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Abstract. The degree of belief we have in predictions from series of uncertain discharges agreed better for this method
hydrologic models will normally depend on how well they both in calibration and prediction in both catchments. An
can reproduce observations. Calibrations with traditionaladvantage with the method is that the rejection criterion is
performance measures, such as the Nash-Sutcliffe model ebased on an estimation of the uncertainty in discharge data
ficiency, are challenged by problems including: (1) uncer-and that the EPs of the FDC can be chosen to reflect the
tain discharge data, (2) variable sensitivity of different per-aims of the modelling application, e.g. using more/less EPs
formance measures to different flow magnitudes, (3) influ-at high/low flows. While the method appears less sensitive to
ence of unknown input/output errors and (4) inability to eval- epistemic input/output errors than previous use of limits of
uate model performance when observation time periods foacceptability applied directly to the time series of discharge,
discharge and model input data do not overlap. This pait still requires a reasonable representation of the distribution
per explores a calibration method using flow-duration curvesof inputs. Additional constraints might therefore be required
(FDCs) to address these problems. The method focuses dn catchments subject to snow and where peak-flow timing at
reproducing the observed discharge frequency distributiorsub-daily time scales is of high importance. The results sug-
rather than the exact hydrograph. It consists of applying lim-gest that the calibration method can be useful when observa-
its of acceptability for selected evaluation points (EPs) on thetion time periods for discharge and model input data do not
observed uncertain FDC in the extended GLUE approachoverlap. The method could also be suitable for calibration to
Two ways of selecting the EPs were tested — based on equakgional FDCs while taking uncertainties in the hydrological
intervals of discharge and of volume of water. The methodmodel and data into account.

was tested and compared to a calibration using the tradi-
tional model efficiency for the daily four-parameter WAS-
MOD model in the Paso La Ceiba catchment in Honduras| |ntroduction

and for Dynamic TOPMODEL evaluated at an hourly time

scale for the Brue catchment in Great Britain. The V0|umeHydrologic models are used as a basis for decision making
method of selecting EPs gave the best results in both catchabout management of water resources with important conse-
ments with better calibrated slow flow, recession and evapoguences for sectors such as agriculture, land planning, hy-
ration than the other criteria. Observed and simulated timedropower and water supply. The degree of belief we have
in model predictions will normally be dependent on how
well the model can reproduce observations. The choice of
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in any modelling study. The definition of an appropriate like- Estimation (GLUE) framework where they differentiated the
lihood measure is not, however, simple. Where all sourceslataset by season. They found no consistently identified pa-
of uncertainty can be treated as if they are aleatory in narameters for Dynamic TOPMODEL that could represent the
ture, then a number of frameworks exist for the definition range of processes between seasons in the studied watershed.
of formal statistical likelihoods (e.g. Liu and Gupta, 2007; However, these approaches have not generally taken any ex-
Schoups and Vrugt, 2010; Renard et al., 2010). Where episplicit account of uncertainty in the observed input and evalu-
temic errors are important, however, treating all uncertain-ation data.

ties as if they are aleatory will generally lead to overcon-  Hydrologic models are simplified conceptualisations of
ditioning of posterior parameter distributions (Beven, 2006,the hydrologic processes in a catchment. Such simplifica-
2010; Beven et al., 2008), particularly if some periods of datations will necessarily lead to errors in the way the struc-
are disinformative (Beven and Westerberg, 2011; Beven eture of the model represents the real-world hydrologic pro-
al., 2011). Thus, there may be scope for using other formsesses (Beven, 1989, 2009; Grayson et al., 1992; McDonnell,
of likelihood or belief measures in hydrological modelling. 2003). The temporal and spatial scales of the measured input
Such informal likelihood measures have been defined basedata are also incommensurate with both the real-world quan-
on limits of acceptability defined from evaluation-data uncer-tities and the scale of the model. This source of error must be
tainty (Blazkova and Beven, 2009; Krueger et al., 2010; Liu considered together with pure measurement errors (e.g. as a
et al., 2009) but also based on traditional performance mearesult of lack of calibration or accuracy of the measurement
sures (Freer et al., 2003). One of the most widely used perequipment) in input data. Such errors can lead to substantial
formance measures in hydrology is the Nash-Sutcliffe modeluncertainty of an epistemic (knowledge) type, e.g. if there
efficiency Resf). Itis calculated as 1.0 minus the normalisa- are no rain gauges in the only part of the catchment where it
tion of the mean squared error by the variance of the observedains, this will create an error that is difficult or impossible
data and varies between minus infinity to 1.0 (Nash and Sutto characterise in an error model. This type of uncertainty
cliffe, 1970). How appropriate this criterion is for measuring resulting from non-stationary epistemic errors should be ex-
goodness of fit, as well as what is an acceptatlgvalue, pected in most datasets used for hydrological modelling be-
has been much debated in the literature (Krause et al., 2005;ause of the difficulties in measuring the components of the
Legates and McCabe, 1999; Seibert, 2001; Criss and Winwater balance for a catchment. As discussed by Beven and
ston, 2008; Smith et al., 2008; Gupta et al., 2009). DecompoWesterberg (2011), such errors, if significant, should be ex-
sitions of Resf have highlighted several problems associatedpected to have a disinformative effect on model calibration.
with this criterion in model calibration (Gupta et al., 2009; They suggest that the best strategy to deal with such disin-
Smith et al., 2008). Gupta et al. (2009) present a decomposiformative periods of data would be to identify and remove
tion of Reff into three components representing bias, variabil-them from the dataset independently of the model, but recog-
ity and correlation and conclude that the variability has to benise that this identification will be difficult in many cases be-
underestimated to maximizR.s and that runoff peaks tend cause of the uncertainties in the measured data. An alterna-
to be underestimated when maximiziRgsi. They, together tive strategy could therefore be to develop model evaluation
with many other authors (Garrick et al., 1978; Refsgaard anctriteria that are robust to moderate disinformation to make
Knudsen, 1996; Legates and McCabe, 1999; Seibert, 2001sure that models are rejected for the right reason — i.e. poor
Krause et al., 2005; Schaefli and Gupta, 2007; McMillan andmodel structure and not disinformative data. Model param-
Clark, 2009) propose modified versions of the Nash-Sutcliffeeters need to be inversely estimated from data in calibration
criterion or other performance measures to overcome somwhich will involve substantial uncertainty because of the ef-
of these problems. However many of the problems in usingfect of the types of errors discussed here and their interac-
lumped global performance measures remain, for instancéions. On top of this, the performance measure that is used
that the measure often is more influenced by the performancér the model calibration will influence which parameter-
at certain flow magnitudes such as high or low flows. Thisvalue sets are identified as being acceptable given the un-
issue has been addressed in multi-criteria approaches wherertainties in the modelling application (see e.g. Freer et al.,
different aspects of the fit between simulated and observed996), and is therefore an important consideration.
discharge are evaluated. A combination of several criteria The reported number of discharge stations in the world
then allows an assessment of model performance with rehas gone down substantially from the peak in the late 1970's
spect to the different aspects of the hydrograph (e.g. Gupta lGRDC, 2010). At the same time global precipitation and
al., 1998). Boyle et al. (2000) and later Wagener et al. (2001)climate data such as TRMM and ERA-Interim have become
suggest distinguishing between three parts of the hydrographvailable for the last 10-20 yr. Traditional model calibration
(driven quick flow (during events), non-driven quick flow and is impossible if there are no overlapping periods of input
slow flow) and to then calculate the performance measurend output data. In regions where the flow regime is sta-
separately for each flow type. In a related approach, Freetionary over time it would be advantageous to use discharge
et al. (2003) used several performance measures for a multdata from a previous period (with sufficiently long records)
criteria calibration in a Generalised Likelihood Uncertainty to overcome this temporal mismatch. Calibration approaches

Hydrol. Earth Syst. Sci., 15, 2208227, 2011 www.hydrol-earth-syst-sci.net/15/2205/2011/



I. K. Westerberg et al.: Calibration of hydrological models using flow-duration curves 2207

that do not rely on direct time-series versus time-series combust to such errors, a more extensive analysis than that pre-
parison are useful in such situations. Prior approaches t@ented here is needed. Flow-duration curves have previously
model calibration without direct time series comparison in- been used in model calibration by Sugawara (1979), Yu and
clude calibration to spectral properties (Montanari and Toth,Yang (2000), as one of the criteria considered by Refsgaard
2007), recession curves (Winsemius et al., 2009), slope o&nd Knudsen (1996) and by Blazkova and Beven (2009),
the flow-duration curve (Yadav et al., 2007; Yilmaz et al., and as a qualitative measure of model performance, e.g. by
2008), base-flow index (Bulygina et al., 2009) and the use ofHoughton-Carr (1999), Kavetski et al. (2011), and Son and
a performance measure based on specified exceedance p&ivapalan (2007).
centages of a synthetic regional flow-duration curve (FDC) The aim when calibrating a hydrological model should
for calibration at un-gauged sites (Yu and Yang, 2000). How-be to find out whether the model structure can be consid-
ever, in these studies uncertainties in observed discharge aeted an appropriate conceptualisation or hypothesis of the
not considered explicitly. Blazkova and Beven (2009) ac-hydrological processes of interest in that catchment (Beven,
count for discharge uncertainty and use the discharge at nin2010). Ideally, the reason for rejecting the model as a suit-
exceedance percentages between 25 to 90 % exceedance fisle hypothesis of these processes should therefore be be-
the FDC as nine out of 57 limits of acceptability in the cause the model structure is poor and not because the calibra-
extended GLUE approach (Beven, 2006, 2009) in flood-tion method does not appropriately account for the uncertain-
frequency estimation. The latter study notes the importanceies in the input and output data (i.e. avoiding Type Il false
of the realization effect in using a discharge data record ofnegatives). The aim of this paper was to develop a calibra-
limited length, and the effect this has on the FDC is alsotion method that addresses the four problems in model cal-
discussed by Vogel and Fennessey (1994). The added uribration with traditional methods outlined above, within the
certainty to the FDC stemming from a discharge record offramework of the limits-of-acceptability approach in GLUE
limited length has to be considered if discharge data fromand with a specific focus on accurate simulation of the water
another period is used for calibration, especially if the flow balance.
regime is not stationary.

Calibrations with traditional performance measures are
challenged by problems including the following: (1) uncer- 2 Study areas and data
tainty in discharge data, (2) variable sensitivity of different
performance measures to different flow magnitudes, (3) in-The method was first developed for a Honduran catchment
fluence of input/output errors of an epistemic nature andcharacterised by shallow soils and frequent occurrence of
(4) inability to evaluate model performance when observa-surface runoff, the Paso La Ceiba catchment. It was then
tion time periods for discharge and model input data dotested for a contrasting flow regime — the Brue catchment in
not overlap. Uncertainty in discharge data, which has beerGreat Britain where run-off generation is controlled by sub-
shown to be sometimes substantial (Di Baldassarre and Monsurface processes on the hill slopes.
tanari, 2009; Pelletier, 1988; Krueger et al., 2010; Petersen-
Overleir et al., 2009) and influence the calibration of hydro-2.1 The Paso La Ceiba catchment
logical models (McMillan et al., 2010; Aronica et al., 2006),
is usually not accounted for in model evaluation with tra- The 7500km Choluteca River basin is located in south-
ditional performance measures. Novel approaches in envieentral Honduras (Fig. 1) where the Choluteca River drains
ronmental modelling that include evaluation-data uncertaintyto the Pacific at the Gulf of Fonseca. Two water-supply
in model calibration include Bayesian calibration to an es-dams (constructed in 1976 and 1992) are located upstream
timated probability-density function of discharge (McMil- of the capital Tegucigalpa in the upper parts of the basin.
lan et al., 2010), Bayesian calibration with a simplified er- The discharge data from the station at Paso La Ceiba, with
ror model (Huard and Mailhot, 2008; Thyer et al., 2009), a catchment area of 1766 Rmwvere used here. This catch-
fuzzy rule based performance measures (Freer et al., 2004hent has soils that are shallow and eroded (often less than
and limits-of-acceptability calibration in GLUE for rainfall- a metre deep) and it is mountainous with elevations ranging
runoff modelling (Liu et al., 2009), flood mapping (Pappen- from 660 to 2320 m above sea level. The discharge station
berger et al., 2007), environmental tracer modelling (Pagevas destroyed in October 1998 by the flooding that occurred
et al., 2007) and flood-frequency estimation (Blazkova andduring hurricane Mitch and a new station was installed three
Beven, 2009). Here we explore the limits-of-acceptability kilometres upstream.
GLUE approach applied to flow-duration curves, which The bimodal precipitation regime in the basin is char-
could be a way of dealing with some of the effects of non- acterised by a high spatial and temporal variability with a
stationary epistemic errors on the identification of feasibledry season November—-December to April and a rainy sea-
model parameters in real applications (Beven, 2006, 2010son (with around 80 % of the total precipitation) modulated
Beven and Westerberg, 2011; Beven et al., 2008). Howevelby a relative minimum, “the midsummer drought”, in July—
in order to establish the extent to which this approach is ro-August (Westerberg et al., 2010; Portig, 1976; Mamat
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Fig. 1. The Choluteca River Basin and the Paso La Ceiba catchment, the urban area in the upper catchment represents Tegucigalpa, th
Honduran capital. Black triangles represent precipitation stations with daily data in 1978-1997 within 30 km of the Paso La Ceiba catchment.

al., 1999). Characteristic of the tropics, temperature variabil-mean annual areal precipitation for the catchment equalled
ity is low and precipitation is mainly convective. ENSO (EI 1060 mmyr?, with a minimum of 810 mmyr! and a max-
Nifio/Southern Oscillation) and Atlantic sea-surface temperimum of 1450 mm yr? for the studied period.

atures modulate climate variability on a longer, inter-annual  pntantial evaporation was calculated with the Penman-
time scale (Diaz et al., 2001; Enfield and Alfaro, 1999). The \jqnteith equation (Monteith, 1965; Allen et al., 1998) using
long dry season in combination with a fast response of run,ijy qata of temperature, wind speed, relative humidity and
off to precipitation and little base flow lead to a flow regime ¢ ;n"hours from the Toncdnt station in Tegucigalpa. There
where peak flows of short duration account for a large part of a5 a4 decrease in the measured relative humidity around
the total volume of discharged water. 1984 because of a relocation of the station from a roof-top

The WASMOD model was driven with daily data of pre- to the ground and these data were therefore corrected by the
cipitation and potential evaporation. Precipitation data fordifference in mean value between the first and the second pe-

1978-1997 from 29 stations within a 30 km distance of the0d. There was also a clear shift in the relative humidity
Paso La Ceiba catchment (Fig. 1) were interpolated withdata when the calpulation method was charlged from !ookup
inverse-distance weighting, this method was chosen becaud@Ples to formula in 1 November 1999, which was adjusted
of the low correlation between daily precipitation data from for in the same way. Missing meteorological data were filled
different stations and the varying station density (WesterbergVith daily values for a mean year. The correction of the data
et al., 2010). There were almost twice as many active preWas dgemed necessary since t_here was pnly one station avail-
cipitation stations in the end of the 90's as in the early 80's@P!€ with data covering the entire modelling period.

implying that there could potentially be time-varying biases The discharge and uncertainty in discharge was previously
in the interpolated series. Another potential source of datacalculated with a fuzzy linear regression of rating data based
commensurability errors resulted from the fact that precip-on the estimated uncertainty in single discharge and gauge-
itation is measured at 7 a.m. but registered on the previousieight measurements by Westerberg et al. (2011) and only
day. Since the delay time from rainfall in the upper catch-the key points are given here. The method accounted for
ment to a peak in run-off at the Paso La Ceiba station is lesshe non-stationarity in the stage-discharge relationship which
than 24 h and precipitation has a clear diurnal variability with was substantial in the alluvial Choluteca River, as well as
a peak during the second half of the day, the registration othe commensurability error in only having a limited num-
rainfall had to be changed to the day of the actual measureber of gauge-height measurements per day for the calcula-
ment to agree with the daily time step in the model. Thetion of mean daily discharge. The added uncertainty from
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Fig. 3. Uncertain rating curve for the Lovington gauging station in
the Brue catchment derived from the stage-discharge measurements
from 1990-1998 (stage in m and discharge tham! before trans-
formation). The dots represent the measured values and the grey
boxes the fuzzy representation of the estimated uncertainty in the
measurements. The upper and lower lines represent the uncertainty
limits for the fitted rating curve.
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ington gauging station, for which the rating curve data from
Fig. 2. The Brue catchment and the location of the 28 rain areasthe UK Environmental Agency showed considerable spread.
(black lines) and the Lovington flow gauge (black dot). Discharge uncertainty limits were calculated with the same

method as for the Paso La Ceiba catchment, but here the

rating curve was assumed stationary and 15-min stage data
this commensurability error was estimated at 17 %, a factoivere available for the whole period so no temporal com-
that represented 95 % of the errors from calculations usingnensurability error needed to be estimated. Discharge and
high temporal resolution stage data for a later period. Largethe uncertainty limits were calculated using 79 simultaneous
uncertainties could occur at some events if flow peaks passtage-discharge measurements from 1990-1998 that covered
between the stage readings, but are not easily estimated. Thge flow range well. The gauge heights (in m) were log-
data included 1216 ratings for 1980-1997 at the Paso Laransformed and the discharges (i sn') were Box-Cox-
Ceiba station and gauge-height measurements three timegansformed to obtain a linear relationship (Fig. 3). The Box-
a-day, at 06:00, 12:00 and 18:00. Estimated discharge uncox lambda parameter was optimized to obtain the highest
certainty was in the form of a time series of triangular fuzzy degree of linearity and a lambda-value of 0.0946 gave a cor-
numbers consisting of a crisp (best-estimate) discharge and glation of 0.998. The same uncertainties in the stage and

lower and upper limit. discharge measurements as for the Honduran data were as-
sumed (5 % for gauge height and 25 % for discharge), as the

2.2 The Brue catchment fitted curve encompassed the uncertainty in the ratings well
(Fig. 3).

The 135k Brue catchment in south-west England (Fig. 2)

is characterised by low hills (up to 300 m above sea level) and )
alternating bands of permeable and impermeable rocks be3 Hydrological models
E;‘aé?aggéiﬁzo(lgs‘l%z)topp\c:: \/ev)t\;grr: stit]/Z Igp ed Cil:)si;isotr:i]ogtn aatseed{ wo hydrological models with different time scales but rela-
from the HYREX (HYdrological Radar EXperiment) project ively parsimonious conceptualisations of the dominant hy-

(Moore, 2000; Wood et al., 2000) includes 49 gauges as wel rological processes in the two catchments were chosen,
as radar data with a 15-min resolution. The mean areal pre- ASMOD (Xu, 2002) for the Honduran catchment and Dy-

cipitation for the period 1 January 1995 to 31 December 1997'2MIC TOPMODEL (Beven and Freer, 2001) for the British

equalled 770mmyrl. Potential evaporation data from the catchment.
HYREX project that had been calculated using data from an
automatic weather station in the lowland part of the catch-
ment were used and periods with missing data were filled
using a sine-wave function. Flow data were from the Lov-
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Table 1. List of equations, parameters and their sampling ranges for the version of WASMOD used in this study.

Model equation Description Parameter  Units Sampling range
er = min(ep,(l—AZ{/(ep‘XAZ)),wI/Az) Actual evaporation A [-] [0, 1]
where

wr = pr X At +smy_q is available water for evaporation,
p: is mean areal precipitation for day ep is potential
evaporation, and sm_1 is soil moisture storage at day

r—1
s = Si(sm_1)%° Slow flow S mmPSday1] [e9 1]
fi=F; xSMy_1 x n; Fast flow = [mm~1] e’ &4

wheren; is active precipitation

ny = py —ept(l—e_éTgf) if ep,>1

ni=pr—ep if ep, <1

SG =SG_1+ fr X At

rr = Rf x SG Routing of fast flow R [day—1] [0, 1]
SG =SG —ry X At

where sgis the routing storage for day

dl‘ = min(st +r,,wt —et) TO'[al runOff
Sy =smy_1+(pr —er —dr) X At Water balance
equation

3.1 The model used in the Paso La Ceiba catchment — scape. These functional units are not only defined by the to-

WASMOD pographic index (as in the original TOPMODEL version) but

also by similarity in land use, differences in rainfall inputs or

The lumped conceptual water-balance model WASMOD hasother spatial characteristics. In this application, which was
been applied to many catchments with different climatic the same as in Younger et al. (2009), land use was considered
conditions and has been used at various spatial scales komogenous and the functional units were a function of slope
e.g. Widen-Nilsson et al. (2007) and Xu and Halldin (1997). and contributing area (i.e. the topographic index was split up
Here it was used for the Honduran catchment with a dailyto allow dynamic changes in the upslope contributing area)
time step and a model formulation for snow-free catchmentsas well as the spatiotemporal variability in rainfall (see also
with potential evaporation and precipitation as input data.the previous application of the Probability Distributed Model
This version of the model, identical to the snow-free part of (PDM) and Grid to Grid models to the Brue in Bell and
the monthly WASMOD model except for the routing scheme, Moore, 2000). Data from rainfall stations within the same
had four parameters for fast flow, slow flow, actual evapora-2 km grid cell were averaged so that 28 “rain areas” were cre-
tion and routing (Table 1). This was the first application of ated from the 49 gauges via a nearest-neighbour approach.
this model version using a daily time step. The model wasThe parameter intervals for the Monte Carlo sampling are
evaluated in a split-sample test for 1980-1988/1989-1997given in Table 2. The model was evaluated in a split-sample
where it was first calibrated in the first period and evaluatedtest for 1995-1996/1997-30 June 1998, first with the first pe-
in the second and then the reverse. The two years prior teiod for calibration and the second for prediction and then the
1980 were used as a warming-up period. reverse, 1994 was used as a warming-up period.

3.2 The model used in the Brue catchment — Dynamic
TOPMODEL 4 Flow-duration curve calibration

In the Brue catchment the semi-distributed Dynamic TOP-Monte Carlo runs were performed for both test catchments
MODEL was run using a 15-min simulation time step. The as a basis for the subsequent calibration. For the Paso La
simulated runoff series were aggregated to a mean hourlfCeiba catchment 100 000 parameter-value sets were gener-
time step before the computation of any goodness-of-fit meaated and used to simulate runoff series with WASMOD. For
sure or other analysis of the simulated results. Compared tthe Brue catchment TOPMODEL was run 50 000 times. For
the original TOPMODEL (Beven and Kirkby, 1979), the dy- calibration (i.e. the selection of the behavioural parameter-
namic version enables the distributed response to be repraralue sets and their weights for GLUE) the FDCs of these
sented more explicitly through functional units of the land- simulated time series were then evaluated in a comparison

Hydrol. Earth Syst. Sci., 15, 2208227, 2011 www.hydrol-earth-syst-sci.net/15/2205/2011/



I. K. Westerberg et al.: Calibration of hydrological models using flow-duration curves 2211

. . 5)
Table 2. Sampling ranges for dynamic TOPMODEL parameters. @) 200 ) 20
- - — . 150 o . 150 1A
Parameter  Units Sampling range  Description K x EP Q % EP
£ i e ;
SZM [m] [0.01, 0.1] Form of the exponential gloo g 100
decline in saturated g s
hydraulic conductivity 2 2
with depth 8 5 S 50
In (Tg) Inm2h~—1y] [-8,0] Effective lateral saturated
transmissivity .
SRmax [m] [0.005, 0.1] Maximum soil root zone % 0 X % 05 X
deficit Exceedance percentage Exceedance percentage
SRinit [m] [0, 0.01] Initial root zone deficit
CHV [mh=1] [500, 2500] Channel routing velocity . . . . .
d h] 0.1, 40] Unsaturated zone time Fig. 4. (a) Selection of EP _values using equa_l |ntervals_ of crisp
delay discharge (FDC-Q)b) selection of EP values using equal intervals
A® [] [0.3,0.7] Effective porosity of the area under the FDC (i.e. using equal intervals of water volume
Smax [m] [0.1,0.8] Maximum effective deficit

of the subsurface storage contributed by flows in a certain magnitude range (FDC-V).

zone

a) , b)
15
1

with the observed FDCs. The observed FDCs together withS °°
limits of acceptability were constructed from the discharge $ OZ amV;m )

0.5

time series and the estimated uncertainty bounds. The FDC§ ';1
of each simulated discharge series from the Monte Carloruns Q) Q) Quul Qoserved
was compared to the limits of acceptability for the observed - m’ss]
FDC at selected evaluation points (EPs) along the FDC. All 25
simulated FDCs which were inside the limits of acceptability _ o
for all EPs were considered behavioural and a performancé&id- 5 (&) Calculation of the scaled scoreSmin(i) is the lower
measure was calculated using a triangular evaluation funcimit for the discharge uncertainty at theh evaluation point (EP),
tion at each EP. This performance measure was used as ax(i) the upper limit and) (i) the crisp discharge. A simulated
. oo . value that is at the crisp value gets a scaled score of 0, if the value is
informal likelihood measure for each behavioural parameter-

| hi librati d h . at the lower limit a scaled score efl and at the upper limit it is 1,
value set. This FDC calibration was compared to that using|aes within or outside are linearly inter- or extrapolaig)trian-

the model_ef‘ficiency (Nash and Sutcliffe, 1970) with differ- gyjar weighting function applied at each EP such that weights are
ent behavioural threshold values. Furthermore, the modejero for scaled scores outside the rangé,[1].

performance when using an observed FDC from a time pe-
riod different to the simulated one was evaluated in the Paso

La Ceiba catchment to assess the ability of the method tq,e explored two methods for EP selection which each em-
address mismatching observation time periods. These arBhasized different aspects of the FDC (Fig. 4). For the first
called “time-shift” calibrations below. Finally, in a pos- method the crisp discharge values (i.e. the best estimate of
terior analysis the simulated discharge uncertainty rangesye uncertain discharges) were classed into N equal classes
which resulted from using the different performance mea-(Fig. 4a). The minimum and maximum discharge values of
sures, were compared to the observed discharge uncertaintigge entire FDC were excluded and the remaing 1 dis-
for the simulated periods. charge class boundary values were used to calculate the cor-
responding EPs. Her®¥ = 20 intervals were used resulting
4.1 Selection of evaluation points in 19 EPs. Different ways can be used to calculate specific
exceedance percentages or discharge values for the FDC, but
The selection of the exceedance percentages that were us#te choice of method is negligible in cases where the FDC is
as evaluation points (EPs) — i.e. the points where the simbased on thousands of daily discharges as was the case here
ulated FDC was compared to the observed — was an im{\Vogel and Fennessey, 1994). We calculated exceedance per-
portant choice for the FDC calibration. The high-flow part centages from the sorted discharges based on the percentile
of the FDC, which describes the dynamic response of thevalues 100(0.%/), 100(1.5%), ..., 100(k-0.5]/i), wheren
catchment to the effective precipitation input, usually con-is the number of discharge values. Linear interpolation was
tains most of the information about catchment response andsed between the sorted observed discharge values. This cal-
many parameters are therefore sensitive with respect to thesrilation was first reversed to calculate EPs in terms of ex-
high flows. Sufficient points on this part of the FDC therefore ceedance percentages for the discharge class boundary val-
needs to be set in order to constrain these parameters. Hetes for the crisp observed discharge. It was finally used to

Weight [-]
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calculate discharge for the upper and lower acceptability lim-and is analogous to the fuzzy measures used by Pappenberger
its and for the simulated discharge at these EPs, which weret al. (2007) and Page et al. (2007).

then used in the calculation of the performance measures.

The second method for EP selection consisted of re-scaling-3 ~ Posterior analysis of simulated and observed

the FDC so that it represented the total volume of water con- discharges

tributed by flows smaller than or equal to a given magnitude. . . . . .
These volumes were then divided inkb equal classes and In a posterior analysis the time series of observed uncertain
the EPs were calculated in the same way, again excluding théiScharge were compared to the simulated results from the
minimum and maximum discharge values. As the area undefalibration and prediction with the two models. A simple

the normal FDC represents the volume of water discharged®@sure of how well the simulated and observed uncertain
during the time for which the FDC was calculated, this ap_dlscharge agree, is given by the calculation of the percentage

proach equalled a weighting usingintervals of equal area of time that the observed and simulated uncertainty bounds

below the curve for the crisp discharge (Fig. 4b). Since weCVeriap (here termed OP). A similar measure, caftelia-
usedN = 20 this resulted in volume increments of 5%. The bility, has been used previously for single-valued observed

expectation was that the volume-based EP selection would!Scharge (Yadav etal., 2007). The overlap measure can be
provide a more appropriate evaluation with respect to th igh simply because the.S|muIated uncertainty is overesti-

entire FDC than the discharge-based selection, because yfgated. Therefore a combined overlap percentage (COP) was
latter meant that the low flows were not constrained for thec@lculated as the mean of the percentage of the overlapping
types of flow regimes considered here. The volume method@nge between the obseryed and sw_nulated dls_charge relative
was therefore expected to be well-suited for water-balancd® the observed and relative to the simulated discharge range

studies, whereas the discharge method was more focused dka- 2)-

high-flow performance. cop_ Zthl (mea Qg;v;;lsap’ Qg;v;;ap» "
4.2 Performance measures N T

T is the number of time stepg) Royenapthe intersection be-
tween the simulated and observed discharge rangeg,sQR

Two performance measur&spc—q (for EP selection based
on discharge intervals) ankkepc_v (for EP selection based the observed discharge range apd;, the simulated dis-

on volume intervals) were calculated using the sum of atri'charge range. A perfect match of 100% can then not be
angu_lar yve_ighting functior_1_based on the obs_erved dischargg hieved if the simulated uncertainty is overestimated.
and its limits of acceptability at each EP (Fig. 5b). Scaled ;.o complex measures, such as a PQQ-plot (Thyer et

scores were calculated to evaluate the deviations of the simé| 2009) or a rank histogram, analyse the quantiles of the
ulated discharge with respect to the limits of acceptability. If observed value in the simulated distribution. The generalised

the simulated discharge value equalled the crisp discharge forrank histogram (McMillan et al., 2010) is an extension of

a certain EP, the scaled score was zero; if it was at the UpP&f,e rank histogram that compares two uncertain distributions
or lower limit the score was 1 and1 respectively. Values s, wai yncertainty in the observed data can be accounted
between and outside these values were calculated based @f}. oever, the generalised rank histogram does not relate
linear mter— or extrapqlatlon (_F'g' 5"?‘)' , how far simulated values that are outside the observed distri-
_ In this study behavioural simulations were required to bey ion jie. We therefore chose to analyse scaled scores to the
inside the limits of acceptability (i.e. to have an absolute it of acceptability for the time series of simulated values.
scaled scores 1) at all EPs. The performance measuresthase were calculated in the same way as the scaled scores
Rrpc-v andRepc—q were calculated as: used in the calculation ®rpc_v and Repc_q, but for each

time step instead of each EP in the FDC. The scaled scores
of all the behavioural simulations were analysed for different
whereN — 1 was the number of EPs asdthe scaled score flow types: base flow, rising limbs, falling limbs, peaks and
at EPi. This means that a simulation with a perfect fit to the troughs, to be able to identify differences in the simulation
crisp discharge at all EPs received a value of 1 and if the simeof different parts of the hydrograph between the criteria. For
ulated discharge was at either limit for all EPs, this resultedeach performance measure the histograms of scaled scores
in a value of 0. There were no values lower than 0 as simulawere normalised to the number of behavioural simulations
tions were classed as non-behavioural if the absolute scaletb facilitate comparison. The classification of discharge
score was larger than 1 for any EP (Fig. 5b). These perinto different flow types was made in the same way as by
formance measures were compared to the model efficiencyounger et al. (2011) for the Brue catchment. However, we
(Refr) calculated based on the crisp discharge (with differentused different threshold values since the hydrographs were
behavioural thresholds). This form of triangular weighting analysed at an hourly instead of 15-minute time step. The
function based on scaled scores has been used before, for eabserved flowQ, at timer was classified as:

ample by Blazkova and Beven (2009) and Liu et al. (2009)

s
Rppc=1- == where—1<§;<1,i=12,.,N-1 (1)
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baseflow ifQ; < Oy 0.17 for Rrpc—q for the two periods at Paso La Ceiba. The
very low values included here reflect the fact that the high

rising limbif Q;—7 < Q; < Q;+7 andQ; > Qyp flows represent a small fraction of all flows.

falling imb if Q;_7 > Q, > Q,4+7 andQ; > O 5.2 Number of behavioural parameter-value sets

The identification of behavioural parameter-value sets us-
ing the performance measures based on the FDC evalua-
tion points resulted in more behavioural parameter-value sets
for the discharge-interval selection compared to the volume-

Th | f dT determined th h visual interval selection for both catchments (Table 3). The num-
e values oiQ, and " were determined through visua bers of behavioural parameter-value sets are those that sur-

Lgf&?ﬁggrlggh:e flssr’rs?)"l?? ?Zcigolgsr_alpkhni;g)hgr\]’glg? Z\ielre dived the limits of acceptability for all the EPs considered,
—oglslk b dT =4h and 3davs for the B d of the 100000 simulations for Paso La Ceiba and 50000
(=28ls m )andT'=4h an > days 1or the BIUE and ., 1ations for the Brue. The time-shift calibration results
Paso La Ceiba catchment respectively. Plots of the time S€or Paso La Ceiba use the FDC from one period, to pro-

ries of mean scaled scores for each performance measure e limits of acceptability for the other period (which in

gether with the simulated and observed discharge were aIZﬁwis case is assumed to have no observed discharges avail-
used to a”"’?'yse the simulated resu"s’ especia_lly the perio 5ble). The column labelled prediction shows the percent-
where th_e simulations were outside the uncertainty in the Obhge of parameter-value sets calibrated in the second period
served discharge. which were behavioural for the first period based on the two
FDC criteria. For the Brue catchment the performance for
the two periods was quite different and only 3 RrbHc_v)
and 13% Rrpc-q) of the parameter-value sets in the sec-

: ond period were also behavioural in the first. The percent-
5.1 Observed uncertain FDCs ages were higher for the Paso La Ceiba with almost 50 % of
The FDCs for the two catchments illustrate the differences inth® Parameter-value sets behavioural in both periods for both
flow regime. In the Honduran catchment base flow was veryc'itéria. This is likely a result of the higher uncertainty in
low and a larger part of the total volume of water was Con_dls_charge _com_blned with the less complex ralnfall-runoff_re-
tributed by high flows than in the British catchment (Fig. 6). [ationship in this catchment compared to the Brue, especially
At Paso La Ceiba the flow regime (as illustrated by the FDCs)SiNce a simpler model and more uncertain precipitation data
was more or less stable in-between the calibration and evalVeré used compared to the semi-distributed model set-up and
uation periods. In the Brue catchment, where the dischargd®nse rain-gauge network in the Brue. It might also provide
record was much shorter, the low-flow part of the FDC was" indication that the more complex Dynamic TOPMODEL
not as stable as the high-flow part between the two periods'.”'as. been over-fitted to responses aljd errors in thg callbratlon
If a model is calibrated with data from another time period period that are then rather different in the evaluation pgrlod.
(a “time-shift” calibration) and the FDC is not stable, there _ 'able 4 shows the results based on the Nash-Sutcliffe ef-
could be a realisation effect in using a limited sample of f|0|§ncy performapce measure, using different thresholds Fo
discharge data. Therefore the extremes from a bootstrap di€fine the behavioural parameter-value sets, and also with
FDCs for successive nine- and two-year periods of discharg@” ad_d|t|onal_ constr_amt based on thg absolute volume error
data (for the Paso La Ceiba and Brue catchment respectivey)VE) In predicted discharge. With higher thresholds there
were plotted to illustrate the extra uncertainty from this real- Was & greater chance that the sets of behavioural parameter
isation effect — that should be accounted for if the station-Values for the two periods would be non-overlapping, while
arity of the FDC is unknown. As would be expected, the the maximum yalues for the Brue Were_generally lower than
realisation effect was larger for the Brue compared to Pas@t Paso La Ceiba. In the Paso La Ceiba catchment the ad-
La Ceiba. Factors affecting the magnitude of the realisatiorftion of the VE had a large constraining effect on the num-
effect include the length of the record, the nature of the cli-P€" Of behavioural parameter-value sets but not in the Brue
mate variability and the non-stationarity of the hydrological ¢&ichment. The time-shift calibration was not possible with
regime. The estimated uncertainty in discharge ranged belliS performance measure.
tween—43 to +73 % of the best discharge estimate at Paso
La Ceiba (Westerberg et al., 2011) a#®4 % in the Brue
catchment. The EPs of the FDCs ranged from a fraction of
flow equalled or exceeded of 0.004 to 0.70 fypc_v and
from 0.0002 to 0.30 folRrpc—q for the two periods in the
Brue and from 0.003 to 0.69 f®rpc_v and from 0.0003 to

peakifQ; r < Q;andQ; > Q;yr andQ; > Qy

troughif @, r > Q; andQ; < Q;1r andQ, > Oy

5 Results
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Fig. 6. Observed crisp and uncertain FDCs for the Paso La Ceiba catchiaemfupper and lower flow range respectively and for the Brue
catchment(c—d) upper and lower flow range respectively. The extreme FDC represents the maximum and minimum uncertain FDC for all
consecutive 9- and 2-yr periods for the Paso La Ceiba and Brue catchment respectively. The FDC-V represents volume interval EPs and
FDC-Q discharge interval EPs (only plotted for the last period in each catchment). The high and low flows of the FDCs are plotted separately
for better visualisation; note the difference in scale on the y-axis.

Table 3. Number of behavioural parameter-value sets for the different FDC performance measures.

Catchment Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)
(model)
Performance Calibration Time-shift Calibratioh ~ Predictior? Calibration Predictiof
measures

1980-1988 1989-1997 1980-1988 1989-1997 1995-1996 1997-1998
Rrpc-0 17085 24166 21932 22853 489% (11575) 983 477 13% (123)
Repo_v 758 1430 871 1408 47% (673) 360 42 3% (12)

1 calibration using the FDC from the previous/later perfa@ercentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in
the first period.

to the calibration withRes (Tables 3 and 4). The FDC
criterion based on volume EPRgpc_v, resulted in much
fewer behavioural parameter-value sets tifgpc_g. The
largest difference in parameter identifiability was seen for
. the evaporation and slow-flow parameters which mainly con-
In this catchment the performance measures based on the,| simylated discharge for low flows and recession peri-

FDC resulted in more overlapping sets of behavioural pa-; g (Fig. 7). They were better constrained for figyc_v
rameter values between calibration and prediction compared

5.3 Parameter identifiability

5.3.1 The Paso La Ceiba catchment — WASMOD
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Table 4. Number of behavioural parameter-value sets for different Nash-Sutcliffe based performance measures.

Catchment (model) Paso La Ceiba (WASMOD) Brue (Dynamic TOPMODEL)
Performance measures Calibration Predictiof Calibration Predictiof
1980-1988 1989-1997 1995-1996 1997-1998

Refi > 0.7 & VE < 20% 796 12477 4% (464) 2299 240 4% (82)
Reff > 0.7 & VE < 10% 365 6399 2% (147) 1128 127 0% (0)
Reff > 0.7 1473 28455 5% (1,473) 2696 240 49% (108)
Reff > 0.75 89 20046 0.4 % (89) 985 13 0.4% (4)
Reff> 0.8 0 11101 0% (0) 140 0 0% (0)
Reff > 0.85 0 2246 0% (0) 3 0 0% (0)

1 VE is the absolute volume errSrPercentage (number) of behavioural parameter-value sets calibrated in the second period that were also behavioural in the first period.
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Fig. 7. Cumulative informal likelihood distributions for all WASMOD model parametekg £ routing of fast flow,Aet — evaporation,

St — slow flow, andFs — fast flow). The informal likelihood weights for each performance measure were calculated for the calibration in
1989-1997 forRetr, Rrpc—q and Repc—v, and for the calibration in 1989-1997 using the FDC for 1980-198&Rfgic_q_Ts, and
Repc_v_Ts in the Paso La Ceiba catchment.

measure compared to tiepc_q and Resr measures, which  sion/slow flow and the evaporation in the model (Fig. 8).

mostly constrained model performance at medium to high-In Dynamic TOPMODEL the SZM parameter describes

flows. The behavioural parameter-value sets obtained fronthe exponential decline in saturated hydraulic conductivity

calibrating the model for 1989-1997 using the “time-shift” with depth and controls the shape of the hydrograph in the
FDC for 1980-1988 did not differ much from calibration recession periods. It was constrained to much lower values
with the FDC from 1989-1997, especially for the volume for Repc_v compared to the other measures. ThengR

EP criterion, as the flow regime did not change substantiallyparameter, which controls the water available for evapora-

in-between the two periods (Fig. 6-7). tion, was also more constrained fBepc_y. The best sim-
ulations for Rest (Reff > 0.8) showed more constraint on the
5.3.2 The Brue catchment — Dynamic TOPMODEL CHV andSmax parameters. In the case of CHV, the channel-

routing velocity parameter, this reflects the sensitivity of the
As in the Paso La Ceiba catchment, the largest difference irfteft measure to timing errors in the higher peak hydrogrgphs_
parameter identifiability between thRss and Repc_v mea- The sensitivity 0fSmax WhIC.h cpntrolg the root zone deficit
sures could be seen for the parameters controlling the rece§lu€ 10 actual evapotranspiration, might reflect the effect of

www.hydrol-earth-syst-sci.net/15/2205/2011/ Hydrol. Earth Syst. Sci., 15, 22252011



2216

I. K. Westerberg et al.: Calibration of hydrological models using flow-duration curves

= 1
0.8
LL LL LL 0.6
[a] [a] [a]
(@] (@] (@] 0.4
0.2
0.02 0.04 0.06 0.08 0.1 0.02 0.04 0.06 0.08 0.1
SZM SR
max
1 1 1
0.8 rd 0.8 % 0.8
7
L 06 L 06 - L 06
[a) / [a) g, [a)
© 04 / © 04 © 04
0.2 / 0.2 / 0.2
/ g
0% 0= 0
0.005 0.01 500 1000 1500 2000 2500 10 20 30 40
SR _ CHV Td
init
1 1 =
e — = Reff>o'7
~
0.8 p 0.8 o R, >08
0.6 7 0.6 / R
. . 4
é J E Y, FDC-V
© 04 © 04 4 RFDC—Q
4
0.2 0.2
0 0
04 05 06 07 02 04 06 08
DeltaTheta S

max

Fig. 8. Cumulative informal likelihood distributions for all Dynamic TOPMODEL parameters (the parameter names are explained in Table 2).
The informal likelihood weights for each performance measure were calculated for the calibration in 1995-1996 in the Brue catchment.

antecedent conditions on peak flow magnitude and timingconstraint was not surprising as there were no low-flow EPs.
that is not so important for thBgpc measures. For the Res calibration the low-flow simulation even for be-
havioural parameter-value sets with the highRgt values
resulted in consistent errors for low flows. The calibration in
1989-1997 using the “time-shift” FDC in 1980-1988 with
the Repc_v measure gave results similar to when the 1989—
1997 FDC was used for the same measure. Rhgc_q

The Rrpc—v measure gave simulated FDCs that most closelymeasure gave good high-flow performance but the poorest
resembled the observed FDC for the whole flow range in bothperformance for low flows as seen when plotted for the vol-
calibration and prediction. The largest difference betweenume EPs.

the performance measures occurred at low flows for both the

calibration and evaluation periods (Fig. 9). Here almost all In prediction 1989—199R.¢ gave more consistent under-
of the simulations for th&et and Repc—q measures under-  estimation for high flows compared Repc—v and Rrpc—g.
estimated the discharge, but there were a number of simulaAs in the calibration period, the low-flow performance was
tions that had a large overestimation in this flow range. Themuch poorer forRest and Rrpc-g compared toRrpc-v,
Rrpc_v simulations were more evenly distributed within the which was largely consistent with the observed FDC. Note
range of the uncertain observed FDC at the low-flow EPsthat in calibration the lowest EP for which tlRpc_q was
This difference at low flows was not surprising since the evaluated in the current study was at a crisp discharge of
largest difference in the parameter identifiability (Fig. 7) was 21 n?s~1. Figure 9 shows that this still allows sufficient
seen for the evaporation and slow-flow parameters that confreedom for the behavioural simulations to depart from the
trol this part of the FDC. For thRrpc_g measure this lack of  observed FDC limits at lower flows, in this case for 86 %

5.4 Simulated flow-duration curves

5.4.1 The Paso La Ceiba catchment — WASMOD
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Fig. 9. (a)and(b) FDCs for behavioural parameter-value sets for WASMOD in the Paso La Ceiba catchment for calibration in 1989-1997
using Rrpc-v (all FDCs plotted as grey linesRest, RFpc—q: and Repc—v—Ts (Maximum and minimum FDC values plotted as lines)

and observed crisp, upper-limit and lower-limit dischaf@@and(d) FDCs for prediction in 1989-1997 using behavioural parameter-value
sets forRrpc—v (all FDCs plotted as grey linesRef and Repc—q calibrated 1980-1988 (maximum and minimum FDC values plotted as
lines) and observed crisp, upper limit and lower limit discharge. The FDCs are split in two plots (left — high flows and right — low flows) at
10 % exceedance. All FDCs are plotted for the volume interval EPs.

of the time, and that these simulated results were similar t6.5 Posterior analysis of simulated and observed
those of theRes calibration. discharges

The measures of overlap (OP and COP) between the simu-
lated and observed uncertain discharge bounds were gener-
5.4.2 The Brue catchment — Dynamic TOPMODEL ally higher for theRrpc_v measure compared to the other
measures (Fig. 11). As the COP measure accounted for over-
estimated predictive uncertainty a high value of this measure
In the Brue catchment the results were largely similar to thewas more important than for OP. The results for the time-shift
Paso La Ceiba catchment (Fig. 10). TRepc_v criterion calibration using the FDC from another time period gave re-
also constrained the low-flow part of the FDC which the OtherSL”tS similar to that of the normal FDC calibration. The best
criteria did not. Here, however, the behavioural simulationsReft Simulations Reft > 0.8) resulted in a similar number of
did not cover the entire low-flow range which could indicate Pehavioural simulations arpc-v at Brue, but gave much
that some of the observed behaviour could not be reproducetwer overlap than foRrpc-v, which was largely because
by the model. The majority of the flows at the low-flow EPs of the poorer low-flow performance. Th&-pc_q measure
were overestimated faRet and Repc_q in this catchment. resulted in better results in the Brue catchment compared to
Again, the number of increments used in the determinationPaso La Ceiba. This might relate to the fact that there was
of Repc_q allows significant freedom amongst behavioural more baseflow at Brue wherefore the EPs for the discharge-
parameter-value sets in the prediction of lower flows and anterval-selection method covered the low-flow part of the
similar pattern is seen fakes. FDC better than at Paso La Ceiba.
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Fig. 10. (a)and(b) FDCs for behavioural parameter-value sets for Dynamic TOPMODEL in the Brue catchment for calibration in 1995—
1996 usingRrpc-v (all FDCs plotted as grey/shaded lineR)s, and Rrpc—g (maximum and minimum FDC values plotted as lines) and
observed crisp, upper and lower dischar@g;and(d) FDCs for prediction in 1997-1998 using the behavioural parameter-value sets from
1995-1996. The FDCs are split in two plots (left — high flows and right — low flows) at 10 % exceedance. All FDCs are plotted for the
volume interval EPs.

5.5.1 The Paso La Ceiba catchment - WASMOD bounds were wider in absolute terms for high flows com-
pared to low flows, this explains the skew in the histograms
The simulated discharge for the Paso La Ceiba catchmerin Fig. 13. The distributions of the scaled scoresRg and
was in general in good agreement with the observed disRrpc_g were always centred on negative scaled scores for
charge (Fig. 12). During the low-flow periods of some yearsall flow types.
the discharge was underestimated for all performance mea- A plot of the mean scaled scores and the discharge for
sures, indicating a possible model-structural error in simulat-1989-1990 revealed the difference in low-flow performance
ing a slower/deeper ground-water response or errors in théFig. 14). A large scaled deviation can be seen for all per-
input data. formance measures in the end of 1990 where there is a peak
The posterior analysis of the mean scaled scores for difin the predicted discharge but not in the observed. This is a
ferent parts of the hydrograph (Fig. 13) for the prediction in type of epistemic error that could be a result of erroneous dis-
1989-1997 showed that when using e c_v calibration  charge data, influence of upstream dams or unrepresentative
compared taResr: (1) the distributions of scaled scores were precipitation data. This type of event had a large effect on
more centred on zero, (2) there were fewer base flows thathe Ref calibration where it generated a large sum-of-squares
were underestimated, and (3) the largest difference was seegrror and a reduction in overall performance. A similar devi-
for the troughs, falling limbs and base flows that are con-ation is seen in the end of 1989. The maximum scaled scores
trolled by the slow-flow and evaporation parameters. Thefor all the calibration and prediction periods at Paso La Ceiba
same results were seen in all the other calibration/predictiorwere consistently larger for the FDC-based measures com-
periods. Events where the predicted discharge was undepared toRess Which might indicate that the FDC criteria are
estimated did not generate as large scaled scores as if th®t as sensitive to such disinformative events.
predicted discharge was overestimated, as the uncertainty
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5.5.2 The Brue catchment — Dynamic TOPMODEL of the stage-discharge relationship at Paso La Ceiba (Wester-
berg et al., 2011) constrained the number of feasible methods
The results for the Brue catchment were similar to Pasdfor that site. Our construction of the uncertain FDC implies
La Ceiba with generally better performance for base flows,an interpretation of the discharge uncertainty as an epistemic
falling limbs and troughs foRrpc_v. In contrast to Paso La error with an expectation of non-stationary bias rather than
Ceiba the results were poorer for peaks and rising limbs coma random error, which would lead to averaging of individual
pared toReff (Fig. 15), this difference was less pronounced in errors. There might be many reasons for such epistemic er-
1995-1996 where the calibration worked better. Also in con-rors including current meters that have not been re-calibrated
trast to the Paso La Ceiba catchment, R and Rrpc—qg and base levels subject to erosion and deposition (Westerberg
measures resulted in more overestimation of low flows hereet al., 2011). Correlation in fitting successive EPs is handled
which is also seen in Fig. 10. The maximum scaled scoresaturally in the limits-of-acceptability approach, since only
were in general larger for the FDC-based criteria but not formodels that satisfy all limits are retained in prediction, and
all flow types as was the case at Paso La Ceiba. Some pergimulations with consistent bias relative to the best-estimate
ods of plausible model-structural errors were visible for thedischarge are given a low weight.
base flows where there were many time steps with overpre- The choice of the evaluation points at which the limits of
diction with a scaled score around 5. These periods did in-acceptability for the FDC are set is an important considera-
deed seem to be a result of model-structural error in July-tion in the FDC calibration and the selection could be made
October 1997 as shown by a plot (Fig. 16) of the mean scaledh different ways. The important point is that the choice
scores for the calibration during the same years; all of theshould be informed by the perceptual understanding of the
performance measures gave simulations that overpredictedncertainties in the hydro-meteorological data and made with
in this period. Another period of probable model-structural the aims of the modelling study and the characteristics of the
error could be seen where the simulated discharge was urFDC in mind. For example, if high or low-flow performance
derestimated in the wetting-up period for the prediction inis of special importance then additional points could be cho-
1997-1998 (Fig. 17). sen for these flow ranges. The shape of the FDC will influ-
ence how the EPs are spaced for a given selection method
(e.g. the Brue catchment had higher base flow and therefore
6 Discussion and conclusions for Rrpc—q the lowest EP occurred at a higher exceedance
percentage than at Paso La Ceiba). In both catchments in
This paper has explored a calibration method that adthis study the volume weighting gave the best overall results
dresses four particular problems that arise in calibrationas it constrained the model also for the low flows and reces-
with traditional performance measures: (1) uncertain dis-sion periods. At the daily time scale it also resulted in better
charge data, (2) variable sensitivity of different performancesimulations for peak flows, while at the sub-daily time scale
measures to different flow magnitudes, (3) influence of in-there was greater uncertainty in peak-flow timing compared
put/output errors of an epistemic nature and (4) inability toto Rest. The volume-based EP-selection method would be
evaluate model performance when observation time periodgspecially suitable for water-balance studies where the cor-
for discharge and model input data do not overlap. Therect volume of water for different flow ranges is of specific
method was evaluated in two catchments with contrastingconcern, but exact timing is not as critical. The low sensitiv-
flow regimes where two different models were applied at twoity to timing errors will have a limited effect as long as run-
different time scales. The results showed that when the exeff coefficients are represented correctly. At sub-daily time
ceedance percentages (EPs) of the FDC were chosen bass@ps and where peak-flow timing is of greater concern, ad-
on volume intervals, this calibration method resulted in moreditional criteria could be enforced to constrain this aspect of
constrained low-flow parameters and a better overlap withthe simulations. In doing so, the epistemic uncertainties as-
the observed data compared to a “traditional” calibration us-sociated with estimates of the higher discharges, particularly
ing the Nash-Sufcliffe model efficiency. resulting from rating-curve extrapolation, should be taken
FDCs have been used previously in model calibration andnto account. The FDC-calibration approach allows differ-
evaluation (Blazkova and Beven, 2009; Son and Sivapalanent weightings by including different EPs and one could also
2007; Sugawara, 1979; Yu and Yang, 2000). The novel aseonsider giving different weights to different EPs in the cal-
pect of our use of the FDC is that it takes account of uncer-culation of the likelihood measure. In other catchments than
tainty in the discharge data and at the same time shows thdahose studied here, other factors may come into play, such
the FDC can work surprisingly well as a single criterion in as the effects of the timing of snowmelt in snow-dominated
some cases. Here discharge uncertainty was calculated usimmgtchments. Using FDC calibration, the exact timing of the
a fuzzy linear regression for the rating curve based on estimelt would not be as important as for a Nash-Sutcliffe mea-
mations of the uncertainty in both stage and discharge measure (see the example in Ambroise et al., 1996), but the dis-
surements. Other methods could also be considered to dwibution of the melt over time would still be important and
this (e.g. Pappenberger et al., 2006), but the non-stationaritywould likely require additional constraints. The posterior
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Fig. 15. Scaled scores to limits of acceptability for different parts of the hydrograph at Brue for calibration in 1997-1998 using Dynamic
TOPMODEL. For each performance measure the histograms were normalised by the number of behavioural simulations, so the y-axis
represents the normalised number of time steps. The upper range of the histogram x-axis was limited to improve the visibility of the lower
range, the maximum scaled scores, nd3x{or each criterion are given in the legends and all scaled scores larger or equal to the last bin are
plotted in the last bin.

analysis of the simulated time series employed here can berrors, well-known and commonly used. Other approaches
useful in deciding whether additional criteria are necessary. such as multi-criteria calibration or the calculation R

In calibration to “hydrological signatures” such as an FDC ©n transformed discharge can of course also be used to con-
calculated from the discharge series, the simulated uncerStrain simulations. We also tested log and square-root trans-
tainty bounds have a direct interpretation relative to the unformed discharge in the calculation . This resulted in
certainty in the observed discharge data. This is an advantag@0d simulations for low flows whereas the simulation for
compared to say a behavioural threshold-valuggfof 0.7 the highest flows was poorer constrained comparefieip
that is not easily interpretable (Legates and McCabe, 1999and the FDC-calibration. A multi-criteria calibration could
Seibert, 2001). Winsemius et al. (2009) set limits of accept-Constrain different aspects simultaneously, but the problems
ability in GLUE (for different types of signatures such as re- Of deciding on a behavioural threshold value and accounting
cession curves) based on inter-annual variability but took ndor discharge-data uncertainty remain in such approaches.
explicit account of the uncertainty in the observed discharge When the FDC-method was first developed it was tested
data. with inconsistent satellite-derived precipitation in a Hon-

Itis interesting to note that the 19 EPs used forRigc._v duran basin wh_mh resqlted in that no simulations were found

o . : . o that were consistent with the observed FDC. In such cases a
criterion provided better information for the calibration of the

model than the 3288 days or 17544 hours for the first yearstradmonal calibration will re;ult in low values for the perfor—
. X o o . . mance measure and not point as strongly to where the incon-
of calibration/prediction used faRes. Limited information

S . . sistencies in the simulated flow regime occur. This is there-
content in discharge time series was also demonstrated b

Juston et al. (2009) and Seibert and Beven (2009), who foun%/pre an advantage of using constraints based on signatures
: . ; . ; such as a FDC) calculated from the flow data, as suggested
that calibration using a small fraction of data points chosen

: : ) elsewhere for use in regionalisation methods for estimating
at hydrologically informed times was comparable to Whenthe response of ungauged basins (e.g. Yadav et al., 2007)
the whole time series was used. We cha@&g for com- P gaug g v '

parison with the FDC-calibration as it is sensitive to timing
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Fig. 16. Predicted and observed crisp discharge for 1997-1998 for behavioural parameter-value Begsefay from calibration using
Dynamic TOPMODEL in 1995-1996 for the Brue catchment (upper plot shows the whole flow range, middle the low flows). The mean
scaled scores for all performance measures are plotted in the bottom plot where the grey area represents a scaled-stdoelfrom a
simulated discharge with a score inside this range is inside the discharge uncertainty limi®gpiche, criterion gave simulations with

less overprediction in the summer. In July—October 1997 there was a period of consistent overprediction at low flows for all performance
measures where the model could not reproduce the observations.

Disinformative data can lead to biased parameter estimatewithout significant rainfall. In the Paso La Ceiba catchment a
in calibration if the model is forced to compensate for suchlarge peak flow was simulated in 1990 without a peak in ob-
errors. We expect the FDC-calibration method to be moreserved discharge (Fig. 14), which is not likely for that type of
robust to disinformation in many cases, especially pure tim-hydrological regime where there is a direct relationship be-
ing errors such as an isolated single precipitation event regtween rainfall and runoff, and this event was therefore likely
istered on the wrong day or single events with inconsistentan epistemic error in the discharge data such as the effect of
inputs and outputs which might lead to rejection of all mod- an upstream dam or wrongly digitised data. In the case of
els in a limits-of-acceptability evaluation based on individual the Brue catchment, with 49 rain gauges in 13%kgignif-
time steps (e.g. Liu et al., 2009). The extent to which it is icant departures between observed and predicted discharge
robust needs to be assessed in future studies. It would likelysuch as the large scaled scores for the low-flows in July—
be most sensitive to disinformation that affects the tails of theOctober 1997 in Fig. 16) might be inferred to be more a re-
simulated and observed distributions, as that would lead to &ult of model deficiencies than input errors. These periods of
greater effect on the shape of the simulated or observed FDCprobable model failure at low flows could be readily seen in
In the absence of methods to identify and remove disinfor-the analysis of the scaled scores for the different parts of the
mative data prior to calibration, a posterior analysis like thehydrograph.
one we employed here can be used to readily identify periods Are these two models then acceptable hypothesis about
where the simulations from the behavioural parameter-valughe hydrological processes in the respective catchments or
sets are failing. These periods can then be analysed to seghould they be rejected? As noted in the introduction this de-
whether the lack of fit can be attributed to disinformative datapends on the hydrological processes of interest and the aims
or to model-structural errors (which in that case could lead toof the modelling application. In the Paso La Ceiba catch-
learning from where the model is failing). In some cases itment the simulated discharge overlapped with the observed
might be obvious where there are problems in the observadischarge for around 95 % of the time steps for #@c_v
tions, for example where a discharge hydrograph is observedalibration and prediction in both periods. If the overall
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November there was a period where the model could not reproduce the observations.

water-balance is of interest then this would be an acceptabléhe stationarity of the flow regime in the longer term must
result, especially considering the likely time-variable uncer-be accounted for in such applications. If the flow regime is
tainty in the rainfall inputs because of the low and time- non-stationary or if the time-shifted period does not cover
varying number of precipitation stations for this complex periods of climate variability (e.g. El Rb/La Nifa years) to
precipitation regime (Westerberg et al., 2010). Additional a sufficient extent, the extra uncertainty stemming from this
evaluation criteria might of course still reveal that we are realisation effect should be added to the FDC. The method
not getting the right answers for the right reasons (Kirch-might also be useful for studying the effect of modifica-
ner, 2006), a possibility that should be kept in mind if mak- tions to the hydrological regime such as dams, where “pre-
ing predictions of changed future conditions. In the Brue dam” data could be used for calibration to the natural flow
catchment the overlap between simulated and observed disegime. Another area of possible application is calibration to
charge was much lower, between 75-90 % of the time for theaegional FDCs such as in the study by Yu and Yang (2000),
Rrpc-v calibration and prediction in both periods. In com- but also taking uncertainties in the calibration of the hydro-
bination with the analysis of the scaled scores this suggestkgical model and the data into account. A major advantage
that, given the number of rain gauges in this catchment, theof the FDC-calibration approach is the way in which it re-
model structure can be rejected as a good hypothesis for thguires structured consideration of the uncertainties expected
hydrological processes in this catchment. The informationto affect the observed and simulated FDCs, not the least in
about likely model-structural errors revealed in this poste-the discharge estimates themselves but also other sources of
rior analysis could be investigated to see if some improve-uncertainties that affect model calibration.

ments might be implemented, such as in the representation
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