraints among differ-
come these two drawbacks by explicitly accounting for all ent parameters, arising from different physical relationships,
sources of uncertainty and developing a simultaneous treatare often neglected in the data assimilation framework (Wang
ment of state and parameter estimation to refine its assimilaet al., 2009). Because most of studies applied for simul-
tion performance. taneous state-parameter estimation in hydrologic field are
By means of the state augmentation technique (Andersorhased on unconstrained assimilation methods (Moradkhani
2001), model parameter estimation can easily be includectt al., 2005a, b; Franssen and Kinzelbach, 2008; DeChant
in the framework of the EnKF. The principle of state aug- and Moradkhani, 2010; Leisenring and Moradkhani, 2010;
mentation is that model parameters can be considered adlontzka et al., 2011), this problem remains a challenge in
“pseudo” model states along with conventional state vari-the application of multiple parameter estimation in hydro-
ables, and then the error covariance sampled by ensemblegic data assimilation. Currently, only a few studies have
members can be used directly to update those model paconsidered constraints in hydrologic data assimilation field.
rameters in exactly the same manner as for the conventiondan and Wood (2006) used a two-step EnKF approach to deal
state variables. Recently, the state-parameter estimation apvith the water balance constraint in the estimation of the ter-
proach was successfully applied in atmospheric (Aksoy et al.restrial water budget. Wang et al. (2009) compared three
2006), oceanic (Annan et al., 2005), and ecological (Chen etmethods that deal with inequality constraints in the EnKF
al., 2008) assimilation fields. In the hydrological field, the framework by a conceptual hydrologic model for state es-
idea of state-parameter estimation was first introduced bytimation and sequential parameter learning. However, re-
Moradkhani et al. (2005a, b), using the EnKF and particlelated studies for the application of equality constraints be-
filter. The results were promising, and nearly all of the pa-tween hydrologic parameters using the EnKF assimilation
rameters were well estimated. Subsequently, this approachpproach based on a physical LSM are few in number at
was widely used in many hydrological studies (Franssen angresent. Therefore, this paper also discusses the applicability
Kinzelbach, 2008; DeChant and Moradkhani, 2010; Leisen-of a new constrained parameter estimation procedure for si-
ring and Moradkhani, 2010; Wang et al., 2009; Montzka etmultaneous multi-parameter estimation in soil moisture data
al., 2011). However, similar simultaneous estimations of soilassimilation under the EnKF framework.
moisture and hydraulic parameters are few at present, except
for certain studies available using the particle filter method
(Qin et al., 2009; Montzka et al., 2011). Hence, the applica-
bility of simultaneous state-parameter estimation approach
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2 Land surface model and parameter estimation Gaussian random noiet.é_1 with covariancle_1 to param-
framework eterd’, the evolution of parameter can be expressed in the
form of:

2.1 Land surface model ) o ) . 9
0, =0,"1+7,_1.7,_1~N©OQ_yp 4
The land surface model used is the Atmosphere—Vegetatloq_he superscripts “—” and “+” refer to states in the forecast

Interaction Model (AVIM) (Ji, 1995), which contains a phys- step and update step, respectively: the supersarlindi-

ical process mode and a vegetation biological process mode, .
. L - . : Cates the ensemble members. When multiple parameters are
Detailed descriptions of this model are given by Ji and

Hu (1989) and Ji (1995). The version used in this Studyesumated simultaneously, perturbations on different param-

g : X -~ eters are considered as mutually independent without cross-
only considers the physical process mode, a typical soil-

vegetation-atmosphere (SVAT) type model developed by Jparameter constraint. The covariancedpf is a diagonal

. . . ... matrix.
and Hu (1989). This model includes three soil layers with . e . .
thicknesses of 0.1, 0.9, and 3.6m from ground. The layer- With artificially perturbed parameters, the time evolution

averaged soil moisture is modeled for each of the three soi[or each ensemble member of state veatoin the EnKF is:

layers. The free drainage assumption is used for the botx;'— sz(xitl’uifl’oitl)’i =1,2,...n. (5)

tom layer. The change of soil moisture in the near surface ‘

layer and root zone layer over a time step is controlled by thewherex; ™ is thei-th forecast ensemble member at time

change in water flux over these two layers. Richards’ equaandx;”, is thei—th updated ensemble member at timel.

tion for unsaturated flow is used for the simulation of this The nonlinear operatof(.) denotes the land surface model

flux, expressed as: processes containing state vectafs forcing data vectors
u', and model parameter vectd'’s The forcing data pertur-

dy (z) bations are made by adding mean-zero Gaussian pdise
F(2)=— k 1 - ) . : by
@ k@) dz |2 +k@z#0 @) with covarianceQy_, to the forcing data at each time step:
wherez is the depth and”(z) is the soil water flux. The 4! j=u, 1+pu’ ;,ui ;~N(©O,Q" ) (6)

unsaturated hydraulic conductivikyz) and unsaturated soil _ _
water suctiony (z) are defined in Clapp and Hornberger When observations are available, each ensemble member of

(1978): state vector and parameter vector is updated as follows:

5 2 ) = (B ) 4k G- ) (7)
k(@) =ksals—)**? @ N+ )" \gi- )70 T
sat
5 whereH; is the measurement operator apdis the i —th
Y (2) = Ysal —) " (3)  member of observation ensemble generated by adding mean-
Ssat zero random measurement erngr with covarianceQ; to

. . _actual observation (Burgers et al., 1998):
wheres and §g5tare the unsaturated and saturated soil mois- (Burg )

ture; ksat and ¥rsa; are the saturated hydraulic conductivity y;' =y,+;1§,n§ ~N(0,Q)) (8)
and soil moisture suction respectively; ani a soil texture

emp|r|ca| parameter_ In this paper, parame@as I/fsat and Kt o is the Kalman gain matrix that considers state-
b were chosen for estimation. parameter estimation. It is obtained by:

6,x 0. x,— 4T 0,x,— 4T -1
i : K¥ =P O HIH PP "HE 4R 9
2.2 Parameter estimation framework using the EnKF ! ! ¢ (H:Py ¢ +R) ©)
o . . wherePf’X” andR; are forecast error covariance matrix and
Parameter estimation frameworks used in this paper argpservation error covariance matrix respectivelﬂ?.”"_ is

based on the E.nKF.' The comprehensive presenta.non of thSomputed as the sample covariance from forecast ensemble

s_tandard EnkFis given by Evense_n_ (2903)’ and this subsecéf model state variables and parameters. It is an ensemble

tion represents primarily the modifications to the Standardcovariance matrix around the ensemble mean:

EnKF after considering simultaneous state-parameter esti-

mation in its framework. Pl = ilxtxtr (10)
n—

2.2.1 State-parameter estimation without constraint 1

where, X; =[x} — %, ,...x"" —%,7:01 -0, ,...0" —
To extend the applicability of the EnKF to state-parameterf, 1 andx, = =3 ;x;~, 6, = ,—112?:105_ denote the en-
estimation, building an evolution of parameter similar to that Semble mean of forecast state variables and parameters, re-

of the model state variable is needed. By adding mean-zergpectively.

www.hydrol-earth-syst-sci.net/15/2437/2011/ Hydrol. Earth Syst. Sci., 15, 2457-2011



2440 S. Nie et al.: Simultaneous estimation of land surface scheme

2.2.2 State-parameter estimation with constraint all experiments were conducted at point scale for compu-
tational simplification. Jiangji station (the outlet of the
In fact, some statistical relationships exist between differ-Shiguanhe sub-basin in the Huaihe River Basin) of the
ent model parameters (e.g., Cosby et al., 1984; Rawls et alijuaihe river Basin EXperiment (HUBEX, China’s contri-
1982; Schaap and Leij, 2000; van Genuchten, 1980; Zhuangution to GEWEX Asian Monsoon Experiment, Fujiyoshi
etal., 2001). As additional information, these statistical con-et al., 2006) was chosen as the experiment site due to its
straints between parameters require assessment in the framgomprehensive meteorological forcing data sets. In this sta-
work of the EnKF to perform better state-parameter estimation, the soil texture is sandy loam, and the vegetation type is

tion. _ ' broadleaf shrubs with bare soil. The experiment period cov-
In the general case, the constraints are nonlinear, eXered all of 1998. During the Intensive Observation Period in
pressed as: 1998 (from 21 May to 31 August), hourly gauge-based pre-

“_ G.(0* 11 cipitation, once daily air temperature, humidity, surface pres-
8 =G0 (11) sure and wind speed data sets were available in Jiangji. Dur-

where g denotes nonlinear constraints between differenting other period in the year, daily observations of these me-
model parameterg? at time:. Without losing generality, teorqloglcal forcing from t_he G__ush| meteorologlcal site (ap-
the parameters, which are not containedgfn are defined proximately 15km from Jiangji) was used. Without incom-

asé’. The constrained update to each ensemble member dpg radiation observation, the radiation forcing data from the
state vectors! is computed as follows: NCEP (National Centers for Environmental Prediction) re-

analysis dataset version 1 was used as a substitute. All these

x;’+ _ x;‘* K(’”’g* i H i 12 forcing data sets were used to force the AVIM in Jiangji in all
(9;’+) - (9; > K O =Hexy ) (12) identical twin experiments with a time step of half hours for
the model and one-day frequency for assimilating soil mois-
ture “observations”.

The “true” soil moisture state was obtained by integrating
the AVIM from 1 January 1998 to 31 December 1998 (after
K?”’g* _ P(t?”,g*»*HIT(HtP?N»g*leT LR (13) @ 2-yr spinup period from 1 January 1996 to 31 December

1997) with standard AVIM parameters (Ji and Hu, 1989; Ji,
1995) and the atmospheric forcing data described above. To

where Kf " is the Kalman gain matrix including con-
straints. It is obtained as follows:

WherePf ¢~ is the constrained error covariance matrix of o . .
state ensembles and parameter ensembles. Each ensemBPata'n prior state of soil moisture, mpdel_erro_r from_three
member will satisfy the constraints. When constraints existoOUrCces (') paramete.r%@m "’S.at?‘”‘?'b)’ (i) soil moisture ini-

among parameters, the definition@fn Eq. (4) should have tial conditions, and (iii) precipitation and short-wave (long-

cross-parameter correlations and the generation of perturbé’yave) radiations (Margulis etal., 2002; Reichle et al., 2002b)

tionst should be taken the constraints into consideration. In"ere considered in prior model integration. Errors in param-

Sect. 3 we provide a detailed description of how to generateeters were generated by replacing the “truth states” values

perturbations according to the specified constraints consid\-NIth assumed |mperfe(_:t parameter values. These prior pa-
ered in this paper. rameter values were distant from the true values within the

parameter range of the AVIM for testing the validity of pa-
rameter estimation frameworks even when all estimated pa-
3 Experiments background and approach rameters had large parameter errors compared to their true
values. Errors in soil moisture initial condition were gen-
This study is based on a series of identical twin experimentserated by replacing the “truth states” values with assumed
taking soil moisture in the top two layers and parameteys  imperfect values and adding zero mean Gaussian noise with
Ysatandb as state variables in the EnKF. The design of thea standard deviation of 50% of the assumed values. Er-
identical twin experiment is similar to that of Crow and Van rors in precipitation and radiation were imposed by adding
Loon (2006), with the assumptions that the “true” states aremean-zero Gaussian random noises (Eg. 6) to the true forcing
model-generated and the source and magnitude of model efields. Specific differences between “true” and “prior” inte-
rors and observation errors are perfectly known statistically.grations are listed in Table 1. Collectively, these differences
This approach avoids a number of key complexities facingin parameter, initial condition and forcing data were consid-
to assimilate actual soil moisture observations and makes thered as “actual errors” and represent our imperfect under-
parameter estimation behavior of the EnKF more transparenttanding to the true soil moisture states. In all identical twin
Note that little information about the statistical properties of experiments, the “actual observation” assimilated was the
errors in realistic soil moisture assimilation may degrade thenear surface soil moisture. It was derived from the true state
performance of the EnKF in parameter estimation. by adding mean-zero Gaussian random errors with a standard
Because this study investigates the feasibility of EnKF- deviation of 0.02 cricm™3 once a day. Figure 1 displays the
based parameter estimation in soil moisture assimilationprecipitation forcing, the “true” and “prior” soil moisture for
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Table 1. Specific differences of soil hydraulic parameters, initial soil moisture condition, and meteorological forcing data between “true”
and “prior” model integrations in the identical twin experiments.

Variables & Parameters Units True Prior

Saturated hydraulic conductivity ~— m$ 5.23x 1076 5.0x 107°

Empirical parameteb - 4,74 12.0

Saturated soil moisture suction m —0.218 -0.7

Initial soil moisture cricm—3 2-yr spinup values 0.12 for both two layers and

adding zero mean Gaussian noise
with a standard deviation of
50 % of this initial value
Precipitation mm (day7l Gauge-based dataand  Adding Gaussian noise with mean
NCEP dataset 1 square deviation of 20 % to
the true values once daily and the
minimum mean square deviation
is limited to 2 mm (dayy?!
Long- and short-waves radiations W NCEP dataset 1 Adding Gaussian noise with
mean square deviation of 30 %
to the true values once daily

top two layers and the “actual observation” of near surfacerameter distribution scenarios (hereafter denoted as IPD sce-
soil moisture used in identical twin experiment. For errors in nario), the narrow IPD (NIPD) scenario and the wide IPD
hydraulic parameters, initial condition and atmospheric forc-(WIPD) scenario, were considered in this study to fully ex-
ing data, there were significant deviations from prior statesplore the capability of the EnKF in estimating all these cho-
to true states of soil moisture in both layers. Perturbations orsen hydraulic parameters. In NIPD scenario, initial ensemble
forcing data, soil moisture initial conditions and forcing data spreads of all estimated parameters were small and unable to
created large enough ensemble spreads on prior soil moistui@ver their true values, representing our insufficient knowl-
for both two layers to maintain the uncertainty in the model- edge about first guess error of these hydraulic parameters.
ing prediction. In both soil layers, the ensemble spreads narin WIPD scenario, initial ensemble distributions of all pa-
rowed slowly with time and finally maintained an approxi- rameters were large enough for covering their true values,
mate a value of 0.02 chtm—23, comparable to the “observed indicating our satisfactory knowledge about first guess error
error” in the soil moisture observations. of all parameters. The prior ensemble mean, standard devi-
Given the statistical properties of model errors and ob-ation and uncertainty range of all these three parameters in
servation errors, the EnKF attempts to modify prior stateboth two IPD scenarios are listed in Table 2. Furthermore,
back to the true state by assimilating “actual observationsbecause parameters were not dynamical variables, the vari-
(Crow and Van Loon, 2006). In the filter, the number of ances of them were reduced at the update step but remained
ensemble size was set to 100 in all experiments, achievingonstant at the forecast step. This caused the variances of
a balance between the computational effort of processing parameters to decrease progressively and may lead to filter
large number of runs and the need for having a sufficientlydivergence in parameters. To avoid filter divergence, there-
large set of ensembles to characterize the ensemble distribdiere, a small perturbation was implemented on parameters
tion. The ensemble of soil moisture initial values was gen-continually in a similar way as that on forcing data according
erated by adding zero mean Gaussian noise with a standatd Eq. (4) with a time interval of 10 days. The standard devia-
deviation of 50 % to the prior values at the first time step. tions of the small perturbations @ga, v say andb were cho-
The ensemble of forcing data was generated by perturbingen as 0.& 10-®ms~1, 0.01 m, and 0.08 respectively, which
prior forcing data with the same statistical properties as theare much smaller than the orders of parameters themselves.
actual forcing data errors once a day. The random perturSmall standard deviation and sparse perturbation interval on
bation method was also applied to obtain the ensemble ofhese parameters in the filter processes avoids the behavior of
model parameters. A noticeable issue here was the magnithe model being shocked for sharp changes of parameters in
tude of standard deviation of perturbation on model paramemodel integration.
ters because no straightforward guidance exists for the proper In a non-constrained parameter estimation framework,
range of estimated parameter deviation. Given the difficultyperturbations on different parameters were considered mu-
of accurately estimating prior parameter uncertainty in realtually independent. In constrained estimation framework,
soil moisture assimilation settings, two kinds of initial pa- statistical relationships between these hydraulic parameters
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Fig. 1. The precipitation forcinga) and soil moisture evolution of the near surface lgpgrand the root zone layégc) in the identical twin
experiment during 1998 at Jiangji station. The solid line represents the “true” state, the long dash line represents the “prior” state, the short
dash line represents the “actual observation” of near surface soil moisture, and the shaded area represents the ensemble spread of the “prio
soil moisture.

Table 2. Specific values of uncertainty range, initial ensemble mean and standard deviation for paragagt@gst andb in both narrow
initial parameter distribution (NIPD) scenarios and wide initial parameter distribution (WIPD) scenarios.

Parameter  Units Min Max NIPD scenario WIPD scenario
Mean Std. dev. Mean Std. dev.
ksat ms1 1.1x10® 82x10° 50x10° 8.0x10° 5.0x10™° 3.3x10°°
Vsat m -0.95 -0.02 -0.7 0.05 -0.7 0.7
b - 1.4 15.5 12.0 0.8 12.0 8.0

were taken into account in the assimilation processes. Allsamples to obtain statistical relationships between parame-
constrained relationships considered in this study were softersksa; ¥satandb. Table 5 in Cosby et al. (1984) can be
equality constraints that exist physically for which the model formulated to explicitly display equality constraints between
can run through despite these constraints violations. Al-these three parameters:

though these constraints differed from hard constraints re- Ab
quiring satisfaction in model integration (e.g., inequality con- Aksar= (B — Dsat (14)
straints in Wang et al., 2009), it might retain benefits for con- Ab

sideration in the multi-parameter estimation processes undV¥sar= (82" — D¥rsar (15)

der ensemble assimilation framework of th(.a EnKF. GivenwhereAksab AvrsarandAb are the perturbations of parame-
that some studies (e.g., R_awls et al., 1982; Zhuang et altersksat, sarandb respectively, angy, B2 are constrained
2001) did not have all relationships between these three hyqqefficients assigned as 1.2474 and 0.827, respectively ac-
draulic parameters and others (e.g., Schaap and Leij, 200Q,4ing to statistical relationships obtained from Cosby et
van Genuchte_n, 1980) did not have en_ough soil classificag (1984). These two equations are included in the error co-
tions as that in the AVIM model, the literature of COsby \rance matrix in Eq. (13) to constrain random perturbations
et al. (1984) was selected in this study for its unified soil of parameters in constrained estimation experiments.
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Fig. 2. Time evolution of the ensemble mean parameter values (solid black line) vs. the true parameter values (solid gray line) from single-
parameter estimation experiments in NIPD and WIPD scenarios. Estimated paramefals, 4e) the saturated hydraulic conductivity;

(b1), (b2) the saturated soil moisture suction; &ied), (c2) a soil texture empirical parameter The area between two dashed gray lines
represents the 1-standard deviatiorw(lintervals of the parameter spread.

4 Results extent. We assumed the general form of the relationship be-
tween the perturbations of these parameters and the update
4.1 Single-parameter estimation results of soil moisture as follows:
Asmr~ f1(Aksa) + f2(AYsa) + f3(AD) (16)

Results from the individual estimation of these three hy-

draulic parameters in both NIPD and WIPD scenarios arewhere Aksas Avrsarand Ab are the perturbations of param-
presented in Figs. 2 and 3. In each experiment, only one sucbtersksa;, ¥sat andb, and Asmis the update of soil mois-
parameter was perturbed around its imperfect mean valueure. Nonlinear operatorg1(-), f2(-) and f3(-) denote the
and other parameters were kept unperturbed at their true vakampled relationships betweexsm and Aksay, Asat and
ues. Ab, respectively. In each single-parameter estimation exper-
Figure 2 illustrates that the one year evolution (once-dailyiment, one of these operators in Eq. (16) is considered in the
analyses) of the ensemble mean parameter values along witinKF update process. In assimilation processes, therefore,
the true parameter values remain constant in time. The arethe available near surface soil moisture observation informa-
between two dash gray lines around the estimated mean paion can be transferred by the operator to correct the error in
rameter value represents thes1(one standard deviation) corresponding imperfect parameter and estimate it success-
limits of the parameter ensemble spread. These standarlly. Further analysis found that the convergence rate of ap-
deviation limits were computed by averaging the standardproach to the true values varied among different parameters
deviations of each 100-member ensembles at each forecaahd different IPD scenarios. We defined “convergence time”
step. Successful parameter estimation should indicate thats the time taken for a true parameter value to fall first within
the error of the estimated parameter is smaller than or verghe Lo limit around the estimated mean parameter. The con-
close to the %o limit. The estimated mean parameter val- vergence times of parametdss;andb were much less than
ues of all three parameters for both NIPD and WIPD sce-that of parametet/ sy in both NIPD and WIPD scenarios.
narios converge to their true values within several monthsBecause the convergence time can scale the efficiency of the
and the true values remain stable within the limit sub- EnKF to estimate each parameter to a certain extent, this re-
sequently. When these model parameters were included isult implies that near surface soil moisture observations con-
the augmented state vectors of the EnKF, the perturbation ofain more useful for parametég,; and b than for parame-
parameter led to the update of soil moisture state to a certaiter ¥ s5;, leading to errors in parametégs; and b that are
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Fig. 3. The time evolution of the root mean squared error (RMSE) of near surface layer soil mda&tufé) and root zone layer soil
moisture(a2—f2) for soil moisture forecasting from single-parameter estimation experiments (solid black lines) compared with that of non-
parameter-estimation benchmark experiments (solid gray lines) in both NIPD and WIPD scenarios. Parameters gabjv(adje(dl),

(d2) the saturated hydraulic conductivial), (b2), (el), (e2)the saturated soil moisture suctignl), (c2), (f1), (f2) a soil texture empirical
parameteb.

easier to correct than those in parameftes; by assimilating In addition to the mean parameter values, the root mean
the same soil moisture observation in individual parametersquared error (RMSE) of soil moisture in each forecast step
estimation experiments. Moreover, for the same estimatedompared to soil moisture “true state” was calculated to de-
parameter, the convergence time in WIPD scenario was lesscribe errors in soil moisture forecasting:

that in NIPD scenario, indicating that a wider prior distribu-
tion of imperfect parameters can make estimated parameter B
converge to its true value easier under the same conditions.RMSE, = %Z(S"E —snjiue)2 (17)

n—
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Fig. 4. The time evolution of ensemble soil moisture forecasting of near surface(klyefl), and root zone layga2—f2)in WIPD scenario.

(al), (a2), (c1), (c2), (el), (e2)are for non-parameter-estimation benchmark experimentgbdnd(b2), (d1), (d2), (f1), (f2) are for single-
parameter estimation experiments. The estimated parameters shogaiyai@2), (b1), (b2) the saturated hydraulic conductivifgl),

(c2), (d1), (d2) the saturated soil moisture suctidel), (e2), (f1), (f2) a soil texture empirical parameter The solid line represents the

“true” values, the long dash line represents the ensemble mean values, and the shaded area represents the ensemble spread of soil moist
forecasting.

where the subscript” represents time step (every day in the two soil layers for both NIPD and WIPD scenarios are dis-
experiment period), n is the ensemble membaf,‘ isthe  played in Fig. 3. In all panels, the RMSE from respective es-
soil moisture forecast states of théme step, based on pos- timation experiments are plotted along with the RMSE from
terior soil moisture states and parameters of the last assimieorresponding non-parameter-estimation benchmark experi-
lation time step with perturbed precipitation and radiations.ments. The results of benchmark experiments were obtained
snj’“® s the “true state” of soil moisture for thetime step. by considering imperfect parameters but no parameter esti-
The evolution of RMSE for soil moisture forecasting in top mation in assimilation processes. In both NIPD and WIPD
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Table 3. Summary of time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three single-parameter estimation experiments and corresponding non-parameter
estimation experiments in both NIPD and WIPD scenarios with individual imperfect parameters of the saturated hydraulic cohgactivity

the saturated soil moisture suctigra; and a soil texture empirical parameterespectively.

Scenarios Imperfect Estimation RMSE Non-estimation RRE
parameter RMSE
(cm3cm—3) (cm3cm™3)
SM1 SM2 SM1 SM2 SM1 SM2
NIPD ksat 0.014 0.009 0.020 0.025 30.0% 64.0%
Vsat 0.014 0.009 0.015 0.010 6.7% 10.0%
b 0.015 0.018 0.022  0.037 318% 51.4%
WIPD ksat 0.013 0.007 0.019 0.022 31.6% 68.2%
Vsat 0.012 0.007 0.015 0.010 20.0% 30.0%
b 0.013 0.015 0.028 0.048 53.6% 68.8%

scenarios, the RMSE of both two soil layers in parameter esreasonably (Fig. 4el, e2) by assimilating near surface soil
timation experiments were lower than that in non-parametermoisture observation using the EnKF.

estimation benchmark experiments for all three parameters. Further analysis revealed that the decrease of RMSE from
In these identical twin experiments, parameter error was connon-parameter-estimation experiments to estimation experi-
sidered one of the main error sources of soil moisture simulaments varied among parameters. To quantify relative estima-
tion. With parameter errors reduced by estimation processeson performance, we defined the “relative root mean squared
in the EnKF, fewer error contributions from imperfect param- error”, as follows:

eters can refine the performance of soil moisture forecasting

in each estimation experiment. RRE= {RMSEo-esimation — (RMSEestimation

<RMSE\10-Estimati0r‘>

Figure 3 also depicts that the behavior of RMSE evalua-
tion of soil moisture forecasting in parametigg estimation  where the operation) denotes time average over the en-
case is less identifiable than that of paramétgrands in tire experiment period. The RRE was a relative measure
both scenarios. Taking WIPD scenario as an example, Fig. 4f how much error has been reduced by parameter estima-
compares the time evolution of soil moisture forecasting andiion compared to non-parameter-estimation benchmark ex-
its ensemble uncertainty in these three single parameter estperiments. The results of time average RMSE and RRE for
mation experiments. Because the root zone layer is less akingle-parameter estimation experiments in both NIPD and
fected by atmosphere forcing and soil moisture observationWIPD scenarios are summarized in Table 3. The estima-
the uncertainty of soil moisture forecasting in this layer cantion experiments in the WIPD scenario had smaller RMSE
reflect the impact of parameter errors to a large extent. Thend larger RRE than those in the NIPD scenario. One possi-
uncertainty of soil moisture forecasting in near surface layerble reason might be that estimation experiments in the WIPD
primarily reflects the impact of errors of atmosphere forcing. scenario all have less convergence time than that in the NIPD
Errors associated with imperfect parametggandb are re-  scenario, causing more parameter error reduced by the EnKF
flected in soil moisture forecasting more significantly than estimation processes. The smallest RRE was exhibited by pa-
those associated with parameteg,; (Fig. 4a2, e2), which  rameten)satin both NIPD scenario (6.7 %, 10 %) and WIPD
leads to large biases in soil moisture ensemble forecastingcenario (20%, 30%). The RRE of parametey; and b
values compared to their true values. This result implies thatvere much larger than that of parametesy, which were
errors in these two parameters are comparable to those ibhoth over 30 % for the near surface layer and even more than
soil moisture initial condition and forcing data. For param- 60 % for the root zone layer. This result implies that the soil
eteryrsa, because the uncertainty of soil moisture forecast-moisture forecasting is more sensitive to the error in param-
ing caused by parameter error (Fig. 4c2) was much smalleeter ksg: and b than that in parametep sy, consistent with
than that by errors in initial condition (the first two months in the sensitivity analysis of Wen et al. (1998). The RRE for
Fig. 4c2) and forcing data (Fig. 4cl), the RMSE evaluationthe root zone layer, in which no soil moisture observations
of soil moisture forecasting was less correlated with the errowere assimilated in the EnKF, was larger than that for the
in parameter) sy Therefore, even when parametless; did near surface layer for all three parameters and IPD scenar-
not converge to its true value (before April in Fig. 2b2), the ios. As only near surface soil moisture observations were
RMSE evolution of soil moisture forecasting was reducedused in these experiments, observation error in near surface

x100% (18)

Hydrol. Earth Syst. Sci., 15, 2432457, 2011 www.hydrol-earth-syst-sci.net/15/2437/2011/



S. Nie et al.: Simultaneous estimation of land surface scheme 2447

<10 NIPD scenario o WIPD scenario
/_\10 (a1) —Ens. Mean 1\10 (a2) —Ens. Mean
"o 81 Ture v 81 Ture
c 6 1—0 Intervals c 61 1—0 Intervals
3 3
< 27 < 2] .
_—-—""'—-’—‘-—«
0 T T T T T T T T T T T D T T T T T T T T T T T
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0 x10 0 10~
RS RCD ., ](62)
E-4 é—‘VW
361 —Ens. M | 3767 —Ens. M
S e |3 S e
~10 1—0 Intervals ~10 1—0 Intervals
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC
10 10-® 10 10-®
o (c1) o (c2) —Ens. Mean
T 81 T 81 Ture
g 6 g 6 1—0 Intervals
44 —Ens. Mean 44
3 74 Ture 3 2
L3 1—0 Intervals L3
0 T T T T T T T T T T T D T T T T T T T T T T T
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC
< 16 —Ens. Mean < 16 —Ens. Mean
o 121 Ture o 124 Ture
-+ 1—0 Intervals -+ 1—0 Intervals
qé 8_% QE») 8
[o] | o 4
5 41 @n 5 *1 (02
D_ O T T T T T T T T T T T D_ O T T T T T T T T T T T
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC
0 x10~ 0 x10~
IRED NG
\81_4_ —_II-;Lr:rse Mean 5_4_W
3—6 1—0 Intervals 3—6 —_I-%ns. Mean
» —~— » ure
>_8- >_8- 1—0 Intervals
_10 T T T T T T T T T T T - T T T T T T T T T T T
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC
© 16 (f1) —Ens. Mean < 18 (f2) —Ens. Mean
o 12 Ture o 12 Ture
-oq-)' 1—o Intervals -oq-)' 1—0o Intervals
£ 81 £
D 41 2
o] o]
0_ O T T T T T T T T T T T D_ O T T T T T T T T T T T T
JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEBMAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Fig. 5. Same as in Fig. 2 but for three sets of dual-parameter estimation experiments, whiaft)ata2), (b1), (b2) for ksat and ¥ sat
set; (cl), (c2), (d1), (d2) for ksatandb set; and(el), (e2), (f1), (f2) for yrsatandb set, in both NIPD and WIPD scenarios with mutually
independent parameter perturbations.

soil layer had less effect on soil moisture forecasting in the4.2 Multi-parameter estimation results

root zone layer. Therefore, with the error in the imperfect pa-

rameter reduced by the EnKF, soil moisture forecasting in noTo obtain a comprehensive picture of the EnKF’s capabil-

observation soil layer can be improved more significantly inity and limits in parameter estimation when multiple imper-

any corresponding parameter estimation processes. Combirfiect parameters are involved, the results from three sets of

ing the previous analyses of ensemble mean parameter vatlual-parameter estimation experiments and subsequently the

ues and RMSE, the EnKF-based single-parameter estimatiotihree-parameter estimation experiments are presented here.

performed successfully in soil moisture assimilation. The dual-parameter experiments were performed with
Wsat and b, ksat and ¥sa, ksat and b as the three sets of
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Table 4. Summary of the time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three sets of dual-parameter estimation (DPE) experimeidst@mitth, ksatand

¥sat andksatandb as imperfect parameters respectively) and corresponding non-parameter-estimation (NPE) experiments in both NIPD
and WIPD scenarios.

Scenarios  Imperfect DPE RMSE NPE RMSE RRE

parameter set  (chtm—3) (cm3cm—3)
SM1 SM2 SM1 SM2 SM1 SM2

NIPD Ysat b 0.018 0.024 0.025 0.032 28.0% 25.0%
ksat Vsat 0.018 0.015 0.024 0.034 25.0% 55.9%
ksat b 0.022 0.016 0.023 0.020 43% 20.0%
Setaverage 0.019 0.018 0.024 0.029 19.1% 33.6%

WIPD Ysat b 0.012 0.012 0.024 0.034 50.0% 64.7%
ksat Vsat 0.013 0.01 0.022 0.026 409% 61.5%
ksat, b 0.014 0.012 0.034 0.054 588% 77.8%

Setaverage 0.013 0.011 0.027 0.038 499% 68.0%

imperfect parameters, respectively. Figure 5 shows the evoscenario (49.9% and 68 % for two layers on set average)
lution of ensemble mean parameter values from these dualwas also much larger than that in NIPD scenario (19.1%
parameter experiments for both NIPD and WIPD scenariosand 33.6 % on set average). In general, although some esti-
The performances of simultaneous dual parameter estimatiomated parameters had worse estimations compared to single-
have some deterioration compared to that of individual esti-parameter estimation cases, the estimation with two imper-
mations. In the NIPD scenario, only one parameter was esfect parameters using the EnKF was still beneficial to reduce
timated to the true value in sefssg;, b (Fig. 5al) andksgg the parameter-related model error in soil moisture forecast-
V¥sat (Fig. 5f1). For theksgandb set, both imperfect param- ing, especially when the prior distribution of estimated pa-
eters failed estimation, although some convergence of the esameters was wide enough to cover true values.
timated value of parametérto its true value was still notice- When the uncertainty extended to the entire set of three
able. The estimation performance in the WIPD scenario wasparameters, some significant deterioration of estimation per-
better than that in the NIPD scenario. Except for parameteformance is occurred (Fig. 6). The estimated ensemble mean
Vsatin the ysa, b set (Fig. 5e2), all other imperfect param- values of all three parameters did not converge to their true
eters in these three dual-parameter sets were estimated sugalues throughout the entire experiment period in the NIPD
cessfully. Unlike single-parameter estimation case, sampledcenario. When the prior distribution of parameter was nar-
relationships of two parameters in Eq. (16) need to be considrow, small parameter uncertainty reflected by ensemble sam-
ered simultaneously in the EnKF for an increase of imperfectpling was not enough for the EnKF to build reasonable en-
parameters here. Therefore, the degree of freedom in assingemble statistical relationships between the ensembles of soil
ilation processes increased and made the dual-parameter eswisture observation and all estimated parameters simulta-
timation unstable and intractable. The comparative resultsieously. In the WIPD scenario, as a wider prior distribution
between NIPD and WIPD scenarios imply that wide enoughof estimated parameters led to more appropriate sampling in-
initial perturbation on estimated parameters has positive information included in parameter ensembles, better estimation
fluences on the performance of estimation. In other wordsperformances witltsa; andb converging to their respective
more ensemble sampling information content in the widetrue values successfully were obtained compared to that in
prior distribution of estimated parameters is used to identifythe NIPD scenario. However, independent random perturba-
the parameters properly. tions added to different estimated parameters during the up-
Table 4 illustrates the time average RMSE and RRE ofdate process of assimilation may still break the complicated
these three dual-parameter estimation sets. Similar to the sirielationships between hydraulic parameters and soil moisture
gle parameter estimation experiments, the RMSE of all three@bservations easily and may cause the failure in simultaneous
dual-parameter estimation experiment sets in both NIPDestimation of all incorrect parameters. For dealing with all
and WIPD scenarios were lower than of non-parameterimperfect parameters properly, constraints in Egs. (14) and
estimation benchmark experiments, despite not all incorrecf15) (obtained from Cosby et al., 1984) were taken into ac-
parameters converging to their true values in some casegount for further improving estimation performance.
(Fig. 5). For more error associated with incorrect parameters Next, we discuss the three-parameter estimation case in
being reduced by estimation processes, the RRE in WIPOhe NIPD and WIPD scenarios with constrained parameter
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Fig. 6. Same as in Fig. 2 but for the three-parameter estimation experiments in both NIPD and WIPD scenarios with mutually independent
parameter perturbations.
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Fig. 7. Same as in Fig. 2 but for the three-parameter estimation experiments in both NIPD and WIPD scenarios with constrained parameter
perturbations.

perturbation. The evolutions of the ensemble mean parameassimilation system in addition to the available soil moisture
ter values are shown in Fig. 7. The estimated ensemble meapbservation. Moreover, constraints also transfer observation
values for all three parameters converge to their true valuesnformation to all estimated parameters in a balanced way
successfully in both NIPD and WIPD scenarios with almostand correct these parameters in a coordinated and consis-
the same convergence time of five months. From the viewtent way during the whole update process of assimilation.
point of adding information, imposing constraints between Therefore, even if more imperfect parameters require esti-
model parameters also adds new information to the EnKFmation, these equality constraints that represent additional

www.hydrol-earth-syst-sci.net/15/2437/2011/ Hydrol. Earth Syst. Sci., 15, 2457-2011



2450 S. Nie et al.: Simultaneous estimation of land surface scheme

correlation between parameters effectively offset the declinet.3 Sparse observation assimilation results
in the estimation power of the EnKF and make all parameters
converge to their true values effectively. Actual conventional in situ soil moisture observations in
The RMSE evolution of constrained estimation, non- China and other areas in the world were sparse in time with a
constrained estimation and non-parameter-estimation expemeasurement interval of about 10 days (Robock et al., 2000,
iments are displayed in Fig. 8. The smallest RMSE for two Nie et al., 2008). For the future application of the constrained
soil layers are exhibited by constrained estimation experi-multi-parameter estimation method in assimilating actual in
ments in both NIPD and WIPD scenarios. In the NIPD sce-situ soil moisture, its performance with temporally sparse
nario, the RMSE of soil moisture forecasting were almost theobservation conditions were tested and are discussed in this
same for those three experiments before May. The reason fgubsection.
coincident RMSE was attributed to the key role of soil mois-  Results from experiments with 10-day assimilation inter-
ture observation in updating of soil moisture states in thisval are shown in Figs. 10 and 11. Figure 10 illustrates that
scenario. The evaluation of posterior soil moisture ensemblethe performances of ensemble mean values for all parameters
(Fig. 9) displayed that observation information was enoughwere similar to that of one-day assimilation interval experi-
for the EnKF reducing most of error in soil moisture fore- ments, especially in the NIPD scenario, even if much less
casting in this assimilation period, even if all estimated pa-soil moisture observation information was assimilated in this
rameters had imperfect values (Fig. 9al1, a2). Whereas aftetase. In constrained estimation experiments, all three param-
the convergence time of all parameters in the constrained essters successfully converged to true values in both NIPD and
timation experiment (Fig. 7al, b1, c1), because all three paWIPD scenarios. However, the situation was not satisfied for
rameters failed to be estimated in non-constrained estimatiothe non-constrained experiments, in which the estimations
experiment in this period (after June in Fig. 6al, b1, c1), thefor most of estimated parameters failed. Less available soil
cumulative effects of parameter error caused positive biasegioisture observation information assimilated in the EnKF
in the ensemble mean of soil moisture forecasting in the dry-weakened the role of the EnKF on reducing uncertainties in
ing down periods (Fig. 9al, a2). The constrained estimatiorwide prior parameter distributions. Therefore, the In-
case had more benefits in RMSE evolution compared to itgervals in the WIPD scenario here (e.g., Fig. 10a2, d2) were
non-constrained counterpart (Fig. 8al, a2). In the WIPD scelarger than those of corresponding one-day assimilation in-
nario, because more parameter prior uncertainties were interval experiments. The RMSE evolution in Fig. 11 depicts
troduced and kept in the whole EnKF assimilation processesthat the smallest RMSE were exhibited by constrained es-
much large uncertainties were contained in the posterior entimation experiments in both NIPD and WIPD scenarios as
sembles of soil moisture forecasting in the non-parameterthat in one-day assimilation interval case. With much less
estimation experiment (Fig. 9d1, d2). The RMSE in non- soil moisture observation information used to reduce model
estimation experiments (Fig. 8b1, b2) were much larger tharerrors and improve the performance of the EnKF, the RMSE
that of the NIPD scenario (Fig. 8al, a2). With larger prior of soil moisture forecasting was always larger than that in
parameter error in this scenario, the soil moisture forecastingne-day assimilation interval case.
errors (combined errors of initial condition, parameter and Further analyses with 20-, 30- and 40-day assimilation
atmosphere forcing) were much larger than the error in thentervals illustrated similar results as that of the 10-day
near surface soil moisture observations at the early stage dftervals. Table 5 provides a summary of RMSE and
the EnKF assimilation processes (Fig. 9e1, e2, f1, f2). InRRE for simultaneous three-parameter estimation experi-
this case, although all three parameters did not converge tments with different assimilation intervals. In general, the
their true values in both constrained and non-constrained essonstrained estimations in both NIPD and WIPD scenar-
timation experiments before April (Figs. 6 and 7), the RMSE ios produce consistently improved performances relative to
of soil moisture forecasting in these two experiments cannon-constrained-estimation experiments and non-parameter-
also converge to an equivalent low level as observation erestimation benchmark experiments. For all assimilation in-
ror within several assimilation cycles (Fig. 8bl, b2). After tervals, the RMSE of the constrained estimation experiments
June, as all three parameters in constrained estimation expeir both two soil layers were significantly smaller than that of
iment (Fig. 7a2, b2, c2) and two key parametes; and b the non-parameter-estimation experiments. Meanwhile, the
in non-constrained estimation experiment (Fig. 6a2, c2) waRRE of the constrained estimation experiments were always
successfully estimated by the EnKF, the performance of confarger than that of the non-constrained-estimation experi-
strained estimation experiment actually benefited little fromments for more error reduced by proper parameter estima-
these additional constraints between parameters in the laston. However, the increases of RRE from non-constrained
half year in the WIPD scenario. Figures 8b1, b2 indicate thatestimation experiment to constrained estimation experiment
the RMSE of constrained estimation experiment was slightlywere different between the NIPD and WIPD scenarios. In the
smaller compared to corresponding non-constrained estimaNIPD scenario, because all parameters of non-constrained
tion experiment, although it was still significantly smaller estimation experiments lacked estimates, the constrained es-
than that of non-parameter-estimation experiment. timation method fully demonstrated its benefits of estimating
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Fig. 8. Same as in Fig. 3 but for the time evolution of RMSE of near surface layer soil mo{stlix€b1) and root zone layer soil moisture
(a2), (b2) from the constrained (solid black lines) and non-constrained (solid gray lines) three-parameter estimation experiments in both

NIPD and WIPD scenarios corresponding to Figs. 5 and 6, respectively. Short dashed gray lines represent RMSE from non-parameter-
estimation benchmark experiment.

all imperfect parameters simultaneously, causing significant Table 5 also shows that the changes of RRE with assimila-
increases of RRE from the non-constrained estimation expertion intervals in constrained estimation experiments were dif-
iment (less than 10 %) to the constrained estimation experiferent between the NIPD and WIPD scenarios. In the NIPD
ment (more than 30 %). In the WIPD scenario, as the nonscenario, the largest RRE was exhibited by the 10- and 20-
constrained estimation experiments already have good estday assimilation intervals for near surface layer (39.1 %) and
mation performance (e.g., Fig. 10e2, f2), the advantage of theoot zone layer (41.9 %), respectively. When assimilation in-
constrained estimation method compared to unconstraineterval was as small as one day, frequent corrections from soil
method in the RMSE of soil moisture forecasting was notmoisture observations to model state may have weakened
as significant as that in the NIPD scenario. In this scenariothe effects of proper parameter estimation in soil moisture
the RRE of constrained estimation experiments were slightlyforecasting. Whereas in the extremely sparse observation
larger than that of non-constrained estimation experimentsases £30 days here), too little information was available
for all assimilation intervals. to update model state from soil moisture observations over a
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Fig. 9. The time evolution of ensemble soil moisture forecasting of near surface(&isefl), and root zone layegf@2—f2) in both NIPD

(a—c)and WIPD(d-f) scenarios(al), (a2), (d1), (d2) are for non-parameter-estimation benchmark experiméit},(b2), (el), (e2)are for
non-constrained three parameter estimation experiment&apdc?2), (f1), (f2) are for constrained three parameter estimation experiments.

The solid line represents the “true” values, the long dash line represents the ensemble mean values, and the shaded area represents t
ensemble spread of soil moisture forecasting.

certain period (e.g., one month), making it difficult to over- experiment displayed the largest RRE for both near surface
come the accumulation of errors in soil moisture state in thelayer (66.7 %) and root zone layer (81.3%). When param-
process of model integration. Therefore, when the parameteseter uncertainties were large enough with a wide prior en-
uncertainties reflected by ensemble were insufficient, propesemble sampling distribution, the estimation procedures ex-
assimilation frequency (about once 10 or 20 days here) distracted more useful information from soil moisture observa-
played the greatest advantages of this constrained estimdions. In this case, therefore, frequent corrections to model
tion method in soil moisture assimilation using the EnKF. soil moisture state obtained the biggest advantage of the con-
Whereas in WIPD scenario, the 1-day assimilation intervalstrained estimation method.
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Fig. 10. Same as in Fig. 2 but for the constrained three-parameter estimation expeaigne?), (b1), (b2), (c1), (c2)and non-constrained
three-parameter estimation experimegiatt), (d2), (el), (e2) (f1), (f2) in both NIPD and WIPD scenarios with 10-day assimilation interval.

5 Conclusions eter and soil moisture state simultaneously. Three key hy-

draulic parameters: the saturated hydraulic conductheity

the saturated soil moisture suctigi,and a soil texture em-
This study explores the applicability of the EnKF-based pirical parametew, were subjected to estimation attempts
state-parameter estimation in soil moisture data assimilatiofy, various experiments. Because an accurate estimate of
using a physical process land surface model by a series Qfrior uncertainty of hydraulic parameters in nature differed
identical twin experiments. Uncertainties in model parame-greatly, two kinds of initial parameter distribution (IPD) sce-
ters, soil moisture initial condition and atmospheric forcing narios were considered in this study to explore fully the pa-
data were considered primary sources of model errors. Byameter estimation capability of the EnKF. These included

the means of state augmentation, model-based pseudo neégfe narrow IPD (NIPD) scenario representing our insufficient
surface soil moisture observations estimated model param-
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Fig. 11. Same as in Fig. 3 but for the time evolution of RMSE of near surface layer soil mo{sili€b1) and root zone layer soil moisture

(a2), (b2) from the constrained (solid black lines) and non-constrained (solid gray lines) three-parameter estimation experiments in both
NIPD and WIPD scenarios with 10-day assimilation interval corresponding to Fig. 8. Short dashed gray lines represent RMSE from the
non-parameter-estimation benchmark experiment.

knowledge about the first guess error of these hydraulic pafor the NIPD scenario. A wide initial distribution of es-
rameters and the wide IPD (WIPD) scenario indicating wetimated parameters made more appropriate sampling infor-
know enough about the first guess error of all parameters. mation included in parameter ensembles, improving simul-
The estimation of single imperfect parameter was suc-taneous multi-parameter estimation performances compared
cessful for all three estimated parameters in both NIPD ando that of the NIPD scenario. However, when the number
WIPD scenarios. The ensemble mean value of each estiof estimated parameters increased to three, experiments in
mated parameters converge to its true value successfully. Insoth NIPD and WIPD scenarios could not lead all estimated
creasing the number of imperfect parameters led to a deparameters to converge to their true values validly, although
cline in the performance of parameter estimation, especiallythe overall performance of the EnKF in terms of soil moisture
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Table 5. Summary of the time average root mean squared error (RMSE) and relative root mean squared error (RRE) of soil moisture in
near surface layer (SM1) and root zone layer (SM2) in three-parameter constrained estimation (CE) experiments, non-constrained estimatior
(NCE) experiments, and non-parameter-estimation (NPE) experiments in both NIPD and WIPD scenarios with assimilation intervals of 1
day, 10 days, 20 days, 30 days and 40 days, respectively.

Scenarios  Assimilation CE RMSE NCE RMSE NPE RMSE CE RRE NCE RRE

intervals ~ (cnfcm3) (cm3cm™3) (cm3cm=3) (%) (%)
SM1 SM2 SM1 SM2 SM1 SM2 SM1 SM2 SM1 SM2

NIPD lday 0.015 0.009 0.021 0.013 0.022 0.014 31.8 357 4.5 7.1
10days 0.028 0.020 0.042 0.031 0.046 0.034 39.1 41.2 8.7 8.8
20days 0.034 0.025 0.053 0.041 0.054 0.043 37.0 419 1.9 4.7
30days 0.039 0.031 0.056 0.045 0.059 0.047 339 34.0 51 4.3
40days 0.043 0.035 0.060 0.049 0.063 0.052 317 327 4.8 5.8

WIPD lday 0.012 0.011 0.014 0.014 0.036 0.059 66.7 81.3 61.1 76.3
10days 0.026 0.021 0.029 0.026 0.045 0.053 42,2 60.4 35.6 50.9
20days 0.032 0.027 0.035 0.029 0.055 0.059 41.8 54.2 36.4 50.8
30days 0.035 0.029 0.036 0.031 0.057 0.058 38.6 50.0 36.9 46.6
40days 0.036 0.031 0.037 0.031 0.059 0.059 39.0 475 38.3 475

RMSE was still superior to the non-parameter-estimationscenario. Given that true values of these hydraulic param-
benchmark experiments with parameter error reduced in theters (and also most of other parameters in LSM) cannot
estimation processes. The failure of estimation was ascribefle obtained in nature, the constrained estimation method
to independent perturbations on different estimated paramemay provide an effective way for reducing parameter related
ters, causing the increase of degree of freedom of assimilauncertainties in actual soil moisture assimilation with its
tion system and the breakage of the statistical relationshippoor parameter settings. Moreover, the greatest advantages
between these parameters in assimilation processes. of the constrained estimation method in improving soil
A strategy of considering constraints between estimatednoisture forecasting were displayed with different assimila-
hydraulic parameters in the filter was introduced to improvetion intervals for the NIPD and WIPD scenarios. When the
the performance of estimating all three imperfect parameteréirst guess of these hydraulic parameters are insufficient, 10-
simultaneously. The constraints used were obtained fronio 20- days may be a proper assimilation frequency. Once
Cosby et al. (1984), and are the approximation to actuathe first guess error of parameters is given correctly in the
statistical relationships between these parameters. The peEnKF assimilation processes, however, frequent corrections
formance of the constrained three-parameter estimation walsing soil moisture observation are able to utilize the greatest
successful, even if observations were available with tempoadvantage of this constrained estimation method. Although
rally sparse intervals such as 10 days or much longer. Frongbtained from identical twin experiments, these results still
the viewpoint of adding information, imposing the equality provide an instructive analysis of the advantages of this
constraints between estimated parameters also adds new igonstrained estimation method in soil moisture assimilation.
formation to the EnKF assimilation system and the available Because all constraints considered in this study were al-
observations, namely, the statistical balance correlation beways in a statistical sense and obtained from literature or
tween these parameters. For this reason, the constrained esstandard parameter tables of the model, this constrained pa-
mation method effectively overcame the negative impacts ofameter estimation method is applicable to other land sur-
the non-closure problem in the multi-parameter estimationface models with even more imperfect parameters for esti-
especially for the NIPD scenario which features an insuffi-mation. Due to its superiorities to the non-constrained esti-
cient guess for the prior error of estimated parameters. mation method and the traditional non-parameter-estimation
Compared to non-parameter-estimation and non-method in the performance of soil moisture forecasting, even
constrained estimation cases, the constrained thredf available observations are rare in time, this method is suit-
parameter estimation case can reduce RMSE in soil moistur@ble well for assimilating actual temporally sparse in situ soil
forecasting much more. The benefits of this constrainednoisture observations in China. The application of this con-
estimation method in estimating all imperfect parametersstrained multi-parameter estimation method in assimilating
simultaneously are fully demonstrated when the corre-temporally sparse in situ soil moisture observations in China
sponding non-constrained estimation case has a relativelyill be studied in the future.
poor performance for parameter estimation as in the NIPD
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