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Abstract. This paper presents a new Copula-based method
for further downscaling regional climate simulations. It is
developed, applied and evaluated for selected stations in the
alpine region of Germany. Apart from the common way to
use Copulas to model the extreme values, a strategy is pro-
posed which allows to model continuous time series. As
the concept of Copulas requires independent and identically
distributed (iid) random variables, meteorological fields are
transformed using an ARMA-GARCH time series model. In
this paper, we focus on the positive pairs of observed and
modelled (RCM) precipitation. According to the empirical
copulas, significant upper and lower tail dependence between
observed and modelled precipitation can be observed. These
dependence structures are further conditioned on the prevail-
ing large-scale weather situation. Based on the derived theo-
retical Copula models, stochastic rainfall simulations are per-
formed, finally allowing for bias corrected and locally refined
RCM simulations.

1 Introduction

GCMs and RCMs are a central prerequisite for conducting
climate change impact studies that require time series of cli-
matic variables. The projections of future climate usually fol-
low the so-called delta-change approach, considering the dif-
ferences between present and future climate. If time series of
RCMs are used directly as input for external impact models
such as hydrological or agricultural models with nonlinear
responses to the climate signal, the delta-change approach
may fail (e.g.,Graham et al., 2007; Sennikovs and Bethers,
2009). One reason is the spatial resolution which does not
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allow for local scale climate differences, particularly in com-
plex terrain. Usually there exist tremendous biases between
modelled and observed climate statistics (e.g.Schmidli et al.,
2007; Smiatek et al., 2009). Therefore, further statistical re-
finement and bias correction methods are required to obtain
reliable meteorological information at local scale (Wilby and
Wigley, 1997). Precipitation is one of the most important
variables for climate change impact studies (Schmidli et al.,
2006). At the same time it is the most difficult to model.

Statistical downscaling and bias correction methods can be
divided into (i) direct point-wise techniques which relate spe-
cific (mostly adjacent) RCM grid cells to a station of interest
such as mean value adaptation (e.g.Kunstmann et al., 2004;
Jung and Kunstmann, 2007), quantile mapping/histogram
equalization methods (e.g.Leung et al., 1999; Wood et al.,
2002; Themeßl et al., 2010; Senatore et al., 2011) or local in-
tensity scaling (e.g.Schmidli et al., 2006; Yang et al., 2010),
and (ii) indirect methods which relate meteorological fields
to the station such as the analogue method (e.g.Bliefernicht
and B́ardossy, 2007), weather or circulation pattern classifi-
cation techniques (e.g.Bárdossy et al., 2002), or empirical
orthogonal functions (e.g.von Storch and Zwiers, 1999).

The dependence structure of hydrometeorological data
such as between modelled and observed rainfall is usually
very complex, both in time and space. Using simple cor-
relation of the multivariate normal is often not appropriate
(Bárdossy and Pegram, 2009). It depends on the rainfall gen-
erating process, i.e. stratiform or convective events, and thus,
on the season. For the mid-latitudes, large-scale stratiform
events can be represented well by climate models (e.g.Hong
et al., 1999; Suklitsch et al., 2010) resulting in a relatively
good agreement between modelled (grid cell) and measured
rainfall amounts (point scale). In turn, the models gener-
ally perform worse for convective events, which are highly
variable in time and space. As a result, the discrepancies
between modelled and observed rainfalls can be very large
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Fig. 1. Terrain elevation (left), and bias of mean annual total precipitation for the RCM (MM5) with respect to the DWD reference data set
[%] (Kotlarski et al., 2005) (right).

especially during the summer season with prevailing convec-
tive rainfall processes (e.g.Schmidli et al., 2007). Potential
reasons for this are e.g. (i) the variability of observed rainfall
within one corresponding modelled grid cell could be very
high; rain gauges in the near surrounding can measure large
differences in rainfall amounts; (ii) difficulties to capture the
location of convective rainfall events by the climate models;
this is mostly due to coarse resolution of the land surface
model (LSM) and the partly chaotic nature of convection,
and (iii) wrong or inadequate model parameterizations for
convection.

The dependence structures of multivariate distributions
can be modelled using classical distributions such as a mul-
tivariate normal. However, it is obvious that a Gaussian ap-
proach can not adequately reproduce the dependence struc-
tures whenever large asymmetries are existing. In these
cases, a Copula approach is supposed to be superior because
Copula functions can be adapted flexibly to the data. In ad-
dition to that, there already exists a large pool of theoretical
models which are capable to describe individual characteris-
tics of the data.

Copulas are additionally advantageous as they allow for
describing the dependence structure independently from the
marginal distributions (e.g.Genest and Favre, 2007; Dupois,
2007), and thus, using different marginal distributions at the
same time without any transformations.

There is an increase in applications of Copulas in hy-
drometeorology over the past years. Copula-based models
have been introduced for multivariate frequency analysis,
risk assessment, geostatistical interpolation and multivari-
ate extreme value analyses (e.g.De Michele and Salvadori,
2003; Bárdossy, 2006; Genest and Favre, 2007; Renard and
Lang, 2007; Scḧolzel and Friederichs, 2008; Bárdossy and
Li , 2008; Zhang and Singh, 2008).

For rainfall modelling,De Michele and Salvadori(2003)
used Copulas to model intensity-duration of rainfall events.
Favre et al.(2004) utilized Copulas for multivariate hydro-
logical frequency analysis.Zhang and Singh(2008) carried
out a bivariate rainfall frequency analysis using Archimedean
Copulas.Renard and Lang(2007) investigated the usefulness
of the Gaussian Copula in extreme value analysis.Kuhn et
al. (2007) employed Copulas to describe spatial and tempo-
ral dependence of weekly precipitation extremes.Serinaldi
(2008) studied the dependence of rain gauge data using the
non-parametric Kendall’s rank correlation and the upper tail
dependence coefficient (TDC). Based on the properties of the
Kendall correlation and TDC, a Copula-based mixed model
for modelling the dependence structure and marginals is sug-
gested. Recently, Copula-based models for estimating er-
ror fields of radar information are developed (Villarini et al.,
2008; AghaKouchak et al., 2010a,b). The intermittent nature
of daily and sub-daily rainfall time series (zero-inflated data)
can be modelled by mixed distributions, which are distribu-
tions with a continuous part describing data larger than zero
and a discrete part accounting for probabilities to observe
zero values (Serinaldi, 2009). While the univariate form of
such distributions was studied by many authors, the bi- or
multivariate case received less attention (Serinaldi, 2009).
Serinaldi (2009a) developed a copula-based rainfall model
which is able to jointly account for discrete and continuous
nature of observed daily rainfall, and can be used for simulat-
ing rainfall at multiple sites. Similarly,Bárdossy and Pegram
(2009) present a method to model the spatial interdependence
structure of the rainfall amounts together with the rainfall oc-
currences.

Conventional rainfall models operate under the assump-
tion of either constant variance or season-dependent vari-
ances using an AutoRegressive Moving Average (ARMA)
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Fig. 2. Alpine region showing the location of observation stationsused in this paper: 1 Garmisch-
Partenkirchen, 2 Grainau, 3 Grainau (Eibsee), 4 Bad Reichenhall, 5 Schneizlreuth-Unterjettenberg,
6 Schneizlreuth-Ristfeucht, 7 Schneizlreuth-Weissbach,8 Anger-Oberhögl, 9 Bischofswiesen-Winkl,
10 Inzell, 11 Anger-Stoissberg, 12 Rottach-Egern, 13 Kreuth, and 14 Schwarzkopfhütte.
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Fig. 2. Alpine region showing the location of observation stations used in this paper: 1 – Garmisch-Partenkirchen, 2 – Grainau, 3 – Grainau
(Eibsee), 4 – Bad Reichenhall, 5 – Schneizlreuth-Unterjettenberg, 6 – Schneizlreuth-Ristfeucht, 7 – Schneizlreuth-Weissbach, 8 – Anger-
Oberḧogl, 9 – Bischofswiesen-Winkl, 10 – Inzell, 11 – Anger-Stoissberg, 12 – Rottach-Egern, 13 – Kreuth, and 14 – Schwarzkopfhütte.

model. However, it could be shown that daily rainfall data are
affected by non-linear characteristics of the variance often
referred to as variance clustering or volatility, in which large
changes tend to follow large changes, and small changes tend
to follow small changes. This nonlinear phenomenon of the
variance behaviour can be found e.g. in monthly and daily
streamflow data (Wang et al., 2005), but also in meteorologi-
cal time series such as temperature (Romilly, 2005). It is an-
alyzed in this paper if volatility in daily precipitation series
can be modelled using Generalized AutoRegressive Condi-
tional Heteroskedasticity (GARCH) models.

This paper addresses the questions of (i) how to model
the temporal characteristics, i.e. serial dependence and time
varying variance (volatility) of daily rainfall series, and
(ii) how to describe the complex joint dependence struc-
ture of measured daily rainfall series and corresponding sim-
ulated rainfall series obtained from a RCM model. The
method of choice in this paper is the bivariate Copula. The
dependence structure is investigated for each observation sta-
tion separately.

The innovation of this paper mainly is:

– Application of an ARMA-GARCH algorithm to ana-
lyze daily precipitation time series for seasonal vari-
ation and volatility, and to generate independent and
identically distributed (hereinafter iid) residuals for the
Copula approach.

– Description and modelling of the joint dependence
structure between RCM modelled and observed
precipitation, accounting for the prevailing flow situa-
tions caused by large-scale circulation patterns.

2 Regional climate model simulations and observed
data

Regional climate simulations used in this study are based
on the Penn State/NCAR Mesoscale Model (MM5) and
ECMWF/ERA15 reanalysis data for 1979–1993 at 19.2 km
spatial resolution. The climate simulations have been carried
out within the framework of the QUIRCS-DEKLIM project
(Kotlarski et al., 2005). A comparison of the MM5 simu-
lations with gridded observation data for Germany obtained
from the German weather service (DWD) reveal that rain-
fall is overestimated by MM5 for the eastern part of Ger-
many, and strongly underestimated for the Rhine valley and
the alpine region of Germany (Fig.1, right). The underes-
timation in the alpine region is possibly due to the complex
terrain with strong gradients of altitude (Fig.1, left).

In order to statistically refine and correct precipitation ob-
tained by RCM (MM5) climate simulations, daily rainfall
data of 132 observation stations within the alpine region of
Germany are retrieved from the webwerdis data portal of
the DWD. Our study focusses on the alpine subregion round
Garmisch-Partenkirchen. For the analysis of the dependence
structure between modelled and observed precipitation, a
subset of 14 observation stations with large altitudinal dif-
ferences is selected (see Fig.2 and Table1). These stations
correspond to three different grid cells of the RCM output
where the model bias is comparatively large.

3 Modelling the dependence structure between
modelled and observed rainfall

The procedure followed in this paper to model the de-
pendence structure between RCM modelled and observed
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Fig. 3. Concept of the bias correction followed in this paper.
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Fig. 3. Concept of the bias correction followed in this paper.

rainfall, and to finally generate random samples of locally re-
fined and bias corrected pseudo-observations, requires mul-
tiple steps (Fig.3) that can be comprised as follows:

1. A suitable ARMA-GARCH model is fitted to the
modelled and observed rainfall series (positive values
only) to capture the seasonal variation of variance (see
Sect. 3.1.1) of both RCM simulated and station ob-
served precipitation.

2. The marginals are fitted to semi-parametric Generalized
Pareto Distributions (GPD) for an improved representa-
tion of the tails (see Sect. 3.1.2).

3. The bivariate empirical Copula (bivariate probability
density plot), which is independent from their corre-
sponding marginal distributions, is derived from the
residuals of the ARMA-GARCH model.

4. A theoretical Copula model is estimated using the iid
residuals obtained from the ARMA-GARCH model
(see Sect. 3.2.2).

5. Stochastic simulations are performed using the condi-
tional CDF of the theoretical Copula (see Sect. 3.2.3)
and the univariate distributions of the original data (pos-
itive pairs only).

6. Stochastic simulations are performed using conditional
CDFs of the theoretical Copula of different large-scale
weather patterns (see Sect. 3.3).

3.1 Modelling the marginals

Modelling the joint dependence structure requires that the
marginals are iid. Most climatological time series, however
exhibit some degree of autocorrelation and heteroskedastic-
ity. In the sequel the ARMA-GARCH composite model to
generate iid variables is introduced, followed by the descrip-
tion of how to fit a GPD to the marginals, and to derive a
joint distribution function (Copula) to model the dependence
between modelled and observed rainfall time series.

3.1.1 ARMA-GARCH filter

This section describes briefly the theory of the ARMA-
GARCH composite model and how it is used to simulate the
univariate time series in the presence of conditional mean
as well as conditional time-varying variance on daily time
scale, i.e. heteroskedasticity or volatility, to produce iid resid-
uals. An ARMA model is used to compensate for auto-
correlation, and a GARCH model to compensate for the
heteroskedasticity.

The termconditional in GARCH – Generalized Autore-
gressive Conditional Heteroskedasticity – implies explicitely
the dependence on a past sequence of observations, andau-
toregressivedescribes a feedback mechanism that incorpo-
rates past observations into the present. GARCH is a time
series modelling technique that includes past variances for
predicting present or future variances.

A univariate model of an observed time seriesyt can be
written as

yt = E (yt | �t−1) + εt . (1)

In this equation, the termE (·|·) denotes the conditional
expectation operator,�t−1 the information set at timet −1,
and εt the innovations at timet . Bollerslev (1986) devel-
oped GARCH as a generalization of the ARCH volatility
modelling technique (Engle, 1982). The distribution of the
residuals, conditional on the timet , is given by

Vart−1 (yt ) = Et−1

(
ε2
t

)
= σ 2

t (2)

where

σ 2
t = κ +

P∑
i=1

Gi σ 2
t−i +

Q∑
j=1

Aj ε2
t−j (3)

whereκ is a constant, andσ 2
t is the prediction of the variance,

given the past sequence of variance predictions,σ 2
t−i , and

past realizations of the variance itself,ε2
t−j . WhenP = 0, the

GARCH(0,Q) model becomes the original ARCH(Q) model
introduced byEngle(1982). This equation mimics the vari-
ance clustering of the variable (i.e. precipitation and temper-
ature). The lag lengthsP andQ and the coefficientsGi and
Aj determine the degree of persistence.
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Table 1. Station informations corresponding to 3 chosen MM5 grid cells, shape (tail index), and scale parameters of the fitted Generalized
Pareto Distribution (GPD) for positive pairs of modelled and observed precipitation respectively.

Station Altitude Location Precipitation (MM5 output) Precipitation (observed)
[m a.s.l.] lat lon Shape Scale Shape Scale

Garmisch-Partenkirchen 719 47.48 11.06 0.42 0.34 0.09 8.29
Grainau 760 47.47 11.02 0.29 0.40 0.13 6.76
Grainau (Eibsee) 1010 47.46 11.00 0.28 0.42 0.06 8.34

Bad Reichenhall 470 47.72 12.88 0.07 0.78 0.26 6.98
Schneizlreuth-Unterjettenberg 50747.68 12.83 0.07 0.82 0.10 8.29
Schneizlreuth-Ristfeucht 523 47.67 12.77 0.08 0.80 0.17 8.06
Schneizlreuth-Weissbach 63047.72 12.77 0.08 0.80 0.14 8.67
Anger-Oberḧogl 690 47.80 12.90 0.06 0.81 0.28 5.50
Bischofswiesen-Winkl 690 47.69 12.94 0.07 0.82 0.13 8.20
Inzell 690 47.76 12.76 0.05 0.84 0.06 10.22
Anger-Stoissberg 830 47.80 12.82 0.08 0.77 0.32 7.00

Rottach-Egern 747 47.68 11.77 0.05 0.76 0.15 7.93
Kreuth 895 47.61 11.65 0.04 0.77 0.16 9.65
Schwarzkopfḧutte 1336 47.66 11.91 0.06 0.74 0.09 10.09

A common assumption is that the innovations are serially
independent, however, GARCH(P,Q) innovations,{εt }, are
modelled as

εt = σt zt . (4)

σt is the conditional standard deviation given by the square
root of Eq. (3), andzt is the standardized iid random draw
from some specified probability distribution. Usually, a
Gaussian distribution is assumed such thatε∼N(0, σ 2

t ). Re-
flecting this, Eq. (4) illustrates that a GARCH innovations
process{εt } simply rescales an iid process{zt } such that the
conditional standard deviation incorporates the serial depen-
dence of Eq. (3).

3.1.2 Generalized pareto distribution

This subsection describes the fitting of semi-parametric cu-
mulative distribution functions (CDFs). First, the empirical
CDF of each parameter is estimated using a Gaussian kernel
function (using a kernel width of 50 points) to eliminate the
staircase pattern. This provides a reasonably good fit to the
interior of the distribution of the residuals. This procedure,
however, tends to perform poorly when applied to upper and
lower tails.

The upper and lower tails therefore are fitted separately
from the interior of the distribution. For this reason, the
peaks over threshold (POT) method is applied: A threshold
value of 0.1 is chosen, i.e. the upper and lower 10 % of the
residuals are reserved for each tail. The extreme residuals
(beyond the threshold) are fitted to a parametric GPD, which
can be described as

y = f (x|k, σ, θ) =

(
1

σ

) (
1 + k

(
(x − θ)

σ

))−1−
1
k

(5)

using a maximum likelihood approach. Given the ex-
ceedances in each tail, the negative log-likelihood function
is optimized to estimate the tail index/shape parameterk and
the scale parameterσ of the GPD. The composite GPD func-
tion allows for interpolation in the interior of the CDF but
also for extrapolation in the lower and upper tails.

3.2 Copula based joint distribution functions of
modelled and observed rainfall

Copulas are functions that link multivariate distribu-
tion F(x1, ... xn) to their univariate marginalsFXi

(xi).
Sklar (1959) proved that every multivariate distribution
F(x1, ... xn) can be expressed in terms of a CopulaC and
its marginalsFXi

(xi):

F (x1, ... xn) = C
(
FX1 (x1), ..., FXn (xn)

)
(6)

C : [0, 1]
n

→ [0, 1]. (7)

Copulas allow to merge the dependence structure and the
marginal distributions to form a joint multivariate distribu-
tion. The Copula function is unique when the marginals are
continuous functions. As the Copula is a reflection of the
dependency structure itself, its construction is reduced to the
study of the relationship between the variables, giving free-
dom for the choice of the univariate marginal distributions.
Further information about Copulas can be found e.g. inJoe
(1997); Frees and Valdez(1998); Nelsen(1999); Salvadori et
al. (2007).

The dependence structure between regional and local me-
teorological fields and between simulated and observed fields
is highly complex. For this reason it cannot be adequately
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modelled by the multivariate normal distribution. The com-
plex multivariate dependence structure is analyzed between
RCM modelled precipitation (MM5 output) and station ob-
served precipitation.

For dry days only the single marginal distributions ex-
ist (Yang, 2008) but no (unique) joint distribution function.
Consequently, it is not possible to estimate a Copula model
for dry days without further transformations such as nor-
mal score. For sake of simplicity, we focus our work on
the positive pairs (RCM precipitation> 0, observed precip-
itation> 0).

3.2.1 Empirical Copula

The dependence structure of daily measured precipitation
and simulated precipitation is studied. Since the underlying
(theoretical) Copula is not known in advance, it is necessary
to analyze the empirical Copula, which is purely based on the
data (Deheuvels, 1979). The ranks of the residuals of mod-
elled and observed rainfall from day 1 to dayn, obtained
from the original data as well as the ARMA-GARCH time
series model, are{r1(1), ..., r1(n)} and {r2(1), ..., r2(n)},
respectively. The empirical Copula is defined as:

Cn (u,v) = 1/n

n∑
t=1

1
(

r1(t)

n
6 u,

r2(t)

n
6 v

)
(8)

where u indicates the percentile of the modelled rainfall
residuals,v indicates the percentile of the measured rainfall
residuals and1(...) is denoting the indicator function.

3.2.2 Copula goodness-of-fit test

A goodness-of-fit test for Copulas is applied comparing the
empirical CopulaCn (Eq. 8) with the parametric estimate of a
theoretical Copula modelCθ derived under the null hypothe-
sis. This is done for the residual series (Grégoire et al., 2008)
of observed and modelled rainfall obtained by the ARMA-
GARCH transformation. The test is based on the Cramér-von
Mises statistic (Genest and Favre, 2007):

Sn = n

n∑
t=1

{Cθ (ut , vt ) − Cn (ut , vt )}
2. (9)

As the definition ofSn involves the theoretical Copula
function, the distribution of this statistic depends on the un-
known value ofθ under the null hypothesis thatC is from the
classCθ (Grégoire et al., 2008). Therefore, the approximate
p-values for the test statistic are obtained using a parametric
bootstrap (Genest and Remillard, 2008; Genest et al., 2009)
as well as a fast multiplier approach (Kojadinovic and Yan,
2011a,b).

3.2.3 Relationship between Copula parameterθ and
rank-based concordance measures

There is a functional relationship between the classical de-
pendence parameters such as Kendall’sτ and Spearman’sρ

namely

ρ = 12
∫ ∫

[0, 1]2
u v dCθ (u, v) − 3 = 12∫ ∫

[0, 1]2
Cθ (u, v) du dv − 3 (10)

and

τ = 4
∫ ∫

[0, 1]2
Cθ (u, v) dCθ (u, v) − 1 (11)

or for Archimedean Copulas with generatorϕ

τ = 1 + 4
∫

[0, 1]

ϕ(t)

ϕ′(t)
. (12)

For the Gumbel-Hougaard Copula with its generator
ϕ(t) = (−ln(t))θ it is found thatθ = 1

1−τ
, soθ is a increasing

function of τ . According to this empirical link Kendall’sτ
can be used as a rank-based estimator for the Copula param-
eterθ . In turn, this link enables the interpretation of the Cop-
ula parameter as a measure for the strength of dependence:
higher Copula parameters reveal a stronger dependence.

3.2.4 Copula-based rainfall simulations

After the estimation of the Copula-based joint distribution –
that isFX(x), FY (y) andCθ (u,v) are obtained – conditional
random samples from this distribution are generated through
Monte Carlo simulations. We follow the procedure ofSal-
vadori et al.(2007) for the conditional simulation using Cop-
ulas. The simulation is based on conditional probabilities of
the form:

P (V ≤ v|U = u) =
∂

∂u
C (u, v); (13)

P (U ≤ u|V = v) =
∂

∂v
C (u, v). (14)

For the Gumbel-Hougaard Copula e.g. it is:

∂

∂u
C(u,v) = u−1e−(log(u)θ )+(log(v)θ )1/θ

(−log(u))−1+θ ((−log(u)θ )+(−log(v))θ )−1+1/θ . (15)

The concept for simulation of pseudo-observation from
model data is as follows: a pair of variates(u, v) with Cop-
ulaC(u, v) needs to be generated which finally can be trans-
formed into(x, y), using the probability integral transforma-
tion

U = FX(x) ⇔ X = F−1
X (U) (16)

V = FY (y) ⇔ Y = F−1
Y (V ). (17)

The complete algorithm is divided into three steps:

1. Computationu =FX(x), wherex denotes one value of
the modelled rainfall andFX(x) is the marginal distri-
bution of the variateX.
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2. Generation of random samples for the variatev∗ from
the conditional CDFCV |U (v|u) = cu(v) and calculation
of v = c−1

u (v∗), wherec−1
u denotes the generalized in-

verse ofcu (Nelsen, 1999).

3. Calculation of the correspondingy-values using the
probability integral transformationF−1

Y (v) =y.

The final result fory is a sample of pseudo-observations
which lies in the original data space and can be compared
with the observed data series.

3.3 Usability of weather patterns for conditional
simulations

Especially for complex terrain, it is assumed that the direc-
tion of advection is of crucial importance for the observed
precipitation amounts. The combinations of terrain exposi-
tion and advection direction leads to luv and lee side effects,
i.e. the stations can lie in the rainshadow or can be exposed to
intense rainfall. As independent from the RCM simulations,
large-scale weather patterns are used to further improve the
results of the bias correction. Besides the advection direc-
tion, large scale information about cyclonality and tropo-
spheric humidity is evaluated. The objective weather pattern
classification method of the German Weather Service is used
(Bissolli and Dittmann, 2001). The classification domain is
Central Europe, and the meteorological criteria for the classi-
fication are (i) the direction of advection of air masses, (ii) the
cyclonality, and (iii) the humidity of the troposphere. This
leads to numerical indices from which the weather types are
derived (Bissolli and Dittmann, 2001). There exist 40 prede-
fined types, which can be used. Due to the limited occurrence
frequencies of single weather types, their usability for con-
ditional simulations is restricted. However, the usage of the
numerical indices provides the possibility to group the types
to different classes.

For this study, the following grouping strategies are
evaluated:

1. Grouping types due to thedirection of the advection of
air masses at 700 hPa: the weather types (WTs) are
grouped into northeasterly, southeasterly, southwest-
erly, and northwesterly flow.

2. Grouping types due to thecyclonality at 950 hPa and
500 hPa: this leads to four classes, namely anticyclonal
– anticyclonal (AA), anticyclonal – cyclonal (AC), cy-
clonal – anticyclonal (CA), and cyclonal – cyclonal
(CC).

3. Grouping types due to thehumidity of the tropo-
sphere: this leads to the discrimination of dry (D) and
wet (W). Therefore, a humidity index is calculated as
the weighted areal mean of the precipitable water inte-
grated over the 950, 850, 700, 500, and 300 hPa levels.

For each group of weather types, a theoretical Copula
model is estimated separately. For sake of simplicity, the
Gumbel-Hougaard Copula model is used.

3.4 Performance of simulations

To quantitatively evaluate the performane of the stochas-
tic Copula-based pseudo-observations (unconditional) and
the stochastic Copula-based pseudo-observations depend-
ing on the large-scale weather situation (conditional) dif-
ferent performance measures are used. They consist of in-
dices giving an impression about the differences between ob-
served and modelled values in their original unit measures.
Here, root mean squared error (RMSE), mean absolute er-
ror (MAE), and mean error (ME) are used. Additionally,
the Nash-Sutcliffe efficiency (NSE), which is an indicator of
the model’s performance to predict about the 1:1 line (values
equal or less than zero indicate that the model is not better
than using the average of observed data, unity indicates a
perfect fit), and the Pearson correlation coefficient (PCC) are
used.

4 Simulation results

In this section simulation results of both, the obtained RCM
and corresponding observed precipitation time series are ex-
emplarily presented. Based on iid residuals obtained by
ARMA-GARCH models the empirical and theoretical Copu-
las, and the marginal distributions are estimated and analyzed
and locally refined and bias corrected pseudo-observations
are generated.

4.1 Analysis of ARMA-GARCH time series models

ARMA-GARCH models are fitted to the observation stations
and their corresponding grid cells. The order of the ARMA
and the GARCH terms, the threshold for a wet day, and the
peak-over-threshold (POT) value for lower and upper tails
are empirically determined in a sensitivity experiment by in-
spection of the autocorrelation functions and the Ljung-Box
Q-tests. The order of the AR, MA, P, and Q components
are varied systematically between 0 and and 3, the threshold
value for a wet day between 0.01 mm, 0.1 mm, and 1 mm,
and the peak-over-threshold (POT) value for lower and upper
tail between 10 % and 20 %. It is found that ARMA-GARCH
models are superior compared to simple AR and MA models,
and on the other hand that first order ARMA-GARCH mod-
els are sufficient to adequately eliminate the effects of serial
correlation in the majority of the cases.

Table2 shows the mean and standard deviation of the pa-
rameters for the fitted ARMA(1,1)-GARCH(1,1) models for
selected stations and their corresponding RCM grid cells,
whereas Table3 shows the parameter values for the single
sites. It can be seen that the fitted parameters of the observed
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Fig. 4. Autocorrelation function for precipitation (1979–1993) of Garmisch-Partenkirchen, Germany
(top), and its corresponding squared time series (bottom).
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Fig. 4. Autocorrelation function for precipitation (1979–1993) of Garmisch-Partenkirchen, Germany (left), and its corresponding squared
time series (right).
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Fig. 5. Autocorrelation function for ARMA-GARCH residuals for precipitation (1979–1993) of
Garmisch-Partenkirchen (top), and its corresponding squared residuals (bottom).
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Fig. 5. Autocorrelation function for ARMA-GARCH residuals for precipitation (1979–1993) of Garmisch-Partenkirchen (left), and its
corresponding squared residuals (right).

time series are substantially different from those of the re-
gional climate model.

Both autocorrelation function and Ljung-Box Q-test are
applied to test the performance of the ARMA-GARCH mod-
els. The tests are applied to the original time series, the
squared original time series as well as the resulting standard-
ized residuals and standardized squared residuals after ap-
plication of the ARMA-GARCH model. According to the
autocorrelation function plots the original time series of ob-
served and RCM time series show serial dependence and het-
eroskedasticity. This non-iid behaviour is illustrated exem-
plarily for station Garmisch-Partenkirchen (Fig.4). Figure5
shows the autocorrelation function after application of the
ARMA-GARCH model.

The Ljung-Box Q-test tests the data against the null hy-
pothesis that a series of residuals exhibits no autocorrelation
for a fixed number of lags against the alternative hypothesis
that the autocorrelation is nonzero (Box et al., 1994). Table4
demonstrates exemplarily the results of the Ljung-Box Q-test
for the observed and modelled rainfall data (positive pairs)
before and after application of a first order ARMA-GARCH
model. All of the analyzed RCM rainfall time series are af-

fected by serial correlation for the lags 1, 5, 10, 15, and 25
days. After ARMA-GARCH transformation the RCM resid-
uals exhibit no autocorrelation for the analyzed lags. For the
observed time series, three different types of autocorrelation
can be classified:

1. Strong persistent autocorrelation before, no autocorre-
lation after application of ARMA-GARCH (90.15 % of
all cases).

2. Strong persistent autocorrelation before, re-
duced/remaining autocorrelation after application
of ARMA-GARCH (7.58 % of all cases). In these cases
higher order ARMA-GARCH models could further
reduce the autocorrelation.

3. Weak persistent autocorrelation before, no autocorrela-
tion after application of ARMA-GARCH (2.27 % of all
cases).

The test results do not fully correspond to the au-
tocorrelation functions (as shown for station Garmisch-
Partenkirchen), however, both the graphical representations
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Table 2. Mean and standard deviation of the parameters for the fitted ARMA(1,1)-GARCH(1,1) models for selected stations (OBS) and their
corresponding RCM grid cells (see Table1 for further details about the stations). The conditional mean parameters of the ARMA model
consist ofc, the conditional mean constant, AR, the conditional mean autoregressive coefficient, and MA, the conditional mean moving-
average coefficient. The conditional variance parameters consist ofκ, the conditional variance constant, GARCH, the lagged conditional
variance coefficient, and ARCH, the lagged residual coefficient.

Data source Conditional Mean Conditional Variance
Parameters Parameters

c AR MA κ GARCH ARCH

RCM MEAN 0.57 0.27 −0.09 0.72 0.12 0.11
STD 0.16 0.18 0.20 0.30 0.11 0.10

OBS MEAN 5.18 0.45 −0.27 0.84 0.06 11.21
STD 1.57 0.13 0.17 0.02 0.02 2.48

Table 3. Parameters for the fitted ARMA(1,1)-GARCH(1,1) models for selected stations (OBS) and their corresponding RCM grid cells
(see Table1 for further details about the stations). The conditional mean parameters of the ARMA model consist ofc, the conditional mean
constant, AR, the conditional mean autoregressive coefficient, and MA, the conditional mean moving-average coefficient. The conditional
variance parameters consist ofκ, the conditional variance constant, GARCH, the lagged conditional variance coefficient, and ARCH, the
lagged residual coefficient.

Station Conditional Mean Conditional Variance
Station Parameters Parameters

c AR MA κ GARCH ARCH

Garmisch-Partenkirchen RCM 0.10 0.81−0.68 0.65 0.17 0.10
OBS 2.20 0.76 −0.68 0.86 0.04 9.47

Grainau RCM 0.48 0.07 0.15 0.01 0.38 0.32
OBS 4.05 0.46 −0.29 0.84 0.06 7.23

Grainau-Eibsee RCM 0.39 0.28 −0.06 0.04 0.35 0.33
OBS 4.74 0.46 −0.30 0.86 0.04 8.59

Bad Reichenhall RCM 0.56 0.33 −0.14 0.86 0.04 0.08
OBS 5.56 0.38 −0.19 0.84 0.06 11.99

Schneizelreuth-Unterjettenberg RCM 0.58 0.33−0.15 0.88 0.06 0.06
OBS 5.44 0.39 −0.18 0.81 0.09 9.63

Schneizelreuth-Ristfeucht RCM 0.72 0.17 0.03 0.81 0.09 0.10
OBS 5.51 0.41 −0.21 0.85 0.05 11.91

Schneizelreuth-Weissbach RCM 0.63 0.27−0.08 0.88 0.06 0.06
OBS 4.85 0.51 −0.30 0.83 0.07 12.14

Anger-Oberḧogl RCM 0.59 0.30 −0.14 0.84 0.05 0.09
OBS 2.33 0.68 −0.53 0.81 0.09 8.17

Bischofswiesen-Winkl RCM 0.74 0.14 0.05 0.85 0.08 0.06
OBS 5.50 0.40 −0.22 0.84 0.06 10.73

Inzell RCM 0.57 0.36 −0.19 0.76 0.11 0.13
OBS 6.05 0.42 −0.20 0.82 0.08 12.33

Anger-Stoissberg RCM 0.67 0.20 0.00 0.89 0.06 0.05
OBS 5.74 0.41 −0.21 0.85 0.05 14.38

Rottach-Egern RCM 0.64 0.19 0.03 0.88 0.08 0.04
OBS 6.18 0.31 −0.10 0.83 0.07 10.76

Kreuth RCM 0.68 0.13 0.06 0.88 0.07 0.04
OBS 8.43 0.24 −0.03 0.83 0.07 15.99

Schwarkopfḧutte RCM 0.57 0.25 −0.05 0.88 0.07 0.04
OBS 5.92 0.45 −0.26 0.83 0.07 13.69
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Fig. 6. K-plot of the observed rainfall time series at station Garmisch-Partenkirchen (Germany) before
ARMA-GARCH transformation (top), and after ARMA-GARCH transformation (bottom). Superim-
posed on the graph are a straight line (blue) corresponding to the case of independence and a curve
corresponding to perfect positive dependence (red).
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Fig. 6. K-plot of the observed rainfall time series at station Garmisch-Partenkirchen (Germany) before ARMA-GARCH transformation
(left), and after ARMA-GARCH transformation (right). Superimposed on the graph are a straight line (blue) corresponding to the case of
independence and a curve corresponding to perfect positive dependence (red).

Table 4. Ljung-Box Q-test results for three observation stations and their corresponding RCM grid cells. The test indicates whether or not the
time series exhibit autocorrelation for a given number of lags [days]. One tests the null hypothesis that a series exhibits no autocorrelation for
a fixed number of lags against the alternative hypothesis that the autocorrelation is nonzero. “1” indicates that the null hypothesis is rejected
(i.e. autocorrelation), and “0” indicates no autocorrelation for any given time lag and level of significance (significant atα = 0.05 (normal
font), orα = 0.01 level of significance (bold)).

Station without ARMA-GARCH with ARMA-GARCH
1 5 10 15 20 1 5 10 15 20

Anger-Oberḧogl RCM (original) 1 1 1 1 1 0 0 0 0 0
RCM (squared) 1 1 1 1 1 0 0 0 0 0
OBS (original) 1 1 1 1 1 0 0 0 0 0
OBS (squared) 1 1 1 1 1 0 0 0 0 0

Grainau RCM (original) 1 1 1 1 1 0 0 0 0 0
RCM (squared) 1 1 1 1 1 0 0 0 0 0
OBS (original) 1 1 1 1 1 1 1 1 0 0
OBS (squared) 1 1 1 1 1 0 0 0 0 0

Garmisch-Partenkirchen RCM (original) 1 1 1 1 1 0 0 0 0 0
RCM (squared) 1 1 1 1 1 0 0 0 0 0
OBS (original) 1 1 0 0 0 0 0 0 0 0
OBS (squared) 0 0 0 0 0 0 0 0 0 0

and the test results show the same trends, i.e. ARMA-
GARCH is capable to remove large parts of serial depen-
dence. Even though higher order ARMA-GARCH models
could improve the results for about 8 % of all stations, a
first order ARMA-GARCH model is preferred to guaranty
for consistency and comparability between the stations.

Figure6 shows the K-plot of observed and modelled time
series before and after the ARMA-GARCH transformation
visualizing their dependence structure over the whole range
of the data. The K-plots indicate that the untransformed data
sets reveal positive dependence within the low ranks which
is removed after application of the ARMA-GARCH transfor-
mation. The remaining positive dependence in the upper tails
of the residuals is the “real” underlying dependence between
the two variables.

From the sensitivity experiment mentioned above, it is
found that the larger the wet day threshold, the higher is the
distortion of the upper tails after the ARMA-GARCH trans-
formation, i.e. the smaller is the fraction of “artificial” de-
pendence which has to be removed. This is due to the fact
that the high values (extremes) are intrinsically already iid.
The POT and the order of the ARMA-GARCH models are
less sensitive to this effect. Further information about how to
calculate and to interprete the K-plots can be obtained e.g. by
Genest and Favre(2007).

Figure7 (left) shows the empirical and fitted exceedance
probability for the upper tail of the observed rainfall residuals
at station Garmisch-Partenkirchen. Both, for observed and
modelled rainfall, the Generalized Pareto Distribution seems
to be a good choice to fit the upper tails of the data. Figure7
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Fig. 7. Empirical and fitted exceedance probability of the upper tail of observed rainfall residuals (top),
composite of the piecewise CDF of the modelled (solid lines)and observed (dashed lines) rainfall resid-
uals at Garmisch-Partenkirchen (bottom).
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Fig. 7. Empirical and fitted exceedance probability of the upper tail of observed rainfall residuals (top),
composite of the piecewise CDF of the modelled (solid lines)and observed (dashed lines) rainfall resid-
uals at Garmisch-Partenkirchen (bottom).
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Fig. 7. Empirical and fitted exceedance probability of the upper tail of observed rainfall residuals (left), composite of the piecewise CDF of
the modelled (solid lines) and observed (dashed lines) rainfall residuals at Garmisch-Partenkirchen (right).

(right) illustrates the composite of the three piecewise CDFs
for modelled and observed rainfall residuals. It can be clearly
seen that lower/upper tail as well as the interior of the distri-
bution are fitted reasonably well to the observed data.

4.2 Analysis of empirical and theoretical Copula models

Figure 8 (left) shows the empirical Copula density be-
tween modelled and measured rainfall for station Garmisch-
Partenkirchen. Only the positive pairs of modelled and mea-
sured rainfall are shown using a threshold of 0.01 mm to de-
fine a wet day. It can be seen from the figure that the dis-
tribution is strongly asymmetrical for the opposite diagonal
of the unit square, and that the density in the upper corner
is highest. This implies that modelled and observed rainfall
are strongly concordant in the higher ranks of the distribu-
tion, whereas the concordance is weaker in the lower ranks.
This empirical density structure may be remarkably differ-
ent compared to the ARMA-GARCH transformed residuals
(Fig. 8, right).

Table 5 shows the results for the goodness-of-fit (GOF)
test statistics using the parametric bootstrap procedure. In
order to chose between the three different Copula families,
namely Normal, Gumbel-Hougaard, and Clayton Copula,
the parametric bootstrap algorithm ofGenest and Remil-
lard (2008) is applied to the residuals of observed and mod-
elled precipitation. Although desirable in the long run, other
promising theoretical Copula models such as the survival
Clayton Copula are not considered in this study.

1000 bootstrap values of the Cramér-von-Mises test statis-
tic are produced, and the proportion of those values that
are larger thanSn (p-values) is estimated. From the p-
values obtained the usability of the Gumbel-Hougaard Cop-
ula is concluded. The Copula parameters which are used

for Copula-based stochastic simulations are also given in
Table5.

4.3 Dependence on large-scale weather situation

The dependence structure between modelled and observed
rainfall, given the large-scale weather situation, is analysed.
The method used for classifying large-scale weather types is
described in Sect. 3.3. The empirical Copulas are calculated
using different grouping strategies for the WTs. Based on
the empirical Copulas, as well as the conditional CDFs, the
usability for conditional simulations is investigated.

Using four different weather types and one indefinite type
for advection (Fig.9) can have additional value, and thus
be used for conditional stochastic simulations. Figure10
illustrates the empirical Copula density for modelled and
observed precipitation for Garmisch-Partenkirchen group-
ing the weather types due to the cyclonality in 950 hPa and
500 hPa into four classes. One can observe that for the
four classes significant differences within the dependence
structure between modelled and observed rainfall exist. The
classification due to the humidity of the troposphere (Fig.11)
does not lead to a clear discrimination between the empir-
ical Copulas. Both, the wet and the dry Copula density is
similar to the unconditional Copula densities (compare with
Fig. 8). The empirical CDFs of observed precipitation in
Garmisch-Partenkirchen based on a given WT and certain
groups of WTs are illustrated in Fig.12. The performance
skill of unconditional compared to WT conditional simula-
tions of pseudo-observations is demonstrated in the sequel.

4.4 Conditional stochastic simulations of
pseudo-observations

Figure13 shows the results of Copula-based stochastic sim-
ulations (100 realizations) of pseudo-observations assuming
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Fig. 8. Empirical Copula density for modelled (u) and observed precipitation (v) for station Garmisch-
Partenkirchen, using the positive pairs of original data (top), and the positive pairs of the ARMA-
GARCH transformediid residuals (bottom).
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Fig. 8. Empirical Copula density for modelled (u) and observed precipitation (v) for station Garmisch-Partenkirchen, using the positive pairs
of original data (left), and the positive pairs of the ARMA-GARCH transformed iid residuals (right).

Fig. 9. Empirical Copula density for modelled (u) and observed precipitation (v) for Garmisch-Partenkirchen, using the weather type classi-
fication following the advection of air masses. The advection types correpond to:(a) Northeast,(b) Southeast,(c) Southwest,(d) Northwest,
and(e)no prevailing direction. The white areas originate from interpolation effects using an ordinary kriging algorithm.

that the modelled RCM precipitation is given (unconditional
case). A split-sampling approach is used to subdivide the
data into calibration and validation period. It can be seen
from the figure that the observations are usually underpre-
dicted by the model, and that the Copula-based technique can
partly correct for that effect. For the very high RCM rainfall
amounts, the Copula-based approach tends to overestimate

the observations. After this first graphical comparison the
improvements attained using the Copula approach are ana-
lyzed further with selected performance measures. A first
hint of the skill is given by different error measures and e.g.
the Pearson correlation coefficients between observations,
RCM and the pseudo-observations, i.e. the bias corrected
predictions (Table6). The Pearson correlation coefficient

Hydrol. Earth Syst. Sci., 15, 2401–2419, 2011 www.hydrol-earth-syst-sci.net/15/2401/2011/
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Fig. 10. Empirical Copula density for modelled (u) and observed precipitation (v) for Garmisch-
Partenkirchen, using the weather type classification following the cyclonality in 950 hPa and 500 hPa
respectively:(a) AA, (b) AC, (c) CA, and(d) CC (A – anticyclonic, C – cyclonic).
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Fig. 10. Empirical Copula density for modelled (u) and observed precipitation (v) for Garmisch-Partenkirchen, using the weather type
classification following the cyclonality in 950 hPa and 500 hPa respectively:(a) AA, (b) AC, (c) CA, and(d) CC (A – anticyclonic, C –
cyclonic).

Fig. 11. Empirical Copula density for modelled (u) and observed precipitation (v) for Garmisch-
Partenkirchen, using the weather type classification following the humidity of the troposphere:(a) D,
and(b) W (D – dry, W –wet).
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Fig. 11. Empirical Copula density for modelled (u) and observed precipitation (v) for Garmisch-Partenkirchen, using the weather type
classification following the humidity of the troposphere:(a) D, and(b) W (D – dry, W –wet).

between observations and the mean value of the random sam-
ple, generated through the Copula approach is 0.36. Please
note that the correlation coefficient between observations and
RCM is calculated as 0.3 for the iid transformed data of
Garmisch-Partenkirchen. This corroborates the usability of
the Copula based bias correction of precipitation.

Including large-scale information about advection, cyclon-
ality, and humidity is increasing (decreasing) the correlation
(deviation) between observations and pseudo-observations
(see Table6). The correlation between the RCM and the
pseudo-observations is intrinsically high because the RCM
data is used to constrain the Copula model. However, the
Pearson correlation coefficient and the other used error mea-
sures are just global measures, operating on the complete
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Table 5. Goodness-of-fit (GOF) test using the Cramér-von-Mises test statistics and parametric bootstrap procedure (see Sect. 3.2.2). p-values
exceeding 0.01 are highlighted in bold.

Station Normal Copula Gumbel-H. Copula Clayton Copula
Sn p-value θN Sn p-value θGH Sn p-value θC

Garmisch-Partenkirchen 0.09 0.00 0.08 0.12 0.00 1.09 0.17 0.00 0.01
Grainau 0.10 0.00 0.09 0.15 0.00 1.10 0.16 0.00 0.01
Grainau (Eibsee) 0.07 0.00 0.12 0.08 0.00 1.11 0.12 0.00 0.06

Bad Reichenhall 0.10 0.00 0.19 0.04 0.02 1.15 0.37 0.00 0.13
Schneizlreuth-Unterjettenberg 0.14 0.00 0.15 0.10 0.00 1.13 0.29 0.00 0.08
Schneizlreuth-Ristfeucht 0.11 0.00 0.17 0.05 0.00 1.14 0.40 0.00 0.09
Schneizlreuth-Weissbach 0.08 0.00 0.13 0.06 0.00 1.11 0.21 0.00 0.07
Anger-Oberḧogl 0.10 0.00 0.16 0.05 0.01 1.14 0.34 0.00 0.11
Bischofswiesen-Winkl 0.07 0.00 0.16 0.04 0.07 1.14 0.23 0.00 0.11
Inzell 0.08 0.00 0.16 0.05 0.01 1.13 0.24 0.00 0.13
Anger-Stoissberg 0.12 0.00 0.14 0.06 0.00 1.12 0.40 0.00 0.07

Rottach-Egern 0.05 0.00 0.17 0.03 0.09 1.14 0.21 0.00 0.13
Kreuth 0.06 0.00 0.12 0.06 0.00 1.10 0.17 0.00 0.06
Schwarzkopfḧutte 0.05 0.01 0.15 0.03 0.07 1.12 0.22 0.00 0.12

Table 6. Performance measures between positive pairs of pseudo-observations (mean value) produced by Copula-based stochastic simu-
lations without using large-scale information (uncond), including advection (advec), cyclonality (cyclo), and humidity (humi) of the tro-
posphere, and the observed precipitation at station Garmisch-Partenkirchen and the corresponding grid cell precipitation of RCM (RMSE
– Root mean squared error; MAE – Mean absolute error; ME – Mean error; NSE – Nash-Sutcliffe efficiency; PCC – Pearson correlation
coefficient).

uncond advec cyclo humi

RMSE [mm d−1] observed 18.04 23.95 16.06 52.81
RCM 21.49 27.82 19.84 56.06

MAE [mm d−1] observed 3.13 3.21 2.98 3.41
RCM 3.40 3.48 3.29 3.59

ME [mm d−1] observed −3.00 −5.39 −4.13 −6.20
RCM −11.59 −12.12 −10.82 −12.90

NSE[−] observed 0.08 0.13 0.14 0.08
RCM −0.30 −0.18 −0.32 −0.04

PCC[−] observed 0.36 0.43 0.45 0.37
RCM 0.98 0.93 0.98 0.65

time series, and do not mirror the quality of the new method
for specific subsets of the rank space. In turn, the probability
plot (Fig.14) provides a performance measure for the quan-
tiles of the distribution.

It can be seen from Fig.14 that the RCM underestimates
the observations over the whole range of the distribution.
Taking this as a reference, the Copula-based stochastic sim-
ulations of the pseudo-observations lead to significant im-
provements. Including large-scale conditional information
contributes moderately to a reduction of the bias.

5 Discussion

The bivariate dependence structure between RCM model
output and gauge observations (RCM> 0, gauge> 0) is stud-
ied to correct the systematic errors in the RCM simulations.
In general there are four cases to distinguish, namely (0,0),
(1,0), (0,1) and (1,1) where 0 denotes a dry and 1 a wet day.
A wet day is defined as a day of rainfall≥ 0.01 mm which
is chosen due to the minimum resolution of rain gauge mea-
surements. Although the gauge measurements are affected
by different sources of measurement errors such as errors due
to wind or evaporation, they are treated as a reference for the
“true” precipitation.
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Fig. 12.Empirical CDF of observed precipitation in Garmisch-Partenkirchen, conditioned on the occur-
rence of (i) four different advection types plus one unspecified type, (ii) the following cyclonality types
in 950 hPa and 500 hPa respectively: AA, AC, CA, and CC (A – anticyclonic, C – cyclonic), and (iii) the
following humidity types of the troposphere: D, and W (D – dry, W – wet). Dry (wet) types are colored
red (blue).
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Fig. 12.Empirical CDF of observed precipitation in Garmisch-Partenkirchen, conditioned on the occur-
rence of (i) four different advection types plus one unspecified type, (ii) the following cyclonality types
in 950 hPa and 500 hPa respectively: AA, AC, CA, and CC (A – anticyclonic, C – cyclonic), and (iii) the
following humidity types of the troposphere: D, and W (D – dry, W – wet). Dry (wet) types are colored
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Fig. 12. Empirical CDF of observed precipitation in Garmisch-
Partenkirchen, conditioned on the occurrence of (i) four different
advection types plus one unspecified type, (ii) the following cyclon-
ality types in 950 hPa and 500 hPa respectively: AA, AC, CA, and
CC (A – anticyclonic, C – cyclonic), and (iii) the following humid-
ity types of the troposphere: D, and W (D – dry, W – wet). Dry
(wet) types are colored red (blue).

RCMs are known to produce a high number of rainy days
with very small rainfall amounts which are not measured on
the ground. These artifacts are eliminated by the thresh-
old value. The case (0,1), where the RCM misses a rainy
day cannot be corrected by this approach and has to be

Fig. 13. Copula-based stochastic simulations of 50 consecutive positive pairs (precipitation> 0.01 mm)
performing 100 realizations (illustrated as box-whiskers) of V (observed rainfall at gauge, illustrated as
red line) assuming thatU (corresponding coarse scale MM5 precipitation, illustrated as black line) is
known. The boxes have lines at the lowerQ1 and upper quartileQ3 and the median valuesQ2 (middle
horizontal lines). The whiskers (vertical lines) are linesextending from each end of the boxes to show
the extent of the rest of the data. The maximum length of the whiskers is determined by 1.5 (Q3–Q1).
Outliers (crosses) are data with values beyond the ends of the whiskers.
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Fig. 13.Copula-based stochastic simulations of 50 consecutive pos-
itive pairs (precipitation> 0.01 mm) performing 100 realizations
(illustrated as box-whiskers) ofV (observed rainfall at gauge, il-
lustrated as red line) assuming thatU (corresponding coarse scale
MM5 precipitation, illustrated as black line) is known. The boxes
have lines at the lowerQ1 and upper quartileQ3 and the median
valuesQ2 (middle horizontal lines). The whiskers (vertical lines)
are lines extending from each end of the boxes to show the extent
of the rest of the data. The maximum length of the whiskers is de-
termined by 1.5 (Q3–Q1). Outliers (crosses) are data with values
beyond the ends of the whiskers.
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Fig. 14. Probability plots of observed and modelled precipitation time series at station Garmisch-
Partenkirchen. If the quantiles of the two distributions agree, the plotted points fall on exactly on the
thin dotted line. The red quadrates illustrates the agreement between observed and RCM rainfall. The
black quadrates correspond to the Copula-based stochasticsimulations without additional large-scale
information. The Copula-based simulations including advection, cyclonality, and humidity of the tropo-
sphere are illustrated as blue, green, and orange quadratesrespectively.
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Fig. 14. Probability plots of observed and modelled precipitation
time series at station Garmisch-Partenkirchen. If the quantiles of the
two distributions agree, the plotted points fall on exactly on the thin
dotted line. The red quadrates illustrates the agreement between
observed and RCM rainfall. The black quadrates correspond to the
Copula-based stochastic simulations without additional large-scale
information. The Copula-based simulations including advection,
cyclonality, and humidity of the troposphere are illustrated as blue,
green, and orange quadrates respectively.
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Fig. 15. Empirical CDF of observed precipitation in Garmisch-Partenkirchen, conditioned on the oc-
currence of the Northeast advection type WT 2 (NEAAD), and the Southwest advection type WT 39
(SWCCW).
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Fig. 15. Empirical CDF of observed precipitation in Garmisch-
Partenkirchen, conditioned on the occurrence of the Northeast ad-
vection type WT 2 (NEAAD), and the Southwest advection type
WT 39 (SWCCW).

investigated separately. Please note that the positive pairs
are not consecutive except for certain periods, threrefore the
described simulation process does not produce a continuous
time series.

In literature the fact that positive pairs are usually non-
consecutive has often been used to justify the assumption of
iid behaviour (e.g.Villarini et al., 2008), mainly neglecting
serial autocorrelation. For the modelling of extremes iid be-
haviour is commonly justified by reducing the sample size
using block maxima or peaks over threshold methods. Al-
though the focus lies on modelling of positive pairs of daily
precipitation values (observations and RCM), a different ap-
proach is required as it is found that they are non-iid. More
detailed they are affected by non-stationary of mean and vari-
ance (volatility). Simple models such as AR, MA, ARMA,
or GARCH fail to eliminate both effects at the same time.
Therefore, combined ARMA-GARCH models are used in
this study.

As extreme values are known to have different marginals
compared to the rest of the data, a GPD distribution is used in
this study. This distribution allows for separately modelling
upper and lower tail and interior of the empirical distribu-
tion and thus for extrapolation of the extreme values. This
approach is superior insofar as it gives the same weight to
each part of the data, albeit the tails hold a smaller cardinal-
ity than the interior.

The remaining residuals are not affected by serial correla-
tion and variance clustering and offer the possibility to study
the “real” underlying dependence structure between two (or
more) variables which are described by copula functions.
It could be shown that the empirical copula functions be-
tween the two original time series are remarkably different
from those obtained by the residuals of the ARMA-GARCH
models. Filtering the time series before fitting to a the-

oretical Copula model is reducing the correlation between
RCM (here: MM5) and observed precipitation and thus the
estimated Copula parameterθ , which is directly related to
Kendall’s τ . Serial correlation within the single time series
can artificially disturb the joint dependence structure.

From the theoretical Copula models analyzed, the
Gumbel-Hougaard Copula is found to be a suited choice to
model the joint distribution of modelled (gridded) and ob-
served precipitation. While the Copula parameter is rela-
tively stable for the joint distribution functions between dif-
ferent locations within the same grid cell, the shape and scale
parameters of the fitted marginal distributions of the observa-
tion stations can differ significantly. The scale parameters of
the observations are significantly greater than those of the
RCM simulations indicating to remarkably higher variances
in the observation series.

The empirical Copula density plots are used to analyze the
dependence structure between modelled and observed pre-
cipitation. As computational inexpensive they are suitable to
(i) find a theoretical Copula model, and (ii) screen variables
such as e.g. large-scale weather types which could addition-
ally improve the performance of the bias correction. It must
be mentioned critically at this stage that only three differ-
ent theoretical Copula models are tested. These models are
capable to reproduce asymmetries along the major diagonal
of the dependence structure. This cannot be achieved using
a Gaussian approach. The observed empirical Copulas also
show asymmetries along the minor diagonal, which are still
not captured by the theoretical Copulas. Copula functions
accounting for these asymmetries could further improve the
results.

The objective weather pattern classification method of the
German Weather Service (Bissolli and Dittmann, 2001) is
used to further constrain the model. As the usage of 40 differ-
ent weather types would not lead to sufficient sample sizes,
needed for statistically significant inferences, three different
grouping strategies were used (see Sect. 3.3). This leads to
a sufficiently large sample sizes (average of∼400 members
for each subgroup) to guarantee for statistical significance.

To demonstrate the “added value” for the bias correction
by means of weather classification the marginal distributions
as well as empirical Copulas are shown for each classified
group. A comparison of the CDFs shows that a clear discrim-
ination between the different subgroups, such as e.g. dry/wet
troposphere is achieved. The empirical Copula functions also
show a clear discriminative power, especially for direction of
theadvection of air masses at 700 hPaandcyclonality at 950
hPa and 500 hPa. A decision about the improvements of the
simulated pseudo-observations using weather classifications,
solely based on differences in the CDFs or empirical Cop-
ula densities alone is difficult. Including information about
the humidity of the troposphere can slightly increase the skill
for bias correction compared to the Copula-based stochastic
simulations without using large-scale information. This can
be seen from the conditional CDFs and the corresponding
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Fig. 16. Kendall’sτ of 101 consecutive positive pairs for modelled
and observed precipitation at station Garmisch-Partenkirchen.

probability plots for the different groups, which are not very
discriminative (compare Sects. 3.3 and 4.4). Using the sin-
gle 40 weather types (without grouping) could potentially
increase the discriminative power (see e.g. Fig.15), but de-
creases the sample size of certain WTs far too much to reli-
ably estimate the Copula parameter(s) and the marginal dis-
tributions.

Another limitation of the approach shown in this paper
is that the same theoretical Copula model, i.e. the Gumbel-
Hougaard Copula, is fitted to each WT class. It is obvious
from the empirical Copula density plots, that this does not
necessarily provide an adequate fit for all groups of weather
types. It is also well-known from other studies that the do-
main size (here: whole Central Europe domain) can strongly
impact the classification results (e.g.Laux, 2009), and thus
the subsequent conditional modelling.

In this study a stationary approach for the Copula param-
eterθ is chosen. Further improvements are expected by ac-
counting for the temporal variability ofθ such as e.g. demon-
strated in the the paper ofReboredo(2011). Figure16 il-
lustrates the temporal variability ofτ , which is empirically
linked with the Copula parameter. As seen in Sects. 4.2
and 4.4, all the empirical Copulas derived in this study show
a strong asymmetry with respect to the minor axisu = 1−v of
[0, 1]

2. This asymmetry can not be depicted by the common
Copula families such as the Clayton, Normal or Gumbel-
Hougaard Copulas, acting as basic set of possible candidates
for the performed GOF tests. Nonmonotonic transformation
to construct asymmetric multivariate Copulas from the Gaus-
sian (Bárdossy, 2006) could reflect the asymmetries in the
empirical Copulas and thus also improve the bias correction.

6 Conclusions

The presented Copula-based approach is potentially useful
for statistical downscaling, bias correction, and local refine-
ment of RCMs. The performance will be evaluated and com-
pared to established methods for bias correction.

Asymmetries are found in the empirical Copula densities
which cannot be reproduced by the theoretical Copulas used
in this study. Therefore, it is generally difficult to find a the-
oretical Copula model which is not rejected by the applied
GOF test.

Fitting the marginal distributions is of crucial impor-
tance as it strongly impacts the simulation results (more
than the Copula parameterθ). It could be shown that
iid transformations such as ARMA-GARCH are indispens-
able before a mutual dependence structure between vari-
ables on daily scale is modelled to avoid artefacts induced
by autocorrelation.

Large-scale weather patterns could be used to further con-
strain the model, and thus, increase the performance of the
simulation results.
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Bárdossy, A. and Li, J.: Geostatistical interpolation using
copulas. Water Resour. Res., 44(7), W07412.1–W07412.15,
doi:10.1029/2007WR006115, 2008.
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