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Abstract. This paper presents a new Copula-based methodallow for local scale climate differences, particularly in com-
for further downscaling regional climate simulations. It is plex terrain. Usually there exist tremendous biases between
developed, applied and evaluated for selected stations in thenodelled and observed climate statistics (8ghmidli et al,
alpine region of Germany. Apart from the common way to 2007 Smiatek et al.2009. Therefore, further statistical re-
use Copulas to model the extreme values, a strategy is prdinement and bias correction methods are required to obtain
posed which allows to model continuous time series. Asreliable meteorological information at local scalilby and

the concept of Copulas requires independent and identicallyVigley, 1997). Precipitation is one of the most important
distributed (iid) random variables, meteorological fields arevariables for climate change impact studi€stimidli et al,
transformed using an ARMA-GARCH time series model. In 2009. At the same time it is the most difficult to model.

this paper, we focus on the positive pairs of observed and Statistical downscaling and bias correction methods can be
modelled (RCM) precipitation. According to the empirical divided into (i) direct point-wise techniques which relate spe-
copulas, significant upper and lower tail dependence betweeaific (mostly adjacent) RCM grid cells to a station of interest
observed and modelled precipitation can be observed. Thessuch as mean value adaptation (&gnstmann et a]2004
dependence structures are further conditioned on the prevaiBung and Kunstmanr2007, quantile mapping/histogram
ing large-scale weather situation. Based on the derived thecequalization methods (e.geung et al. 1999 Wood et al,
retical Copula models, stochastic rainfall simulations are per2002 Themef3l et a).201Q Senatore et §12011) or local in-
formed, finally allowing for bias corrected and locally refined tensity scaling (e.gSchmidli et al, 2006 Yang et al, 2010,
RCM simulations. and (ii) indirect methods which relate meteorological fields
to the station such as the analogue method @ligfernicht

and Bardossy 2007, weather or circulation pattern classifi-
cation techniques (e.@ardossy et al.2002, or empirical
orthogonal functions (e.gion Storch and Zwiersl999.

GCMs and RCMs are a central prerequisite for conducting 1he dependence structure of hydrometeorological data
climate change impact studies that require time series of cliSUCh as between modelled and observed rainfall is usually
matic variables. The projections of future climate usually fol- VETy complex, both in time and space. Using simple cor-
low the so-called delta-change approach, considering the diff€lation of the multivariate normal is often not appropriate
ferences between present and future climate. If ime series gf8ardossy and Pegrar2009. It depends on the rainfall gen-
RCMs are used directly as input for external impact models€rating process, i.e. stratiform or convective events, and thus,
such as hydrological or agricultural models with nonlinear N the season. For the m|d-Iat|tude_s, large-scale stratiform
responses to the climate signal, the delta-change approad€nts can be represented well by climate models kéogg
may fail (e.g.,Graham et a).2007 Sennikovs and Bethers et al, 1999 Suklitsch et al. 2010 resulting in a relatively

2009. One reason is the spatial resolution which does notd00d agreement between modelled (grid cell) and measured
rainfall amounts (point scale). In turn, the models gener-

ally perform worse for convective events, which are highly
Correspondence tcP. Laux variable in time and space. As a result, the discrepancies
BY (patrick.laux@kit.edu) between modelled and observed rainfalls can be very large
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Fig. 1. Terrain elevation (left), and bias of mean annual total precipitation for the RCM (MM5) with respect to the DWD reference data set
[%] (Kotlarski et al, 2009 (right).

especially during the summer season with prevailing convec- For rainfall modelling,De Michele and Salvado(R003
tive rainfall processes (e.&chmidli et al, 2007). Potential  used Copulas to model intensity-duration of rainfall events.
reasons for this are e.g. (i) the variability of observed rainfall Favre et al(2004 utilized Copulas for multivariate hydro-
within one corresponding modelled grid cell could be very logical frequency analysiZzhang and Singlf2008 carried
high; rain gauges in the near surrounding can measure largeut a bivariate rainfall frequency analysis using Archimedean
differences in rainfall amounts; (ii) difficulties to capture the Copulas.Renard and Lan(R007) investigated the usefulness
location of convective rainfall events by the climate models; of the Gaussian Copula in extreme value analykishn et
this is mostly due to coarse resolution of the land surfaceal. (2007 employed Copulas to describe spatial and tempo-
model (LSM) and the partly chaotic nature of convection, ral dependence of weekly precipitation extrem&grinaldi
and (iii) wrong or inadequate model parameterizations for(2008 studied the dependence of rain gauge data using the
convection. non-parametric Kendall’s rank correlation and the upper tail
The dependence structures of multivariate distributionsdependence coefficient (TDC). Based on the properties of the
can be modelled using classical distributions such as a mulKendall correlation and TDC, a Copula-based mixed model
tivariate normal. However, it is obvious that a Gaussian ap-for modelling the dependence structure and marginals is sug-
proach can not adequately reproduce the dependence strugested. Recently, Copula-based models for estimating er-
tures whenever large asymmetries are existing. In theseor fields of radar information are developadliarini et al.,
cases, a Copula approach is supposed to be superior becauz@08§ AghaKouchak et al2010ab). The intermittent nature
Copula functions can be adapted flexibly to the data. In ad-of daily and sub-daily rainfall time series (zero-inflated data)
dition to that, there already exists a large pool of theoreticalcan be modelled by mixed distributions, which are distribu-
models which are capable to describe individual characteristions with a continuous part describing data larger than zero
tics of the data. and a discrete part accounting for probabilities to observe
Copulas are additionally advantageous as they allow forzero values $erinaldj 2009. While the univariate form of
describing the dependence structure independently from theuch distributions was studied by many authors, the bi- or
marginal distributions (e.gsenest and Favy2007 Dupois multivariate case received less attenti@elinaldj 2009.
2007, and thus, using different marginal distributions at the Serinaldi(20093 developed a copula-based rainfall model
same time without any transformations. which is able to jointly account for discrete and continuous
There is an increase in applications of Copulas in hy-nature of observed daily rainfall, and can be used for simulat-
drometeorology over the past years. Copula-based modeligig rainfall at multiple sites. SimilarhBardossy and Pegram
have been introduced for multivariate frequency analysis,(2009 present a method to model the spatial interdependence
risk assessment, geostatistical interpolation and multivari-structure of the rainfall amounts together with the rainfall oc-
ate extreme value analyses (elp Michele and Salvadqri  currences.

2003 Bardossy 2006 Genest and Favr@007 Renard and Conventional rainfall models operate under the assump-
Lang 2007 Schblzel and Friederich2008 Bardossy and tion of either constant variance or season-dependent vari-
Li, 2008 Zhang and Sing2008. ances using an AutoRegressive Moving Average (ARMA)
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Fig. 2. Alpine region showing the location of observation stations used in this paper: 1 — Garmisch-Partenkirchen, 2 — Grainau, 3 — Grainau
(Eibsee), 4 — Bad Reichenhall, 5 — Schneizlreuth-Unterjettenberg, 6 — Schneizlreuth-Ristfeucht, 7 — Schneizlreuth-Weissbach, 8 — Anger-
Oberlogl, 9 — Bischofswiesen-Winkl, 10 — Inzell, 11 — Anger-Stoissberg, 12 — Rottach-Egern, 13 — Kreuth, and 14 — Schwizttekopfh

model. However, it could be shown that daily rainfall data are2 Regional climate model simulations and observed
affected by non-linear characteristics of the variance often data
referred to as variance clustering or volatility, in which large
changes tend to follow large changes, and small changes terfdegional climate simulations used in this study are based
to follow small changes. This nonlinear phenomenon of theon the Penn State/NCAR Mesoscale Model (MM5) and
variance behaviour can be found e.g. in monthly and dailyECMWF/ERALS reanalysis data for 1979-1993 at 19.2km
streamflow dataWang et al, 2009, but also in meteorologi-  Spatial resolution. The climate simulations have been carried
cal time series such as temperatiReffilly, 2005. Itis an-  out within the framework of the QUIRCS-DEKLIM project
alyzed in this paper if volatility in daily precipitation series (Kotlarski et al, 2005. A comparison of the MM5 simu-
can be modelled using Generalized AutoRegressive Condilations with gridded observation data for Germany obtained
tional Heteroskedasticity (GARCH) models. from the German weather service (DWD) reveal that rain-
This paper addresses the questions of (i) how to modefall is overestimated by MM5 for the eastern part of Ger-
the temporal characteristics, i.e. serial dependence and timeany, and strongly underestimated for the Rhine valley and
varying variance (volatility) of daily rainfall series, and the alpine region of Germany (Fid, right). The underes-
(i) how to describe the complex joint dependence struc-timation in the alpine region is possibly due to the complex
ture of measured daily rainfall series and corresponding sim¢terrain with strong gradients of altitude (Fig.left).
ulated rainfall series obtained from a RCM model. The In order to statistically refine and correct precipitation ob-
method of choice in this paper is the bivariate Copula. Thetained by RCM (MM5) climate simulations, daily rainfall
dependence structure is investigated for each observation stdata of 132 observation stations within the alpine region of
tion separately. Germany are retrieved from the webwerdis data portal of
The innovation of this paper mainly is: the DWD. Our study focusses on the alpine subregion round
o ] Garmisch-Partenkirchen. For the analysis of the dependence
— Application of an ARMA-GARCH algorithm to ana-  ggrycture between modelled and observed precipitation, a
lyze daily precipitation time series for seasonal vari- g pset of 14 observation stations with large altitudinal dif-
ation and volatility, and to generate independent andierences is selected (see Figand Tablel). These stations
identically distributed (hereinafter iid) residuals for the correspond to three different grid cells of the RCM output
Copula approach. where the model bias is comparatively large.

— Description and modelling of the joint dependence
structure between RCM modelled and observed
precipitation, accounting for the prevailing flow situa-
tions caused by large-scale circulation patterns.

3 Modelling the dependence structure between
modelled and observed rainfall

The procedure followed in this paper to model the de-
pendence structure between RCM modelled and observed

www.hydrol-earth-syst-sci.net/15/2401/2011/ Hydrol. Earth Syst. Sci., 15, 24082011



2404

RCMN — ==p (X.7) qmmm (Obgervations
ARMA-GARCH:
1id Residuals
(X,.7)
Marginal : Marginal
R Raks g

)

Copula, 0
.

Joint Density

Fr (X 1) = ¢ (FL (), B (1)) (%) f,(¥)

®.5
i B

\ /

Fig. 3. Concept of the bias correction followed in this paper.

rainfall, and to finally generate random samples of locally re-

fined and bias corrected pseudo-observations, requires muj

tiple steps (Fig3) that can be comprised as follows:

1. A suitable ARMA-GARCH model is fitted to the

P. Laux et al.: Copula-based stat. refinement of precipitation in RCMs simulations

3.1 Modelling the marginals

Modelling the joint dependence structure requires that the
marginals are iid. Most climatological time series, however
exhibit some degree of autocorrelation and heteroskedastic-
ity. In the sequel the ARMA-GARCH composite model to
generate iid variables is introduced, followed by the descrip-
tion of how to fit a GPD to the marginals, and to derive a
joint distribution function (Copula) to model the dependence
between modelled and observed rainfall time series.

3.1.1 ARMA-GARCH filter

This section describes briefly the theory of the ARMA-
GARCH composite model and how it is used to simulate the
univariate time series in the presence of conditional mean
as well as conditional time-varying variance on daily time
scale, i.e. heteroskedasticity or volatility, to produce iid resid-
uals. An ARMA model is used to compensate for auto-
correlation, and a GARCH model to compensate for the
heteroskedasticity.

The termconditionalin GARCH — Generalized Autore-
gressive Conditional Heteroskedasticity — implies explicitely
the dependence on a past sequence of observationauand
oregressivedescribes a feedback mechanism that incorpo-
rates past observations into the present. GARCH is a time
series modelling technique that includes past variances for

modelled and observed rainfall series (positive valuesPredicting present or future variances.

only) to capture the seasonal variation of variance (see

Sect. 3.1.1) of both RCM simulated and station ob-
served precipitation.

Pareto Distributions (GPD) for an improved representa-
tion of the tails (see Sect. 3.1.2).

. The bivariate empirical Copula (bivariate probability
density plot), which is independent from their corre-
sponding marginal distributions, is derived from the
residuals of the ARMA-GARCH model.

. A theoretical Copula model is estimated using the iid
residuals obtained from the ARMA-GARCH model
(see Sect. 3.2.2).

tional CDF of the theoretical Copula (see Sect. 3.2.3)
and the univariate distributions of the original data (pos-
itive pairs only).

. Stochastic simulations are performed using conditional
CDFs of the theoretical Copula of different large-scale

weather patterns (see Sect. 3.3).
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. The marginals are fitted to semi-parametric Generalized

o- =
. Stochastic simulations are performed using the condi- *

A univariate model of an observed time serigscan be
written as

ye = E (] Q-1) + &. 1)

In this equation, the ternk (-]-) denotes the conditional
expectation operatof?,_; the information set at time— 1,
and g, the innovations at time. Bollerslev (1986 devel-
oped GARCH as a generalization of the ARCH volatility
modelling techniqueBngle 1982. The distribution of the
residuals, conditional on the timeis given by

Var1 () = Era () = o @
where
P 0
2 = +ZG1012_,+ZAJ-5,2_]. (3)
i=1 =1

wherex is a constant, and? is the prediction of the variance,
given the past sequence of variance predictierfs,, and
past realizations of the variance itsesEL .. WhenP =0, the
GARCH(0,Q) model becomes the original ARCH(Q) model
introduced byEngle(1982. This equation mimics the vari-
ance clustering of the variable (i.e. precipitation and temper-
ature). The lag length® and Q and the coefficient&; and

A; determine the degree of persistence.

www.hydrol-earth-syst-sci.net/15/2401/2011/
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Table 1. Station informations corresponding to 3 chosen MM5 grid cells, shape (tail index), and scale parameters of the fitted Generalized
Pareto Distribution (GPD) for positive pairs of modelled and observed precipitation respectively.

Station Altitude Location Precipitation (MM5 output)| Precipitation (observed)

[ma.s.l] | lat lon Shape Scale Shape Scale
Garmisch-Partenkirchen 71947.48 11.06| 0.42 0.34 0.09 8.29
Grainau 760| 47.47 11.02| 0.29 0.40 0.13 6.76
Grainau (Eibsee) 1010 47.46 11.00| 0.28 0.42 0.06 8.34
Bad Reichenhall 47Q 47.72 12.88| 0.07 0.78 0.26 6.98
Schneizlreuth-Unterjettenberg 50747.68 12.83| 0.07 0.82 0.10 8.29
Schneizlreuth-Ristfeucht 528 47.67 12.77| 0.08 0.80 0.17 8.06
Schneizlreuth-Weissbach 63047.72 12.77| 0.08 0.80 0.14 8.67
Anger-Oberfagl 690 | 47.80 12.90| 0.06 0.81 0.28 5.50
Bischofswiesen-Winkl 690 47.69 12.94| 0.07 0.82 0.13 8.20
Inzell 690 | 47.76 12.76| 0.05 0.84 0.06 10.22
Anger-Stoissberg 830 47.80 12.82| 0.08 0.77 0.32 7.00
Rottach-Egern 747 47.68 11.77| 0.05 0.76 0.15 7.93
Kreuth 895| 47.61 11.65| 0.04 0.77 0.16 9.65
Schwarzkopfhitte 1336| 47.66 11.91| 0.06 0.74 0.09 10.09

A common assumption is that the innovations are seriallyusing a maximum likelihood approach. Given the ex-
independent, however, GARCH(P,Q) innovatiofis}, are  ceedances in each tail, the negative log-likelihood function
modelled as is optimized to estimate the tail index/shape parametsrd
the scale parameterof the GPD. The composite GPD func-
tion allows for interpolation in the interior of the CDF but
o; is the conditional standard deviation given by the squarealso for extrapolation in the lower and upper tails.
root of Eq. (3), and; is the standardized iid random draw
from some specified probability distribution. Usually, a 3.2 Copula based joint distribution functions of
Gaussian distribution is assumed such thaw (0, atz). Re- modelled and observed rainfall
flecting this, Eq. (4) illustrates that a GARCH innovations
procesde,} simply rescales an iid procegs} such thatthe Copulas are functions that link multivariate distribu-
conditional standard deviation incorporates the serial depention F(x1, ... x,) to their univariate marginaldy, (x;).
dence of Eq. (3). Sklar (1959) proved that every multivariate distribution

F(x1, ... x,) can be expressed in terms of a Copdland
3.1.2 Generalized pareto distribution its marginalsFy, (x;):

& = O¢ Zp. (4)

This subsection describes the fitting of semi-parametric cu-g (, . x,) = ¢ (Fx, (x1), -, Fx, (xn)) (6)
mulative distribution functions (CDFs). First, the empirical
CDF of each parameter is estimated using a Gaussian kern . [0, 11" — [0, 1]. @
function (using a kernel width of 50 points) to eliminate the

;talr_case patter_n. .Th'§ provides a r_easonably.good fit to the Copulas allow to merge the dependence structure and the
interior of the distribution of the residuals. This procedure,

h tends t f v wh lied t C{narginal distributions to form a joint multivariate distribu-
Ioc\)/x\ézervt:isen S to pertorm poorly when applied to Upper ang,, “rpe Copula function is unique when the marginals are

Th dql tails theref fitted el continuous functions. As the Copula is a reflection of the
€ upper and lower tails theretore are Titted separa eydependency structure itself, its construction is reduced to the
from the interior of the distribution. For this reason, the

. . tudy of the relationship between the variables, giving free-
peaks over t_hreshold (P.OT) method is applied: A threshOIdZom for the choice of the univariate marginal distributions.
value of 0.1 is chosen, i.e. the upper and lower 10 % of th

CFurther information about Copulas can be found e.glda

residuals are reserved for each tail. The extreme residual . . . :
(beyond the threshold) are fitted to a parametric GPD, Whichg9(&;'gbl_:/)rees and Valde@ 999 Nelsen(1999; Salvadori et

can be described as The dependence structure between regional and local me-

1 x —0) -1-¢ teorological fields and between simulated and observed fields
y=fxlk,o,0)= =) |1+k (5)

o is highly complex. For this reason it cannot be adequately

www.hydrol-earth-syst-sci.net/15/2401/2011/ Hydrol. Earth Syst. Sci., 15, 24082011
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modelled by the multivariate normal distribution. The com- namely
plex multivariate dependence structure is analyzed between
RCM modelled precipitation (MM5 output) and station ob- p = 12// uvdCop (u,v) — 3 =12
served precipitation. (0. 112
For dry days only the single marginal distributions ex- // Co (u, v) du dv — 3 (10)
ist (Yang 2008 but no (unigue) joint distribution function. [0, 112
Consequently, it is not possible to estimate a Copula model, 4
for dry days without further transformations such as nor-

mal score. For sake of simplicity, we focus our work on 1 = 4 // Co (u, v)dCy (u, v) — 1 (11)

the positive pairs (RCM precipitation0, observed precip- [0, 112

itation> 0). or for Archimedean Copulas with generagor

3.2.1 Empirical Copula c—14 4/ w(t)' (12)
0,11 ¢'(t)

The dependence structure of daily measured precipitation For the Gumbel-H d Cooul ih i
and simulated precipitation is studied. Since the underlying o_r t Ie ‘;"_‘ _ef— oudga;]artg _ olpu a ‘eN!t '.tS gen_erator
(theoretical) Copula is not known in advance, it is necessary‘”(t) =(=In())” itis found thatt) = 1=, S06 IS a Increasing

to analyze the empirical Copula, which is purely based on thefLmCtion ofz. According to this e_mpirical link Kenadall's
data (Deheuvels, 1979). The ranks of the residuals of mod®an be used as a rank-based estimator for the Copula param-

elled and observed rainfall from day 1 to day obtained eterd. In turn, this link enables the interpretation of the Cop-
from the original data as well as the ARMA-GARCH time u!a parameter as a measure for the strength of dependence:
series model, aréry (1), ... r1(n)} and {ra(1). ... ra(n)), higher Copula parameters reveal a stronger dependence.

respectively. The empirical Copula is defined as: 3.2.4 Copula-based rainfall simulations

L ri(t ro(t
Co(wv) =1/n ) 1 < lrE ) < u, 2}5 ) < U) (8)  After the estimation of the Copula-based joint distribution —
=1 thatisFx(x), Fy(y) andCy(u,v) are obtained — conditional
where u indicates the percentile of the modelled rainfall random samples from this distribution are generated through
residualsp indicates the percentile of the measured rainfall Monte Carlo simulations. We follow the procedure SHil-

residuals and(...) is denoting the indicator function. vadori et al (2007 for the conditional simulation using Cop-
. ulas. The simulation is based on conditional probabilities of

3.2.2 Copula goodness-of-fit test the form:
A goodness-of-fit test for Copulas is applied comparing the p V < olU = u) = 9 C (u, v); (13)
empirical CopulaC, (Eg. 8) with the parametric estimate of a - ou .
theoretical Copula modély derived under the null hypothe- 9
sis. This is done for the residual seri@égoire etal.200§ P (U = ulV =v) = - C (u, v). (14)
of observed and modelled rainfall obtained by the ARMA- o
GARCH transformation. The test is based on the Grawon For the Gumbel-Hougaard Copula e.g. it is:

Mises statistic Genest and Favr@007): 9 Cluw) —u-te- (log()?)+(og(w)’)H?

S0 =3 Co G v) — Co (ar, )2 R

=n U, — Uz, . _ _
nT g e e T e e (—log() ™ ((~logw)*) + (~logw)”) ", (15)

As the definition ofS, involves the theoretical Copula The concept for simulation of pseudo-observation from
function, the distribution of this statistic depends on the un-model data is as follows: a pair of variates v) with Cop-
known value of under the null hypothesis thatis fromthe  ulaC(u, v) needs to be generated which finally can be trans-
classCy (Grégoire et al.2008. Therefore, the approximate formed into(x, y), using the probability integral transforma-
p-values for the test statistic are obtained using a parametrition

bootstrap Genest and Remillay@008 Genest et a/.2009 _ o1

as well as a fast multiplier approacKdjadinovic and Yan U= e X="FWU (16)
2011ab). V=F() e Y =FV. (17)
3.2.3 Relationship between Copula parameteff and The complete algorithm is divided into three steps:

rank-based concordance measures _
1. Computatioru = Fx (x), wherex denotes one value of

There is a functional relationship between the classical de-  the modelled rainfall andx (x) is the marginal distri-
pendence parameters such as Kendalks\d Spearman’s bution of the variateX.

Hydrol. Earth Syst. Sci., 15, 2402419 2011 www.hydrol-earth-syst-sci.net/15/2401/2011/
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2. Generation of random samples for the variatefrom For each group of weather types, a theoretical Copula
the conditional CDFCy |y (v|u) =c,(v) and calculation model is estimated separately. For sake of simplicity, the
of v=c;1(v*), wherec; ! denotes the generalized in- Gumbel-Hougaard Copula model is used.
verse ofc, (Nelsen, 1999).

3.4 Performance of simulations
3. Calculation of the corresponding-values using the
probability integral transformatiofr, *(v) = y. To quantitatively evaluate the performane of the stochas-
. i , tic Copula-based pseudo-observations (unconditional) and
The final result fory is a sample of pseudo-observations he stochastic Copula-based pseudo-observations depend-
which lies in the original data space and can be comparegq on the large-scale weather situation (conditional) dif-
with the observed data series. ferent performance measures are used. They consist of in-
dices giving an impression about the differences between ob-
served and modelled values in their original unit measures.
Here, root mean squared error (RMSE), mean absolute er-
ror (MAE), and mean error (ME) are used. Additionally,
the Nash-Sutcliffe efficiency (NSE), which is an indicator of

recipitation amounts. The combinations of terrain ex OSi_the model’s performance to predict about the 1:1 line (values
precip ' b equal or less than zero indicate that the model is not better

tion and advection direction leads to luv and lee side effects . LT
i.e. the stations can lie in the rainshadow or can be exposed tthan using the average of observed data, unity indicates a
S . . e EXpo Berfect fit), and the Pearson correlation coefficient (PCC) are
intense rainfall. As independent from the RCM simulations, sed
large-scale weather patterns are used to further improve the™
results of the bias correction. Besides the advection direc-
tion, large scale information about cyclonality and tropo- 4 Simulation results
spheric humidity is evaluated. The objective weather pattern
classification method of the German Weather Service is use
(Bissolli and Dittmann2007). The classification domain is . L X

. o .and corresponding observed precipitation time series are ex-
Central Europe, and the meteorological criteria for the classi-

- : N ) . - emplarily presented. Based on iid residuals obtained by
fication are (i) the direction of advection of air masses, (ii) the L .

. - .~ ARMA-GARCH models the empirical and theoretical Copu-
cyclonality, and (iii) the humidity of the troposphere. This

leads to numerical indices from which the weather types areIas;, and the marginal distributions are estimated and analyzed

derived Bissolli and Dittmann2007). There exist 40 prede- :p: Iocallytr(ejfmed and bias corrected pseudo-observations
fined types, which can be used. Due to the limited occurrence generated.
frg_quenm_es of ;mglg weather types, their usability for con-y 1 Analysis of ARMA-GARCH time series models
ditional simulations is restricted. However, the usage of the
numerical indices provides the possibility to group the types
to different classes.

For this study, the following grouping strategies are
evaluated:

3.3 Usability of weather patterns for conditional
simulations

Especially for complex terrain, it is assumed that the direc-
tion of advection is of crucial importance for the observed

?n this section simulation results of both, the obtained RCM

ARMA-GARCH models are fitted to the observation stations
and their corresponding grid cells. The order of the ARMA
and the GARCH terms, the threshold for a wet day, and the
peak-over-threshold (POT) value for lower and upper tails
are empirically determined in a sensitivity experiment by in-
spection of the autocorrelation functions and the Ljung-Box
Q-tests. The order of the AR, MA, P, and Q components
are varied systematically between 0 and and 3, the threshold
value for a wet day between 0.01 mm, 0.1 mm, and 1 mm,
2. Grouping types due to theyclonality at 950hPa and and the peak-over-threshold (POT) value for lower and upper
500 hPa this leads to four classes, namely anticyclonal t@il between 10 % and 20 %. Itis found that ARMA-GARCH

— anticyclonal (AA), anticyclonal — cyclonal (AC), cy- Mmodels are superior compared to simple AR and MA models,

1. Grouping types due to thdirection of the advection of
air masses at 700 hPathe weather types (WTs) are
grouped into northeasterly, southeasterly, southwest
erly, and northwesterly flow.

(CC). els are sufficient to adequately eliminate the effects of serial
correlation in the majority of the cases.
3. Grouping types due to théumidity of the tropo- Table2 shows the mean and standard deviation of the pa-

sphere this leads to the discrimination of dry (D) and rameters for the fitted ARMA(1,1)-GARCH(1,1) models for
wet (W). Therefore, a humidity index is calculated as selected stations and their corresponding RCM grid cells,
the weighted areal mean of the precipitable water inte-whereas Tabl& shows the parameter values for the single
grated over the 950, 850, 700, 500, and 300 hPa levels.sites. It can be seen that the fitted parameters of the observed
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Fig. 4. Autocorrelation function for precipitation (1979-1993) of Garmisch-Partenkirchen, Germany (left), and its corresponding squared
time series (right).
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Fig. 5. Autocorrelation function for ARMA-GARCH residuals for precipitation (1979-1993) of Garmisch-Partenkirchen (left), and its
corresponding squared residuals (right).

time series are substantially different from those of the re-fected by serial correlation for the lags 1, 5, 10, 15, and 25
gional climate model. days. After ARMA-GARCH transformation the RCM resid-
Both autocorrelation function and Ljung-Box Q-test are uals exhibit no autocorrelation for the analyzed lags. For the
applied to test the performance of the ARMA-GARCH mod- observed time series, three different types of autocorrelation
els. The tests are applied to the original time series, thecan be classified:
squared original time series as well as the resulting standard- ) _
ized residuals and standardized squared residuals after ap-1- Srong persistent autocorrelation before, no autocorre-
plication of the ARMA-GARCH model. According to the lation after application of ARMA-GARCH (90.15 % of
autocorrelation function plots the original time series of ob- all cases).
served and RCM time series show serial dependence and het-
eroskedasticity. This non-iid behaviour is illustrated exem-
plarily for station Garmisch-Partenkirchen (F&. Figure5
shows the autocorrelation function after application of the
ARMA-GARCH model.
The Ljung-Box Q-test tests the data against the null hy-

pothesis that a series of residuals exhibits no autocorrelation 3. \weak persistent autocorrelation before, no autocorrela-

for a fixed number of lags against the alternative hypothesis  tjon after application of ARMA-GARCH (2.27 % of all
that the autocorrelation is nonzemdx et al, 1994. Table4 cases).

demonstrates exemplarily the results of the Ljung-Box Q-test

for the observed and modelled rainfall data (positive pairs) The test results do not fully correspond to the au-
before and after application of a first order ARMA-GARCH tocorrelation functions (as shown for station Garmisch-
model. All of the analyzed RCM rainfall time series are af- Partenkirchen), however, both the graphical representations

2. Strong persistent autocorrelation before, re-
duced/remaining autocorrelation after application
of ARMA-GARCH (7.58 % of all cases). In these cases
higher order ARMA-GARCH models could further
reduce the autocorrelation.

Hydrol. Earth Syst. Sci., 15, 2402419 2011 www.hydrol-earth-syst-sci.net/15/2401/2011/



P. Laux et al.: Copula-based stat. refinement of precipitation in RCMs simulations 2409

Table 2. Mean and standard deviation of the parameters for the fitted ARMA(1,1)-GARCH(1,1) models for selected stations (OBS) and their
corresponding RCM grid cells (see Taldldor further details about the stations). The conditional mean parameters of the ARMA model
consist ofc, the conditional mean constant, AR, the conditional mean autoregressive coefficient, and MA, the conditional mean moving-
average coefficient. The conditional variance parameters consisttbé conditional variance constant, GARCH, the lagged conditional
variance coefficient, and ARCH, the lagged residual coefficient.

Data source Conditional Mean Conditional Variance
Parameters Parameters
¢ AR MA k GARCH ARCH
RCM MEAN 0.57 0.27 -0.09 0.72 0.12 0.11
STD 0.16 0.18 0.20 0.30 0.11 0.10
OBS MEAN 5.18 045 -0.27 0.84 0.06 11.21
STD 1.57 0.13 0.17 0.02 0.02 2.48

Table 3. Parameters for the fitted ARMA(1,1)-GARCH(1,1) models for selected stations (OBS) and their corresponding RCM grid cells
(see Tabld for further details about the stations). The conditional mean parameters of the ARMA model constieafonditional mean
constant, AR, the conditional mean autoregressive coefficient, and MA, the conditional mean moving-average coefficient. The conditional
variance parameters consistiafthe conditional variance constant, GARCH, the lagged conditional variance coefficient, and ARCH, the
lagged residual coefficient.

Station Conditional Mean Conditional Variance
Station Parameters Parameters
¢ AR MA ¥ GARCH ARCH
Garmisch-Partenkirchen RCM 0.10 0.81-0.68 0.65 0.17 0.10
OBS 220 0.76 —-0.68 0.86 0.04 9.47
Grainau RCM 0.48 0.07 0.15 0.01 0.38 0.32
OBS 4.05 046 -0.29 0.84 0.06 7.23
Grainau-Eibsee RCM 0.39 0.28-0.06 0.04 0.35 0.33
OBS 474 046 -030 0.86 0.04 8.59
Bad Reichenhall RCM 056 0.33-0.14 0.86 0.04 0.08
OBS 556 0.38 —-0.19 0.84 0.06 11.99
Schneizelreuth-Unterjettenberg RCM 0.58 0.33-0.15 0.88 0.06 0.06
OBS 544 0.39 -0.18 0.81 0.09 9.63
Schneizelreuth-Ristfeucht RCM 0.72 0.17 0.03 0.81 0.09 0.10
OBS 551 041 -0.21 0.85 0.05 11.91
Schneizelreuth-Weissbach RCM 0.63 0.270.08 0.88 0.06 0.06
OBS 485 051 -0.30 0.83 0.07 12.14
Anger-Oberfigl RCM 059 030 -0.14 0.84 0.05 0.09
OBS 233 0.68 -053 0.81 0.09 8.17
Bischofswiesen-Winkl RCM 0.74 0.14 0.05 0.85 0.08 0.06
OBS 550 040 -0.22 0.84 0.06 10.73
Inzell RCM 057 0.36 —-0.19 0.76 0.11 0.13
OBS 6.05 042 -0.20 0.82 0.08 12.33
Anger-Stoissberg RCM 0.67 0.20 0.00 0.89 0.06 0.05
OBS 574 041 -0.21 0.85 0.05 14.38
Rottach-Egern RCM 0.64 0.19 0.03 0.88 0.08 0.04
OBS 6.18 0.31 -0.10 0.83 0.07 10.76
Kreuth RCM 0.68 0.13 0.06 0.88 0.07 0.04
OBS 843 0.24 -0.03 0.83 0.07 15.99
Schwarkopffitte RCM 057 0.25 -0.05 0.88 0.07 0.04
OBS 592 045 -0.26 0.83 0.07 13.69
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Fig. 6. K-plot of the observed rainfall time series at station Garmisch-Partenkirchen (Germany) before ARMA-GARCH transformation
(left), and after ARMA-GARCH transformation (right). Superimposed on the graph are a straight line (blue) corresponding to the case of
independence and a curve corresponding to perfect positive dependence (red).

Table 4. Ljung-Box Q-test results for three observation stations and their corresponding RCM grid cells. The test indicates whether or not the
time series exhibit autocorrelation for a given number of lags [days]. One tests the null hypothesis that a series exhibits no autocorrelation for
a fixed number of lags against the alternative hypothesis that the autocorrelation is nonzero. “1” indicates that the null hypothesis is rejected
(i.e. autocorrelation), and “0” indicates no autocorrelation for any given time lag and level of significance (significartt.@5 (normal

font), ora =0.01 level of significance (bold)).

Station without ARMA-GARCH with ARMA-GARCH
1 5 10 15 20 1 5 10 15 20
Anger-Oberiagl RCM (original) 1 1 1 1 1 0O 0 o 0 0
RCM (squared) 1 1 1 1 1 0O 0 0 0O O
OBS (original) 1 1 1 1 1 0O 0 0 0 O
OBS(squared) 1 1 1 1 1 0O 0 o 0 0
Grainau RCM (original) 1 1 1 1 1 0O 0 o 0 0
RCM (squared) 1 1 1 1 1 0O 0 0 0O O
OBS (original) 1 1 1 1 1 11 1 0 O
OBS(squared) 1 1 1 1 1 0O 0 O 0 0
Garmisch-Partenkirchen RCM (original)1 1 1 1 1 0O 0 O 0 0
RCM (squared) 1 1 1 1 1 0O 0 O 0 0
OBS(origina) 1 1 0 O 0 0O 0 0 0 O
OBS(squared) 0 0 O 0 0 0O 0 O 0 0

and the test results show the same trends, i.e. ARMA- From the sensitivity experiment mentioned above, it is
GARCH is capable to remove large parts of serial depenfound that the larger the wet day threshold, the higher is the
dence. Even though higher order ARMA-GARCH models distortion of the upper tails after the ARMA-GARCH trans-
could improve the results for about 8% of all stations, aformation, i.e. the smaller is the fraction of “artificial” de-
first order ARMA-GARCH model is preferred to guaranty pendence which has to be removed. This is due to the fact
for consistency and comparability between the stations. that the high values (extremes) are intrinsically already iid.
Figure6 shows the K-plot of observed and modelled time The POT and the order of the ARMA-GARCH models are
series before and after the ARMA-GARCH transformation less sensitive to this effect. Further information about how to
visualizing their dependence structure over the whole range&alculate and to interprete the K-plots can be obtained e.g. by
of the data. The K-plots indicate that the untransformed dataGenest and Favi@007).
sets reveal positive dependence within the low ranks which  Figure7 (left) shows the empirical and fitted exceedance
is removed after application of the ARMA-GARCH transfor- probability for the upper tail of the observed rainfall residuals
mation. The remaining positive dependence in the upper tailt station Garmisch-Partenkirchen. Both, for observed and
of the residuals is the “real” underlying dependence betweennodelled rainfall, the Generalized Pareto Distribution seems
the two variables. to be a good choice to fit the upper tails of the data. Figure
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Fig. 7. Empirical and fitted exceedance probability of the upper tail of observed rainfall residuals (left), composite of the piecewise CDF of
the modelled (solid lines) and observed (dashed lines) rainfall residuals at Garmisch-Partenkirchen (right).

(right) illustrates the composite of the three piecewise CDFsfor Copula-based stochastic simulations are also given in
for modelled and observed rainfall residuals. It can be clearlyTable5.
seen that lower/upper tail as well as the interior of the distri-

bution are fitted reasonably well to the observed data. 4.3 Dependence on large-scale weather situation

The dependence structure between modelled and observed
4.2 Analysis of empirical and theoretical Copulamodels  yajnfall, given the large-scale weather situation, is analysed.

The method used for classifying large-scale weather types is
Figure 8 (left) shows the empirical Copula density be- described in Sect. 3.3. The empirical Copulas are calculated
tween modelled and measured rainfall for station Garmisch-using different grouping strategies for the WTs. Based on
Partenkirchen. Only the positive pairs of modelled and meathe empirical Copulas, as well as the conditional CDFs, the
sured rainfall are shown using a threshold of 0.01 mm to de-Usability for conditional simulations is investigated.
fine a wet day. It can be seen from the figure that the dis- Using four different weather types and one indefinite type
tribution is strongly asymmetrical for the opposite diagonal for advection (Fig.9) can have additional value, and thus
of the unit square, and that the density in the upper cornebe used for conditional stochastic simulations. Figlife
is highest. This implies that modelled and observed rainfallillustrates the empirical Copula density for modelled and
are strongly concordant in the higher ranks of the distribu-observed precipitation for Garmisch-Partenkirchen group-
tion, whereas the concordance is weaker in the lower ranksng the weather types due to the cyclonality in 950 hPa and
This empirical density structure may be remarkably differ- 500 hPa into four classes. One can observe that for the

ent compared to the ARMA-GARCH transformed residuals four classes significant differences within the dependence
(Fig. 8, right). structure between modelled and observed rainfall exist. The

Table 5 shows the results for the goodness-of-fit (GOF) classification due to the humidity of the troposphere (El.
test statistics using the parametric bootstrap procedure. I§0€S not lead to a clear discrimination between the empir-
ical Copulas. Both, the wet and the dry Copula density is

order to chose between the three different Copula families, " o - )
namely Normal, Gumbel-Hougaard, and Clayton Copula similar to the unconditional Copula densities (compare with
f ’ 'Fig. 8). The empirical CDFs of observed precipitation in

the parametric bootstrap algorithm &fenest and Remil- / X i )
lard (2008 is applied to the residuals of observed and mod_Garmlsch-Par'tenklrchen based on a given WT and certain

elled precipitation. Although desirable in the long run, other 9r0UPS of WTs are illustrated in Fig2. The performance

promising theoretical Copula models such as the survivaPKill Of unconditional compared to WT conditional simula-
Clayton Copula are not considered in this study tions of pseudo-observations is demonstrated in the sequel.

1000 bootstrap values of the Crarrvon-Mises test statis- 4.4 Conditional stochastic simulations of
tic are produced, and the proportion of those values that pseudo-observations

are larger thanS, (p-values) is estimated. From the p-
values obtained the usability of the Gumbel-Hougaard Cop-+igure13 shows the results of Copula-based stochastic sim-

ula is concluded. The Copula parameters which are usedlations (100 realizations) of pseudo-observations assuming
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Fig. 8. Empirical Copula density for modelled)and observed precipitation)for station Garmisch-Partenkirchen, using the positive pairs
of original data (left), and the positive pairs of the ARMA-GARCH transformed iid residuals (right).
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Fig. 9. Empirical Copula density for modelled)and observed precipitatiom)for Garmisch-Partenkirchen, using the weather type classi-
fication following the advection of air masses. The advection types correpo(a) tdortheast(b) Southeastc) Southwest(d) Northwest,
and(e) no prevailing direction. The white areas originate from interpolation effects using an ordinary kriging algorithm.

that the modelled RCM precipitation is given (unconditional the observations. After this first graphical comparison the
case). A split-sampling approach is used to subdivide themprovements attained using the Copula approach are ana-
data into calibration and validation period. It can be seenlyzed further with selected performance measures. A first
from the figure that the observations are usually underprehint of the skill is given by different error measures and e.g.
dicted by the model, and that the Copula-based technique catihe Pearson correlation coefficients between observations,
partly correct for that effect. For the very high RCM rainfall RCM and the pseudo-observations, i.e. the bias corrected
amounts, the Copula-based approach tends to overestimapgedictions (Tableg). The Pearson correlation coefficient
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Fig. 11. Empirical Copula density for modelled and observed precipitation) for Garmisch-Partenkirchen, using the weather type
classification following the humidity of the troposphe(a) D, and(b) W (D — dry, W —wet).

between observations and the mean value of the random sam- Including large-scale information about advection, cyclon-
ple, generated through the Copula approach is 0.36. Pleasaity, and humidity is increasing (decreasing) the correlation
note that the correlation coefficient between observations an¢deviation) between observations and pseudo-observations
RCM is calculated as 0.3 for the iid transformed data of (see Table6). The correlation between the RCM and the
Garmisch-Partenkirchen. This corroborates the usability ofpseudo-observations is intrinsically high because the RCM
the Copula based bias correction of precipitation. data is used to constrain the Copula model. However, the
Pearson correlation coefficient and the other used error mea-
sures are just global measures, operating on the complete
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Table 5. Goodness-of-fit (GOF) test using the Ciamvon-Mises test statistics and parametric bootstrap procedure (see Sect. 3.2.2). p-values
exceeding 0.01 are highlighted in bold.

Station Normal Copula Gumbel-H. Copula Clayton Copula
S, p-value 6y Sn p-value 6OgH S,  p-value 6Oc

Garmisch-Partenkirchen 0.09 0.00 0.08 0.12 0.00 1.09 0.17 0.00 0.01
Grainau 0.10 0.00 0.09 0.15 0.00 1.10 0.16 0.00 0.01
Grainau (Eibsee) 0.07 0.00 0.12 0.08 0.00 1.11 0.12 0.00 0.06
Bad Reichenhall 0.10 0.00 0.19 0.04 0.02 1.15 0.37 0.00 0.13
Schneizlreuth-Unterjettenberg  0.14 0.00 0.15 0.10 0.00 1.13 0.29 0.00 0.08
Schneizlreuth-Ristfeucht 0.11 0.00 0.17 0.05 0.00 1.14 0.40 0.00 0.09
Schneizlreuth-Weissbach 0.08 0.00 0.13 0.06 0.00 111 0.21 0.00 0.07
Anger-Oberlag| 0.10 0.00 0.16 0.05 0.01 114 0.34 0.00 0.11
Bischofswiesen-Winkl 0.07 0.00 0.16 0.04 0.07 1.14 0.23 0.00 0.11
Inzell 0.08 0.00 0.16 0.05 0.01 1.13 0.24 0.00 0.13
Anger-Stoissberg 0.12 0.00 0.14 0.06 0.00 1.12 0.40 0.00 0.07
Rottach-Egern 0.05 0.00 0.17 0.03 0.09 1.14 0.21 0.00 0.13
Kreuth 0.06 0.00 0.12 0.06 0.00 1.10 0.17 0.00 0.06
Schwarzkopfiitte 0.05 0.01 0.15 0.03 0.07 112 0.22 0.00 0.12

Table 6. Performance measures between positive pairs of pseudo-observations (mean value) produced by Copula-based stochastic simu
lations without using large-scale information (uncond), including advection (advec), cyclonality (cyclo), and humidity (humi) of the tro-
posphere, and the observed precipitation at station Garmisch-Partenkirchen and the corresponding grid cell precipitation of RCM (RMSE
— Root mean squared error; MAE — Mean absolute error; ME — Mean error; NSE — Nash-Sutcliffe efficiency; PCC — Pearson correlation
coefficient).

uncond advec cyclo humi

RMSE [nmdl] observed  18.04 2395 16.06  52.81

RCM 21.49 27.82 19.84 56.06
MAE [mmd—1 observed 3.13 3.21 2.98 341
RCM 3.40 3.48 3.29 3.59
ME [mmd—1] observed —3.00 -539 —413 —6.20
RCM -1159 -12.12 -10.82 -12.90
NSE[—] observed 0.08 0.13 0.14 0.08
RCM -0.30 -0.18 -0.32 -0.04
PCC[—] observed 0.36 0.43 0.45 0.37
RCM 0.98 0.93 0.98 0.65

time series, and do not mirror the quality of the new method5 Discussion

for specific subsets of the rank space. In turn, the probability

plot (Fig. 14) provides a performance measure for the quan-The bivariate dependence structure between RCM model
tiles of the distribution. output and gauge observations (RGM, gauge> 0) is stud-

It can be seen from FidL4 that the RCM underestimates ied to correct the systematic errors in the RCM simulations.
the observations over the whole range of the distribution.In general there are four cases to distinguish, namely (0,0),
Taking this as a reference, the Copula-based stochastic sin{1,0), (0,1) and (1,1) where 0 denotes a dry and 1 a wet day.
ulations of the pseudo-observations lead to significant im-A wet day is defined as a day of rainfall 0.01 mm which
provements. Including large-scale conditional informationis chosen due to the minimum resolution of rain gauge mea-
contributes moderately to a reduction of the bias. surements. Although the gauge measurements are affected

by different sources of measurement errors such as errors due
to wind or evaporation, they are treated as a reference for the
“true” precipitation.
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model

Fig. 14. Probability plots of observed and modelled precipitation

time series at station Garmisch-Partenkirchen. If the quantiles of the

two distributions agree, the plotted points fall on exactly on the thin

dotted line. The red quadrates illustrates the agreement between

observed and RCM rainfall. The black quadrates correspond to the

Copula-based stochastic simulations without additional large-scale

information. The Copula-based simulations including advection,
RCMs are known to produce a high number of rainy dayscyclonality, and humidity of the troposphere are illustrated as blue,

with very small rainfall amounts which are not measured on9d"€en: and orange quadrates respectively.

the ground. These artifacts are eliminated by the thresh-

old value. The case (0,1), where the RCM misses a rainy

day cannot be corrected by this approach and has to be
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1 oretical Copula model is reducing the correlation between
P2, CP39, RCM (here: MM5) and observed precipitation and thus the
0.8 NE SWCCW | estimated Copula parametey which is directly related to
' (d (wet) Kendall's . Serial correlation within the single time series
> can atrtificially disturb the joint dependence structure.
= 06/ | From the theoretical Copula models analyzed, the
%’ Gumbel-Hougaard Copula is found to be a suited choice to
5 0.4 7 model the joint distribution of modelled (gridded) and ob-
served precipitation. While the Copula parameter is rela-
0.2 8 tively stable for the joint distribution functions between dif-
ferent locations within the same grid cell, the shape and scale
0 parameters of the fitted marginal distributions of the observa-

0 10 reczioitationsgmountélf)mm] 50 60 tion stations can differ significantly. The scale parameters of
precip the observations are significantly greater than those of the
Fig. 15. Empirical CDF of observed precipitation in Garmisch- E(fr':/elz igﬂﬁ;ﬁ;ﬁlggﬁimg to remarkably higher variances

Partenkirchen, conditioned on the occurrence of the Northeast ad- Th irical C lad itv ol d | h
vection type WT 2 (NEAAD), and the Southwest advection type q esmp'r'ca opu ab ensity p Otzalrlegse dto sna yzgt e
WT 39 (SWCCW). ependence structure between modelled and observed pre-
cipitation. As computational inexpensive they are suitable to
(i) find a theoretical Copula model, and (ii) screen variables
I%uch as e.g. large-scale weather types which could addition-

lly improve the performance of the bias correction. It must

e mentioned critically at this stage that only three differ-
time series ent theoretical Copula models are tested. These models are

i ' . i capable to reproduce asymmetries along the major diagonal

In I|terqture the fact that positive pairs are usually NON- of the dependence structure. This cannot be achieved using
_(_:onsecuu_ve has often _bgen used to JUSt'fy_ the assum_pﬂon o(,; Gaussian approach. The observed empirical Copulas also
iid behaviour (e.gVillarini et al., 2008, mainly neglecting gy, asymmetries along the minor diagonal, which are still
serial autocorrelation. For the modelling of extremes iid be—not captured by the theoretical Copulas. Copula functions
hay|our IS comm.only justified by reducing the sample SIZ€ 5ccounting for these asymmetries could further improve the
using block maxima or peaks over threshold methods. Al'results

though th'e focus lies on modglling of positive pai.rs of daily The objective weather pattern classification method of the
precipitation values (observations and RCM), a different aP-German Weather Serviceigsolli and Dittmann 2007 is

proach is required as it is found that they are non-iid. More, sq 14 fyrther constrain the model. As the usage of 40 differ-

detailed they are affected by non-stationary of mean and varia t weather types would not lead to sufficient sample sizes,
needed for statistically significant inferences, three different

ance (volatility). Simple models such as AR, MA, ARMA,
grouping strategies were used (see Sect. 3.3). This leads to

or GARCH fail to eliminate both effects at the same time.
Therefore, combined ARMA-GARCH models are used in 5 o fficiently large sample sizes (average-é00 members
for each subgroup) to guarantee for statistical significance.

investigated separately. Please note that the positive pai
are not consecutive except for certain periods, threrefore th
described simulation process does not produce a continuo

this study.

As extreme values are known to have different marginals  To demonstrate the “added value” for the bias correction
compared to the rest of the data, a GPD distribution is used ifthy means of weather classification the marginal distributions
this study. This distribution allows for separately modelling as well as empirical Copulas are shown for each classified
upper and lower tail and interior of the empirical distribu- group. Acomparison of the CDFs shows that a clear discrim-
tion and thus for extrap0|ati0n of the extreme values. ThiSination between the different Subgroups' such as e.g. drylwet
approach is superior insofar as it gives the same weight tqroposphere is achieved. The empirical Copula functions also
each part of the data, albeit the tails hold a smaller cardinalshow a clear discriminative power, especially for direction of
ity than the interior. theadvection of air masses at 700 h@adcyclonality at 950

The remaining residuals are not affected by serial correlahPa and 500 hPaA decision about the improvements of the
tion and variance clustering and offer the possibility to studysimulated pseudo-observations using weather classifications,
the “real” underlying dependence structure between two (orsolely based on differences in the CDFs or empirical Cop-
more) variables which are described by copula functions.ula densities alone is difficult. Including information about
It could be shown that the empirical copula functions be-the humidity of the troposphere can slightly increase the skill
tween the two original time series are remarkably differentfor bias correction compared to the Copula-based stochastic
from those obtained by the residuals of the ARMA-GARCH simulations without using large-scale information. This can
models. Filtering the time series before fitting to a the- be seen from the conditional CDFs and the corresponding
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0.7 6 Conclusions

0.65¢ The presented Copula-based approach is potentially useful

for statistical downscaling, bias correction, and local refine-
ment of RCMs. The performance will be evaluated and com-
pared to established methods for bias correction.
Asymmetries are found in the empirical Copula densities
which cannot be reproduced by the theoretical Copulas used
in this study. Therefore, it is generally difficult to find a the-

0.61

0.55f

0.45F

0.4r oretical Copula model which is not rejected by the applied
0.35L GOF test.
Fitting the marginal distributions is of crucial impor-
0 200 400 600 800 1000 tance as it strongly impacts the simulation results (more
time step (positive pairs) than the Copula paramete®). It could be shown that

iid transformations such as ARMA-GARCH are indispens-
Fig. 16. Kendall'sz of 101 consecutive positive pairs for modelled able before a mutual dependence structure between vari-
and observed precipitation at station Garmisch-Partenkirchen. ables on daily scale is modelled to avoid artefacts induced
by autocorrelation.
Large-scale weather patterns could be used to further con-
strain the model, and thus, increase the performance of the
‘simulation results.

probability plots for the different groups, which are not very
discriminative (compare Sects. 3.3 and 4.4). Using the sin
gle 40 weather types (without grouping) could potentially
increase the discriminative power (see e.g. Bf), but de-  acknowledgementsThis research is funded by the Bavarian
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