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Abstract. Many river basins have a weak in-situ hydrom-
eteorological monitoring infrastructure. However, water re-
sources practitioners depend on reliable hydrological models
for management purposes. Remote sensing (RS) data have
been recognized as an alternative to in-situ hydrometeoro-
logical data in remote and poorly monitored areas and are
increasingly used to force, calibrate, and update hydrologi-
cal models.

In this study, we evaluate the potential of informing a
river basin model with real-time radar altimetry measure-
ments over reservoirs. We present a lumped, conceptual,
river basin water balance modeling approach based entirely
on RS and reanalysis data: precipitation was obtained from
the Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA), temperature from
the European Centre for Medium-Range Weather Forecast’s
(ECMWF) Operational Surface Analysis dataset and refer-
ence evapotranspiration was derived from temperature data.
The Ensemble Kalman Filter was used to assimilate radar
altimetry (ERS2 and Envisat) measurements of reservoir wa-
ter levels. The modeling approach was applied to the Syr
Darya River Basin, a snowmelt-dominated basin with large
topographical variability, several large reservoirs and scarce
hydrometeorological data that is located in Central Asia and
shared between 4 countries with conflicting water manage-
ment interests.

Correspondence to:P. Bauer-Gottwein
(pbau@env.dtu.dk)

The modeling approach was tested over a historical period
for which in-situ reservoir water levels were available. As-
similation of radar altimetry data significantly improved the
performance of the hydrological model. Without assimila-
tion of radar altimetry data, model performance was limited,
probably because of the size and complexity of the model
domain, simplifications inherent in model design, and the
uncertainty of RS and reanalysis data. Altimetry data as-
similation reduced the mean absolute error of the simulated
reservoir water levels from 4.7 to 1.9 m, and overall model
RMSE from 10.3 m to 6.7 m. Model performance was vari-
able for the different reservoirs in the system. The RMSE
ranged from 10% to 76% of the mean seasonal reservoir level
variation.

Because of its easy accessibility and immediate availabil-
ity, radar altimetry lends itself to being used in real-time hy-
drological applications. As an impartial source of informa-
tion about the hydrological system that can be updated in real
time, the modeling approach described here can provide use-
ful medium-term hydrological forecasts to be used in water
resources management.

1 Introduction

Hydrological models are constructed for two main pur-
poses: to improve hydrological process understanding and to
support practical decision making in water resources man-
agement. River basin management models typically op-
erate at large scales and, given the complexity of most
river basins, use semi-empirical lumped parameterizations of
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hydrological processes. Because the uncertainties inherent
in such models are large, calibration and data assimilation
techniques are essential to achieve satisfactory model perfor-
mance. However, in-situ data availability is limited, partic-
ularly in the developing world, where many river basins are
poorly gauged. Satellite-based data with high temporal res-
olution have the potential to fill critical information gaps in
such ungauged or poorly gauged basins (e.g. Grayson et al.,
2002; Lakshmi, 2004).

Remote sensing data can be used in hydrological models
in two ways (Brunner et al., 2007): as input parameters (or
forcing data) and as calibration data. The most popular re-
mote sensing data sources for hydrological applications are
multispectral imagery for the determination of actual evap-
otranspiration (e.g. Bastiaanssen et al., 1998; Jiang et al.,
2001; Stisen et al., 2008b), active microwave sensors for
mapping of soil moisture distribution (e.g. Parajka et al.,
2006), total water storage change estimates from GRACE
(e.g. Hinderer et al., 2006; Winsemius et al., 2006), river
and lake level variations from radar altimetry (e.g. Birkett,
2000; Alsdorf et al., 2001; Bjerklie et al., 2003; Calmant
et al., 2008; Getirana et al., 2009) and interferometric SAR
(e.g. Alsdorf et al., 2001; Wdowinski et al., 2004; Gondwe et
al., 2010). Several previous studies have used remote sens-
ing data in the context of river basin water balance model-
ing (e.g. Campo et al., 2006). Andersen et al. (2002) built
a distributed hydrological model of the Senegal River Basin
using precipitation derived from METEOSAT data and leaf
area index (LAI) estimated from the normalized difference
vegetation index (NDVI) from NOAA AVHRR data. Stisen
et al. (2008a) developed a distributed hydrological model of
the same catchment using potential evapotranspiration (PET)
estimated from global radiation, precipitation from satellite-
derived cold cloud duration, and LAI calculated from NDVI.
Boegh et al. (2004) usedRS-data to derive PET and LAI as
input to a distributed agro-hydrological model. Francois et
al. (2003) used Synthetic Aperture Radar (SAR) estimates
of soil moisture in a lumped rainfall-runoff model. Neal
et al. (2009) assimilated water level estimates derived from
multi-temporal SAR imagery into a coupled hydrological
and hydrodynamic model of an ungauged basin. In a similar
approach, Montanari et al. (2009) used SAR-derived water
levels to update the model states of a simple rainfall-runoff
model, which was coupled to a one-dimensional flood inun-
dation model.

More recently, the potential of using remote sensing data
in real time or near real time to update hydrological model
state variables has been recognized. Data assimilation (DA)
methods were first used in the fields of oceanography and
meteorology, but have been used in hydrology since the
1990s (McLaughlin, 1995; Evensen, 2003). Several DA
techniques are available, including the Particle Filter (Aru-
lampalam et al., 2002) and the Reduced Rank Square Root
Filter (Verlaan et al., 1997); The Ensemble Kalman Filter
(Evensen, 2003) is used here because it has a simple con-

ceptual formulation, it is easy to implement and is compu-
tationally efficient. Previous studies using data assimilation
techniques on hydrological modeling included land surface
models (e.g. Reichle et al., 2002), surface water models (e.g.
Madsen et al., 2005) and groundwater models (e.g. Franssen
et al., 2008). The value of DA for models used in water re-
sources management is based on its ability to improve oper-
ational forecasts.

This study presents a semi-distributed river basin model
of the Syr Darya River basin in Central Asia (Fig. 1) and
analyses how operational model performance in real-time
forecasting can be improved if the model is informed with
real-time reservoir water levels based on radar altimetry.
In situ data availability in the Syr Darya is extremely lim-
ited and model forcing variables are therefore exclusively
based on remote sensing and reanalysis data. Precipita-
tion is obtained from the Tropical Rainfall Measuring Mis-
sion (TRMM) Multisatellite Precipitation Analysis (TMPA;
Huffman et al., 2007); daily temperature is obtained from
the European Centre for Medium-Range Weather Forecast
(ECMWF) Operational Surface Analysis dataset (Molteni et
al., 1996); and reference evapotranspiration is derived from
daily temperature using Hargreaves equation (Allen et al.,
1998). The water level in a cascade of four reservoirs is sim-
ulated in the model, and satellite radar altimetry data (Berry
et al., 2005) are used to update the water level in the reser-
voirs using the Ensemble Kalman filter.

2 Study area

The Syr Darya River is located in the Central Asian republics
of Kyrgyzstan, Uzbekistan, Tajikistan, and Kazakhstan and,
along with the Amu Darya River, is one of two principal trib-
utaries to the Aral Sea (Fig. 1). About 22 million people
in the region depend on irrigated agriculture for their liveli-
hoods, and 20% to 40% of GDP in the riparian countries is
derived from agriculture, most of which is irrigated (Buck-
nall et al., 2003). Much of the region has an arid climate, with
strongly seasonal precipitation and temperature patterns. The
extensive development of irrigation in the basin is associated
with a number of environmental problems including desicca-
tion of the Aral Sea, which has lost up to 90% of its pre-1960
volume and has received international attention as an envi-
ronmental disaster area (Micklin, 2007).

The Syr Darya River originates in the Tien Shan Moun-
tains of Kyrgyzstan and is formed by the confluence of the
Naryn and Karadarya rivers near the border of Kyrgyzstan
and Uzbekistan. The population of the basin is approxi-
mately 20 million, with an area of about 400 000 km2. An-
nual precipitation averages about 320 mm and ranges from
50–1500 mm in the mountain zones to 100–200 mm in desert
regions near the Aral Sea (Schiemann et al., 2008). The
bulk of runoff comes from melting snow and glaciers in
the mountains of Kyrgyzstan. Because of the combined
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Fig. 1. Base map of the Syr Darya River Basin (SDRB).

effects of snowmelt and glacial runoff, about 80% of runoff
in the basin occurs between March and September. The on-
set of the snowmelt period shifts from early spring to early
summer with increasing elevation, distributing snowmelt
runoff over a period of several months. In the summer
months, glacial ablation peaks and prolongs the period of
peak runoff. Annual runoff averages about 39 km3/year (ap-
prox. 96 mm/year), and approximately 90% of the river’s
mean annual flow is regulated by reservoirs (Savoskul et al.,
2003).

The Syr Darya River was extensively developed for irriga-
tion and hydropower during Soviet times, particularly after
1960, with the primary goal of producing cotton. Total ir-
rigated area in the Aral Sea basin increased from 5 million
hectares in 1965 to 7.9 million hectares in 2000 (Micklin,
2007). About 1.7 million hectares are currently irrigated di-
rectly from the Syr Darya River (Siegfried et al., 2007). Cot-
ton is an important source of foreign exchange in Uzbekistan,
and continued production through irrigated agriculture is a
priority for the government (World Bank, 2004).

A significant change to the natural hydrological pattern
of the basin occurred with the construction of the Tok-
togul Reservoir in 1974. Because the timing of the March–
September natural runoff peak coincides with the irrigation
season, substantial reservoir storage is not required to regu-
late seasonal runoff. However, the aggressive expansion of
irrigation during Soviet times created a need for multi-year
storage to store excess flows in wet years to supplement dry
year flows. Toktogul Reservoir was constructed on the Naryn
River (the principal tributary to the Syr Darya) to serve this
purpose. The reservoir is the largest storage facility in the
Aral Sea basin and has a total capacity of 19.5 km3 (14 km3

active storage). The construction of the reservoir was ac-
companied by the building of four smaller downstream reser-
voirs and power plants to maximize electricity generation
from reservoir releases. The five facilities, commonly called
the Naryn Cascade, have a combined generation capacity of
2870 MW (World Bank, 2004).

Toktogul Reservoir and the Naryn Cascade are at the heart
of a dispute over management of the Syr Darya River that
has existed since the downfall of the Soviet Union in 1991.
In the Soviet system, the reservoir was operated to benefit
irrigated agriculture and power was produced incidentally as
flows were released to meet downstream demands. In 1992,
the Central Asian riparian states agreed to continue Soviet
water allocation policies and established the Interstate Com-
mission for Water Coordination (ICWC) to oversee the allo-
cation process. However, the new system immediately came
under strain as the competing interests of the newly indepen-
dent states emerged. Toktogul Reservoir came under the con-
trol of Kyrgyzstan, which is less dependent on irrigated agri-
culture and lacks fossil fuel resources for energy generation.
Kyrgyzstan had been supplied with fossil fuels under the So-
viet system but found itself in the position of having to pur-
chase energy supplies on world markets after 1991. Kyrgyzs-
tan turned to hydropower for its own energy needs, which
peak in winter because of heating demands, placing the coun-
try’s operational objectives in direct opposition to those of
its downstream neighbors; Kyrgyzstan would prefer to store
summer peak flows for winter power generation, while the
downstream countries would like winter releases minimized
to conserve water for the summer season (Biddison, 2002;
World Bank, 2004; Siegfried et al., 2007). Increased winter
releases also cause flooding, as many of the downstream ir-
rigation works are not built to handle high flows and ice in
the river bed reduces winter conveyance capacity (Biddison,
2002).

In these circumstances of mutual distrust between the up-
and downstream countries, global datasets and assimilation
of radar altimetry hold great promise for increasing trans-
parency, reducing forecast uncertainty, and increasing the
speed at which forecasts can be developed and updated. Be-
cause remotely-sensed data products are available to all, their
increased use in the region has the potential to reduce distrust
by providing a common base of information. The increasing
availability of these products in real-time also has the poten-
tial to accelerate the forecasting process so that water alloca-
tion plans can be agreed upon earlier in the irrigation season.

3 Methods and data

3.1 River basin water balance modeling

The river basin water balance model was implemented as
a combination of a rainfall-runoff model (NAM, Refsgaard
et al., 1996; DHI, 2000) and a river network mass balance
model (Mike Basin, DHI, 2009). Runoff in the subcatch-
ments is simulated using NAM and is subsequently routed
through the river network in Mike Basin. Irrigation agricul-
ture districts are simulated as water users that abstract water
from the Mike Basin river network. The simulation is run in
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daily time steps from 1 January 2000 to 31 December 2007.
A modeling flow chart is presented in Fig. 2.

The NAM model (Nedbør-Afstrømningsmodel, Danish
for rainfall-runoff model) is a lumped conceptual modeling
system consisting of mass balance equations that account
for the water content in four different storages representing
processes occurring in the land phase of the hydrological
cycle: snow storage, surface storage, lower soil zone stor-
age and groundwater storage (DHI, 2000). The minimum
data requirements of the modeling system are precipitation,
reference evapotranspiration and observed discharge. Daily
mean temperature is also required if snowmelt contributes to
runoff. A comparison of data requirements and performance
of NAM with other lumped hydrological models is provided
by Refsgaard et al. (1996). The four storages are typically
modeled using a set of 17 parameters, about 10 of which are
commonly used for model calibration.

Due to the limited amount of observed in-situ river dis-
charge data, it was impossible to achieve a unique and sta-
ble calibration based on 10 free model parameters. More-
over, we observed that overland flow does not significantly
contribute to the hydrological regime in the Syr Darya river
basin. A more robust version of NAM was developed us-
ing only five free calibration parameters: two parameters de-
scribing surface and soil moisture storage and the others de-
scribing groundwater response times. The structure of this
simplified version of NAM is shown in Fig. 3. Table 1 lists
the parameters chosen to enforce this model structure. Over-
land flow and interflow are effectively switched off by this
choice of parameters. Instead of working with two ground-
water reservoirs (as we decided to do), one could probably
have obtained an equally good fit with an interflow com-
ponent and one groundwater reservoir. However, given the
large size of the subcatchments, we decided to represent all
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Fig. 3. Structure of the rainfall-runoff model. Items on light shad-
ing are input data, those on dark shading relate to the calibration
parameters.

runoff processes by linear reservoirs. Because of its simplic-
ity, the modeling approach is robust and appropriate given
the general scarcity of observation data in the SDRB.

Precipitation falls as snow if the temperature is below 0
degrees Celsius and as liquid precipitation (PL) otherwise.
Each single catchment is divided into 10 separate elevations
zones of equal area and the precipitation discrimination is
done for each individual elevation zone separately, using
temperature lapse rates based on Tsarev et al. (1994). Snow
melt (SM) is modeled using a simple degree-day approach:

SMpot=

{
M ×T ,T > 0
0,else

SM= min
(
SS/1t,SMpot

) (1)

where 1t is the time step (days), SMpot is the potential
snowmelt (mm day−1), T is the temperature in degrees Cel-
sius, SS is the snow storage (mm), andM is a seasonally vari-
able degree day factor (mm day−1 deg−1) based on a param-
eterization proposed by Shenzis (1985) for the Central Asian
Mountains. Snowmelt parameters used in the model are
listed in Table 2. Snow melt is calculated for each elevation
zone separately. Snow melt and liquid precipitation enter the
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Table 1. NAM parameters chosen to enforce the rainfall-runoff model structure shown in Fig. 3.

Parametera Description Units Value

CQOF Overland flow runoff coefficient – 0
CKIF Time constant for interflow hours 1e6
CK1,2 Time constants for routing overland flow hours 10
TOF Rootzone threshold value for overland flow – 0.999
TIF Rootzone threshold value for inter flow – 0.999
TG Rootzone threshold value for groundwater recharge – 0

a For a detailed description of these parameters and their interaction the reader is referred to DHI (2000).

Table 2. Snowmelt parameters used in the rainfall-runoff model (NAM).

Lapse rate Degree day coefficient (M)

[deg 100 m−1] [mm deg−1 day−1]

wet dry J F M A M J J A S O N D
−0.7 −0.5 1.0 1.0 2.2 3.7 5.0 6.0 6.0 6.0 1.0 1.0 1.0 1.0

surface storage (U in mm). The surface storage is depleted
by evapotranspiration (ET). The ET rate is assumed to be
equal to the reference ET rate. The surface storage has a
maximum capacity (Umax, in mm), which is a calibration pa-
rameter. If the surface storage is filled to maximum capacity,
additional snow melt or liquid precipitation spills to the soil
storage (L, in mm). A balance equation is solved for the soil
storage:

dL

dt
= SP−AET−PER (2)

The symbol SP indicates spills from the surface storage to the
soil storage. Water in the soil storage is depleted by actual
soil ET (AET) and percolation (PER). Actual soil ET and
percolation are calculated as functions of soil water storage:

AET = (ETref−ETU) ·
L

Lmax
(3)

PER= SP·
L

Lmax
(4)

where ETref is the reference ET (mm day−1), ETU is the ET
drawn from the surface storage andLmax is the maximum
soil storage (mm). Lmax is a calibration parameter. Per-
colation flows to two parallel groundwater reservoirs which
are conceptualized as shallow and deep aquifers, respectively
(GS, DG, in mm). A balance equation is solved for each of
the two groundwater reservoirs:

dGS
dt

= Cqlow·PER−BFshallow

dDG
dt

= (1−Cqlow) ·PER−BFdeep

(5)

Baseflow from the groundwater reservoirs to the river is cal-
culated using a linear reservoir approach:

BFshallow=
1

CKBF ·GS

BFdeep=
1

CKlow ·DG
(6)

where CKBF and CKlow are the response times of the two
linear reservoirs (days). The response times as well as the
factor Cqlow, which governs the partition of percolation be-
tween the shallow and deep aquifers, are calibration param-
eters. Rainfall-runoff processes are thus simulated using a
very simple approach with five calibration parameters only:
Umax, Lmax, CKBF, CKlow and Cqlow.

An automatic calibration module is available for NAM
(Madsen, 2000). The module is based on the Shuffled Com-
plex Evolution (SCE) algorithm, and it allows for the opti-
mization of multiple objectives: (1) overall water balance;
(2) overall RMSE, (3) peak flow RMSE and (4) low flow
RMSE. The catchments were classified into calibration, val-
idation, prediction and inactive catchments. Runoff gener-
ating areas were outlined using four datasets: Terrain slope
(based on SRTM), mean annual rainfall (TRMM-3B42), sur-
face geology and observed river discharge provided by the
Operational Hydrological Forecasting Department (UzHy-
dromet) in Tashkent, Uzbekistan. Flat areas outside the
mountain ranges covered by the sandy geology of the Kyzyl
Kum desert and adjacent steppe areas with annual precipi-
tation of less than 200 mm were assumed to produce neg-
ligible runoff. The division into active and inactive sub-
catchments was validated against the discharge dataset pro-
vided by UzHydromet. Catchments with continuous dis-
charge records of 8 years or more were used for calibration,
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while those with 3–7 years of discontinuous data were used
for validation. Prediction catchments are defined as those lo-
cated in runoff-generating areas, where no discharge data are
available. In total there were 9 calibration catchments, 9 val-
idation catchments, 14 prediction catchments and 60 inactive
catchments. Semi-automatic calibration was carried out for
the calibration catchments.

The Mike Basin river network consists of nodes and
reaches. The catchments dewater into the river network at
catchment nodes. The water transfer from one node to the
next is instantaneous, i.e. at every node a simple water bal-
ance equation is solved. The only nodes that can store water
temporally are the reservoir nodes. Irrigation sites are intro-
duced into the model as water demand nodes. Figure 1 shows
the Mike Basin river network layout.

Information on the reservoirs was obtained from the Sci-
entific Information Council of the Interstate Commission for
Water Coordination in Central Asia (ICWC, 2009). The
reservoirs in the Syr Darya River Basin are implemented as
rule curve reservoirs. The reservoir water balance is cal-
culated from inflow, outflow and losses. Only evaporation
losses were considered in this study and were computed
using reference evapotranspiration. The level-area-volume
curve is used to convert volume to water level. This in-
formation was provided by UzHydromet. Once the water
level reaches the flood control level, all additional water is
instantaneously routed downstream. Historical observed re-
lease time series are available from the ICWC (2009). The
observed releases were prescribed as minimum downstream
release time series for the various reservoirs over the histor-
ical simulation period. In real-time application mode of the
model, these releases are replaced by planned/projected re-
leases.

The irrigation areas in the Syr Darya River Basin are
lumped into 6 major demand sites, following Raskin et
al. (1992). These are High Naryn, Fergana, Mid Syr, Chakir,
Artur and Low Syr. Irrigation areas and crop distributions
were taken from Raskin et al. (1992). Irrigation water de-
mand was calculated using the FAO-56 methodology (Allen,
2000). Growing season time periods were estimated based on
FAO-56. During the growing season, the soil water balance is
calculated on a daily time step from precipitation, crop evap-
otranspiration and irrigation for each demand site. Precipi-
tation is taken from the TMPA product (see below) and crop
evapotranspiration is calculated using the FAO dual crop co-
efficient approach and reference ET. Irrigation abstractions
are calculated using the standard FAO-56 irrigation model.
This model assumes that irrigation is triggered if the soil wa-
ter content decreases below 50% of the readily available wa-
ter. Soil water contents at field capacity and wilting point
were uniformly set to 0.15 and 0.05 respectively. A total loss
fraction of 0.3 was generally assumed for all demand sites.

3.2 Data assimilation

The Ensemble Kalman Filter (EnKF) has become a popular
data assimilation technique in many environmental model-
ing applications because of its ease of implementation and
its computational efficiency (Evensen, 2003). In the EnKF
approach, the covariance matrix used in a traditional Kalman
Filter is computed from an ensemble of model states. The
mean of the ensemble is assumed to be the “truth” and the
model error (or covariance) is represented by the covariance
of the ensemble members. The ensemble members are then
updated according to model and observation errors, as in a
traditional Kalman Filter. Letxf be thens× ne matrix of
model forecasts containingnsmodel states (number of reser-
voirs with altimetry measurements in our case) forneensem-
ble members:

xf
=

(
xf

1,...,x
f
ne

)
(7)

wherexf
1. . . xf

ne are the forecast vectors containing all state
variables for each ensemble member. The model error co-
variancePf is

Pf
=

(
xf − x̄f

)(
xf − x̄f

)T
(8)

where the overbar denotes an average over the ensemble. The
model states of every ensemble member are then updated
with the Kalman update equation

xa
i = xf

i +K
(
yi −Hxf

i

)
, (9)

wherexa
i is the vector of updated model states for theith

ensemble member,H is anno× nsoperator (no is the number
of observations) that transforms the states into observation
space andy is anno× 1 vector that contains the observations
for every state variable. The Kalman gainK is defined by

K = PHT
(
HPHT

+R
)−1

(10)

whereR is theno× no error covariance matrix of the obser-
vations. A normally distributed, uncorrelated distribution is
assumed for the observation errors.

We use the assimilation algorithm described in Ver-
laan (2008). The algorithm was adapted to run a set of cou-
pled NAM – Mike Basin models automatically and to assim-
ilate water level measurements for several reservoirs. The
model state variables used in data assimilation are the wa-
ter levels in the various reservoirs. The rainfall-runoff model
states are not updated. Runoff is considered as a stochastic
forcing term for the river network mass balance model. The
statistics of the runoff are determined by running an ensem-
ble of 50 rainfall-runoff models. In our implementation, we
consider three sources of uncertainty, which dominate over-
all model uncertainty:
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1. Uncertainty of the precipitation product used to force
the rainfall-runoff model. The study area is large
and has a complex topography. Comparisons between
different precipitation products and the few available
ground stations have shown significant deviations. Each
ensemble member is therefore forced with a different
precipitation input. The precipitation time series are
generated using the relative error specified for our pre-
cipitation product (TRMM-3B42, see below). The error
in the precipitation product is assumed to be normally
distributed.

2. The calibration parameters of the subcatchment rainfall-
runoff models are highly uncertain. The ensemble
members were run with individual random realizations
of the 5 calibration parameters. All 5 parameters were
assumed to be log-normally distributed around the cal-
ibration result and the sampling standard deviation was
set to 0.6 log10 units forUmax and Lmax, 0.2 log10
units for CKBF and CKlow, and 0.1 log10 units for
Cqlow, where Cqlow is expressed in percent. For the
linear reservoir time constants, the log-normal distribu-
tion is the natural choice, as they are related to aquifer
transmissivities, which are typically log-normally dis-
tributed. For the size of the storage compartmentsU

andL, in the absence of field data, it is not clear whether
normal or log-normal distribution is more appropriate.
The log-normal distribution has the advantage of guar-
anteed non-negativity.

3. The irrigated areas and crop distributions at the 6 ma-
jor demand sites are uncertain because the information
from Raskin et al. (1992) is fairly old and probably does
not match the present configuration of the irrigation dis-
tricts. The ensemble members were therefore run with
irrigation areas which were multiplied with a normally
distributed random number with mean of 1 and a stan-
dard deviation of 0.2.

3.3 Input and forcing datasets

All input and forcing datasets were obtained from re-
mote sensing and reanalysis datasets. Table 3 provides an
overview of the various data sources used in this study.

The digital elevation model (DEM) of the area was ob-
tained from the Shuttle Radar Topography Mission (SRTM).
The mission is described by Rabus et al. (2003), and an as-
sessment of its results is provided by Rodriguez et al. (2006).
The data with a 3 arc second (90 m) spatial resolution were
resampled to 1 km spatial resolution. The 1 km DEM was
used to delineate the river network and the subcatchments
using automatic GIS routines.

The Tropical Rainfall Measuring Mission (TRMM) Mul-
tisatellite Precipitation Analysis (TMPA; Huffman et al.,
2007) was used as the data source for precipitation in the

Table 3. Source and spatio-temporal resolution of the various
datasets used in the model.

Data Source Resolution

Data Type Space Time

Remotely sensed and reanalysis

Precipitation TMPA 3B42-RT 0.25◦ 3 h
Temperature ECMWF 0.5◦-0.25◦ 6 h
PET Func. of Temp 0.5◦–0.25◦ 6 h
Lake altimetry ERS/ENVISAT 76 targets 35 days
DEM SRTM 1000×1000 m –

Observations

Discharge UzHydromet 18 stations daily
Reservoir release ICWC 5 reservoirs monthly

Comparison data

Precipitation UzHydromet 16 stations 10 days
Temperature UzHydromet 5 stations 10 days
Reservoir levels UzHydromet 4 reservoirs daily

Syr Darya basin. The 3B42 research product was found suit-
able because of its temporal and spatial resolution (3 h and
0.25◦, respectively) and the incorporation of surface obser-
vation data. The TMPA rainfall estimates have been vali-
dated in diverse regions, e.g. USA (Villarini et al., 2007),
Argentina (Su et al., 2008) and Brazil (Collischonn et al.,
2008). The 3B42 product comes as a 3-hourly product and
includes pixel-based uncertainty estimates (standard devia-
tions). The 3B42 product showed significantly lower precip-
itation amounts than observed at the available ground precip-
itation stations (Fig. 4a). Moreover, water balance calcula-
tions resulted in time-accumulated runoff coefficients as high
as 0.9 for some subcatchments, which are clearly unrealis-
tic. For the application of the model in real-time mode, the
3B42 product was compared with the TMPA real time prod-
uct, 3B42-RT. For the period of comparison (October 2008
to December 2009), precipitation over the subcatchments of
the Syr Darya river basin from 3B42-RT was 2.4 times higher
than the precipitation calculated from 3B42 (Fig. 4b). Both
rainfall products are based on satellite data and thus subject
to large uncertainties. One possible solution to the problem
of precipitation bias is to include a precipitation scaling fac-
tor as an adjustable model parameter. However, we decided
to adopt the overall precipitation amount from 3B42-RT and
scaled the 3B42 product with a factor of 2.4, because the
resulting time-accumulated runoff coefficients were on the
order of 0.3, which is a realistic value for semi-arid moun-
tainous areas.

Ten-day ground temperature observations were available
from UzHydromet at five stations but could not be used to
force the model because of the low temporal and spatial
resolution. ECMWF’s operational surface analysis dataset,

www.hydrol-earth-syst-sci.net/15/241/2011/ Hydrol. Earth Syst. Sci., 15, 241–254, 2011



248 S. J. Pereira-Cardenal et al.: Real-time remote sensing driven river basin modeling

0 300 600 900 1200
0

300

600

900

1200

UzHydromet [mm/yr]

3B
42

 [m
m

/y
r]

A

0 400 800 1200 1600
0

400

800

1200

1600

3B42−RT [mm/yr]

3B
42

 [m
m

/y
r]

B

Fig. 4. Comparison of precipitation datasets.(A) Mean observed
annual precipitation at 16 stations and corresponding pixel from
3B42 research product.(B) Mean catchment precipitation from real
time and research 3B42 products.

which includes 2-m temperature, was used instead (ECMWF,
2009). The data are available in near real time and can thus
be used in both historical and real-time mode. It has a tem-
poral resolution of 6 h (00:00, 06:00, 12:00 and 18:00 UTC)
and a spatial resolution of 0.5◦ up to 2006, and 0.25◦ there-
after. The temperature fields were averaged over daily pe-
riods, with a local time correction to the median longitude
of the Syr Darya basin (70◦ E), i.e. UTC+06:00. The pixel-
wise daily mean temperature was then area-averaged over the
catchments. The mean catchment elevation was used as the
reference elevation when extrapolating the temperature to the
different elevation zones in the catchment.

Input data for reference ET calculation based on the
Penman-Monteith equation were not available. Reference
ET was therefore computed from temperature using Harg-
reaves equation (Allen et al., 1998):

ETref = 0.0023(Tmean+17.8)(Tmax−Tmin)
0.5

·Ra (11)

where Tmean is defined as the daily average ofTmax and
Tmin (not the average of all available temperature measure-
ments) andRa is the extraterrestrial radiation (converted to
mm day−1 using the latent heat of vaporization) for the cor-
responding Julian day and latitude. Hargreaves et al. (2003)
present a comprehensive evaluation of the performance of
Eq. (11). A temperature averaging period above 5 days is
recommended; although some water resource studies (e.g.
the IWMI World Climate Atlas) use 10-day temperature av-
erages (Hargreaves et al., 2003). The ETref fields were calcu-
lated daily, then averaged over 10-day periods, and the result-
ing values area-averaged over the different catchments. Fig-
ure 5 presents a summary comparison between the various
remote sensing forcing products and different in-situ control
points.

3.4 Radar altimetry

Satellite radar altimetry was initially used in order to study
the marine geoid and ocean dynamics (Rapley, 1990). How-
ever, over the past two decades different research groups have
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Fig. 5. 3B42 average monthly precipitation and ECMWF 10-day
average temperatures against observed (UzHydromet) data at three
locations (see Fig. 1 for locations).

derived inland water heights from space-based radar altime-
try (e.g. Cazenave et al., 1997; Berry et al., 2005; Cretaux
et al., 2006). In this study, altimetry data re-tracked by the
Earth and Planetary Remote Sensing Laboratory (EAPRS)
over four large reservoirs were assimilated into the Mike
Basin model in order to update the water levels of the reser-
voirs. The data used are derived from the ERS-2 and EN-
VISAT satellites, which cover 82◦ N to 82◦ S and have re-
peat cycles of 35 days. The altimetry data re-tracked by the
EAPRS lab provide water level time series over a large num-
ber of inland water bodies in the Syr Darya River basin. In to-
tal, 39 usable ERS-2 targets and 37 usable ENVISAT targets
were identified over rivers and lakes in the basin, but only
those over the Toktogul, Chardara, Kayrakkum and Charvak
Reservoirs (Fig. 1) were assimilated into the model. Frap-
part et al. (2006) report an accuracy of 0.25–0.53 m for the
Radar Altimeter 2 (on board of ENVISAT) over lake targets
in the Amazon basin. We found slightly lower precisions for
the reservoirs in the Syr Darya, when comparing historical
in-situ water levels and radar altimetry (Table 4). However,
compared to the typical seasonal variation of the water lev-
els in the reservoirs (between 7 and 50 m, see Table 4), the
standard errors of the altimetry time series are small.

4 Results

Our rainfall-runoff modeling approach captures the dominant
snowmelt process in the hydrological regime of the subcatch-
ments: precipitation is accumulated during the winter and
released throughout the melting season (Fig. 6). However,
the calibration-validation process shows that model perfor-
mance is very variable and that the models tend to under-
estimate runoff (Table 5). This is not surprising consider-
ing the size and complexity of the model domain, the un-
certainties associated with remotely-sensed forcing data, and
the simplicity of the modeling approach. The main reasons
for variable rainfall-runoff model performance are (1) the
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Table 4. Altimetry targets over each reservoir. The altimetry error is reported here as the RMSE of the altimetry time series with respect
to the historical in-situ level time series. Level range and volume range denote the typical seasonal water level and volume variations in the
reservoirs (derived from historical records). Residence time is the mean residence time in the reservoir.

Reservoir Satellite RMSE Level rangea Volume rangeb Residence time
[m] [m] [106 m3] [days]

Chardara ERS 0.63, 0.85 11.5 4700 91
ENVISAT 0.37, 0.48

Toktogul ERS 0.68 57.5 14 000 377.95
ENVISAT 0.89

Charvak ERS 1.81 55.4 1580 83.7
ENVISAT 1.42

Kayrakkum ERS 0.61 7.7 2600 46.1

a Observed during the period 2000–2008.
b ICWC (2009).
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Fig. 6. Rainfall-runoff modeling results in catchment 69.

large uncertainty and possible bias of the precipitation forc-
ing; (2) coarse spatial resolution of the rainfall-runoff model.
The average subcatchment size is 6700 km2, which is large
considering the complexity of this mountain region. How-
ever, refining the subcatchments is difficult because calibra-
tion data for the rainfall-runoff model are scarce. (3) Net
melting of glaciers and ice is not considered in the model.
(4) Un-modeled abstractions from the rivers within the sub-
catchments. The representation of the water users is based
on Raskin et al. (1992) and consists of six aggregated ma-
jor demand sites. Relatively minor abstractions in the up-
stream subcatchments may therefore not be accurately mod-
eled. Moreover, the surface water abstraction has likely
changed significantly since the early 1990s.

If the river basin water balance model is run in “no-
assimilation” mode and is not informed via assimilation of
radar altimetry, its utility for water resources management
applications is limited due to the weak predictive capabil-
ity of the rainfall-runoff model. Performance in the no-
assimilation run is particularly limited for the Kayrakkum

and Chardara reservoirs. These reservoirs are located down-
stream of other major reservoirs (Toktogul, Charvak) and
downstream of major water demand sites. Their water
balance thus depends to a large degree on the manage-
ment of the upstream reservoirs and water abstractions for
the demand sites. The uncertainty and possible bias of
the simulated irrigation abstractions and return flows based
on Raskin et al. (1992) are the likely reasons for limited
model performance at Chardara and Kayrakkum. While the
no-assimilation model seems to generally over-estimate the
stored volume at Chardara, the no-assimilation model shows
a phase-shift at Kayrakkum, which may be related to un-
modeled dynamics of agricultural return flows. Both reser-
voirs are particularly difficult to model because of their rel-
atively short mean water residence times. However, model
uncertainty can be significantly reduced through the assim-
ilation of radar altimetry measurements of reservoir water
levels. Figure 7 compares the reservoir levels predicted
by the assimilation scheme and by the corresponding no-
assimilation model run for the historical simulation period.
When altimetry measurements were available, their assimi-
lation improved the results of the model considerably (Ta-
ble 6), except at Kayrakkum Reservoir, which has a short
residence time (Table 4) and discontinued altimetry measure-
ments. The accuracy of the EnKF estimates is expected to
improve proportionally to the square root of the ensemble
size ne (Evensen, 2007), although in practical applications
this is limited by the number of ensemble members that are
computationally feasible to run. Initially, an ensemble size
of 50 was chosen. Subsequent trials with larger ensembles
resulted in insignificant improvements of the model perfor-
mance. Figure 8 shows how, on average, model residuals in-
crease over time following the assimilation of a radar altime-
try datum for the four reservoirs. Generally, we observe an
approximately linear increase of the model error as a function
of time after assimilation. For Charvak reservoir, a period of

www.hydrol-earth-syst-sci.net/15/241/2011/ Hydrol. Earth Syst. Sci., 15, 241–254, 2011



250 S. J. Pereira-Cardenal et al.: Real-time remote sensing driven river basin modeling

Table 5. Results of the rainfall-runoff model calibration. The columnR2 contains the coefficient of determination of the rainfall-runoff
model for each subcatchment.

Catchment StationID Umax [mm] Lmax [mm] CKBF [hr] CKlow [hr] Cqlow [%] R2 WBEa [%]

Calibration 2 16 055 10 100 480 8760 20 0.52 9
47 16 169 40 400 960 8760 30 0.62 3
55 16 176 40 400 720 8760 20 0.67 2
61 16 193 40 400 480 8760 10 0.69 97

145 16 198 10 100 960 8760 20 0.28 −25
62 16 202 40 400 480 8760 10 0.59 61
64 16 230 40 400 480 8760 10 0.74 34

148 16 279 10 100 960 8760 30 0.80 −13
147 16 290 10 100 960 8760 30 0.79 −12

Validation 8 16 059 10 100 720 8760 20 0.45 27
12 16 121 10 100 720 8760 20 0.57 5
14 16 127 10 100 720 8760 20 0.51 −43
15 16 134 10 100 720 8760 20 0.43 −3
16 16 135 10 100 720 8760 20 0.42 −37
18 16 136 10 100 720 8760 20 0.66 −28
9 16 146 10 100 720 8760 20 0.58 −36

75 16 205 10 100 720 8760 20 0.44 55
49 16 510 10 100 720 8760 20 0 9

a Water balance error.

Table 6. Reservoir water level residuals with and without assimilation of radar altimetry data. All numbers are given in meters.

Toktogul Chardara Kayrakkum Charvak Meana

DA mean(res) −3.07 −0.46 3.08 −0.87 1.87
std(res) 5.33 1.15 5.26 15.11 6.71

No DA mean(res) −9.57 −3.18 3.62 −2.35 4.68
std(res) 8.49 3.38 5.85 23.59 10.33

a: Mean of absolute residuals across all reservoirs.

moderate increase up to about day 40 after assimilation is
followed by more pronounced increases after day 40. The
orbit repeat cycle of Envisat is 35 days and assimilation of
radar altimetry can thus keep the model error at a moderate
level.

5 Discussion and conclusions

A modeling approach using only remotely-sensed and re-
analysis data has been developed and applied to the Syr
Darya River Basin. The ability of the river basin model to
predict reservoir water levels in “no-assimilation” mode was
limited. The generally low model performance can be due
to inaccuracies in theRS input data, to the simplifications
inherent in model structure (e.g. monthly snowmelt coeffi-
cient, lack of a glacial accumulation/ablation model), or to
un-modeled dynamics in the hydrology of the basin (e.g.

variation of irrigation water demand). Limited availability
of in-situ discharge data for model calibration required that
high resolutionRS data be aggregated over very large areas
(sometimes as large as 37 000 km2). If more discharge sta-
tions were available, smaller subcatchments could be used
and the high spatial resolution of the data products would
have been better exploited. While these limitations are se-
vere, they are fairly typical for the situation in many large,
complex and poorly gauged river basins on the planet.

In such basins, we expect significant increases of model
performance when assimilating real-time information based
on remote sensing. We showed that assimilation of satel-
lite altimetry measurements of reservoir water levels can re-
duce deviations between predicted and observed water lev-
els. Even though the mean accuracy of the altimetry data
was 0.86 m, it was sufficient to improve the performance of
the model. Without such data, reservoir levels would diverge
over time from the “true” state of the system. The ensemble
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Kalman filter implementation used in this study has reason-
able computational requirements, with an ensemble size of
50 resulting in a good trade-off between model performance
and computation time.

The accuracy of radar altimetry measurements depends on
several factors: the topography of the area, the along-track
extent of the target, the ability to correct the signal for atmo-
spheric effects, etc. For this site we report accuracies ranging
from 0.37 m at Chardara Reservoir to 1.8 m at Charvak (Ta-
ble 4). Charvak has by far the smallest surface area, making
it a difficult target for the automatic system used to retrieve
the altimetry time series. We believe that the accuracy of the
altimetry product is encouraging, given the difficult charac-
teristics of the targets.

The modeling approach can be exploited to its full poten-
tial, if the modeling system is run in real time. A near real
time (NRT) version of the model has been implemented and
results are made available on the internet (http://tethys.eaprs.
cse.dmu.ac.uk/RiverLake/info/rivermodeling). The NRT
model uses the real time precipitation product (3B42-RT) in-
stead of the research product (3B42). The 3B42-RT product
does not incorporate gauge data, but becomes available ca.
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tion of altimetry data.

6 h after observation (see Huffman et al., 2007; Huffman,
2008, 2009). The temperature data are available 7 h after
observation. Updated reservoir levels are computed by the
model with a total real-time delay of 2 days. The model has
been operated in NRT mode throughout the year 2010. Due
to a recent major orbit change of the ENVISAT mission, real
time altimetry data are currently not available and the opera-
tion of the NRT model has been suspended.

It is important to recognize that the assimilation of reser-
voir water levels violates the water balance in the system. In
the state updating procedure (Eq. 9) water is simply added
or abstracted from the reservoirs. Thus, the model is not
suitable for long-term water resources scenario calculations,
where mass balance has to be maintained. The applica-
tion scenario for the tool is medium-term forecasting. The
model is able to provide “best estimates” of reservoir lev-
els (and thus water availability) with lead times of a few
months. These best estimates are based on a hydrological
model and the most recent available water levels. The model
can also assimilate real-time water level data from in-situ sta-
tions. However, in-situ data typically become available at
later times. Moreover, remotely sensed water levels have the
advantage of being accessible to all interested stakeholders
and countries and can thus be considered as entirely impar-
tial information.

The Ensemble Kalman filter was used in this study to
merge models and data, taking into account their respective
uncertainties. For the application presented in this paper,
model uncertainty is typically significantly larger than the
measurement uncertainty (radar altimetry); therefore, simple
insertion of the altimetry measurements into the model could
be an alternative to data assimilation. However, state inser-
tion would ignore any information contained in the model
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runs. We generally assume that a measurement of one model
state (water level in one of the reservoirs) does not contain in-
formation about the water level in the other reservoirs, i.e. we
assume that H in Eq. (9) is an identity matrix. This assump-
tion is reasonable, because the system is highly regulated.
However, apart from the reservoir targets, Pereira-Cardenal
et al. (2009) identified 37 ENVISAT altimetry targets on river
cross sections available for the Syr Darya. These targets may
show correlation with one or several of the simulated reser-
voirs and can be used for real-time modeling in the future,
using a modified Ensemble Kalman filtering approach. Al-
though the EnKF application presented in this study is fairly
simplistic, the EnKF was chosen over simpler alternatives
such as state insertion or relaxation because of its flexibility
and efficiency in combining models and measurements. The
EnKF itself does not take much CPU time in our case, be-
cause the river basin water balance model is very fast. The
bulk of the simulation time is taken for the computation of the
runoff ensembles. Computing the runoff ensembles would be
necessary for any approach that uses both model and mea-
surement uncertainty, thus also for a relaxation approach.

Because the altimetry data become available every 35
days, one important objective is to avoid that the model drifts
too far between assimilation times. In a modification of the
presented approach, one could distribute the innovation (dif-
ference between model forecast and measurement) in a time
window around the time of observation and assimilate into
the model.

The data assimilation approach described here could bene-
fit the annual water allocation process in the Syr Darya basin
by providing an efficient and transparent technology for up-
dating hydrological forecasts in real time. The real-time ca-
pability could be used together with hydro-economic models
of the basin (Cai et al., 2002) in real-time, adaptive water re-
sources management. In the current management setup, the
riparian states are supposed to agree on an allocation plan
at the beginning of April; however, agreement is often de-
layed until well into the growing season, creating significant
uncertainties for irrigation planning and increasing tensions
between the riparian states. An obstacle to co-operation is
the deteriorated state of the hydro-meteorological monitor-
ing network that existed in Soviet times (Schar et al., 2004).
In addition, national hydro-meteorological agencies now re-
sponsible for data collection are reluctant to share data and
the annual process of data collection and forecasting can be
delayed by poor communications infrastructure (Biddison,
2002). Because of all these issues, the real-time forecasting
tool developed in this study has the potential to contribute to
more efficient water resources management in the region.

In summary, radar altimetry data over inland water bodies
are an innovative data source for hydrological applications.
It can be used to update hydrological models in real time and
can significantly enhance science-based decision support to
water resources managers, particularly in poorly gauged river
basins.
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