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Abstract. The degree of belief we have in predictions from
hydrologic models will normally depend on how well they
can reproduce observations. Calibrations with traditional
performance measures, such as the Nash-Sutcliffe model ef-
ficiency, are challenged by problems including: (1) uncer-
tain discharge data, (2) variable sensitivity of different per-
formance measures to different flow magnitudes, (3) influ-
ence of unknown input/output errors and (4) inability to eval-
uate model performance when observation time periods for
discharge and model input data do not overlap. This pa-
per explores a calibration method using flow-duration curves
(FDCs) to address these problems. The method focuses on
reproducing the observed discharge frequency distribution
rather than the exact hydrograph. It consists of applying lim-
its of acceptability for selected evaluation points (EPs) on the
observed uncertain FDC in the extended GLUE approach.
Two ways of selecting the EPs were tested – based on equal
intervals of discharge and of volume of water. The method
was tested and compared to a calibration using the tradi-
tional model efficiency for the daily four-parameter WAS-
MOD model in the Paso La Ceiba catchment in Honduras
and for Dynamic TOPMODEL evaluated at an hourly time
scale for the Brue catchment in Great Britain. The volume
method of selecting EPs gave the best results in both catch-
ments with better calibrated slow flow, recession and evapo-
ration than the other criteria. Observed and simulated time
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series of uncertain discharges agreed better for this method
both in calibration and prediction in both catchments. An
advantage with the method is that the rejection criterion is
based on an estimation of the uncertainty in discharge data
and that the EPs of the FDC can be chosen to reflect the
aims of the modelling application, e.g. using more/less EPs
at high/low flows. While the method appears less sensitive to
epistemic input/output errors than previous use of limits of
acceptability applied directly to the time series of discharge,
it still requires a reasonable representation of the distribution
of inputs. Additional constraints might therefore be required
in catchments subject to snow and where peak-flow timing at
sub-daily time scales is of high importance. The results sug-
gest that the calibration method can be useful when observa-
tion time periods for discharge and model input data do not
overlap. The method could also be suitable for calibration to
regional FDCs while taking uncertainties in the hydrological
model and data into account.

1 Introduction

Hydrologic models are used as a basis for decision making
about management of water resources with important conse-
quences for sectors such as agriculture, land planning, hy-
dropower and water supply. The degree of belief we have
in model predictions will normally be dependent on how
well the model can reproduce observations. The choice of
the likelihood measure that measures the agreement between
simulated and observed data is therefore an important choice

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


2206 I. K. Westerberg et al.: Calibration of hydrological models using flow-duration curves

in any modelling study. The definition of an appropriate like-
lihood measure is not, however, simple. Where all sources
of uncertainty can be treated as if they are aleatory in na-
ture, then a number of frameworks exist for the definition
of formal statistical likelihoods (e.g. Liu and Gupta, 2007;
Schoups and Vrugt, 2010; Renard et al., 2010). Where epis-
temic errors are important, however, treating all uncertain-
ties as if they are aleatory will generally lead to overcon-
ditioning of posterior parameter distributions (Beven, 2006,
2010; Beven et al., 2008), particularly if some periods of data
are disinformative (Beven and Westerberg, 2011; Beven et
al., 2011). Thus, there may be scope for using other forms
of likelihood or belief measures in hydrological modelling.
Such informal likelihood measures have been defined based
on limits of acceptability defined from evaluation-data uncer-
tainty (Blazkova and Beven, 2009; Krueger et al., 2010; Liu
et al., 2009) but also based on traditional performance mea-
sures (Freer et al., 2003). One of the most widely used per-
formance measures in hydrology is the Nash-Sutcliffe model
efficiency (Reff). It is calculated as 1.0 minus the normalisa-
tion of the mean squared error by the variance of the observed
data and varies between minus infinity to 1.0 (Nash and Sut-
cliffe, 1970). How appropriate this criterion is for measuring
goodness of fit, as well as what is an acceptableReff-value,
has been much debated in the literature (Krause et al., 2005;
Legates and McCabe, 1999; Seibert, 2001; Criss and Win-
ston, 2008; Smith et al., 2008; Gupta et al., 2009). Decompo-
sitions ofReff have highlighted several problems associated
with this criterion in model calibration (Gupta et al., 2009;
Smith et al., 2008). Gupta et al. (2009) present a decomposi-
tion ofReff into three components representing bias, variabil-
ity and correlation and conclude that the variability has to be
underestimated to maximizeReff and that runoff peaks tend
to be underestimated when maximizingReff. They, together
with many other authors (Garrick et al., 1978; Refsgaard and
Knudsen, 1996; Legates and McCabe, 1999; Seibert, 2001;
Krause et al., 2005; Schaefli and Gupta, 2007; McMillan and
Clark, 2009) propose modified versions of the Nash-Sutcliffe
criterion or other performance measures to overcome some
of these problems. However many of the problems in using
lumped global performance measures remain, for instance
that the measure often is more influenced by the performance
at certain flow magnitudes such as high or low flows. This
issue has been addressed in multi-criteria approaches where
different aspects of the fit between simulated and observed
discharge are evaluated. A combination of several criteria
then allows an assessment of model performance with re-
spect to the different aspects of the hydrograph (e.g. Gupta et
al., 1998). Boyle et al. (2000) and later Wagener et al. (2001),
suggest distinguishing between three parts of the hydrograph
(driven quick flow (during events), non-driven quick flow and
slow flow) and to then calculate the performance measure
separately for each flow type. In a related approach, Freer
et al. (2003) used several performance measures for a multi-
criteria calibration in a Generalised Likelihood Uncertainty

Estimation (GLUE) framework where they differentiated the
dataset by season. They found no consistently identified pa-
rameters for Dynamic TOPMODEL that could represent the
range of processes between seasons in the studied watershed.
However, these approaches have not generally taken any ex-
plicit account of uncertainty in the observed input and evalu-
ation data.

Hydrologic models are simplified conceptualisations of
the hydrologic processes in a catchment. Such simplifica-
tions will necessarily lead to errors in the way the struc-
ture of the model represents the real-world hydrologic pro-
cesses (Beven, 1989, 2009; Grayson et al., 1992; McDonnell,
2003). The temporal and spatial scales of the measured input
data are also incommensurate with both the real-world quan-
tities and the scale of the model. This source of error must be
considered together with pure measurement errors (e.g. as a
result of lack of calibration or accuracy of the measurement
equipment) in input data. Such errors can lead to substantial
uncertainty of an epistemic (knowledge) type, e.g. if there
are no rain gauges in the only part of the catchment where it
rains, this will create an error that is difficult or impossible
to characterise in an error model. This type of uncertainty
resulting from non-stationary epistemic errors should be ex-
pected in most datasets used for hydrological modelling be-
cause of the difficulties in measuring the components of the
water balance for a catchment. As discussed by Beven and
Westerberg (2011), such errors, if significant, should be ex-
pected to have a disinformative effect on model calibration.
They suggest that the best strategy to deal with such disin-
formative periods of data would be to identify and remove
them from the dataset independently of the model, but recog-
nise that this identification will be difficult in many cases be-
cause of the uncertainties in the measured data. An alterna-
tive strategy could therefore be to develop model evaluation
criteria that are robust to moderate disinformation to make
sure that models are rejected for the right reason – i.e. poor
model structure and not disinformative data. Model param-
eters need to be inversely estimated from data in calibration
which will involve substantial uncertainty because of the ef-
fect of the types of errors discussed here and their interac-
tions. On top of this, the performance measure that is used
for the model calibration will influence which parameter-
value sets are identified as being acceptable given the un-
certainties in the modelling application (see e.g. Freer et al.,
1996), and is therefore an important consideration.

The reported number of discharge stations in the world
has gone down substantially from the peak in the late 1970’s
(GRDC, 2010). At the same time global precipitation and
climate data such as TRMM and ERA-Interim have become
available for the last 10–20 yr. Traditional model calibration
is impossible if there are no overlapping periods of input
and output data. In regions where the flow regime is sta-
tionary over time it would be advantageous to use discharge
data from a previous period (with sufficiently long records)
to overcome this temporal mismatch. Calibration approaches
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that do not rely on direct time-series versus time-series com-
parison are useful in such situations. Prior approaches to
model calibration without direct time series comparison in-
clude calibration to spectral properties (Montanari and Toth,
2007), recession curves (Winsemius et al., 2009), slope of
the flow-duration curve (Yadav et al., 2007; Yilmaz et al.,
2008), base-flow index (Bulygina et al., 2009) and the use of
a performance measure based on specified exceedance per-
centages of a synthetic regional flow-duration curve (FDC)
for calibration at un-gauged sites (Yu and Yang, 2000). How-
ever, in these studies uncertainties in observed discharge are
not considered explicitly. Blazkova and Beven (2009) ac-
count for discharge uncertainty and use the discharge at nine
exceedance percentages between 25 to 90 % exceedance for
the FDC as nine out of 57 limits of acceptability in the
extended GLUE approach (Beven, 2006, 2009) in flood-
frequency estimation. The latter study notes the importance
of the realization effect in using a discharge data record of
limited length, and the effect this has on the FDC is also
discussed by Vogel and Fennessey (1994). The added un-
certainty to the FDC stemming from a discharge record of
limited length has to be considered if discharge data from
another period is used for calibration, especially if the flow
regime is not stationary.

Calibrations with traditional performance measures are
challenged by problems including the following: (1) uncer-
tainty in discharge data, (2) variable sensitivity of different
performance measures to different flow magnitudes, (3) in-
fluence of input/output errors of an epistemic nature and
(4) inability to evaluate model performance when observa-
tion time periods for discharge and model input data do
not overlap. Uncertainty in discharge data, which has been
shown to be sometimes substantial (Di Baldassarre and Mon-
tanari, 2009; Pelletier, 1988; Krueger et al., 2010; Petersen-
Overleir et al., 2009) and influence the calibration of hydro-
logical models (McMillan et al., 2010; Aronica et al., 2006),
is usually not accounted for in model evaluation with tra-
ditional performance measures. Novel approaches in envi-
ronmental modelling that include evaluation-data uncertainty
in model calibration include Bayesian calibration to an es-
timated probability-density function of discharge (McMil-
lan et al., 2010), Bayesian calibration with a simplified er-
ror model (Huard and Mailhot, 2008; Thyer et al., 2009),
fuzzy rule based performance measures (Freer et al., 2004)
and limits-of-acceptability calibration in GLUE for rainfall-
runoff modelling (Liu et al., 2009), flood mapping (Pappen-
berger et al., 2007), environmental tracer modelling (Page
et al., 2007) and flood-frequency estimation (Blazkova and
Beven, 2009). Here we explore the limits-of-acceptability
GLUE approach applied to flow-duration curves, which
could be a way of dealing with some of the effects of non-
stationary epistemic errors on the identification of feasible
model parameters in real applications (Beven, 2006, 2010;
Beven and Westerberg, 2011; Beven et al., 2008). However,
in order to establish the extent to which this approach is ro-

bust to such errors, a more extensive analysis than that pre-
sented here is needed. Flow-duration curves have previously
been used in model calibration by Sugawara (1979), Yu and
Yang (2000), as one of the criteria considered by Refsgaard
and Knudsen (1996) and by Blazkova and Beven (2009),
and as a qualitative measure of model performance, e.g. by
Houghton-Carr (1999), Kavetski et al. (2011), and Son and
Sivapalan (2007).

The aim when calibrating a hydrological model should
be to find out whether the model structure can be consid-
ered an appropriate conceptualisation or hypothesis of the
hydrological processes of interest in that catchment (Beven,
2010). Ideally, the reason for rejecting the model as a suit-
able hypothesis of these processes should therefore be be-
cause the model structure is poor and not because the calibra-
tion method does not appropriately account for the uncertain-
ties in the input and output data (i.e. avoiding Type II false
negatives). The aim of this paper was to develop a calibra-
tion method that addresses the four problems in model cal-
ibration with traditional methods outlined above, within the
framework of the limits-of-acceptability approach in GLUE
and with a specific focus on accurate simulation of the water
balance.

2 Study areas and data

The method was first developed for a Honduran catchment
characterised by shallow soils and frequent occurrence of
surface runoff, the Paso La Ceiba catchment. It was then
tested for a contrasting flow regime – the Brue catchment in
Great Britain where run-off generation is controlled by sub-
surface processes on the hill slopes.

2.1 The Paso La Ceiba catchment

The 7500 km2 Choluteca River basin is located in south-
central Honduras (Fig. 1) where the Choluteca River drains
to the Pacific at the Gulf of Fonseca. Two water-supply
dams (constructed in 1976 and 1992) are located upstream
of the capital Tegucigalpa in the upper parts of the basin.
The discharge data from the station at Paso La Ceiba, with
a catchment area of 1766 km2, were used here. This catch-
ment has soils that are shallow and eroded (often less than
a metre deep) and it is mountainous with elevations ranging
from 660 to 2320 m above sea level. The discharge station
was destroyed in October 1998 by the flooding that occurred
during hurricane Mitch and a new station was installed three
kilometres upstream.

The bimodal precipitation regime in the basin is char-
acterised by a high spatial and temporal variability with a
dry season November–December to April and a rainy sea-
son (with around 80 % of the total precipitation) modulated
by a relative minimum, “the midsummer drought”, in July–
August (Westerberg et al., 2010; Portig, 1976; Magaña et
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Fig. 1. The Choluteca River Basin and the Paso La Ceiba catchment, the urban area in the upper catchment represents Tegucigalpa, the
Honduran capital. Black triangles represent precipitation stations with daily data in 1978–1997 within 30 km of the Paso La Ceiba catchment.

al., 1999). Characteristic of the tropics, temperature variabil-
ity is low and precipitation is mainly convective. ENSO (El
Niño/Southern Oscillation) and Atlantic sea-surface temper-
atures modulate climate variability on a longer, inter-annual
time scale (Diaz et al., 2001; Enfield and Alfaro, 1999). The
long dry season in combination with a fast response of run-
off to precipitation and little base flow lead to a flow regime
where peak flows of short duration account for a large part of
the total volume of discharged water.

The WASMOD model was driven with daily data of pre-
cipitation and potential evaporation. Precipitation data for
1978–1997 from 29 stations within a 30 km distance of the
Paso La Ceiba catchment (Fig. 1) were interpolated with
inverse-distance weighting, this method was chosen because
of the low correlation between daily precipitation data from
different stations and the varying station density (Westerberg
et al., 2010). There were almost twice as many active pre-
cipitation stations in the end of the 90’s as in the early 80’s
implying that there could potentially be time-varying biases
in the interpolated series. Another potential source of data
commensurability errors resulted from the fact that precip-
itation is measured at 7 a.m. but registered on the previous
day. Since the delay time from rainfall in the upper catch-
ment to a peak in run-off at the Paso La Ceiba station is less
than 24 h and precipitation has a clear diurnal variability with
a peak during the second half of the day, the registration of
rainfall had to be changed to the day of the actual measure-
ment to agree with the daily time step in the model. The

mean annual areal precipitation for the catchment equalled
1060 mm yr−1, with a minimum of 810 mm yr−1 and a max-
imum of 1450 mm yr−1 for the studied period.

Potential evaporation was calculated with the Penman-
Monteith equation (Monteith, 1965; Allen et al., 1998) using
daily data of temperature, wind speed, relative humidity and
sun hours from the Toncontı́n station in Tegucigalpa. There
was a decrease in the measured relative humidity around
1984 because of a relocation of the station from a roof-top
to the ground and these data were therefore corrected by the
difference in mean value between the first and the second pe-
riod. There was also a clear shift in the relative humidity
data when the calculation method was changed from lookup
tables to formula in 1 November 1999, which was adjusted
for in the same way. Missing meteorological data were filled
with daily values for a mean year. The correction of the data
was deemed necessary since there was only one station avail-
able with data covering the entire modelling period.

The discharge and uncertainty in discharge was previously
calculated with a fuzzy linear regression of rating data based
on the estimated uncertainty in single discharge and gauge-
height measurements by Westerberg et al. (2011) and only
the key points are given here. The method accounted for
the non-stationarity in the stage-discharge relationship which
was substantial in the alluvial Choluteca River, as well as
the commensurability error in only having a limited num-
ber of gauge-height measurements per day for the calcula-
tion of mean daily discharge. The added uncertainty from
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Fig. 2. The Brue catchment and the location of the 28 rain areas
(black lines) and the Lovington flow gauge (black dot).

this commensurability error was estimated at 17 %, a factor
that represented 95 % of the errors from calculations using
high temporal resolution stage data for a later period. Larger
uncertainties could occur at some events if flow peaks pass
between the stage readings, but are not easily estimated. The
data included 1216 ratings for 1980–1997 at the Paso La
Ceiba station and gauge-height measurements three times-
a-day, at 06:00, 12:00 and 18:00. Estimated discharge un-
certainty was in the form of a time series of triangular fuzzy
numbers consisting of a crisp (best-estimate) discharge and a
lower and upper limit.

2.2 The Brue catchment

The 135 km2 Brue catchment in south-west England (Fig. 2)
is characterised by low hills (up to 300 m above sea level) and
alternating bands of permeable and impermeable rocks be-
neath clayey soils on top of which the land use is dominated
by grasslands (74 %). An extensive precipitation data set
from the HYREX (HYdrological Radar EXperiment) project
(Moore, 2000; Wood et al., 2000) includes 49 gauges as well
as radar data with a 15-min resolution. The mean areal pre-
cipitation for the period 1 January 1995 to 31 December 1997
equalled 770 mm yr−1. Potential evaporation data from the
HYREX project that had been calculated using data from an
automatic weather station in the lowland part of the catch-
ment were used and periods with missing data were filled
using a sine-wave function. Flow data were from the Lov-
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Fig. 3. Uncertain rating curve for the Lovington gauging station in
the Brue catchment derived from the stage-discharge measurements
from 1990–1998 (stage in m and discharge in m3 s−1 before trans-
formation). The dots represent the measured values and the grey
boxes the fuzzy representation of the estimated uncertainty in the
measurements. The upper and lower lines represent the uncertainty
limits for the fitted rating curve.

ington gauging station, for which the rating curve data from
the UK Environmental Agency showed considerable spread.
Discharge uncertainty limits were calculated with the same
method as for the Paso La Ceiba catchment, but here the
rating curve was assumed stationary and 15-min stage data
were available for the whole period so no temporal com-
mensurability error needed to be estimated. Discharge and
the uncertainty limits were calculated using 79 simultaneous
stage-discharge measurements from 1990–1998 that covered
the flow range well. The gauge heights (in m) were log-
transformed and the discharges (in m3 s−1) were Box-Cox-
transformed to obtain a linear relationship (Fig. 3). The Box-
Cox lambda parameter was optimized to obtain the highest
degree of linearity and a lambda-value of 0.0946 gave a cor-
relation of 0.998. The same uncertainties in the stage and
discharge measurements as for the Honduran data were as-
sumed (5 % for gauge height and 25 % for discharge), as the
fitted curve encompassed the uncertainty in the ratings well
(Fig. 3).

3 Hydrological models

Two hydrological models with different time scales but rela-
tively parsimonious conceptualisations of the dominant hy-
drological processes in the two catchments were chosen,
WASMOD (Xu, 2002) for the Honduran catchment and Dy-
namic TOPMODEL (Beven and Freer, 2001) for the British
catchment.
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Table 1. List of equations, parameters and their sampling ranges for the version of WASMOD used in this study.

Model equation Description Parameter Units Sampling range

et = min(ept (1−A
wt/(ept×1t)
et ),wt/1t)

where
wt = pt ×1t +smt−1 is available water for evaporation,
pt is mean areal precipitation for dayt , ept is potential
evaporation, and smt−1 is soil moisture storage at day
t −1

Actual evaporation Aet [-] [0, 1]

st = Sf(smt−1)0.5 Slow flow Sf [mm0.5 day−1] [e−9, 1]
ft = Ff ×smt−1×nt

wherent is active precipitation

nt = pt −ept (1−e
−

pt
ept ) if ept > 1

nt = pt −ept if ept ≤ 1

Fast flow Ff [mm−1] [e−7, e−4]

sct = sct−1+ft ×1t

rt = Rf ×sct
sct = sct −rt ×1t

where sct is the routing storage for dayt

Routing of fast flow Rf [day−1] [0, 1]

dt = min(st +rt ,wt −et ) Total runoff
smt = smt−1+(pt −et −dt )×1t Water balance

equation

3.1 The model used in the Paso La Ceiba catchment –
WASMOD

The lumped conceptual water-balance model WASMOD has
been applied to many catchments with different climatic
conditions and has been used at various spatial scales –
e.g. Widen-Nilsson et al. (2007) and Xu and Halldin (1997).
Here it was used for the Honduran catchment with a daily
time step and a model formulation for snow-free catchments
with potential evaporation and precipitation as input data.
This version of the model, identical to the snow-free part of
the monthly WASMOD model except for the routing scheme,
had four parameters for fast flow, slow flow, actual evapora-
tion and routing (Table 1). This was the first application of
this model version using a daily time step. The model was
evaluated in a split-sample test for 1980–1988/1989–1997,
where it was first calibrated in the first period and evaluated
in the second and then the reverse. The two years prior to
1980 were used as a warming-up period.

3.2 The model used in the Brue catchment – Dynamic
TOPMODEL

In the Brue catchment the semi-distributed Dynamic TOP-
MODEL was run using a 15-min simulation time step. The
simulated runoff series were aggregated to a mean hourly
time step before the computation of any goodness-of-fit mea-
sure or other analysis of the simulated results. Compared to
the original TOPMODEL (Beven and Kirkby, 1979), the dy-
namic version enables the distributed response to be repre-
sented more explicitly through functional units of the land-

scape. These functional units are not only defined by the to-
pographic index (as in the original TOPMODEL version) but
also by similarity in land use, differences in rainfall inputs or
other spatial characteristics. In this application, which was
the same as in Younger et al. (2009), land use was considered
homogenous and the functional units were a function of slope
and contributing area (i.e. the topographic index was split up
to allow dynamic changes in the upslope contributing area)
as well as the spatiotemporal variability in rainfall (see also
the previous application of the Probability Distributed Model
(PDM) and Grid to Grid models to the Brue in Bell and
Moore, 2000). Data from rainfall stations within the same
2 km grid cell were averaged so that 28 “rain areas” were cre-
ated from the 49 gauges via a nearest-neighbour approach.
The parameter intervals for the Monte Carlo sampling are
given in Table 2. The model was evaluated in a split-sample
test for 1995–1996/1997–30 June 1998, first with the first pe-
riod for calibration and the second for prediction and then the
reverse, 1994 was used as a warming-up period.

4 Flow-duration curve calibration

Monte Carlo runs were performed for both test catchments
as a basis for the subsequent calibration. For the Paso La
Ceiba catchment 100 000 parameter-value sets were gener-
ated and used to simulate runoff series with WASMOD. For
the Brue catchment TOPMODEL was run 50 000 times. For
calibration (i.e. the selection of the behavioural parameter-
value sets and their weights for GLUE) the FDCs of these
simulated time series were then evaluated in a comparison
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Table 2. Sampling ranges for dynamic TOPMODEL parameters.

Parameter Units Sampling range Description

SZM [m] [0.01, 0.1] Form of the exponential
decline in saturated
hydraulic conductivity
with depth

ln (T0) [ln(m2 h−1)] [-8, 0] Effective lateral saturated
transmissivity

SRmax [m] [0.005, 0.1] Maximum soil root zone
deficit

SRinit [m] [0, 0.01] Initial root zone deficit
CHV [m h−1] [500, 2500] Channel routing velocity
Td [h] [0.1, 40] Unsaturated zone time

delay
12 [-] [0.3, 0.7] Effective porosity
Smax [m] [0.1, 0.8] Maximum effective deficit

of the subsurface storage
zone

with the observed FDCs. The observed FDCs together with
limits of acceptability were constructed from the discharge
time series and the estimated uncertainty bounds. The FDC
of each simulated discharge series from the Monte Carlo runs
was compared to the limits of acceptability for the observed
FDC at selected evaluation points (EPs) along the FDC. All
simulated FDCs which were inside the limits of acceptability
for all EPs were considered behavioural and a performance
measure was calculated using a triangular evaluation func-
tion at each EP. This performance measure was used as an
informal likelihood measure for each behavioural parameter-
value set. This FDC calibration was compared to that using
the model efficiency (Nash and Sutcliffe, 1970) with differ-
ent behavioural threshold values. Furthermore, the model
performance when using an observed FDC from a time pe-
riod different to the simulated one was evaluated in the Paso
La Ceiba catchment to assess the ability of the method to
address mismatching observation time periods. These are
called “time-shift” calibrations below. Finally, in a pos-
terior analysis the simulated discharge uncertainty ranges,
which resulted from using the different performance mea-
sures, were compared to the observed discharge uncertainties
for the simulated periods.

4.1 Selection of evaluation points

The selection of the exceedance percentages that were used
as evaluation points (EPs) – i.e. the points where the sim-
ulated FDC was compared to the observed – was an im-
portant choice for the FDC calibration. The high-flow part
of the FDC, which describes the dynamic response of the
catchment to the effective precipitation input, usually con-
tains most of the information about catchment response and
many parameters are therefore sensitive with respect to these
high flows. Sufficient points on this part of the FDC therefore
needs to be set in order to constrain these parameters. Here
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Fig. 4. (a) Selection of EP values using equal intervals of crisp
discharge (FDC-Q);(b) selection of EP values using equal intervals
of the area under the FDC (i.e. using equal intervals of water volume
contributed by flows in a certain magnitude range (FDC-V).
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Fig. 5. (a) Calculation of the scaled scores,Qmin(i) is the lower
limit for the discharge uncertainty at thei:th evaluation point (EP),
Qmax(i) the upper limit andQ(i) the crisp discharge. A simulated
value that is at the crisp value gets a scaled score of 0, if the value is
at the lower limit a scaled score of−1 and at the upper limit it is 1,
values within or outside are linearly inter- or extrapolated;(b) trian-
gular weighting function applied at each EP such that weights are
zero for scaled scores outside the range [−1, 1].

we explored two methods for EP selection which each em-
phasized different aspects of the FDC (Fig. 4). For the first
method the crisp discharge values (i.e. the best estimate of
the uncertain discharges) were classed into N equal classes
(Fig. 4a). The minimum and maximum discharge values of
the entire FDC were excluded and the remainingN −1 dis-
charge class boundary values were used to calculate the cor-
responding EPs. HereN = 20 intervals were used resulting
in 19 EPs. Different ways can be used to calculate specific
exceedance percentages or discharge values for the FDC, but
the choice of method is negligible in cases where the FDC is
based on thousands of daily discharges as was the case here
(Vogel and Fennessey, 1994). We calculated exceedance per-
centages from the sorted discharges based on the percentile
values 100(0.5/n), 100(1.5/n), ..., 100([n-0.5]/n), wheren

is the number of discharge values. Linear interpolation was
used between the sorted observed discharge values. This cal-
culation was first reversed to calculate EPs in terms of ex-
ceedance percentages for the discharge class boundary val-
ues for the crisp observed discharge. It was finally used to
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calculate discharge for the upper and lower acceptability lim-
its and for the simulated discharge at these EPs, which were
then used in the calculation of the performance measures.
The second method for EP selection consisted of re-scaling
the FDC so that it represented the total volume of water con-
tributed by flows smaller than or equal to a given magnitude.
These volumes were then divided intoN equal classes and
the EPs were calculated in the same way, again excluding the
minimum and maximum discharge values. As the area under
the normal FDC represents the volume of water discharged
during the time for which the FDC was calculated, this ap-
proach equalled a weighting usingN intervals of equal area
below the curve for the crisp discharge (Fig. 4b). Since we
usedN = 20 this resulted in volume increments of 5 %. The
expectation was that the volume-based EP selection would
provide a more appropriate evaluation with respect to the
entire FDC than the discharge-based selection, because the
latter meant that the low flows were not constrained for the
types of flow regimes considered here. The volume method
was therefore expected to be well-suited for water-balance
studies, whereas the discharge method was more focused on
high-flow performance.

4.2 Performance measures

Two performance measuresRFDC−Q (for EP selection based
on discharge intervals) andRFDC−V (for EP selection based
on volume intervals) were calculated using the sum of a tri-
angular weighting function based on the observed discharge
and its limits of acceptability at each EP (Fig. 5b). Scaled
scores were calculated to evaluate the deviations of the sim-
ulated discharge with respect to the limits of acceptability. If
the simulated discharge value equalled the crisp discharge for
a certain EP, the scaled score was zero; if it was at the upper
or lower limit the score was 1 and−1 respectively. Values
between and outside these values were calculated based on
linear inter- or extrapolation (Fig. 5a).

In this study behavioural simulations were required to be
inside the limits of acceptability (i.e. to have an absolute
scaled score≤ 1) at all EPs. The performance measures
RFDC−V andRFDC−Q were calculated as:

RFDC= 1−

∑N−1
i=1 |Si |

N−1 where−1≤ Si ≤ 1,i = 1,2,...,N −1 (1)

whereN −1 was the number of EPs andSi the scaled score
at EPi. This means that a simulation with a perfect fit to the
crisp discharge at all EPs received a value of 1 and if the sim-
ulated discharge was at either limit for all EPs, this resulted
in a value of 0. There were no values lower than 0 as simula-
tions were classed as non-behavioural if the absolute scaled
score was larger than 1 for any EP (Fig. 5b). These per-
formance measures were compared to the model efficiency
(Reff) calculated based on the crisp discharge (with different
behavioural thresholds). This form of triangular weighting
function based on scaled scores has been used before, for ex-
ample by Blazkova and Beven (2009) and Liu et al. (2009)

and is analogous to the fuzzy measures used by Pappenberger
et al. (2007) and Page et al. (2007).

4.3 Posterior analysis of simulated and observed
discharges

In a posterior analysis the time series of observed uncertain
discharge were compared to the simulated results from the
calibration and prediction with the two models. A simple
measure of how well the simulated and observed uncertain
discharge agree, is given by the calculation of the percentage
of time that the observed and simulated uncertainty bounds
overlap (here termed OP). A similar measure, calledrelia-
bility, has been used previously for single-valued observed
discharge (Yadav et al., 2007). The overlap measure can be
high simply because the simulated uncertainty is overesti-
mated. Therefore a combined overlap percentage (COP) was
calculated as the mean of the percentage of the overlapping
range between the observed and simulated discharge relative
to the observed and relative to the simulated discharge range
(Eq. 2).

COP=

∑T
t=1

(
mean

(
QRoverlap
QRobs

,
QRoverlap
QRsim

))
T

(2)

T is the number of time steps,QRoverlap the intersection be-
tween the simulated and observed discharge ranges, QRobs
the observed discharge range andQRsim the simulated dis-
charge range. A perfect match of 100 % can then not be
achieved if the simulated uncertainty is overestimated.

More complex measures, such as a PQQ-plot (Thyer et
al, 2009) or a rank histogram, analyse the quantiles of the
observed value in the simulated distribution. The generalised
rank histogram (McMillan et al., 2010) is an extension of
the rank histogram that compares two uncertain distributions
so that uncertainty in the observed data can be accounted
for. However, the generalised rank histogram does not relate
how far simulated values that are outside the observed distri-
bution lie. We therefore chose to analyse scaled scores to the
limits of acceptability for the time series of simulated values.
These were calculated in the same way as the scaled scores
used in the calculation ofRFDC−V andRFDC−Q, but for each
time step instead of each EP in the FDC. The scaled scores
of all the behavioural simulations were analysed for different
flow types: base flow, rising limbs, falling limbs, peaks and
troughs, to be able to identify differences in the simulation
of different parts of the hydrograph between the criteria. For
each performance measure the histograms of scaled scores
were normalised to the number of behavioural simulations
to facilitate comparison. The classification of discharge
into different flow types was made in the same way as by
Younger et al. (2011) for the Brue catchment. However, we
used different threshold values since the hydrographs were
analysed at an hourly instead of 15-minute time step. The
observed flowQt at timet was classified as:
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baseflow ifQt < Qb

rising limb if Qt−T < Qt < Qt+T andQt > Qb

falling limb if Qt−T > Qt > Qt+T andQt > Qb

peak ifQt−T < Qt andQt > Qt+T andQt > Qb

trough ifQt−T > Qt andQt < Qt+T andQt > Qb

The values ofQb andT were determined through visual
inspection of the classified hydrographs. The values were de-
termined toQb = 1.7 m3 s−1 (= 13 l s−1 km−2) and 5 m3 s−1

(= 2.8 l s−1 km−2) andT = 4 h and 3 days for the Brue and
Paso La Ceiba catchment respectively. Plots of the time se-
ries of mean scaled scores for each performance measure to-
gether with the simulated and observed discharge were also
used to analyse the simulated results, especially the periods
where the simulations were outside the uncertainty in the ob-
served discharge.

5 Results

5.1 Observed uncertain FDCs

The FDCs for the two catchments illustrate the differences in
flow regime. In the Honduran catchment base flow was very
low and a larger part of the total volume of water was con-
tributed by high flows than in the British catchment (Fig. 6).
At Paso La Ceiba the flow regime (as illustrated by the FDCs)
was more or less stable in-between the calibration and eval-
uation periods. In the Brue catchment, where the discharge
record was much shorter, the low-flow part of the FDC was
not as stable as the high-flow part between the two periods.
If a model is calibrated with data from another time period
(a “time-shift” calibration) and the FDC is not stable, there
could be a realisation effect in using a limited sample of
discharge data. Therefore the extremes from a bootstrap of
FDCs for successive nine- and two-year periods of discharge
data (for the Paso La Ceiba and Brue catchment respectively)
were plotted to illustrate the extra uncertainty from this real-
isation effect – that should be accounted for if the station-
arity of the FDC is unknown. As would be expected, the
realisation effect was larger for the Brue compared to Paso
La Ceiba. Factors affecting the magnitude of the realisation
effect include the length of the record, the nature of the cli-
mate variability and the non-stationarity of the hydrological
regime. The estimated uncertainty in discharge ranged be-
tween−43 to +73 % of the best discharge estimate at Paso
La Ceiba (Westerberg et al., 2011) and±34 % in the Brue
catchment. The EPs of the FDCs ranged from a fraction of
flow equalled or exceeded of 0.004 to 0.70 forRFDC−V and
from 0.0002 to 0.30 forRFDC−Q for the two periods in the
Brue and from 0.003 to 0.69 forRFDC−V and from 0.0003 to

0.17 forRFDC−Q for the two periods at Paso La Ceiba. The
very low values included here reflect the fact that the high
flows represent a small fraction of all flows.

5.2 Number of behavioural parameter-value sets

The identification of behavioural parameter-value sets us-
ing the performance measures based on the FDC evalua-
tion points resulted in more behavioural parameter-value sets
for the discharge-interval selection compared to the volume-
interval selection for both catchments (Table 3). The num-
bers of behavioural parameter-value sets are those that sur-
vived the limits of acceptability for all the EPs considered,
of the 100 000 simulations for Paso La Ceiba and 50 000
simulations for the Brue. The time-shift calibration results
for Paso La Ceiba use the FDC from one period, to pro-
vide limits of acceptability for the other period (which in
this case is assumed to have no observed discharges avail-
able). The column labelled prediction shows the percent-
age of parameter-value sets calibrated in the second period
which were behavioural for the first period based on the two
FDC criteria. For the Brue catchment the performance for
the two periods was quite different and only 3 % (RFDC−V)

and 13 % (RFDC−Q) of the parameter-value sets in the sec-
ond period were also behavioural in the first. The percent-
ages were higher for the Paso La Ceiba with almost 50 % of
the parameter-value sets behavioural in both periods for both
criteria. This is likely a result of the higher uncertainty in
discharge combined with the less complex rainfall-runoff re-
lationship in this catchment compared to the Brue, especially
since a simpler model and more uncertain precipitation data
were used compared to the semi-distributed model set-up and
dense rain-gauge network in the Brue. It might also provide
an indication that the more complex Dynamic TOPMODEL
has been over-fitted to responses and errors in the calibration
period that are then rather different in the evaluation period.

Table 4 shows the results based on the Nash-Sutcliffe ef-
ficiency performance measure, using different thresholds to
define the behavioural parameter-value sets, and also with
an additional constraint based on the absolute volume error
(VE) in predicted discharge. With higher thresholds there
was a greater chance that the sets of behavioural parameter
values for the two periods would be non-overlapping, while
the maximum values for the Brue were generally lower than
at Paso La Ceiba. In the Paso La Ceiba catchment the ad-
dition of the VE had a large constraining effect on the num-
ber of behavioural parameter-value sets but not in the Brue
catchment. The time-shift calibration was not possible with
this performance measure.
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Fig. 6. Observed crisp and uncertain FDCs for the Paso La Ceiba catchment,(a–b)upper and lower flow range respectively and for the Brue
catchment,(c–d) upper and lower flow range respectively. The extreme FDC represents the maximum and minimum uncertain FDC for all
consecutive 9- and 2-yr periods for the Paso La Ceiba and Brue catchment respectively. The FDC-V represents volume interval EPs and
FDC-Q discharge interval EPs (only plotted for the last period in each catchment). The high and low flows of the FDCs are plotted separately
for better visualisation; note the difference in scale on the y-axis.

Table 3. Number of behavioural parameter-value sets for the different FDC performance measures.

Catchment
(model)

Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)

Performance
measures

Calibration Time-shift Calibration1 Prediction2 Calibration Prediction2

1980–1988 1989–1997 1980–1988 1989–1997 1995–1996 1997–1998

RFDC−Q 17 085 24 166 21 932 22 853 48 % (11 575) 983 477 13% (123)
RFDC−V 758 1430 871 1408 47 % (673) 360 42 3 % (12)

1 Calibration using the FDC from the previous/later period2 Percentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in
the first period.

5.3 Parameter identifiability

5.3.1 The Paso La Ceiba catchment – WASMOD

In this catchment the performance measures based on the
FDC resulted in more overlapping sets of behavioural pa-
rameter values between calibration and prediction compared

to the calibration withReff (Tables 3 and 4). The FDC
criterion based on volume EPs,RFDC−V , resulted in much
fewer behavioural parameter-value sets thanRFDC−Q. The
largest difference in parameter identifiability was seen for
the evaporation and slow-flow parameters which mainly con-
trol simulated discharge for low flows and recession peri-
ods (Fig. 7). They were better constrained for theRFDC−V
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Table 4. Number of behavioural parameter-value sets for different Nash-Sutcliffe based performance measures.

Catchment (model) Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)

Performance measures1 Calibration Prediction2 Calibration Prediction2

1980–1988 1989–1997 1995–1996 1997–1998

Reff > 0.7 & VE < 20% 796 12 477 4 % (464) 2299 240 4 % (82)
Reff > 0.7 & VE < 10% 365 6399 2 % (147) 1128 127 0 % (0)
Reff > 0.7 1473 28 455 5 % (1,473) 2696 240 4 % (108)
Reff > 0.75 89 20 046 0.4 % (89) 985 13 0.4 % (4)
Reff > 0.8 0 11 101 0 % (0) 140 0 0 % (0)
Reff > 0.85 0 2246 0 % (0) 3 0 0 % (0)

1 VE is the absolute volume error2 Percentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in the first period.
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Fig. 7 Cumulative informal likelihood distributions for all WASMOD model parameters (Rf - 1004 
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Fig. 7. Cumulative informal likelihood distributions for all WASMOD model parameters (Rf – routing of fast flow,Aet – evaporation,
Sf – slow flow, andFf – fast flow). The informal likelihood weights for each performance measure were calculated for the calibration in
1989–1997 forReff, RFDC−Q andRFDC−V , and for the calibration in 1989–1997 using the FDC for 1980–1988 forRFDC−Q−TS, and
RFDC−V−TS in the Paso La Ceiba catchment.

measure compared to theRFDC−Q andReff measures, which
mostly constrained model performance at medium to high-
flows. The behavioural parameter-value sets obtained from
calibrating the model for 1989–1997 using the “time-shift”
FDC for 1980–1988 did not differ much from calibration
with the FDC from 1989–1997, especially for the volume
EP criterion, as the flow regime did not change substantially
in-between the two periods (Fig. 6–7).

5.3.2 The Brue catchment – Dynamic TOPMODEL

As in the Paso La Ceiba catchment, the largest difference in
parameter identifiability between theReff andRFDC−V mea-
sures could be seen for the parameters controlling the reces-

sion/slow flow and the evaporation in the model (Fig. 8).
In Dynamic TOPMODEL the SZM parameter describes
the exponential decline in saturated hydraulic conductivity
with depth and controls the shape of the hydrograph in the
recession periods. It was constrained to much lower values
for RFDC−V compared to the other measures. The SRmax
parameter, which controls the water available for evapora-
tion, was also more constrained forRFDC−V . The best sim-
ulations forReff (Reff > 0.8) showed more constraint on the
CHV andSmax parameters. In the case of CHV, the channel-
routing velocity parameter, this reflects the sensitivity of the
Reff measure to timing errors in the higher peak hydrographs.
The sensitivity ofSmax, which controls the root zone deficit
due to actual evapotranspiration, might reflect the effect of
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Fig. 8. Cumulative informal likelihood distributions for all Dynamic TOPMODEL parameters (the parameter names are explained in Table 2).
The informal likelihood weights for each performance measure were calculated for the calibration in 1995–1996 in the Brue catchment.

antecedent conditions on peak flow magnitude and timing
that is not so important for theRFDC measures.

5.4 Simulated flow-duration curves

5.4.1 The Paso La Ceiba catchment – WASMOD

TheRFDC−V measure gave simulated FDCs that most closely
resembled the observed FDC for the whole flow range in both
calibration and prediction. The largest difference between
the performance measures occurred at low flows for both the
calibration and evaluation periods (Fig. 9). Here almost all
of the simulations for theReff andRFDC−Q measures under-
estimated the discharge, but there were a number of simula-
tions that had a large overestimation in this flow range. The
RFDC−V simulations were more evenly distributed within the
range of the uncertain observed FDC at the low-flow EPs.
This difference at low flows was not surprising since the
largest difference in the parameter identifiability (Fig. 7) was
seen for the evaporation and slow-flow parameters that con-
trol this part of the FDC. For theRFDC−Q measure this lack of

constraint was not surprising as there were no low-flow EPs.
For theReff calibration the low-flow simulation even for be-
havioural parameter-value sets with the highestReff values
resulted in consistent errors for low flows. The calibration in
1989–1997 using the “time-shift” FDC in 1980–1988 with
theRFDC−V measure gave results similar to when the 1989–
1997 FDC was used for the same measure. TheRFDC−Q
measure gave good high-flow performance but the poorest
performance for low flows as seen when plotted for the vol-
ume EPs.

In prediction 1989–1997Reff gave more consistent under-
estimation for high flows compared toRFDC−V andRFDC−Q.
As in the calibration period, the low-flow performance was
much poorer forReff and RFDC−Q compared toRFDC−V ,
which was largely consistent with the observed FDC. Note
that in calibration the lowest EP for which theRFDC−Q was
evaluated in the current study was at a crisp discharge of
21 m3 s−1. Figure 9 shows that this still allows sufficient
freedom for the behavioural simulations to depart from the
observed FDC limits at lower flows, in this case for 86 %
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Fig. 9. (a)and(b) FDCs for behavioural parameter-value sets for WASMOD in the Paso La Ceiba catchment for calibration in 1989–1997
usingRFDC−V (all FDCs plotted as grey lines),Reff, RFDC−Q, andRFDC−V−TS (maximum and minimum FDC values plotted as lines)
and observed crisp, upper-limit and lower-limit discharge;(c) and(d) FDCs for prediction in 1989–1997 using behavioural parameter-value
sets forRFDC−V (all FDCs plotted as grey lines),Reff andRFDC−Q calibrated 1980–1988 (maximum and minimum FDC values plotted as
lines) and observed crisp, upper limit and lower limit discharge. The FDCs are split in two plots (left – high flows and right – low flows) at
10 % exceedance. All FDCs are plotted for the volume interval EPs.

of the time, and that these simulated results were similar to
those of theReff calibration.

5.4.2 The Brue catchment – Dynamic TOPMODEL

In the Brue catchment the results were largely similar to the
Paso La Ceiba catchment (Fig. 10). TheRFDC−V criterion
also constrained the low-flow part of the FDC which the other
criteria did not. Here, however, the behavioural simulations
did not cover the entire low-flow range which could indicate
that some of the observed behaviour could not be reproduced
by the model. The majority of the flows at the low-flow EPs
were overestimated forReff andRFDC−Q in this catchment.
Again, the number of increments used in the determination
of RFDC−Q allows significant freedom amongst behavioural
parameter-value sets in the prediction of lower flows and a
similar pattern is seen forReff.

5.5 Posterior analysis of simulated and observed
discharges

The measures of overlap (OP and COP) between the simu-
lated and observed uncertain discharge bounds were gener-
ally higher for theRFDC−V measure compared to the other
measures (Fig. 11). As the COP measure accounted for over-
estimated predictive uncertainty a high value of this measure
was more important than for OP. The results for the time-shift
calibration using the FDC from another time period gave re-
sults similar to that of the normal FDC calibration. The best
Reff simulations (Reff > 0.8) resulted in a similar number of
behavioural simulations asRFDC−V at Brue, but gave much
lower overlap than forRFDC−V , which was largely because
of the poorer low-flow performance. TheRFDC−Q measure
resulted in better results in the Brue catchment compared to
Paso La Ceiba. This might relate to the fact that there was
more baseflow at Brue wherefore the EPs for the discharge-
interval-selection method covered the low-flow part of the
FDC better than at Paso La Ceiba.
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Fig. 10 a) and b) FDCs for behavioural parameter-value sets for Dynamic TOPMODEL in the 1029 

Brue catchment for calibration in 1995–96 using RFDC-V (all FDCs plotted as grey/shaded 1030 

lines), Reff, and RFDC-Q (maximum and minimum FDC values plotted as lines) and observed 1031 

crisp, upper and lower discharge; c) and d) FDCs for prediction in 1997–98 using the 1032 

behavioural parameter-value sets from 1995–96. The FDCs are split in two plots (left – high 1033 

flows and right – low flows) at 10% exceedance. All FDCs are plotted for the volume interval 1034 

EPs. 1035 
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Fig. 10. (a)and(b) FDCs for behavioural parameter-value sets for Dynamic TOPMODEL in the Brue catchment for calibration in 1995–
1996 usingRFDC−V (all FDCs plotted as grey/shaded lines),Reff, andRFDC−Q (maximum and minimum FDC values plotted as lines) and
observed crisp, upper and lower discharge;(c) and(d) FDCs for prediction in 1997–1998 using the behavioural parameter-value sets from
1995–1996. The FDCs are split in two plots (left – high flows and right – low flows) at 10 % exceedance. All FDCs are plotted for the
volume interval EPs.

5.5.1 The Paso La Ceiba catchment – WASMOD

The simulated discharge for the Paso La Ceiba catchment
was in general in good agreement with the observed dis-
charge (Fig. 12). During the low-flow periods of some years
the discharge was underestimated for all performance mea-
sures, indicating a possible model-structural error in simulat-
ing a slower/deeper ground-water response or errors in the
input data.

The posterior analysis of the mean scaled scores for dif-
ferent parts of the hydrograph (Fig. 13) for the prediction in
1989–1997 showed that when using theRFDC−V calibration
compared toReff: (1) the distributions of scaled scores were
more centred on zero, (2) there were fewer base flows that
were underestimated, and (3) the largest difference was seen
for the troughs, falling limbs and base flows that are con-
trolled by the slow-flow and evaporation parameters. The
same results were seen in all the other calibration/prediction
periods. Events where the predicted discharge was under-
estimated did not generate as large scaled scores as if the
predicted discharge was overestimated, as the uncertainty

bounds were wider in absolute terms for high flows com-
pared to low flows, this explains the skew in the histograms
in Fig. 13. The distributions of the scaled scores forReff and
RFDC−Q were always centred on negative scaled scores for
all flow types.

A plot of the mean scaled scores and the discharge for
1989–1990 revealed the difference in low-flow performance
(Fig. 14). A large scaled deviation can be seen for all per-
formance measures in the end of 1990 where there is a peak
in the predicted discharge but not in the observed. This is a
type of epistemic error that could be a result of erroneous dis-
charge data, influence of upstream dams or unrepresentative
precipitation data. This type of event had a large effect on
theReff calibration where it generated a large sum-of-squares
error and a reduction in overall performance. A similar devi-
ation is seen in the end of 1989. The maximum scaled scores
for all the calibration and prediction periods at Paso La Ceiba
were consistently larger for the FDC-based measures com-
pared toReff which might indicate that the FDC criteria are
not as sensitive to such disinformative events.
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 1045 

Fig. 12 Uncertainty limits for observed discharge and predicted discharge (5% and 95% 1046 

percentiles of the predicted discharge of all behavioural parameter-value sets) in the rainy 1047 

season 1995 with WASMOD parameters calibrated 1980–88 using the RFDC-V performance 1048 

measure in the Paso La Ceiba catchment. The overlapping area between the two uncertain 1049 

intervals is plotted in grey. 1050 
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Fig. 12. Uncertainty limits for observed discharge and predicted discharge (5 % and 95 % percentiles of the predicted discharge of all
behavioural parameter-value sets) in the rainy season 1995 with WASMOD parameters calibrated 1980–1988 using theRFDC−V performance
measure in the Paso La Ceiba catchment. The overlapping area between the two uncertain intervals is plotted in grey.
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 1063 

Fig. 14 Daily precipitation in 1989–1990 (top) and predicted and observed crisp daily 1064 

discharge for behavioural parameter-value sets from using RFDC-V for calibration of 1065 

WASMOD in the Paso La Ceiba catchment in 1980–88 (middle). The mean scaled scores for 1066 

all performance measures are plotted in the bottom plot where the grey area represents a 1067 

scaled score from -1 to 1, i.e. a simulated discharge with a score inside this range is inside the 1068 

discharge uncertainty limits.  1069 
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Fig. 14. Daily precipitation in 1989–1990 (top) and predicted and observed crisp daily discharge for behavioural parameter-value sets
from usingRFDC−V for calibration of WASMOD in the Paso La Ceiba catchment in 1980–1988 (middle). The mean scaled scores for all
performance measures are plotted in the bottom plot where the grey area represents a scaled score from−1 to 1, i.e. a simulated discharge
with a score inside this range is inside the discharge uncertainty limits.
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5.5.2 The Brue catchment – Dynamic TOPMODEL

The results for the Brue catchment were similar to Paso
La Ceiba with generally better performance for base flows,
falling limbs and troughs forRFDC−V . In contrast to Paso La
Ceiba the results were poorer for peaks and rising limbs com-
pared toReff (Fig. 15), this difference was less pronounced in
1995–1996 where the calibration worked better. Also in con-
trast to the Paso La Ceiba catchment, theReff andRFDC−Q
measures resulted in more overestimation of low flows here,
which is also seen in Fig. 10. The maximum scaled scores
were in general larger for the FDC-based criteria but not for
all flow types as was the case at Paso La Ceiba. Some peri-
ods of plausible model-structural errors were visible for the
base flows where there were many time steps with overpre-
diction with a scaled score around 5. These periods did in-
deed seem to be a result of model-structural error in July–
October 1997 as shown by a plot (Fig. 16) of the mean scaled
scores for the calibration during the same years; all of the
performance measures gave simulations that overpredicted
in this period. Another period of probable model-structural
error could be seen where the simulated discharge was un-
derestimated in the wetting-up period for the prediction in
1997–1998 (Fig. 17).

6 Discussion and conclusions

This paper has explored a calibration method that ad-
dresses four particular problems that arise in calibration
with traditional performance measures: (1) uncertain dis-
charge data, (2) variable sensitivity of different performance
measures to different flow magnitudes, (3) influence of in-
put/output errors of an epistemic nature and (4) inability to
evaluate model performance when observation time periods
for discharge and model input data do not overlap. The
method was evaluated in two catchments with contrasting
flow regimes where two different models were applied at two
different time scales. The results showed that when the ex-
ceedance percentages (EPs) of the FDC were chosen based
on volume intervals, this calibration method resulted in more
constrained low-flow parameters and a better overlap with
the observed data compared to a “traditional” calibration us-
ing the Nash-Sufcliffe model efficiency.

FDCs have been used previously in model calibration and
evaluation (Blazkova and Beven, 2009; Son and Sivapalan,
2007; Sugawara, 1979; Yu and Yang, 2000). The novel as-
pect of our use of the FDC is that it takes account of uncer-
tainty in the discharge data and at the same time shows that
the FDC can work surprisingly well as a single criterion in
some cases. Here discharge uncertainty was calculated using
a fuzzy linear regression for the rating curve based on esti-
mations of the uncertainty in both stage and discharge mea-
surements. Other methods could also be considered to do
this (e.g. Pappenberger et al., 2006), but the non-stationarity

of the stage-discharge relationship at Paso La Ceiba (Wester-
berg et al., 2011) constrained the number of feasible methods
for that site. Our construction of the uncertain FDC implies
an interpretation of the discharge uncertainty as an epistemic
error with an expectation of non-stationary bias rather than
a random error, which would lead to averaging of individual
errors. There might be many reasons for such epistemic er-
rors including current meters that have not been re-calibrated
and base levels subject to erosion and deposition (Westerberg
et al., 2011). Correlation in fitting successive EPs is handled
naturally in the limits-of-acceptability approach, since only
models that satisfy all limits are retained in prediction, and
simulations with consistent bias relative to the best-estimate
discharge are given a low weight.

The choice of the evaluation points at which the limits of
acceptability for the FDC are set is an important considera-
tion in the FDC calibration and the selection could be made
in different ways. The important point is that the choice
should be informed by the perceptual understanding of the
uncertainties in the hydro-meteorological data and made with
the aims of the modelling study and the characteristics of the
FDC in mind. For example, if high or low-flow performance
is of special importance then additional points could be cho-
sen for these flow ranges. The shape of the FDC will influ-
ence how the EPs are spaced for a given selection method
(e.g. the Brue catchment had higher base flow and therefore
for RFDC−Q the lowest EP occurred at a higher exceedance
percentage than at Paso La Ceiba). In both catchments in
this study the volume weighting gave the best overall results
as it constrained the model also for the low flows and reces-
sion periods. At the daily time scale it also resulted in better
simulations for peak flows, while at the sub-daily time scale
there was greater uncertainty in peak-flow timing compared
to Reff. The volume-based EP-selection method would be
especially suitable for water-balance studies where the cor-
rect volume of water for different flow ranges is of specific
concern, but exact timing is not as critical. The low sensitiv-
ity to timing errors will have a limited effect as long as run-
off coefficients are represented correctly. At sub-daily time
steps and where peak-flow timing is of greater concern, ad-
ditional criteria could be enforced to constrain this aspect of
the simulations. In doing so, the epistemic uncertainties as-
sociated with estimates of the higher discharges, particularly
resulting from rating-curve extrapolation, should be taken
into account. The FDC-calibration approach allows differ-
ent weightings by including different EPs and one could also
consider giving different weights to different EPs in the cal-
culation of the likelihood measure. In other catchments than
those studied here, other factors may come into play, such
as the effects of the timing of snowmelt in snow-dominated
catchments. Using FDC calibration, the exact timing of the
melt would not be as important as for a Nash-Sutcliffe mea-
sure (see the example in Ambroise et al., 1996), but the dis-
tribution of the melt over time would still be important and
would likely require additional constraints. The posterior
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Fig. 15 Scaled scores to limits of acceptability for different parts of the hydrograph at Brue for 1073 

calibration in 1997–98 using Dynamic TOPMODEL. For each performance measure the 1074 

histograms were normalised by the number of behavioural simulations, so the y-axis 1075 

represents the normalised number of time steps. The upper range of the histogram x-axis was 1076 

limited to improve the visibility of the lower range, the maximum scaled scores, max(S), for 1077 

each criterion are given in the legends and all scaled scores larger or equal to the last bin are 1078 

plotted in the last bin. 1079 
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Fig. 15. Scaled scores to limits of acceptability for different parts of the hydrograph at Brue for calibration in 1997–1998 using Dynamic
TOPMODEL. For each performance measure the histograms were normalised by the number of behavioural simulations, so the y-axis
represents the normalised number of time steps. The upper range of the histogram x-axis was limited to improve the visibility of the lower
range, the maximum scaled scores, max(S), for each criterion are given in the legends and all scaled scores larger or equal to the last bin are
plotted in the last bin.

analysis of the simulated time series employed here can be
useful in deciding whether additional criteria are necessary.

In calibration to “hydrological signatures” such as an FDC
calculated from the discharge series, the simulated uncer-
tainty bounds have a direct interpretation relative to the un-
certainty in the observed discharge data. This is an advantage
compared to say a behavioural threshold-value ofReff of 0.7
that is not easily interpretable (Legates and McCabe, 1999;
Seibert, 2001). Winsemius et al. (2009) set limits of accept-
ability in GLUE (for different types of signatures such as re-
cession curves) based on inter-annual variability but took no
explicit account of the uncertainty in the observed discharge
data.

It is interesting to note that the 19 EPs used for theRFDC−V
criterion provided better information for the calibration of the
model than the 3288 days or 17544 hours for the first years
of calibration/prediction used forReff. Limited information
content in discharge time series was also demonstrated by
Juston et al. (2009) and Seibert and Beven (2009), who found
that calibration using a small fraction of data points chosen
at hydrologically informed times was comparable to when
the whole time series was used. We choseReff for com-
parison with the FDC-calibration as it is sensitive to timing

errors, well-known and commonly used. Other approaches
such as multi-criteria calibration or the calculation ofReff
on transformed discharge can of course also be used to con-
strain simulations. We also tested log and square-root trans-
formed discharge in the calculation ofReff. This resulted in
good simulations for low flows whereas the simulation for
the highest flows was poorer constrained compared toReff
and the FDC-calibration. A multi-criteria calibration could
constrain different aspects simultaneously, but the problems
of deciding on a behavioural threshold value and accounting
for discharge-data uncertainty remain in such approaches.

When the FDC-method was first developed it was tested
with inconsistent satellite-derived precipitation in a Hon-
duran basin which resulted in that no simulations were found
that were consistent with the observed FDC. In such cases a
traditional calibration will result in low values for the perfor-
mance measure and not point as strongly to where the incon-
sistencies in the simulated flow regime occur. This is there-
fore an advantage of using constraints based on signatures
(such as a FDC) calculated from the flow data, as suggested
elsewhere for use in regionalisation methods for estimating
the response of ungauged basins (e.g. Yadav et al., 2007).
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Fig. 16. Predicted and observed crisp discharge for 1997–1998 for behavioural parameter-value sets forRFDC−V from calibration using
Dynamic TOPMODEL in 1995–1996 for the Brue catchment (upper plot shows the whole flow range, middle the low flows). The mean
scaled scores for all performance measures are plotted in the bottom plot where the grey area represents a scaled score from−1 to 1, i.e. a
simulated discharge with a score inside this range is inside the discharge uncertainty limits. TheRFDC−V criterion gave simulations with
less overprediction in the summer. In July–October 1997 there was a period of consistent overprediction at low flows for all performance
measures where the model could not reproduce the observations.

Disinformative data can lead to biased parameter estimates
in calibration if the model is forced to compensate for such
errors. We expect the FDC-calibration method to be more
robust to disinformation in many cases, especially pure tim-
ing errors such as an isolated single precipitation event reg-
istered on the wrong day or single events with inconsistent
inputs and outputs which might lead to rejection of all mod-
els in a limits-of-acceptability evaluation based on individual
time steps (e.g. Liu et al., 2009). The extent to which it is
robust needs to be assessed in future studies. It would likely
be most sensitive to disinformation that affects the tails of the
simulated and observed distributions, as that would lead to a
greater effect on the shape of the simulated or observed FDC.
In the absence of methods to identify and remove disinfor-
mative data prior to calibration, a posterior analysis like the
one we employed here can be used to readily identify periods
where the simulations from the behavioural parameter-value
sets are failing. These periods can then be analysed to see
whether the lack of fit can be attributed to disinformative data
or to model-structural errors (which in that case could lead to
learning from where the model is failing). In some cases it
might be obvious where there are problems in the observa-
tions, for example where a discharge hydrograph is observed

without significant rainfall. In the Paso La Ceiba catchment a
large peak flow was simulated in 1990 without a peak in ob-
served discharge (Fig. 14), which is not likely for that type of
hydrological regime where there is a direct relationship be-
tween rainfall and runoff, and this event was therefore likely
an epistemic error in the discharge data such as the effect of
an upstream dam or wrongly digitised data. In the case of
the Brue catchment, with 49 rain gauges in 135 km2, signif-
icant departures between observed and predicted discharge
(such as the large scaled scores for the low-flows in July–
October 1997 in Fig. 16) might be inferred to be more a re-
sult of model deficiencies than input errors. These periods of
probable model failure at low flows could be readily seen in
the analysis of the scaled scores for the different parts of the
hydrograph.

Are these two models then acceptable hypothesis about
the hydrological processes in the respective catchments or
should they be rejected? As noted in the introduction this de-
pends on the hydrological processes of interest and the aims
of the modelling application. In the Paso La Ceiba catch-
ment the simulated discharge overlapped with the observed
discharge for around 95 % of the time steps for theRFDC−V
calibration and prediction in both periods. If the overall
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Fig. 17 Uncertainty limits for observed discharge in 1997–98 and predicted discharge (5% 1095 

and 95% percentiles of the predicted discharge of all behavioural parameter-value sets 1096 

calibrated in 1995–96 using the RFDC-V performance measure) for the same period for 1097 

Dynamic TOPMODEL in the Brue catchment. The overlapping area between the two 1098 

uncertain intervals is plotted in grey. In the beginning of November there was a period where 1099 

the model could not reproduce the observations. 1100 
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Fig. 17.Uncertainty limits for observed discharge in 1997–1998 and predicted discharge (5 % and 95 % percentiles of the predicted discharge
of all behavioural parameter-value sets calibrated in 1995–1996 using theRFDC−V performance measure) for the same period for Dynamic
TOPMODEL in the Brue catchment. The overlapping area between the two uncertain intervals is plotted in grey. In the beginning of
November there was a period where the model could not reproduce the observations.

water-balance is of interest then this would be an acceptable
result, especially considering the likely time-variable uncer-
tainty in the rainfall inputs because of the low and time-
varying number of precipitation stations for this complex
precipitation regime (Westerberg et al., 2010). Additional
evaluation criteria might of course still reveal that we are
not getting the right answers for the right reasons (Kirch-
ner, 2006), a possibility that should be kept in mind if mak-
ing predictions of changed future conditions. In the Brue
catchment the overlap between simulated and observed dis-
charge was much lower, between 75–90 % of the time for the
RFDC−V calibration and prediction in both periods. In com-
bination with the analysis of the scaled scores this suggests
that, given the number of rain gauges in this catchment, the
model structure can be rejected as a good hypothesis for the
hydrological processes in this catchment. The information
about likely model-structural errors revealed in this poste-
rior analysis could be investigated to see if some improve-
ments might be implemented, such as in the representation
of the storage-discharge function at low flows (which in Dy-
namic TOPMODEL is not restricted to any particular func-
tional form).

Experiments using the FDC calibration with time-
shifted data in the Honduran catchment resulted in similar
parameter-value distributions and overlap with the observed
discharge as the normal FDC calibration. It might therefore
have potential for bridging temporal mismatch of data avail-
ability in regions such as Central America where there are
few available discharge data in the last decades but more
data for the 70–90’s. The effect of climate variability and

the stationarity of the flow regime in the longer term must
be accounted for in such applications. If the flow regime is
non-stationary or if the time-shifted period does not cover
periods of climate variability (e.g. El Niño/La Niña years) to
a sufficient extent, the extra uncertainty stemming from this
realisation effect should be added to the FDC. The method
might also be useful for studying the effect of modifica-
tions to the hydrological regime such as dams, where “pre-
dam” data could be used for calibration to the natural flow
regime. Another area of possible application is calibration to
regional FDCs such as in the study by Yu and Yang (2000),
but also taking uncertainties in the calibration of the hydro-
logical model and the data into account. A major advantage
of the FDC-calibration approach is the way in which it re-
quires structured consideration of the uncertainties expected
to affect the observed and simulated FDCs, not the least in
the discharge estimates themselves but also other sources of
uncertainties that affect model calibration.
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