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Abstract. Soil moisture links the hydrologic cycle and the
energy budget of land surfaces by regulating latent heat
fluxes. An accurate assessment of the spatial and tempo-
ral variation of soil moisture is important to the study of
surface biogeophysical processes. Although remote sens-
ing has proven to be one of the most powerful tools for ob-
taining land surface parameters, no effective methodology
yet exists for in situ soil moisture measurement based on
a Bidirectional Reflectance Distribution Function (BRDF)
model, such as the Hapke model. To retrieve and analyze
soil moisture, this study applied the soil water parametric
(SWAP)-Hapke model, which introduced the equivalent wa-
ter thickness of soil, to ground multi-angular and hyper-
spectral observations coupled with, Powell-Ant Colony Al-
gorithm methods. The inverted soil moisture data result-
ing from our method coincided with in situ measurements
(R2 = 0.867, RMSE = 0.813) based on three selected bands
(672 nm, 866 nm, 2209 nm). It proved that the extended
Hapke model can be used to estimate soil moisture with high
accuracy based on the field multi-angle and multispectral re-
mote sensing data.

1 Introduction

The quantification of land surface soil moisture pertains to
a large range of applications at various spatial and temporal
scales, from climate and weather predictions to agriculture
and water management (Liang, 2004). Despite being one of
the major hydrological variables, accurate soil moisture data
remains largely unavailable, e.g. sparse in-situ measurement
networks. The remote sensing of microwave can provide
multi-configuration (multi-temporal, multifrequency, multi-
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angular, and multi-polarization) radar data that make it pos-
sible to address soil moisture estimation and monitoring is-
sues in more effective ways (Baghdadi et al., 2009). Methods
use either backscattering model-based retrieval algorithms or
polarimetric information derived from target decomposition
techniques (Joseph et al., 2009). However, for microwave
sensors, which are anyway constrained by very low spatial
resolutions and low temporal resolutions. Hence the pro-
posal to use BRDF models on optical data to retrieve soil
water content is interesting in this study.

Soil moisture as the key factor influences absorption, re-
flection and emission characteristics of landsurface, which
can directly cause variations in soil energy and water bud-
get (Verhoef and Hapke, 2007). The literatures describe the
relationship between soil moisture and the soil reflectance
including two main methods as follows: (a) only parameters
related to soil moisture are retained, while other factors influ-
encing soil spectra are either fixed or neglected. The model
is obtained by regression analysis on the observation data of
surface soil moisture and the soil characteristic spectrum.
For example, Bach and Mauser (1994) proposed the soil
spectral response models of the three water-absorption spec-
trum bands (1430∼ 1450 nm, 1620∼ 1650 nm and 1920∼
1940 nm) under different soil moisture conditions, focusing
only on the effects of scattering and surface water absorption
of soil particles. Liu et al. (2004) adopted the methods of rel-
ative reflectance, first-order differential and difference in the
prediction and modeling of soil surface moisture. (b) Prin-
cipal component analysis is also used to model soil moisture
parameters and reflectance spectra. Price (1990) conducted a
large number of measurements and analyses on the reflection
spectrum of soil samples, and 10 base vectors were obtained
to describe the entire reflection spectrum database approxi-
mately. Other studies extracted four base functions from the
base vectors to describe the entire reflection spectrum of the
soil using principal component analysis (Cierniewski, 1987;
Bach and Mauser, 1994; Fabiano and David, 2010). Finally,
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Walthall et al. (1985) proposed an empirical model for the
calculation of soil reflectance that only considered solar in-
cidence and observation direction parameters of the sensor.
However, the empirical model was difficult to use directly
for surface or remote sensing inversions due to its limited
applicability under laboratory conditions.

Bidirectional Reflectance Distribution Function (BRDF)
modeling does not consider soil moisture (Pinty et al., 1989),
and this restricts the model to use soil moisture inversions
from remote sensing data. In a geometrical optics model, the
proportion of shadow area due to rough soil surface under
direct sunlight in the visible field changes when the sensor
observes from different directions (Li and Strahler, 1992),
and the root mean square and correlation coefficient of the
soil roughness height are the only two parameters typically
considered (Norman et al., 1985; Pinty and Verstraete, 1991;
Jacquemoud et al., 1992; Verhoef and Hapke, 2007). For
example, Cierniewski et al. (1987) simulated soil as a series
of regular and opaque spheres with equivalent particles on a
smooth surface and then developed the series model based on
geometric optical models. Aimed at solving complex prob-
lems, such as the shape, size, orientation and heterogeneous
scattering of soil particles, volume-scattering effect models,
among which the Hapke model (Hapke, 1981) has achieved
recognition, are based on the radiative transfer theory. In the
Hapke model, the surface soil radiance received by the sen-
sor consists of two parts: single scattering and multiple scat-
tering. The significant hotspot effect of soil BRDF requires
the addition of a correction term. Given that the assumption
of multiple scattering satisfies isotropy, the method of two-
stream approximation obtains a numerical solution. Later,
scientists further developed and improved the Hapke model,
using the new models to study physical properties of the soil.
They claimed the new models, including the SOILSPECT
model developed by Jaquemoud et al. (1992), were more ac-
curate than the Hapke model. Regarding model application,
Chappell et al. (2006) used the Hapke model for the direc-
tional modeling of soil radiation with heavy rain and wind
erosion; Wu et al. (2009) combined the Hapke model with
MISR data to conduct a comparative analysis on the model
parameters of different sandy land types in China’s western
desert areas, proving the model’s good accuracy. In addition,
Cooper et al. (1985) used the Monte Carlo Computing Strat-
egy to simulate soil surface radiation properties and found
that a great number of calculations and probability statistics
were necessary to obtain a stable pattern and that great un-
certainties existed in the model parameter solution.

The variation of scattering and absorption on the parti-
cle surface caused by the soil moisture changes the soil re-
flectance of the dual-hemisphere, which has a quantitative
conversion with the single scattering albedo of the SOIL-
SPECT model. In this study, the parameters of soil water
content were introduced into the soil BRDF model to estab-
lish the extended soil BRDF model. Bare farmlands were
selected to conduct multi-angle spectral measurements and

Fig. 1. The location of the study area, soil surface image and obser-
vation orientations; the satellite imagery is a Landsat 5 TM image
(R:5, G:4, B:3) on 18 May 2009.

soil water content measurements. All the model parameters
were inverted by the combination of the Ant Colony Algo-
rithm and Powell’s Method (Matlah, 2000; Dorigo et al.,
1996, 2006), and lastly, the model estimation results of the
characteristic band were analyzed and verified.

2 Materials and methods

2.1 The experimental area and data acquisition

The National Precision Agriculture Research and Demon-
stration Base served as the experimental area in the north-
ern part of Xiaotangshan Town, Changping District, Beijing,
featuring a ground slope of 1/1500 and the base boundaries
within 40◦10′31′′–40◦11′18′′ N, 116◦26′10′′–116◦27′05′′ E,
covering an area of 167 ha. The annual average ground tem-
perature is approximately 14.5◦C; the maximum frozen soil
depth is 0.8 m; yellow clay is distributed in the soil at a depth
of 0 ∼ 4 m with a bulk density of 1.45 g cm−3. The ASD
Fieldspec FR2500 spectrometer (350–2500 nm) and a sim-
ple multi-angle observation scaffold were adopted for the
multi-angle spectral measurements (Fig. 1). The field an-
gle of the spectrometer probe was 25◦, and the probe height
was 185 cm from the surface for observing vertically down-
wards with a corresponding ground range of 30 cm× 30 cm.
The reference plate was the whiteboard with a reflectance of
30 %. Two sample sites were set (Sites 1 and 2) for four
sets of multi-angle spectral observations in which two orien-
tations of the solar principal plane (SP) and the vertical solar
principal plane (VP) were measured with a view zenith an-
gle ranging between−70◦ and 70◦ for each orientation and
a step interval of 10◦ (Fig. 1). Total measured multi-angle
spectral data were resampled into 10 nm wavelength inter-
vals to be more consistent with hyperspectral sensors. The
positive view zenith angle indicated the backward reflection
of the observation surface, and the negative view zenith angle
corresponded to the forward reflection of the observation sur-
face. The observation time was 09:00∼ 12:00 a.m. UTC+8,
on 27 October 2009, when the weather exhibited stability
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without clouds, good atmospheric visibility and a wind speed
of 5 m s−1.

The soil type was the same throughout the experimental
area. Time domain reflectometry (TDR300) was used for soil
water content measurement, and the values of soil volumet-
ric water content (VWC) were recorded using the TDR mea-
surements [unit: 100× (m3 m−3)] with a 20-cm probe. In
each set of multi-angle spectral observation sites, the VMC
measurements were conducted 8 times continuously, and the
mean of the values was used for corresponding soil water
content.

2.2 Soil BRDF model and its extension

The Hapke model is a widely-used soil bi-directional re-
flectance model (Verhoef and Hapke, 2007; Wu et al., 2009).
The model considers that the horizontal surface (z = 0) con-
tains irregular soil particles with surfaces facing random di-
rections and that the particle size is larger than the wave-
length. The soil receives the incident solar radiation with a
direction of (θs,φ) and an intensity,J , that a sensor observes
with a direction of (θo,0). The scattering angle,g, refers to
the angle between incident light and emergent light. Among
these variables,θs,θo are the solar zenith angle and the view
zenith angle, respectively, andφ is the relative azimuth be-
tween the sun and the observation direction. The radiationI

observed by the sensor is the sum of the single scattering part
Is and the multiple scatteringIm:

I = Is+Im (1)

where,Is=
Jω
4π

cosθs
cosθs+cosθo

P(g)

Im =
Jω

4π

cosθs

cosθs+cosθo
[H(cosθs)H(cosθo)−1]

whereH(x) =
1+2x

1+2x
√

1−ω
, ωis the single scattering albedo of

soil, andP(g) is the scattering phase function. For a semi-
finite medium, Cierniewski (1987) shows that the sensitivity
of the single-scattering partIs on the scattering phase func-
tion of the particles is greater than that of the multiple scat-
tering partIm on the scattering phase function. Therefore,
the actual values are used in the scattering phase function for
the calculation of single scattering, but in the calculation of
multiple scattering, it is assumed that all the scatterings are
uniform in each direction, orP(g) = 1.

The SOILSPECT model is an improvement of the Hapke
model. According to the Legendre polynomial, a scattering
phase functionP(g,g′) is proposed to interpret both back-
ward scattering and forward scattering from a smooth soil
surface. In this function,g′ indicates the angle between the
direction of spectral reflection and the direction of incident
light:

P(g,g′) = 1+bcos(g)+
c(3cos2(g)−1)

2
+

b′cos(g′)+
c′(3cos2(g′)−1)

2
(2)

where, cos(g) = cos(θs)cos(θo)+sin(θs)sin(θo)cos(φ)

cos(g′) = cos(θs)cos(θo)−sin(θs)sin(θo)cos(φ)

In the equation,b,c,b′ andc′ are coefficients of the scattering
phase function.

The soil is a discontinuous system composed of blocks
separated by pores in the Hapke model, requiring the in-
troduction of the backward scattering functionB(g). This
function contains three parameters: the scattering angleg,
the half-width parameters of the hot spot effect (roughness)
h and the parameterB0 describing the intensity size of the
hot spot effect. Thus, the soil bidirectional reflectance model
(SOILSPECT) can be expressed as follows:

I =
Jω

4π

cosθs

cosθs+cosθo

{P(g,g′)[1+B(g)]+H(cosθs)H(cosθo)−1} (3)

where,B(g) =
Bo

1+tan(g/2)/h
.

For the given scattering angle(g,g′), this model shows
that the enlargement of roughnessh will lead to the increase
of backscattering. Based on the Eq. (3), the soil bidirectional
reflectancer(θs,θo,φ) can be obtained as:

r(θs,θo,φ) =
ω

4

1

cosθs+cosθo

{P(g,g′)[1+B(g)]+H(cosθs)H(cosθo)−1} (4)

To introduce the parameters of soil water content into the
SOILSPECT model, with consideration of the impact of soil
moisture, it is assumed that the equivalent water thicknessξ

corresponds to the variation fromr0 to rw of the hemisphere
reflection of dry soil due to soil moisture. In other words, the
extinction contribution corresponding to the saturated liquid
water with the thickness ofξ is equivalent to the total soil ex-
tinction contribution of a given soil water content, including
multiple scattering and absorption. The Beer-Lambert law is
used to calculate the dual-hemisphere reflectance through the
extinction effect of soil moisture, as follows:

rw = r0∗exp(−α ·ξ) (5)

In the equation,α is the absorption coefficient (cm−1), ξ

is the equivalent water thickness of soil moisture (cm),r0
is the sampling dry soil reflectance, andrw is the double-
hemisphere reflectance of wet soil. Among them, the wa-
ter absorption coefficientα is the reference value within the
wavelength range of 0.4–2.5 µm measured by Segelstein’s
laboratory (Segelstein, 1981) (Fig. 2).r0 is directly obtained
from the soil sample dried with a spectrometer and measured
in the laboratory, and the dried sample is maintained con-
sistent with the original surface condition. According to the
definition ofrw, it is only influenced by the physical proper-
ties of the soil and exhibits no relationship to the observation
direction in theory. If the multi-angle spectral data are used
for the calculation of equivalent water thickness according to
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Figure 2. The coefficient of water absorption and reflectance of dry soil. 9 

 10 

 11 

 12 

 13 

Fig. 2. The coefficient of water absorption and reflectance of dry
soil.

Eq. (5),ξ will vary. However, theξ value is actually unique
for the same soil sample, and a relationship should be estab-
lished betweenrw and the parameters of soil optical prop-
erties in the SOILSPECT model. Finally, the real equivalent
water thickness is estimated using the same set of multi-angle
spectral data.

Bach and Mauser (1994) proposed an equation describing
the relationship between bi-hemisphere reflectance and sin-
gle scattering albedo:

ω =

[
1−

(
1−rw

1+rw

)2
]

/

[
1+

b

4

(
1−rw

1+rw

)2
]

(6)

Because Eqs. (4), (5) and (6) were established simultane-
ously, the extension of the original soil BRDF model was
complete. The parameters of soil water content were in-
troduced into the model renamed the SWAP-Hapke model,
convenient for the estimation of all model parameters includ-
ing soil water content directly using multi-angle observation
data. With these modifications, the estimation accuracy of
soil moisture can be improved with the utilization of multi-
angle spectral data.

2.3 Model parameter inversion and evaluation methods

Because the extended soil BRDF model is nonlinear, the
adoption of Powell’s Method effectively avoids the uncer-
tainties of model derivation, but Powell’s Method depends
on the initial points. Powell’s method, strictly Powell’s con-
jugate gradient descent method, is an algorithm proposed by
Michael J. D. Powell for finding a local minimum of a func-
tion. The function need not be differentiable, and no deriva-
tives are taken (Matlab, 2000). The number of model pa-
rameters requiring a solution prompted the selection of the
Ant Colony Algorithm (ACA) to obtain a better solution for
the optimal initial value of Powell’s Method and through

it obtaining the local optimal solution of model parameters
(Matlab, 2000). The ACA is a robust simulated evolution-
ary algorithm based on the collective behaviors of real ant
colonies in nature and featuring a positive feedback mech-
anism (Dorigo et al., 1996). In general, the ACA produces
relatively satisfactory results, but it may produce a subopti-
mal solution adjacent to global optimal solution rather than
the global optimal solution itself. Powell’s Method demon-
strates improvement over the coordinate alternation method,
or directional acceleration method, that requires no derivative
calculations of the objective function. The iterative search of
the Brent algorithm was adopted for each dimension with the
quadratic convergence, thereby increasing the search speed
with a strong local optimization capacity and the accuracy
compared to other optimization algorithms.

This study combines these two optimization algo-
rithms. The optimal solution of the parameters is a
search for the optimal solution of the parameters to
be solved (ω,B0,h,b,c,b′,c′,ξ) with the SWAP-Hapke
soil BRDF model as a constraint equation, that is,r =

fSWAP-Hapke BRDF(ω,B0,h,b,c,b′,c′,ξ) to achieve the min-
imized index functionP .

P =

n∑
k=1

[rk −r(θs,θo,φ)]2 (7)

wheren is the number of combinations of multi-angle spec-
tral observation angles,rk is the multi-angle spectral obser-
vation value with the view azimuth of(θs,θo,φ), andr is the
simulated value of the SWAP-Hapke model with the given
parameters of preparative optimization. The boundary range
of model parameters and the main algorithm parameters in
the optimization solution are shown in Table 1, and default
values are set for other parameters:

Based on the inversion method from previous studies
(Pinty et al., 1991; Jacquemoud et al., 1992; and Chap-
pell et al., 2006), five bands, including G (558 nm), R
(672 nm), NIR (866 nm), SWIR1 (1570 nm) and SWIR2
(2209 nm), were selected for the estimation of model param-
etersω,B0,h,b,c,b′,c′,ξ . To verify the reliability in esti-
mating the model parameters, the multi-angle spectral obser-
vation was conducted 4 times in each sample area, and the
data parameter estimation was carried out in accordance with
two programs: adopting the multi-angle spectral data of the
single band measured from the surface in the estimation of
model parameters to obtain the estimation results of the pa-
rameters at 5 wavelengths and adopting the multi-angle spec-
tral data of the three characteristic bands (R-NIR-SWIR2) in
one set of measurement data (R-NIR-SWIR2) in the estima-
tion of model parameters to obtain those suitable for multi-
angle and multi-spectral data. The regression analysis and
accuracy comparison were conducted on the obtained equiv-
alent water thickness at different wavelengths and the mea-
sured soil water content.

The following indicators were adopted to assess accuracy
(Li and Wang, 1995; Liang, 2004; Fuwei et al., 2009):
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Table 1. The setting of parameters for the SWAP-Hapke model and the initialization of the ACA and Powell algorithm.

SWAP-Hapke model ACA and Powell algorithm

Parameters Value range Parameters Value range

Single scattering albedo (ω) 0–1 The relative importance of the trail for ACA (α) 0–5
Soil surface roughness (h) 0–1.5 The relative importance of the visibility for ACA (β) 0–5
Hot spot effect (B0) 0–1 The trail persistence for ACA (ρ) 0.1–0.99
The coefficient of the scattering phase function (b) −2–2 the quantity of trail laid by ants for ACA(Q) 10–100 000
The coefficient of the scattering phase function (c) −1–1 The number of ants for ACA (m) 40 000
The coefficient of the scattering phase function (b′) −2–2 The number of tails for ACA (l) 1000
The coefficient of the scattering phase function (c′) −1–1 The number of maximal iteration for Powell (Ncmax) 10 000

1. Root mean square error (RMSE), representing the over-
all distribution of errors between the model estimates
and actually observed values:

RMSE=

√√√√√ n∑
i=1

(ei −oi)2

nf

(8)

In the equation,n is the total number of observations,
and nf is the number of redundant observations, i.e.,
the difference between the total number of observations
n and the number of model parameters to be solved;ei

andoi are the model estimate and the observed value,
respectively.

2. The Nash-Sutcliffe efficiency coefficient (E) expresses
the consistency of overall sample errors between the es-
timates and the observed values represented by the com-
monly used coefficient of determinationR2 and indi-
cates the distribution consistency of internal sample er-
rors. Within a range of−∞ ∼ 1, E = 1.0 represents
the model estimates completely consistent with the ob-
served values;E = 0.0 represents the accuracy of model
estimates reaching the average level of the observed val-
ues; andE < 0.0 indicates a relatively great error in the
model estimates.

E = 1.0−

n∑
i=1

|ei −oi |

n∑
i=1

|ei − ōi |

(9)

3 Results and discussions

3.1 Inversion results of the model parameters

Model parameters were retrieved from simulated data
(Mode 1). Due to the nonlinearity of the SWAP-Hapke

model, providing parameter values in it enables the calcu-
lation of unique results of the soil BRDF distribution, but its
unique solution may not be available at a given set of soil
BRDF observation data. Therefore, to ensure an accurate so-
lution of model parameters, a set of model parameter values
(ω = 0.25, B0 = 0.4, h = 0.05, b = 1.0, b′

= 0.25, c′
= −0.2

and c = −0.5) were selected with references from Pinty et
al. (1989). With 40 sets of random errors of 0∼5 % added
to the simulated model data, the model parameters were re-
calculated using the ACA and Powell’s Algorithm, and the
distributions of the RMSE parameters are shown in Fig. 3.

Figure 3 indicates that the values ofω andB0 were more
consistent with their mean of 0.40, althoughh showed a rela-
tively great fluctuation, especially when the RMSE value was
greater than 0.01. In this study,ω andb were the main param-
eters influencing the accurate estimation of soil water con-
tent; therefore, when the RMSE value was within 0.02, the
estimation errors of the extended model parameters met the
estimation requirements of soil moisture parameters. Sec-
ond, the error analysis results in Fig. 3 illustrate the smaller
stabilities ofb andb′ compared to those ofc andc′ with dif-
ferent RMSE values. The impact of the errors was especially
elevated when the RMSE was greater than 0.015. Generally,
when the RMSE value was smaller than 0.02, the relation-
ship among the parameters followed the order:b > b′ > c′

> c. In addition, the size of difference betweenb andb′ is
twice greater than that betweenc andc′. Finally, Fig. 3 in-
dicates that the errors ofω andb significantly influenced the
error ofξ .

Model parameters were retrieved from in-situ measure-
ments (Mode 2). The SWAP-Hapke model parameters
were calculated by the methods described in Sect. 2.3
from three sets of multi-angle surface observation data in
Site 1 and Site 2 (Table 2). The estimation results of
the model parameters at different bands showed an order
of E (NIR)> E (SWIR2)> E (R)> E (SWIR1)> E (G) from
the accuracy index E of overall parameter estimation, where
8 sets of means for different bands of E (NIR), E (SWIR2)
and E (R) were greater than 0.8. This indicates that the three
bands were more suitable for estimating model parameters.
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2322 G.-J. Yang et al.: Extension of the Hapke bidirectional reflectance model

 

26 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

RMSE

P
ar

am
et

er
s 

va
lu

e

 

 

ω

h

B0

0 0.005 0.01 0.015 0.02
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

RMSE

P
ar

am
et

er
s 

va
lu

e

 

 
b

c

b'
c'

ξ

Figure 3. The results of the SWAP-Hapke parameters and the distribution of RMSE based on simulated data. 
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Fig. 3. The results of the SWAP-Hapke parameters and the distribution of RMSE based on simulated data.

The mean of E (G) was approximately 0.6, suggesting a rel-
atively great error of parameter estimates, although the mean
of E (SWIR1) was higher than that of E (G). The following
three aspects categorize the main differences in the accura-
cies of each estimation in different bands: (1) some differ-
ences in bands were influenced by the absorption and scatter-
ing of atmospheric H2O or O2, with better results in the NIR
and R-band than in the other three bands; (2) differences in
the sensitivity of soil moisture absorption occurred in differ-
ent bands; and (3) different levels of noise appeared in the
surface spectrometer at different wavelengths, and the noise
equivalent radiance (NEDL) increased with longer wave-
lengths. The reasonable differences appearing inω, which
was solved with 8 sets of multi-angle spectral observations
in Site 1 and Site 2, proved that the spatial variability of the
soil moisture distribution was the main factor influencing the
results. This conclusion was further supported by the sub-
sequent analysis of soil equivalent water thicknessξ and the
actual measurements of soil water content. The estimation
results of the model parameters at different bands also indi-
cated that the four parameters ofb, c, b′ andb′ influenced
the forward and backward scattering of the soil. Whenb and
c were both greater thanb′ andc′, the soil mainly exhibited
backscattering, but the soil may have shown forward scatter-
ing, whenb andc were both less thanb′ andc′. When their
values were nearly the same, the soil demonstrated the char-
acteristics of a combination of forward and backward scat-
tering. Whenb > b′ > |c′

| ≈ |c|, the soil BRDF displayed
the characteristics of backward scattering. Among the four
coefficients of scattering phase functions, the variation range
of b contributed the most. Because of the close relationship
amongξ , ω andb, the variations in the estimatedξ in all
bands were in a range betweenω andb, and neither the 8
sets of equivalent water thicknessξ estimated by the model
nor the actual TDR measurements represented the soil water
content of Site 1 and Site 2.

3.2 Validation of the estimated model parameters

Based on the single-band estimation, the SWAP-Hapke
model parameters were obtained by adopting the combined
solution of the three optimal bands (R, NIR and SWIR2)
from the first three sets of multi-angle data in Site 1 and Site
2. Aimed at the further assessment on estimation accuracy of
combined multi-band model parameters, a set of multi-angle
spectral data of the vertical solar principal plane and the solar
principal plane were simulated and compared with the fourth
set of multi-angle observation values.

The results (Fig. 4) show that the model-simulated values
were consistent with the observed values, with the exception
of the error in the SWIR1 band in the vertical solar princi-
pal plane. The BRDF from the other bands in this principal
plane were maintained as the “bowl edge” shape, consistent
with the model simulation. Figure 4 also indicates that the
consistency between the model output values and the mea-
sured values in the solar principal plane improved over that
in the vertical solar principal plane. The BRDF increased
as the observation angle gradually approached the zenith of
the solar incidence angle from the nadir. When the zenith of
the solar angle neared 70◦ in the actual observations and the
maximum observation angle of the multi-angle observation
scaffold reached 70◦, the hot spot effect appeared without an
obvious hot spot width. In addition, the following conditions
might influence the estimation accuracy of the model param-
eters: (1) in a wide-angle observation, the surface range of a
multi-angle observation is significantly greater than the ob-
servation range from the nadir, and (2) a slight fluctuation on
the surface may impact the results, despite the roughness of
the farmland terrain owing to common irrigation practices.

The estimated equivalent water thicknessξ was quite dif-
ferent from the soil water content and TDR measurements
in the agronomy. The soil water content at a depth up to
50 cm was required for the winter wheat because its roots
were primarily distributed in this depth range. Given that the
this study was carried out on the bare farmland soil, where
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Table 2. The estimated results for Site 1 and Site 2 based on single band.

ω h B0 b c b′ c′ ξ RMSE E

G band

Site 1 0.244 0.004 0.377 0.837−0.477 0.253 −0.116 1.083 0.015 0.638
0.268 0.005 0.304 0.972 −0.452 0.180 −0.175 1.287 0.010 0.747
0.348 0.003 0.375 0.558 −0.489 0.057 −0.198 1.042 0.011 0.732
0.276 0.003 0.350 0.825 −0.532 0.163 −0.303 1.09 0.016 0.661

Site 2 0.283 0.001 0.389 0.959−0.796 0.358 −0.213 1.134 0.016 0.671
0.294 0.009 0.254 0.648 −0.424 0.268 −0.062 0.918 0.012 0.759
0.217 0.007 0.547 0.886 −0.625 0.293 −0.151 1.179 0.009 0.800
0.351 0.008 0.448 0.963 −0.135 0.798 −0.303 0.881 0.020 0.581

R band

Site 1 0.284 0.003 0.455 1.130−0.514 0.218 −0.238 1.334 0.007 0.883
0.274 0.005 0.474 1.535 −0.693 0.320 −0.411 1.595 0.005 0.894
0.370 0.004 0.367 0.706 −0.505 0.350 −0.225 1.234 0.005 0.874
0.313 0.001 0.377 1.057 −0.610 0.361 −0.219 1.287 0.007 0.836

Site 2 0.299 0.002 0.357 0.992−0.668 0.365 −0.255 1.487 0.013 0.642
0.318 0.004 0.370 0.784 −0.615 0.419 −0.264 1.259 0.009 0.771
0.306 0.002 0.379 1.045 −0.515 0.298 −0.329 1.354 0.009 0.765
0.352 0.003 0.338 1.912 −0.512 0.309 −0.133 1.142 0.017 0.597

NIR band

Site 1 0.404 0.025 0.305 0.739−0.468 0.127 −0.016 1.278 0.003 0.906
0.389 0.006 0.333 0.387 −0.257 −0.006 −0.202 1.439 0.003 0.903
0.451 0.666 0.513 0.422 −0.385 0.040 −0.126 0.941 0.004 0.891
0.423 0.673 0.633 0.038 −0.425 0.287 −0.183 1.272 0.005 0.870

Site 2 0.398 0.138 0.433 0.552−0.425 0.096 −0.073 1.253 0.007 0.834
0.453 0.323 0.303 0.545 −0.199 0.204 −0.118 1.102 0.007 0.833
0.421 0.566 0.212 0.716 −0.212 −0.241 −0.417 1.205 0.003 0.927
0.463 0.620 0.440 2.005 −0.032 1.672 −0.143 0.868 0.012 0.610

SWIR1 band

Site 1 0.541 1.251 0.544 0.883−0.654 0.659 −0.250 1.052 0.016 0.683
0.53 1.642 0.419 1.082 −0.540 0.341 −0.083 1.156 0.015 0.730

0.571 1.627 0.433 0.511 −0.364 0.328 −0.009 0.499 0.011 0.780
0.562 1.485 0.514 0.453 −0.531 0.319 −0.065 0.843 0.010 0.792

Site 2 0.552 1.475 0.573 0.432−0.465 0.289 −0.028 0.765 0.009 0.833
0.589 1.258 0.577 0.778 −0.363 0.189 −0.036 0.779 0.012 0.713
0.563 1.235 0.594 0.053 −0.361 0.445 −0.080 1.237 0.013 0.745
0.592 1.603 0.332 0.912 −0.112 0.690 −0.133 0.382 0.018 0.618

SWIR2 band

Site1 0.441 1.024 0.206 0.991−0.301 −0.263 −0.385 1.378 0.007 0.865
0.357 1.015 0.320 1.604 −0.816 1.118 −0.077 1.345 0.004 0.899
0.467 1.131 0.412 −1.109 −0.317 0.047 −0.020 1.009 0.006 0.876
0.416 0.860 0.200 1.775 −0.499 0.400 −0.444 1.225 0.007 0.855

Site2 0.398 1.708 0.526 1.177−0.669 0.594 −0.019 1.322 0.010 0.756
0.429 1.548 0.300 1.618 −0.312 0.862 −0.611 1.265 0.011 0.780
0.443 1.287 0.312 0.859 −0.300 0.701 −0.210 1.268 0.010 0.791
0.455 1.406 0.461 1.655 −0.107 0.990 −0.106 0.836 0.013 0.710
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Figure 4. The validation of the simulated BRF and measured multi-angle reflectance; SP - solar 8 

principal plane; VP - the vertical solar principal plane. 9 
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Fig. 4. The validation of the simulated BRF and measured multi-angle reflectance; SP – solar principal plane; VP – the vertical solar principal
plane.

winter wheat remained in the stage of seedling emergence
and its roots had not reached 50 cm in depth, the soil volu-
metric water content could only be measured at a depth of
20 cm using the adopted TDR measurement. To test the cor-
relation between the model estimatedξ and the TDR mea-
surements, a regression analysis was conducted for each of
the 8 sets ofξ values and the corresponding TDR measure-
ments for each band, respectively. Based on this, the three
most closely correlated bands were selected to establish a
multi-angle and multi-band conversion (Fig. 5).

To compare the differences of estimation accuracyξ

among a combination of three bands and a single band,
the estimation results of the single band (Table 2) and the
combined estimation results of R, NIR and SWIR2 were
statistically analyzed with TDR measurements. The statis-
tical correlation of the single band followed the order of
NIR > R> SWIR2> G> SWIR1. The combined estimation
accuracy of the three bands of R, NIR and SWIR2 was the
highest (R2

= 0.867 and RMSE = 0.813).

4 Conclusion

This study investigated the directional radiation properties
of farmland soil and extended the SOILSPECT directional
model of soil radiation. The soil equivalent water thickness
was introduced into the model by adopting a quantitative
relationship between the dual-hemispherical reflectance and

the single scattering albedo. Based on this, the SWAP-Hapke
Soil Directional Radiation Model was established with con-
sideration of the water content parameters.

A surface spectrometer obtained 8 sets of multi-angle
spectral data, while the corresponding soil moisture data
were measured. The model sensitivity analysis in Mode 1
showed that a relatively good stability existed betweenω and
B0 with variation ranges of approximately 0.40 for both pa-
rameters;h displayed relatively great variation. A sensitivity
relationship ofb >b′ > c′ > c existed among the four param-
eters,b, c, b′ and c′, that influenced the soil properties of
forward and backward scattering.

Model parameter estimations were carried out in the five
characteristic bands by combining the Ant Colony Algorithm
and Powell’s algorithm, and the comparison was conducted
among the estimation accuracies of model parameters with
a single wavelength in Mode 2. Based on the accuracy
statistics of RMSE and E, the overall estimation accuracy
of model parameters was NIR> SWIR2> R> SWIR1> G.
Their sequence was primarily influenced by the compre-
hensive effects of the atmospheric absorption and scattering
characteristics of different bands, the sensitivity of soil mois-
ture absorption and the spectrometer noises. The obtained
soil moisture-related parameters solved with 8 sets of data
varied due to the variability of soil moisture in the spatial dis-
tribution. Among them, 8 sets ofω estimates showed a rel-
atively minor variation. A relationship ofb > b′ > |c′

| ≈ |c|
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Fig. 5. The correlation analysis between the SWAP-Hapke-modeledξ and in situ TDR-measured soil volumetric water content (VWC).ξ is
the thickness of equivalent saturated liquid water. X-axis is the estimated the thickness of equivalent saturated liquid water, and Y-axis is the
in situ TDR measured VWC.

was present among the four parameters ofb, c, b′ and c′,
with the greatest variation range forb. Therefore, the soil
exhibited a backward scattering property.

Adopting the SWAP-Hapke model parameters obtained
through the combined solution of the three bands of R-
NIR-SWIR2 simulated a set of multi-angle spectral data, in-
cluding the vertical solar principal plane and solar principal
plane, which were compared and analyzed by combining the
observation data. The model simulation values were consis-
tent with the measured values. With a regression analysis
of model estimated soil equivalent water thicknessξ values
and the corresponding TDR measurements, the correlation
statistics showed NIR> R> SWIR2> G> SWIR1, among
which the correlation coefficients of NIR, R and SWIR2
were greater than 0.8. Based on the above conditions, the
multi-angle spectral observation data from the three opti-
mal bands were used for the solution of the same set of
parameters, which were then statistically analyzed with the
TDR data. The regression (R2

= 0.867, RMSE = 0.813) was
significantly better than the single statistical accuracies of the
five bands, indicating that the increase of effective band num-
bers also contributed to the improvement of the estimation
accuracy of soil water parameters to a certain extent under
the conditions of multi-angle observation.

Table 3. The parameters of SWAP-Hapke model.

Variable(unit) Designation

Incident solar zenith angle(deg) θs
Sensor observation zenith angle(deg) θo
Relative azimuth between the sun and φ

the observation direction(deg)
Single scattering albedo of soil ω

Scattering phase function P(g)

Coefficients of the scattering phase b,c,b′,c′

function
Backward scattering function B(g)

Hot spot effect factor B0
Soil roughness (cm) h

Equivalent water thickness(cm) ξ

Absorption coefficient of water(cm−1) α

The double-hemisphere reflectance of rw
wet soil
The sampling dry soil reflectance r0

www.hydrol-earth-syst-sci.net/15/2317/2011/ Hydrol. Earth Syst. Sci., 15, 2317–2326, 2011



2326 G.-J. Yang et al.: Extension of the Hapke bidirectional reflectance model

Because the multi-angle measurement is a time-
consuming and energy-costing task, it is difficult to
obtain a great amount of data in a short time. In this study,
only 8 sets of multi-angle spectral data were measured in
the two sampling areas without considering soil moisture
gradient, soil types and other factors. Because of the
uncertainties of the multi-angle spectral observation data,
TDR measurements data, etc., the current conclusions
are probably not universal and need further verification.
Special efforts should undertake converting the quantitative
relationship between the soil equivalent water thickness and
soil water content obtained in the surface “spots” into that
in the pixel “planes”. Only in this way will the combined
inversion of soil water content be conducted with surface
observations and multi-angle and multi-spectral satellite
data.
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