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Abstract. Spatial interpolation of precipitation data is of
great importance for hydrological modelling. Geostatisti-
cal methods (kriging) are widely applied in spatial interpo-
lation from point measurement to continuous surfaces. The
first step in kriging computation is the semi-variogram mod-
elling which usually used only one variogram model for all-
moment data. The objective of this paper was to develop
different algorithms of spatial interpolation for daily rain-
fall on 1 km2 regular grids in the catchment area and to
compare the results of geostatistical and deterministic ap-
proaches. This study leaned on 30-yr daily rainfall data of
70 raingages in the hilly landscape of the Ourthe and Am-
bleve catchments in Belgium (2908 km2). This area lies be-
tween 35 and 693 m in elevation and consists of river net-
works, which are tributaries of the Meuse River. For geosta-
tistical algorithms, seven semi-variogram models (logarith-
mic, power, exponential, Gaussian, rational quadratic, spher-
ical and penta-spherical) were fitted to daily sample semi-
variogram on a daily basis. These seven variogram models
were also adopted to avoid negative interpolated rainfall. The
elevation, extracted from a digital elevation model, was in-
corporated into multivariate geostatistics. Seven validation
raingages and cross validation were used to compare the in-
terpolation performance of these algorithms applied to differ-
ent densities of raingages. We found that between the seven
variogram models used, the Gaussian model was the most
frequently best fit. Using seven variogram models can avoid
negative daily rainfall in ordinary kriging. The negative es-
timates of kriging were observed for convective more than
stratiform rain. The performance of the different methods
varied slightly according to the density of raingages, partic-
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ularly between 8 and 70 raingages but it was much different
for interpolation using 4 raingages. Spatial interpolation with
the geostatistical and Inverse Distance Weighting (IDW) al-
gorithms outperformed considerably the interpolation with
the Thiessen polygon, commonly used in various hydrolog-
ical models. Integrating elevation into Kriging with an Ex-
ternal Drift (KED) and Ordinary Cokriging (OCK) did not
improve the interpolation accuracy for daily rainfall. Ordi-
nary Kriging (ORK) and IDW were considered to be the best
methods, as they provided smallest RMSE value for nearly
all cases. Care should be taken in applying UNK and KED
when interpolating daily rainfall with very few neighbour-
hood sample points. These recommendations complement
the results reported in the literature. ORK, UNK and KED
using only spherical model offered a slightly better result
whereas OCK using seven variogram models achieved bet-
ter result.

1 Introduction

Basin management, including hydrological and water qual-
ity applications, requires data on the very important precip-
itation parameter. These data are often collected using rain-
gages, and hence they are point data. However, the use of
a single raingage as rainfall input carries great uncertainties
regarding runoff estimation (Faurès et al., 1995 and Chaubey
et al., 1999). This presents a great problem for the predic-
tion of discharge, groundwater level and soil moisture, espe-
cially if the raingage is located outside the catchment (Schu-
urmans and Bierkens, 2007). As a result, some applications
such as rainfall erosivity mapping (Aronica and Ferro, 1997;
Goovaerts, 1999; Hoyos et al., 2005; Nyssen et al., 2005;
Angulo-Mart́ınez and Beguerı́a, 2009; Angulo-Mart́ınez et
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al., 2009) and hydrological modelling (Syed et al., 2003;
Kobold and Sǔselj, 2005; Gabellani et al., 2007; Cole and
Moore, 2008; Collischonn, et al., 2008; Ruelland et al., 2008;
Moulin et al., 2009) require rainfall data that are spatially
continuous. The quality of such result is thus determined by
the quality of the continuous spatial rainfall (Singh, 1997;
Andréassian et al., 2001; Kobold and Sušelj, 2005; Leander
et al., 2008; Moulin et al., 2009).

The generation of continuous surfaces starting from irreg-
ularly distributed data is a task for many disciplines. It can
be performed by a variety of methods but the difficulty lies
in choosing the one that best reproduces the actual surface
(Caruso and Quarta, 1998). Regarding the rainfall, indirect
estimates of continuous surface based on the measurement
of related ancillary variables have been provided since the
late 1960s by ground-based meteorological RADARs and by
remote sensing devices carried on satellite platforms. The
significance and reliability of such indirect methods for hy-
drological purposes have yet to be determined. The meth-
ods must be calibrated and validated using historical data
(Lanza et al., 2001). However for direct ground-based mea-
surement, spatial interpolation techniques can be used and
broadly classified into two main groups:deterministicand
geostatistical. The most frequently used deterministic meth-
ods in spatial interpolation are the Thiessen polygon and In-
verse Distance Weighting (IDW). The geostatistical method
constitutes a discipline involving mathematics and earth sci-
ences. A South African mine engineer, Krige, is a precursor
of geostatistics. Nevertheless, the term “kriging” and the for-
malism of this method are coined by Matheron (1971).

Regarding the spatial interpolation of rainfall, Dirks
et al. (1998) compared Inverse Distance Weighting, the
Thiessen polygon and kriging in interpolating rainfall data
from a network of thirteen raingages on Norfolk Island. They
recommended the use of IDW for interpolations for spatially
dense networks. Nalder and Wein (1998) used cross vali-
dation to evaluate four forms of kriging and three simple
alternatives for spatial interpolation of climatic data. They
found that IDW had a smaller error of estimates than Ordi-
nary Kriging (ORK) and Universal Kriging (UNK) in inter-
polating monthly precipitation in the Canadian boreal forest.
Buytaert et al. (2006) studied the variability of spatial and
temporal rainfall in the south Ecuadorian Andes using the
Thiessen polygon and kriging. Their study suggested that
spatial interpolation with kriging gives better a result than
Thiessen polygon, and the accuracy of both methods im-
proves when external trends are incorporated. Basistha et
al. (2008) analysed the spatial distribution of rainfall in the
Indian Himalayas using both deterministic and geostatisti-
cal methods. They reported that UNK was the most suitable
method, followed by ORK and IDW.

In geostatistical methods, there are several possibilities to
incorporate secondary data to improve primary data. Since
modern equipments such radar, microwave links, satellites,
etc., are available for some countries, the products from those

equipments are usually used to improve rainfall interpola-
tion. Berne et al. (2004) analysed the temporal and spa-
tial structure of rainfall using high resolution raingage and
radar measurement. Schuurmans et al. (2007) used range-
corrected daily radar composites to integrate into two meth-
ods of geostatistics, and it proved to be more accurate than a
method that uses rainfall alone. Velasco-Forero et al. (2009)
and Schiemann et al. (2011) also integrated radar data into
two geostatistical methods but they focused on using an auto-
matic non-parametric variogram and applied to hourly rain-
fall. Nevertheless, in the area where the modern equip-
ments are not available, elevation, especially extracted from
a digital elevation model (DEM), are a cheaper and more
widely available data which can be used to incorporate into
multivariate geostatistics of rainfall. Goovaerts (2000) and
Lloyd (2005) used elevation as secondary data to incorporate
into multivariate geostatistics for monthly and annual rain-
fall and compared these results with those of deterministic
methods. Goovaerts (2000) found that inverse square dis-
tance and Thiessen polygon give larger prediction errors than
the three multivariate geostatistical algorithms. Lloyd (2005)
concluded that Kriging with External Drift (KED) provides
the most accurate estimates of precipitation for all months
from March to December whereas for January and February
ORK provided the most accurate estimates, involving with
monthly precipitation mapping in Great Britain from sparse
data. Verworn and Haberlandt (2011) recommended the use
of additional information from topography for KED. They
applied to hourly rainfall with a high spatial resolution. How-
ever, the studies of multivariate geostatistics using elevation
for daily rainfall are rather limited.

Most of applications considered only monthly or annual
time steps for spatial interpolation of precipitation (Hevesi et
al., 1992; Goovaerts, 2000; Boer et al., 2001; Todini, 2001;
Marqúınez et al., 2003; Vicente-Serrano et al., 2003; Lloyd,
2005) while some others used hourly time steps for large-
scale extreme rainfall events (Haberlandt, 2007). Most re-
cently, hourly precipitation was spatially interpolated with
multivariate geostatistical method in northern part of Ger-
many (Verworn and Haberlandt, 2011). In addition, hydro-
logical applications for urban catchments in Mediterranean
regions require a temporal resolution of about 5 min for an
area of 1000 hectares and 3 min for an area of 100 hectares
(Berne et al., 2004). Little experience exists on the use of
geostatistics for daily rainfall at catchment scale (notable ex-
ceptions include Beek, 1992, who used only four days, Schu-
urmans et al., 2007, who restricted to radar data and some
events and Carrera-Hemández and Gaskin, 2007, who lim-
ited to only two-month periods). The reliability of predic-
tions may change if a different time step is chosen. Daily
rainfall is a major meteorological input to water resources
and agricultural modelling systems since rainfall data are
mostly available in daily time step in national or regional
measurement. The question is whether the best method ap-
plied to monthly or annual rainfall is applicable to daily
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rainfall since precipitation pattern differences between daily
and monthly timescales (Johnson and Hanson, 1995). More-
over, the analysis of the spatial distribution of daily rainfall is
difficult mainly because of intermittence and large variabil-
ity (Carrera-Heḿandez and Gaskin, 2007). Current practice,
attention will be thus focused on the applications to the long
series of daily rainfall at the catchment scale.

Very few studies, if at all, attempt to analyse the effect
of raingage density used for interpolation. Borga and Viz-
zaccaro (1996) compared kriging and multiquadratic surface
fitting to interpolate hourly rainfall and found that kriging
performs better at lower raingage density while at higher
raingage density the accuracy of both interpolators is simi-
lar. Campling et al. (2001) used ordinary kriging with un-
scaled variogram model to optimize the number and location
of raingages. Spadavecchia and Williams (2009) varied the
number of interpolation data used in both space and time and
assessed its impact on interpolation skill of spatio-temporal
geostatistical methods. The applications to different densi-
ties of raingages were restricted to only one or two methods.
This might be because it was very cumbersome in terms of
computation time. However, the comparison between more
techniques as regards to raingage density may provide some
insights in terms of particular strengths, weaknesses and ap-
plicability of the methods since the computation facilities are
well developed and available at the present time.

The objective of this study is to obtain the best interpola-
tion method to produce daily rainfall data for hydrological
models. We develop algorithms for spatial interpolation of
daily rainfall data on 1 km2 regular grids at the catchment
scale, taking into consideration the automatic choice of a the-
oretical variogram model, that is based on daily data, among
the sevens variogram models for geostatistical methods. The
algorithms are applied to different cases degenerating into
different numbers of raingages inside and surrounding the
catchments. Previous studies usually applied the same the-
oretical variogram model for all time steps. Most of them
chose spherical model when using geostatistical methods to
interpolate rainfall. Recently, van de Beek et al. (2011) used
the spherical model to analyse the seasonal variogram param-
eters of daily rainfall in the Netherlands. Verworn and Haber-
landt (2011) also inferred spherical model for spatial interpo-
lation of hourly rainfall in northern part of Germany. How-
ever, kriging can lead to negative estimates (Deutsch, 1996).
Negative weights in ordinary kriging occur when data close
to the location being estimated display outlying data. De-
pending on the variogram model and the data values, the neg-
ative weights can be significant. Also negative weights when
applied to high data values may lead to negative and non-
physical estimates. Generally, there are two ways to avoid
negative value: a posteriori correction by Deutsch (1996) or
replace all negative interpolated values with a zero value.
Both are pragmatic solution but not ideal. For some cases,
the negative values are significant and it is not really fair to
replace them by zero. The tackle to the solution of the neg-

ative weights are very limited in the application to rainfall
(exception for Haberlandt, 2007, who set negative rainfall es-
timates to zero). Therefore, we try to change the variogram
model from one another to avoid negative rainfall.

Based on the literature reviewed above, the paper has sev-
eral innovative aspects. Very few studies focused on using
elevation to integrate into multivariate geostatistics for spa-
tial interpolation of daily rainfall. Daily rainfall has a par-
ticular stochastic nature which differs from monthly rain-
fall (Johnson and Hanson, 1995). Most recent studies used
radar rainfall in daily time step. Therefore, it is appealing
to explore whether incorporation of elevation as auxiliary
variable improves interpolation result since rainfall data are
mostly available in a daily time step. Analyses of the effect
of raingage density on interpolation methods have been rel-
atively little studied. Some studies focused mainly on the
effect within only one method (ORK, UNK or KED) or two
methods (multiquadratic surface fitting and kriging). How-
ever, our study focuses on the comparison between six dif-
ferent techniques. One specific contribution of the paper il-
lustrates how ordinary kriging can get rid of negative result
using seven variogram models. Such analyses in this study
can be valuable for engineers, hydrologists or decision mak-
ers working with sparse raingage data.

2 Materials and methods

In this paper, geostatistical algorithms (ordinary kriging, uni-
versal kriging, kriging with an external drift and ordinary
cokriging), deterministic algorithms (Thiessen polygon and
inverse distance weighting) were developed using Fortran 90
to produce the daily rainfall of each grid from 1976 to 2005.
The performance of these methods was then evaluated. For
some days when zero rainfall occurred at all raingages, we
supposed that there was no rainfall in the whole catchments,
and thus no interpolation was made for these days.

2.1 Interpolation procedures

The interpolation methods used in this paper will be briefly
introduced. A detailed presentation of geostatistical theories
can be found in Cressie (1991), Goovaerts (1997), Chilès and
Delfiner (1999), and Webster and Oliver (2007).

Spatial interpolation is generally carried out by estimat-
ing a regionalized value at un-sampled points from a weight
of observed regionalized values. In this study, un-sampled
points refer to the centres of 1-km2-regular grids in the catch-
ment area. The general formula for spatial interpolation is as
follows:

Zg =

ns∑
i=1

λiZsi (1)

whereZg is the interpolated value at pointg, Zsi is the ob-
served value at pointi, ns is the total number of observed
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points (raingages) andλ =λi is the weight contributing to the
interpolation.

The problem lies in calculating the weightsλ which will be
used in the interpolation. The different methods for comput-
ing the weights will be presented in the following sections.

2.1.1 Deterministic methods

Thiessen polygon (THI)

For the Thiessen polygon, the catchment area is divided into
polygons so that each polygon contains a single point of sam-
pling (Chow, 1964). Each interpolated point (centre of each
grid) takes the value of the closest sampled point. The ad-
vantage of this method is its simplicity. However, the disad-
vantages of this method are obvious – the estimation is based
on only one measurement and the information on neighbour-
ing points is ignored. Moreover, there are sudden jumps of
discontinuity in the passage from one polygon to another.

Inverse Distance Weighting (IDW)

Inverse Distance Weighting (IDW) estimates values at un-
sampled points by the weighted average of observed data at
surrounding points. So, this can be defined as a distance re-
verse function of each point from neighbouring points (Tee-
gavarupu and Chandramouli, 2005). That means by using a
linear combination of values at a known sampled point, val-
ues at un-sampled points can be calculated. IDW relies on the
theory that the unknown value of a point is more influenced
by closer points than by points further away. The weight can
be computed by:

λi =

1
|Di |

d

ns∑
i=1

1
|Di |

d

, d > 0 (2)

whereDi is the distance between sampled and un-sampled
points. Thed parameter is specified as a geometric form for
the weight while other specifications are possible. This spec-
ification implies that if the powerd is larger than 1, the so-
called distance-decay effect will be more than proportional to
an increase in distance, and vice versa. Thus, small powerd

tends to give estimated values as averages ofZsi in the neigh-
bourhood, while large powerd tends to give larger weights to
the nearest points and increasingly down-weights points fur-
ther away (Lu and Wong, 2008). Using a power value of 2 for
daily and monthly time steps, 3 for hourly and 1 for yearly
would appear to minimize the interpolation errors (Dirks et
al., 1998). Furthermore, this powerd is usually set to 2, fol-
lowing Goovaert (2000) and Lloyd (2005) and hence inverse
square distances are used in the estimation. Consequently, a
power value of 2 was adopted for IDW in this study.

2.1.2 Geostatistical methods

Geostatistical methods use the semi-variograms as a core tool
to characterize the spatial dependence in the property of in-
terest. Figure 1 shows a simplified flowchart of kriging com-
putations procedures carried out in this study.

Variogram modelling

First of all, the experimental semi-variogram was calculated
as a half the squares difference between paired values to dis-
tance by which they were separated:

γ̂ (h) =
1

2N(h)

N(h)∑
i=1

(Zsi −Z(si +h))2 (3)

whereN(h) is the number of pairs of data locations at dis-
tanceh apart. The hypotheses of spatial variability were here
homogeneity and an isotropic spatial pattern due to the lack
of number of point data, and hence identical variability in all
directions.

In practice, the average squared distance was obtained for
all pairs separated by a range of distances and these aver-
age squares differences were plotted against the average sep-
aration distance. In this study, the bin size depends on the
number of gauges used. A theoretical model might then be
fitted to the experimental semi-variogram and the coefficient
of this model could be used for kriging. Most previous stud-
ies have used only one theoretical model for each time step,
and these were mostly in monthly or yearly steps (Hevesi et
al., 1992; Goovaerts, 2000; Boer et al., 2001; Todini, 2001;
Marqúınez et al., 2003; Lloyd, 2005). However, this paper
focuses on daily data over 30 yr. On a daily basis, rainfall
has different spatial variability. In this study, we dealt with
the fitting of the semi-variogram for every day of our 30-yr
period. In order to do this, we used seven existing theoretical
models, as presented below:

– De Wijs (logarithmic) model:

γ (h;θ) =

{
0, h = 0,

θ0+θ1ln‖h‖ , h 6= 0,

for θ0 ≥ 0 and θ1 ≥ 0.

(4)

This model is often used for describing variables regularized
by a sampling support, which implies that the infinite vari-
ance problem disappears (Chilès and Delfiner, 1999; Diggle
and Ribeiro Jr., 2007).

– Power model:

γ (h;θ) =

{
0, h= 0,

θ0+θ1‖h‖
θ2 , h 6= 0,

for θ0 ≥ 0 , θ1 ≥ 0 and 0≤ θ2 < 2.

(5)

The parameterθ2 is restricted between 0 and 2 in order that
the model is a conditional positive definite function and then
a permissible variogram model (Pardo-Igúzquiza, 1998).
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Fig. 1. Flowchart showing the simplified procedure of kriging computation. Cxx refers to weighted least squares criterion of each model
fitting (see Eq. 11), Cxx +10 000 refers added value to the criterion to avoid the variogram model from being used again when negative
rainfall results occur.

– Exponential model:

γ (h;θ) =

{
0, h= 0,

θ0+θ1[1−exp(−3‖h‖/θ2)], h 6= 0,

for θ0 ≥ 0 , θ1 ≥ 0 and θ2 ≥ 0.

(6)

– Gaussian model:

γ (h;θ) =

{
0, h= 0,

θ0+θ1
{
1−exp

[
−3(‖h‖/θ2)

2
]}

, h 6= 0,

for θ0 ≥ 0 , θ1 ≥ 0 and θ2 ≥ 0.

(7)

– Rational quadratic model:

γ (h;θ) =


0, h = 0,

θ0+θ1

19

(
‖h‖/θ2

)2

1+19

(
‖h‖/θ2

)2 , h 6= 0,

for θ0 ≥ 0 , θ1 ≥ 0 and θ2 ≥ 0.

(8)

– Spherical model:

γ (h;θ) =


0, h = 0,

θ0+θ1

(
3‖h‖

2θ2
−

1
2

(
‖h‖

θ2

)3
)

, 0< ‖h‖ ≤ θ2,

θ0+θ1, h > θ2,

for θ0 ≥ 0 , θ1 ≥ 0 and θ2 ≥ 0.

(9)

– Penta-spherical model

γ (h;θ) =


0, h = 0,

θ0+θ1

(
15‖h‖

8θ2
−

5
4

(
‖h‖

θ2

)3
+

3
8

(
‖h‖

θ2

)5
)

,0< ‖h‖ ≤ θ2,

θ0+θ1, h> θ2,

for θ0 ≥ 0 , θ1 ≥ 0 and θ2 ≥ 0.

(10)

Each of these models was combined with a nugget effect.
The most common methods of fitting semi-variogram models
to experimental semi-variograms are performed using man-
ual fitting procedures (Nalder and Wein, 1998 and Harber-
landt, 2007). However, this is not an appropriate approach
because it depends on the expertise and the information in
the field. Moreover, this procedure was not feasible for daily
data of 30 yr; hence instead an automatic procedure was nec-
essary. Cressie (1985) proposed weighted least squares, used
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Fig. 2. Sample semi-variogram of daily rainfall (7 August 1991)
with seven models fitted: the Rational Quadratic Model is best
fitted.

in this study, as a reasonable compromise between the ef-
ficiency of generalized least squares and the simplicity of
ordinary least squares for fitting a semi-variogram model to
an experimental semi-variogram. He introduced an approx-
imation to the weighted least squares criterion, which re-
duced the estimation problem to iteratively reweighted least
squares:

C(h;θ) =

K∑
i=1

|N(hi)|

(
γ̂ (hi)

γ (hi;θ)
−1

)2

(11)

whereh1, h2, . . . , hk are equally spaced lags at which the
semi-variogram is estimated. In this study, the coefficients
of a model for kriging were chosen when the coefficientC

was least among the iteration processes. Moreover, a model
was chosen for each day by considering the model which
provided the smallestC among the seven models. Figure 2
shows an example of fitting seven variogram models to the
sample semi-variogram of rainfall on 7 August 1991. The
rational quadratic model was chosen for this day. For this
study, the kriging methods were computed separately. If a
variogram model yielded negative rainfall somewhere, the
variogram model changed only for that kriging method.

The coefficients of the chosen model were then used to
determine the weight through equation systems of different
types of kriging: Ordinary Kriging (ORK), Universal Krig-
ing (UNK), and Kriging with an External Drift (KED).

Ordinary Kriging (ORK)

The weights are obtained such that the estimation is unbiased
and the variance is minimized. The ORK system of (ns+1)

equations, is as follow:
ns∑
i=1

λiγij −µ = γi0 for j=1,...,ns

ns∑
i=1

λi = 1
(12)

Whereγ ij represents the semi-variances ofZsbetween loca-
tionsi andj , andµ is the Lagrange parameter.

This system can be shown in matrix form to facilitate the
resolution:

0×λ = G H⇒ λ = 0−1
×G (13)

The weightsλi , obtained through this system are inserted
into Eq. (1) to make the prediction. The unbiased estimate is
assured by the constraint of the sum of the weight to 1, which
requires the definition of the Lagrange parameter.

Universal Kriging (UNK)

This assumes that spatial variation in estimated values has
a structural component in addition to the spatial correla-
tion between known points (Basista et al., 2008). Typically,
UNK incorporates a trend surface equation in the kriging
process. This can be either a first order polynomial or it
can be a quadratic surface defined by a second order poly-
nomial. The prediction is computed when the weights are
such that the prediction is unbiased and the variance is mini-
mized. The same process as in ORK is followed. The system
of (ns+L+1) can be written as:

ns∑
i=1

λiγij +

L∑
l=1

µlf
l
i = γi0 for i=1,...,ns

ns∑
i=1

λif
l
i = f l

0 for l=0,...,L
(14)

whereγ ij represents the semi-variances ofZs between lo-
cationsi and j , and µl are the Lagrange parameters and
f is the mean which is a function of spatial coordinates.
This study dealt with linear trend, henceL= 2,f 0

i = 1, f 1
i =

xi, f 2
i = yi(x andy are abscise and ordinate of the points).

WhenL=0,
ns∑
i=1

λi = 1 which is the constraint of un-bias. The

system can be also written in matrix form (Eq. 13) and the
weightsλi can be computed to make the prediction.

Kriging with an External Drift (KED)

We hypothesized that the variable of interest presents a struc-
ture of ensemble modelled by a secondary variable. The
spatial behaviour of the secondary variable is similar to an
indicator of general trend, the so-called external drift, rep-
resentative of a representation of predictions, regarding the
considered geographical domain. This study dealt with the
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Fig. 3. Location of raingages and Digital Elevation Model of the
Ourthe and Ambleve catchments, Walloon, Belgium.

trend model of the combined function of spatial coordinates
and elevation as the secondary variable simultaneously.

All variogram models may still be able to produce negative
results with UNK and KED at some days. We modified the
Kriging system to disallow negative weights, based on the a
posteriori correction described in Deutsch (1996).

Ordinary Cokriging (OCK)

The last of the geostatistical methods dealt with in this study
is Ordinary Cokriging (OCK), which is another approach to
incorporating secondary information in order to improve the
spatial interpolation. Goovaerts (2000) stated that using mul-
tiple secondary variables can lead to unstable cokriging sys-
tems. Thus, only elevation (Ys) was considered in this paper.
The cokriging estimate is:

Zg =

ns∑
i=1

λiZsi +

ns∑
i=1

αiYsi (15)

where all secondary variables are obtained at the same points
of variable of interest. As with ORK, the objective is to
minimize the variance under the constraint of un-bias, which
gives a very complex system of (ns+ns+2) equations:



ns∑
i=1

λiγ (Zi,Zj )+
ns∑
i=1

αiγ (Zi,Yj )+µZ = γ (Z0,Zi) forj=1,...,ns

ns∑
i=1

λiγ (Yi,Zj )+
ns∑
i=1

αiγ (Yi,Yj )+µY = γ (Z0,Yi) forj=1,...,ns

ns∑
i=1

λi = 1

ns∑
i=1

αi = 0 (16)

The system can also be written in the matrix form. There
are two Lagrange parameters to take into account for the con-
straints on the weight of primary and secondary data. The
input information (γ (Zi,Zj ), γ (Yi,Yj ) andγ (Zi,Yj )) rep-
resents the values of direct semi-variograms of primary and
secondary variables and cross semi-variograms of primary
and secondary variables respectively for spaced distances.
The experimental cross-semi-variograms were computed as:

γ̂ZY(h) =
1

2N(h)

N(h)∑
i=1

[Zsi −Z(si +h)][Ysi −Y (si +h)] (17)

Modelling the co-regionalization between two variablesZ

andY involves choosing and fitting theoretical models to the
two direct semi-variogramsγ (Zi,Zj ) andγ (Yi,Yj ) plus the
cross semi-variogramγ (Zi,Yj ). The difficulty lies in the fact
that the three models can not be built independently from one
another. The easiest approach consists of modelling the three
semi-variograms as linear combinations of the same set of
basic semi-variogram models (Goovaerts, 1998).

The coefficients of the fitted models are used to determine
the weight through the equation systems of Ordinary Cokrig-
ing (Eq. 16).

2.2 Study area, data and case study

In this study, we used daily rainfall data of 30 yr (1976–2005)
from 70 raingages within and surrounding the hilly landscape
of the Ourthe and Ambleve catchments (2908 km2). These
catchments were divided into regular grids of 1 km2. The
catchment area lies between 35 and 693 m in elevation, and
is located in the Ardennes hill range in the south-eastern part
of Belgium, called the Walloon region (Fig. 3). The Ourthe
River is an important tributary of the Meuse River. Since the
higher Condroz region acts as a natural boundary, the Ourthe
flows in a northerly direction. Several smaller tributaries,
such as the Vesdre and the Ambleve, join the Ourthe River
along its way towards Liege, where it eventually joins the
river Meuse.

The precipitation data were provided by the Royal Me-
teorological Institute of Belgium. The elevation data
used for this study are extracted from the Digital Eleva-
tion Model (DEM) provided by the ERRUISSOL project
(Demarcin et al., 2009).

In this study, the interpolation procedures were applied to
different case studies. Firstly, we used 70 raingages. Then we
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degenerated into 60, 50, 40, 30, 20, 8 and 4 raingages. For
variogram fitting, the bin size is 5 km for 70 and 60 raingages
used, 10 km for 50, 40 and 30 raingages used, 15 km for 20
and 8 raingages used and 33 km for 4 raingages used.

2.3 Evaluation criteria for interpolators

The evaluation of such a comparison of different interpola-
tors was usually made by cross validation which involves
temporarily discarding data from the sample data set; the
value at the same location is then estimated using the remain-
ing samples (Isaaks and Srivastava, 1989). Most of authors
cited in this paper used a cross validation technique with
monthly or annual time steps. The sample size from the cross
validation is the number of sample data (number of existing
raingages). Nevertheless, it would be time consuming to use
cross validation for the daily time steps of 30-yr precipita-
tion. Therefore, two validation approaches were performed.

Firstly, seven raingages in the study area were randomly
selected to be used for validation, in view of the fact that
the existing observed daily rainfall series of these seven rain-
gages provided a large enough sample size. These seven
raingages are FLAMIERGES (elevation 496.88), FRAI-
TURE (elevation 235.54), LA GLEIZE (elevation 333.95),
TAILLES (elevation 608.67), ROBERTVILLE (elevation
514.82), EREZEE (elevation 320.87) and SINSIN (elevation
236.1). Moreover, they are spread over the catchment area
and also cover the whole elevation’s range of the catchments
(Fig. 3). These raingages were not included when we used
60, 50, 40, 30, 20, 8 and 4 raingages for interpolation. When
using 70 raingages, one of seven raingages was temporarily
removed from the 70 sample data set for each computation;
the value at the same location was then estimated using the
69 remaining samples. The interpolated rainfalls were then
compared to observed time series of daily rainfall at these
seven raingages.

Secondly, the cross validations are performed for two pe-
riods of very distinct rainfall patterns selected from 30-yr
dataset. The first period is in winter (15 to 30 Decem-
ber 1993) where the rainfall is very intense and mostly strati-
form, and the second period is in summer (3 to 18 July 1994)
where the rainfall presents mostly convective type-variable
amount in the catchment area.

In order to determine whether there were large differences
in the results when using only one variogram model in the
interpolation techniques, we modified our geostatistical al-
gorithms using only one spherical model and simply putting
negative rainfall to zero. We chose this model, mainly be-
cause it is one of the models most commonly used for in-
terpolating rainfall found in the literature mentioned in this
paper. These approaches were also applied to the different
densities of raingages.

Root Mean Square Error (RMSE) has been used as a cri-
teria of comparison in many studies related to spatial inter-
polation of rainfall such as high-resolution studies of rainfall

on Norfolk Island (Dirks et al., 1998), assessing the effect
of integrating elevation data into the estimation of monthly
precipitation in Great Britain (Lloyd, 2005), comparison of
interpolation methods for mapping climatic and bioclimatic
variables at regional scale in Mountain Appennies chain (At-
tore et al., 2007), and spatial distribution of rainfall in the
Indian Himalayas (Basistha et al., 2008).

RMSE=

√√√√1

n

n∑
i=1

(
Zs∗

i −Zsi
)2 (17)

Zs*: observed value at the raingage;
Zs: interpolated value at the raingage;
n: sample size (total days of data series or

total number of available raingages).
The most accurate algorithm has an RMSE value closest to

zero. Although all geostatistical methods provide an estimate
of the error variance, but this value has not been retained as
a performance criterion because it is not adequate to delimit
the reliability of kriging estimate (Goovaert, 2000).

3 Results

3.1 Variogram models of daily rainfall

For each day, we generated seven variogram models for all
different number of raingages used. Semi-variance increased
according to the separation distance, explaining that two
rainfall data close to each other were more similar, and hence
their squared difference was less significant, than those that
are farther apart. For a day of winter period (20 Decem-
ber 1993), the variograms corresponding to the 70 and 30
raingages used, exhibited nearly the same structure (Fig. 4).
The spherical models were the best fits. They provided the
same range of about 94 km, the nugget effect of 0.289 and
0.23 mm2, and the sill of about 118.87 and 125.33 mm2 for
the 70 and 30 respective raingages used. For sparse density
of raingages, the Gaussian models were the best fits, provid-
ing the range of about 66 km and 80 km, the nugget effect of
0.24 and 8.27 mm2, and the sill of 135 and 141 mm2 for 8
and 4 respective raingages used.

From 30 yr of daily rainfall, the variogram models
changed significantly from day to day. Among the seven
models used, the Gaussian model was the most frequently
best fitted to the daily sample semi-variogram (Fig. 5a). For
best fits, the frequency of the rational quadratic model is very
much lower than the one of Gaussian model. The occurrence
of the other models gradually decreased from the exponential
to spherical, power, penta-spherical and logarithmic models.
The latter is very rare fitted during the 30 yr. In reality, the
logarithmic model is negative for small values of h, which
rarely occurred or never in these catchments.

To avoid negative estimates in kriging, the model was
changed to another one (Sect. 2.1.2). Using these seven
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Fig. 4. Sample and theoretical semi-variograms for a day of winter
(20 December 1993) made using 70, 30, 8 and 4 raingages.

Table 1. Annual mean rainfall (in mm) of the Ourthe and Ambleve
catchments, generated using six different methods and 70 raingages
available in and surrounding the two catchments.

Methods Average Max Min At the At the
highest lowest
point point

THI 1045 1421 840 1421 847
IDW 1045 1330 878 1300 881
ORK 1046 1334 862 1328 878
UNK 1052 1340 851 1340 881
KED 1065 1406 848 1406 848
OCK 1050 1327 847 1325 851

variogram models in this study, we avoided negative esti-
mates for ordinary kriging even though using these seven
different variogram models might not greatly improve the re-
sults, based on Fig. 2. After this operation, the frequency
of Gaussian, rational quadratic and penta-spherical models
decreased by 12.11 %, 3.29 % and 2.32 % respectively while
the frequency of power, exponential, logarithmic and spher-
ical models increased by 6.71 %, 5.52 %, 3.76 % and 1.73 %
respectively (Fig. 5b). The change from one to another
was significantly characterized by season. The frequency of
Gaussian models decreased while the frequency of logarith-
mic model increased during spring and summer than autumn
and winter (Fig. 6).

3.2 Spatial distribution of rainfall

The most straightforward method used was the Thiessen
polygon (THI), whereby the value of the closest observation
was simply assigned to each grid. The Thiessen polygon map
showed the characteristics of the polygonal zones of influ-

Fig. 5. Occurrence of variogram models used for kriging of the
30-yr dataset.(a): the best fitted models;(b): the chosen models
avoiding negative kriging.

ence around each raingages (Fig. 7). This method obviously
provided an unrealistic discontinuous rain field at the border
of each polygon, and did not show the true spatial variation
of rainfall. The annual mean rainfall varied from 840 mm to
1421 mm at the highest elevation with a mean over the area
of 1035 mm (Table 1).

For the Inverse Distance Weighting (IDW) map, the clos-
est measured values had the most influence. IDW used a
simple algorithm based on distance. In this study, we used
inverse square distances to obtain the values at all grids in
the catchment area. The map showed a distribution in more
or less individual areas. Within these areas, there was usu-
ally a duck-egg shape corresponding to a high or low rainfall
value (Fig. 7). The annual mean rainfall varied from 878
mm to 1330 mm with a mean value over area of 1045 mm
(Table 1).

Instead of distance, kriging formed weights from sur-
rounding measured values to predict values at each grid.
However, the kriging weights for the surrounding measured
points were more sophisticated than those produced by IDW.
The kriging weights came from a semi-variogram that was
developed by looking at the spatial structure of the data.
The predictions of each grid were made based on the semi-
variogram and the spatial arrangement of measured values
that were nearby. The map generated by Ordinary Krig-
ing (ORK) showed a relatively similar pattern to map ob-
tained by IDW. However, the ORK map was smooth, pre-
senting fewer duck-egg shapes (Fig. 7). The annual mean
rainfall varied from 862 mm to 1334 mm, with an areal mean
of 1046 mm (Table 1).

The trend modelled as a polynomial function of geograph-
ical coordinates was used to enhance the estimation by Uni-
versal Kriging (UNK) method. The influence of coordinates
could make the map smoother than the map obtained by ORK
(Fig. 7). However, the average areal rainfall was 1052 mm,
a bit higher than the value obtained using previous methods.
The annual mean rainfall varied from 851 mm to 1340 mm at
the highest elevation (Table 1).
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Fig. 6. Occurrence of the different models chosen for each season:
bars represent the average percentage of the total number of rainy
days and error bars are minus and plus the standard deviation of the
30-yr daily dataset.

We also integrated the elevation information extracted
from Digital Elevation Model (DEM) in order to improve the
previous estimation by using the Kriging with an External
Drift (KED) and Ordinary Cokriging (OCK). The KED used
the elevations as the secondary variable to derive the local
mean of rainfall (primary variable) while OCK took advan-
tage of the correlation between the two variables (elevation
and rainfall). Over the 30 yr (1976–2005), there were a total
of 10063 rain days, on which the Pearson’s coefficient was
computed from the correlation between rainfall amount and
elevation (Fig. 8). Of these 10063 rain days, 2087 rain days
(20.74 %) had a Pearson’s correlation coefficient higher than
0.5 and 181 rain days (1.8 %) had a Pearson’s correlation co-
efficient lower than−0.5. In this study, a day was designated
a “no-rain day” if rainfall for that day was equal to zero for
all raingages of available data in the area, otherwise, the day
was designated as a “rain day”.

For KED, a visible high influence of topography over
the estimated precipitation values appeared clearly in the
map (Fig. 7). Overall, KED tended to overestimate the an-
nual mean rainfall over the area (1065 mm). The annual
mean rainfall varied from 848 mm at the lowest elevation to
1406 mm at the highest elevation (Table 1).

For the multivariate extension of kriging, Ordinary Cok-
riging (OCK) was used by incorporating the elevation de-
rived from DEM as secondary information. The elevation
was known in each grid and varied smoothly across the study
area (Fig. 3). The map derived using the OCK technique ex-
hibited nearly similar pattern to those derived using the UNK
and ORK methods (Fig. 7). Moreover, the mean rainfall over
the area was also in the same range as the mean of THI, IDW,
ORK and UNK methods. The annual mean rainfall varied
from 847 mm to 1327 mm with mean over area of 1050 mm
(Table 1).

Fig. 7. Annual mean rainfall of the Ourthe and Ambleve catch-
ments, generated using six different algorithms and 70 raingages
available in and surrounding the two catchments.

However, when the fewest gages were used for interpola-
tion, UNK and KED provided very poor results (Fig. 9) and
over-estimated the annual mean rainfall. The annual mean
rainfall generated by UNK and KED varied from 558 mm
and 298 mm to 2391 mm and 3719 mm, with a mean of
1141 mm and 1214 mm respectively.

3.3 Performance of daily rainfall interpolators

The number of gages was a factor for slightly reducing the
RMSE (Fig. 10). There were little differences between geo-
statistical and IDW methods. However, the RMSE of esti-
mates made using Thiessen polygon was clearly higher than
those resulting from geostatistics and IDW. When the num-
ber of gages becomes very small, the RMSE becomes very
high and the difference in the RMSE between the methods
becomes larger. The Thiessen polygon provided the largest
average RMSE value (2.81 mm), while ORK gave the low-
est average RMSE value (2.42 mm). Other methods gave
a somewhat higher average RMSE than ORK–IDW (2.44
mm), UNK (2.49 mm), KED (2.50 mm) and OCK (2.53 mm).
But their RMSE values stayed much lower than those of the
Thiessen Polygon.

For ORK, estimates based on more raingages tended to
produce lower RMSE values. ORK outperformed the tech-
nique in most cases, while IDW provided lowest RMSE val-
ues where 8 and 20 gages were used. UNK provided the sec-
ond lowest RMSE values where 50 and 60 raingages were
used (Fig. 10).

However, only seven raingages were used for this perfor-
mance evaluation. In order to validate the performance of
these different methods, cross validations were performed for
two period of very distinct rain pattern. For the daily rainfall
with 70 and 30 raingages, Geostatistical and IDW methods
still performed best out of the Thiessen algorithm considered
in terms of RMSE, although small differences were found in
some days particularly in summer (Fig. 11). However, for
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Fig. 8. Histogram of Pearson’s correlation coefficients computed
from the correlation between daily rainfall (1976–2005) and altitude
extracted from DEM.

the interpolation with 4 raingages, UNK and KED gave very
high RMSE not only for the cross validation (Fig. 11) but
also for the seven validation gages (Fig. 10).

For all methods, the high RMSE are found mostly at high
elevation stations and the stations located far from centre of
the catchments (Fig. 11). However, the Thiessen polygon
always presented higher RMSE over other methods. As sug-
gested by the data taken on one summer day (14 July 1994),
the rain pattern is convective, and the high rain amounts
were present at only small part of the catchments. High er-
ror of Thiessen polygon were found for the stations in area
where it rained and no error was found at the no-rain stations
(Fig. 12). But for the IDW and geostatistical methods, the
errors were found at nearly all raingages. However, the cross
validation RMSE of the IDW and geostatistical methods, at
this day, appeared clearly lower than the error of the Thiessen
polygon (Fig. 11).

4 Discussion

Results from the application of different algorithms provided
some insights in terms of strengths and weaknesses, and in
terms of the applicability of the deterministic and geostatis-
tical methods to daily rainfall made using different densities
of raingages in the Ourthe and Ambleve catchments. All the
algorithms were able to produce 30-yr daily rainfall on the
catchment grids for a distributed hydrological model, rang-
ing from the most straightforward (THI) to the most complex
method (OCK).

Negative kriging weights applied to extreme values can re-
sult in kriging estimates outside the range of observed data.
In many situations, negative kriging lead to nonphysical es-
timates (Deutsch, 1996). This feature may be necessary for
daily rainfall. To avoid negative estimates in kriging in the
present study, the variogram model changed from one an-
other. The frequency change of models varied according
to the seasonal pattern of rainfall. A significant difference
could be found for Gaussian and logarithmic models (Fig. 6).

Fig. 9. Annual mean rainfall of the Ourthe and Ambleve catch-
ments, generated using six different algorithms and 4 raingages.

The logarithmic model frequency was higher while Gaussian
model frequency was lower during spring and summer than
autumn and winter. This means that the negative estimates
in kriging occurred more during summer than winter. In the
Ourthe and Ambleve catchments, the more convective type
of rain appeared mostly during summer when high data val-
ues were locally present. It is an outlying data event which
can lead to negative estimates in kriging (Deutsch, 1996).

For both validation approaches, the geostatistical and
IDW methods outperform the Thiessen polygon method for
the Ourthe and Ambleve catchments. Velasco-Forero et
al. (2009) recommended analysing the sensitive of their dif-
ferent interpolation technique to the density of raingage net-
work. Current study has focused on this recommendation
even if with different method of variogram modelling. It
is found that raingage density was one of the factors in
determining the performance of such interpolation method
(Fig. 10). The use of large number of raingages did not im-
prove result. Too few stations produced poor interpolation
results. The optimal number of the stations was between
8 and 70. Here, the best methods were ORK and IDW for
daily rainfall from 1976 to 2005 in the Ourthe and Ambleve
catchments. The present study also shows that IDW had a
smaller error of estimates than ORK and UNK when using
30, 20, 8 and 4 gages (Fig. 10). IDW weight is the inverse
distance of the neighbour points while kriging weight is de-
termined by semi-variogam using spatial relationship of both
distances and values of the neighbour points. So the IDW is
the most adequate because the stations used for interpolation
of these cases might be close to the seven validation stations.

There was a sudden decline in Thiessen-polygon RMSE
value when using eight raingages for interpolation (Fig. 10)
because the eight raingages are close to the seven raingages
selected for validation. Although, RMSE values, provided
by geostatistical and IDW methods, gradually decreased ac-
cording to the number of raingages used for the interpola-
tion (Fig. 10). In general, the values of points close to the
sample points were more likely to be similar than those that
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Fig. 10.Evolution of RMSE values of different methods and validation gages according to number of gages used for the spatial interpolation:
the points (low-right) are the mean and error bars are plus and minus standard deviation of the seven validation raingages;Z is the elevation
of the raingages;D is the distance from the raingages to the centre of the two catchments.

are further apart. The Thiessen polygon ignored the pat-
tern of spatial dependence and considered only one measure-
ment, whereas IDW and geostatistics were respectively based
on the surrounding measured values and statistical models
that included autocorrelation – the statistical relationship be-
tween the measured points.

It is interesting to note that UNK and KED showed some
limitations and tended to over-estimate the mean rainfall over
the catchment area. In particular, the most critical case in
this study used the fewest raingages, which were only at the
low-elevation part of the catchment area. UNK and KED
produced very poor results in terms of both rainfall distribu-
tion and accuracy from both validation raingages (Fig. 10)
and cross validation (Fig. 11). The rainfall distributions were
very poorly represented (Fig. 9). The RMSE values were
very high. This can be explained by the extrapolation of
the UNK and KED outside the range of data. The values of
the local trend (coordinate function) and sampled secondary
variable (elevation) were outside the range of the values at
locations where the primary variable were also sampled. The
maximum elevation of DEM was 693 m (Fig. 3) while the
maximum raingage elevation was 552 m. The external drift

parameters must have an adequate range to avoid extrapola-
tion. The data scarcity was more of a limiting factor.

Integrating elevation into KED and OCK for spatial in-
terpolation did not really lead to a smaller error of esti-
mates here, it showed, instead, the highest RMSE value be-
tween IDW and other geostatistical methods for most of the
gage-degenerated cases (Fig. 10). This was because of the
poor correlation between elevation and daily rainfall (Fig. 8).
Certainly, differences in the time step used for interpola-
tion could contribute to the difference in the result of the
present study and those of studies of Goovaert (2000) and
Lloyd (2005), which used monthly and annual time steps.
Accounting for elevation using multivariate geostatistical al-
gorithms (KED and OCK) generally reduces the ORK pre-
diction error as long as the correlation coefficient is larger
than 0.75. The benefit of multivariate techniques can, there-
fore, become marginal if the correlation between rainfall and
elevation is too small (Goovaert, 2000). When the observa-
tion time steps are less than one month, the location relation-
ship between precipitation and altitude is likely to be less
obvious (Lloyd, 2005). In our study, the rainfall accumula-
tions were obtained in shorter time steps (daily) while daily
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Fig. 11. Cross validation of different interpolation methods for a
period of winter (left) and a period of summer (right). The first
graph presents the areal rainfall interpolated by IDW; the second
graph present the daily RMSE of the methods made using 70 rain-
gages; the third graph present the daily RMSE of the methods made
using 30 raingages; the fourth graph present the daily RMSE of the
methods made using 4 raingages.

rainfall data is routinely handled at weather observation sta-
tions and often an important meteorological input to water
resources and agricultural modelling systems. Unfortunately,
the correlations between daily rainfall and elevation were rel-
atively small for most of the rain days (Fig. 8). Hence, ORK
and IDW provided better results than UNK, KED and OCK.
In previous studies regarding daily rainfall (Schuurmans et
al., 2007), KED and OCK were more accurate than ORK, es-
pecially for larger extents with lower densities of raingages.
But they used the added value of radar which generally is
well correlated with rainfall from raingage, certainly thanks
to the same type of variable.

Among the seven validation raingages, the Robertville
raingage with a high elevation (514.82 m) and situated near
the catchment’s border provided systematically the highest
RMSE value in all of the gage-degenerated cases (Fig. 10).
Furthermore, Tailles, a raingage with the highest elevation
(608.67 m) and situated in the boundary (peak line) between
the two catchments provided the second highest RMSE
value. For the cross validation, the high errors were present
mostly at the high elevation part and at the boundary of the
catchment (Fig. 11). This can be explained by the effect of
high elevation and the positions of those raingages which are
at the extremity of the zone. The least errors occur over flat

Fig. 12. RMSE and total observed rainfall maps for series of a se-
lected period of winter (16 to 30 December 1993). The background
is the contour line of the catchments.

plains and the largest over mountainous area (Basistha et al.,
2008). In general, the average rainfalls are found higher at
high elevation than low elevation.

It is also important to stress that our geostatistical meth-
ods use seven variogram models to avoid negative rainfall.
The results showed that Kriging using only spherical model
provided a slightly better result (0.05 mm of RMSE differ-
ence average) than those using seven models for ORK, UNK
and KED but not for OCK which gained 0.12 mm of RMSE
by using seven variogram models (Fig. 13). This confirms
that the use of these other approaches did not really improve
much the results.

Regarding the interpolation evaluations, raingage values
data are normally used for the evaluation of interpolated rain-
falls. In this study, data from certain raingages were not in-
cluded in the raw data set, but they used for evaluation pur-
poses. The excluded evaluation data were randomly taken at
a wide range of elevation and spread over the catchment, and
were not used in the interpolation process. In order to in-
crease the number of evaluation points we used cross valida-
tion techniques for short period. This is definitely a weakness
of the methodology. However, the results obtained using the
cross validation show the same trend in RMSE as evaluation
of the seven raingages, confirming that the use of the modi-
fied selection criteria did not affect the results significantly.
The extended validation was justified for statistical reasons.

5 Conclusions

The geostatistical algorithms used a daily based variogram
model chosen from the seven variogram models to avoid neg-
ative rainfall results. The multivariate geostatistics could in-
corporate the elevation as secondary variable. All the algo-
rithms were able to produce successfully the long series of
daily rainfall on all the 1 km2 grid of the catchment area ac-
cording to different densities of raingages, ranging from the
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Fig. 13. Absolute error and observed rainfall maps for a day of
summer (14 July 1994). The background is the contour line of the
catchments.

most available raingage to very sparse raingage. The main
results and conclusions can be summarised as follows:

– Between the seven variogram models used, the Gaus-
sian model was the most frequently best fitted, which
should be recommended for the spatial interpolation of
daily rainfall if only one model would be applied.

– Using seven variogram models could avoid negative
daily rainfall in ordinary kriging. It is found that the
negative estimates of kriging occurred for convective
more than stratiform rain.

– The performance of the different methods varied
slightly according to the density of raingages, particu-
larly between 8 and 70 raingages but it was much dif-
ferent for interpolation using very sparse raingages.

– Geostatistical and IDW algorithms significantly outper-
formed simple techniques like the Thiessen polygon
which is commonly used in various hydrological mod-
els. Here, the Thiessen polygon clearly provided a dis-
continuous rain field at the border of each polygon, and
did not show the true spatial variation of rainfall. For
both validation approaches, the RMSE values were al-
ways highest in all gage-degenerated cases.

– Care should be taken in using UNK and KED when in-
terpolating with very few neighbourhood sample points.
These methods can extrapolate outside the range of data
values and cause a poor result. These recommenda-
tions complement the results on using UNK and KED
for daily rainfall reported in the literature.

– Between the geostatistical and IDW methods, KED and
OCK using elevation were not supposed to be the im-
proved methods because the correlation of daily rainfall
and elevation was small for most of the rain days. How-
ever they were not much differenct if the data was not
very sparse.

Fig. 14. Comparison between Kriging using seven variogram mod-
els (blue line) and Kriging using only spherical variogram model
and simply setting negative rainfall to zero (red line).

– ORK was considered to be the best and most robust
method since it provided lowest RMSE value for nearly
all cases. This method was followed by IDW. However,
the IDW method was much simpler than complex geo-
statistical methods which require a lot of computation
time.

– ORK, UNK and KED using only spherical model pro-
vided a slightly better result but OCK using seven vari-
ogram models achieved better result.

These different techniques have been presented, in science,
as a prerequisite to their uses in hydrological models. Such
analyses in this study can be vital to scientists, engineers, hy-
drologists, and decision makers alike. A subject that remains
to be explored is what methods that produce daily rainfall for
a distributed hydrological model can provide the best results
for stream flow simulation.
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la Gestion hydrologique intégŕee, Service d’Etude Hydrologique)
and ERRUISSOL (ERosion RUIssellement Sol). The authors
are most grateful to Leijnse and an anonymous referee as well
as Professor Uijlenhoet (editor of this paper) for the critical
comments and useful suggestions that have helped to improve the
paper considerably. Special thanks to Somatra Kim Sean for his
assistance in the English improvement of this paper.

Edited by: R. Uijlenhoet

Hydrol. Earth Syst. Sci., 15, 2259–2274, 2011 www.hydrol-earth-syst-sci.net/15/2259/2011/



S. Ly et al.: Geostatistical interpolation of daily rainfall 2273

References
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ruissellement et d’érosion des sols en Région wallonne (Bel-
gique), Rapport final de convention DGO3, Unité d’hydrologie
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