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Abstract. A promising approach to catchment classifica-
tion makes use of unsupervised neural networks (Self Or-
ganising Maps, SOM’s), which organise input data through
non-linear techniques depending on the intrinsic similarity
of the data themselves. Our study considers∼300 Italian
catchments scattered nationwide, for which several descrip-
tors of the streamflow regime and geomorphoclimatic char-
acteristics are available. We compare a reference classifi-
cation, identified by using indices of the streamflow regime
as input to SOM, with four alternative classifications, which
were identified on the basis of catchment descriptors that
can be derived for ungauged basins. One alternative clas-
sification adopts the available catchment descriptors as in-
put to SOM, the remaining classifications are identified by
applying SOM to sets of derived variables obtained by ap-
plying Principal Component Analysis (PCA) and Canonical
Correlation Analysis (CCA) to the available catchment de-
scriptors. The comparison is performed relative to a PUB
problem, that is for predicting several streamflow indices in
ungauged basins. We perform an extensive cross-validation
to quantify nationwide the accuracy of predictions of mean
annual runoff, mean annual flood, and flood quantiles asso-
ciated with given exceedance probabilities. Results of the
study indicate that performing PCA and, in particular, CCA
on the available set of catchment descriptors before applying
SOM significantly improves the effectiveness of SOM clas-
sifications by reducing the uncertainty of hydrological pre-
dictions in ungauged sites.

Correspondence to:A. Castellarin
(attilio.castellarin@unibo.it)

1 Introduction

A common problem in hydrology is the prediction in un-
gauged basins of the streamflow regime (e.g., long-term
mean value and variability of streamflows, flood flows as-
sociated with a given exceedance probability, low-flow in-
dices, etc.). The scientific literature has often highlighted
the remarkable natural variability of geomorphological char-
acteristics of basins and of their hydrological behavior for
different climatic inputs. This consideration motivated the
pursuit of general laws in hydrology to be used for predict-
ing the hydrologic behavior of ungauged basins on the basis
of historical data.

This issue is eloquently stated by Dooge (1986) in the
well known work “Looking for hydrologic laws”, but, at the
same time, it is also the central topic of many recent inter-
national scientific initiatives, such as the Prediction in Un-
gauged Basins (PUB) of the International Association of Hy-
drological Sciences (IAHS) (see e.g., Sivapalan et al., 2003).
The scientific community states that little progress has been
made in this field in the last two decades and indicates that
the formulation of objective criteria for catchment classifica-
tion is one of the main objectives for obtaining a better in-
terpretation and representation of spatiotemporal variability
of streamflows (McDonnell and Woods, 2004; McDonnell et
al., 2007; Bai et al., 2009).

The identification of hydrologically homogeneous regions,
or equivalently the classification of catchments into homo-
geneous groups having the same hydrologic behaviour, is
the basis of all regionalization procedures. These latter are
among the most commonly used approaches for predicting
streamflow regimes in ungauged basins (Castellarin et al.,
2001, 2004; Castellarin, 2007). In particular, catchment clas-
sification may support regionalization of rainfall-runoff pa-
rameters (Hundecha et al., 2008), a topical issue in hydrology
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(see e.g., Bardossy, 2007; Yadav et al., 2007; Castiglioni et
al., 2010), which is also is particularly relevant to the PUB-
problem.

A very interesting and promising approach to classifica-
tion makes use of an innovative and data-driven classifica-
tion method based on unsupervised artificial neural networks
(ANNs), known as Self Organising Maps (SOM, Kohonen,
1982, Toth, 2009; Ley et al., 2011).

As in previous recent studies (Hall and Minns, 1999;
Jungy and Hall, 2004; Srinivas et al., 2008), the main goal
of our study is to assess whether SOM classifications may be
effectively utilized for reducing the uncertainty of hydrolog-
ical predictions in ungauged basins.

The element of novelty of this study consists in the in-
tegration of SOM techniques with two multivariate analy-
sis techniques that reduce the original high-dimensionality
of geomorphoclimatic pattern information, namely the Prin-
cipal Component Analysis (PCA) and Canonical Correlation
Analysis (CCA) (see e.g., Krzanowski, 1988; Ouarda et al.,
2001). It has been shown for other disciplines that integrat-
ing PCA and CCA improves the practical usability of SOM
classifications (see Yan et al., 2001). Our study aims at un-
derstanding if integrating PCA and CCA with SOM can also
be a useful resource in the PUB context.

Our study considers a national database counting 296 Ital-
ian unregulated catchments compiled within the national re-
search project “CUBIST – Characterisation of Ungauged
Basins by Integrated uSe of hydrological Techniques” (Claps
and the Cubist Team, 2008). The streamflow regime and the
physiographic and climatic characteristics of the study catch-
ments are summarised by several catchment descriptors. The
background idea is the identification of a multipurpose catch-
ment classification that could, in principle, serve different hy-
drological analyses and be used for addressing different PUB
problems (for example design flood estimation or assessment
of long-term surface water availability).

We identify a Reference Classification (RC) of the study
catchments to be compared with four Alternative Classifi-
cations (AC’s) in the context of PUB. RC results from the
application of SOM to a set of descriptors of the streamflow
regime, whereas AC’s are identified on the basis of catch-
ment descriptors that are commonly available for ungauged
basins. The first AC adopts a set of geomorphoclimatic de-
scriptors as input to SOM. The remaining AC’s are identified
by applying SOM to three sets of derived variables obtained
by applying PCA (second AC) and CCA (third and fourth
AC’s) to the available geomorphoclimatic descriptors.

First, the similarity between each AC and RC is as-
sessed qualitatively, analysing how the study catchments
were grouped together. Second, AC’s are compared with
RC in terms of accuracy of streamflow prediction. To this
aim, AC’s and RC are used as basis to regionalise several
streamflow indices. In order for the comparison to be fair
we adopted the same regionalization approach for all clas-
sifications, and we performed an extensive cross-validation

procedure to quantify nationwide the accuracy of estimates
of the mean annual flow, mean annual flood, and flood quan-
tiles associated with given exceedance probabilities.

2 Catchment classification and som

2.1 Literature review

A catchment may be defined as the area which drains nat-
urally to a particular point on a river or stream. Catch-
ments are very complex systems, these landscape elements
can have different sizes and characteristics. In general it is
hard to identify an appropriate classification system that may
have general applicability. The recent emphasis on catch-
ment classification highlights the need for methodical criteria
to classify catchments and their hydrological behaviour (Mc-
Donnell and Woods, 2004). To date, hydrologists have not
reached a consensus on a classification system (McDonnell
et al., 2007; Wagener et al., 2007).

Regionalization procedures are generally based on the def-
inition of hydrologically homogeneous regions or pooling
groups of sites. Regionalization is a commonly used ap-
proach for predicting streamflow regimes in ungauged basins
(see e.g., Castellarin et al. 2001, 2004; Castellarin, 2007).

The majority of the pioneering studies on catchment clas-
sification and hydrological regionalization adopted the geo-
graphic contiguity criterion. Nevertheless, very soon the sci-
entific community urged for a globally agreed upon classi-
fication system, based on the variability of physical and cli-
matic characteristics of the catchments (Acreman and Sin-
clair, 1986) and identifiable by means of objective method-
ologies (i.e., cluster analysis, Burn, 1989).

In recent years a number of techniques based on various
mathematical approaches have been proposed by the liter-
ature. A very interesting and promising approach to clas-
sification makes use of unsupervised artificial neural net-
works (ANN) (see e.g., Hall and Minns, 1999). Over the
last decades ANN’s have been subject to an increasing in-
terest in a variety of practical applications. The increasing
number of applications of ANN’s is related to their ability to
relate input and output variables in complex systems without
any requirement of a detailed understanding of the physics of
the process involved (Dawson and Wilby, 2001). The unsu-
pervised ANN differ from supervised ANN, which are more
commonly used in hydrology, because they do not focus on
the identification of a relationship between input and output
variables. They organize input data through non-linear tech-
niques depending on their similarity instead.

2.2 SOM networks and catchment classification

The scientific community shows a growing interest in ANN’s
application to water resources problems (see e.g., Maier and
Dandy, 2000; Maier et al., 2010). Concerning the problems
of classification and pattern recognition, Self Organising
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Maps (SOM’s, Kohonen, 1982; 1997) are an unsupervised
learning method to analyze, cluster, and model various
types of large databases. The SOM method counts sev-
eral hydrological applications (see e.g., Kalteh et al., 2008;
Céŕeghino and Park, 2009), such as classification of hydro-
logical and meteorological conditions for streamflow fore-
casting (Toth, 2009). SOM networks cluster groups of sim-
ilar input patterns from a high dimensional input space in
a non-linear fashion onto a low dimensional (most com-
monly two-dimensional for representation and visualization
purposes) discrete lattice of neurons in an output layer (Ko-
honen, 2001; Kalteh et al., 2008).

Typically a SOM consists of two layers, an input layer
and a Kohonen or output layer (see Fig. 1 after Kalteh et
al., 2008). The input layer contains one neuron for each vari-
able (i.e., catchment attribute) in the data set. The number of
classes (i.e., neurons of the output layer) is generally prede-
fined by the modeller and the classes themselves are ordered
into meaningful maps that preserve the topology (see Kalteh
et al., 2008). The output-layer neurons are connected to ev-
ery neuron in the input layer through adjustable weights (see
Fig. 1), whose values are identified through an iterative train-
ing procedure. Lateral interaction between neighbouring out-
put nodes ensures that learning is a topology-preserving pro-
cess in which the network adapts to respond in different lo-
cations of the output layer for inputs that differ, while similar
input patterns activate units that are close together. Following
a random initialisation of the weight vectors, SOM utilizes a
type of learning that is calledcompetitive, unsupervised, or
self-organizingprocedure to match each input vector with
only one neuron in the output layer. This is done by compar-
ing the presented input pattern with each of the SOM neuron
weight vectors, on the basis of a distance measure, like the
Euclidean distance. The neuron with the closest match to the
presented input pattern is called winner neuron. Then, the
weight vector of the winner neuron and of the topologically
neighbouring neurons are updated in such a way as to repro-
duce the input pattern (see e.g., Kalteh et al., 2008 and Toth,
2009 for further details).

Once trained (calibrated), the network activates only one
output node in correspondence of each input vector. There-
fore, all input vectors activating the same node belong to the
same class.

3 Multivariate analysis for dimensionality reduction

3.1 Principal Component Analysis – PCA

The Principal Component Analysis, PCA (see e.g.,
Krzanowski, 1988), is a multivariate analysis statistical
method that enables one to obtain smaller number of uncor-
related variables from a larger number of possibly correlated
variables by constructing an orthogonal basis for the origi-
nal variables themselves. The derived uncorrelated variables
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Figure 1 797 

Fig. 1. Structure of a 5× 5 two-dimensional self organizing map
(SOM) (after Kalteh et al., 2008).

are called principal components (PC). The full set of PC’s
has the same dimensionality of the original set of variables.
They are ordered in such a way that the first component ac-
counts for as much of the variability in the original dataset as
possible, and each following PC accounts for as much of the
remaining variability as possible.

It is commonplace for the sum of the variances of the first
few PCs to exceed 80 % of the total variance of the origi-
nal data. By examining plots of these few new variables,
researchers often develop a deeper understanding of the driv-
ing forces that generated the original data. The literature re-
ports several criteria for selecting the appropriate number of
principal components (see e.g. Kaiser, 1960 criterion and the
scree plot).

3.2 Canonical Correlation Analysis – CCA

Another important multivariate statistical tool for reducing
the dimensionality of the original dataset is the Canonical
Correlation Analysis (CCA). The multivariate approach of
CCA is most commonly used in the context where there are
two sets of random multidimensional and correlated vari-
ables X={X1,X2,. . . ,Xn} and Y={Y1,Y2,. . . ,Ym} (e.g., ge-
omorphoclimatic catchment descriptors and indices of the
streamflow regime, such as the annual flow, the flood as-
sociated with a given recurrence interval, etc.). CCA en-
ables one to identify the dominant linear modes of covari-
ability between the setsX and Y (see e.g., Krzanowski,
1988; Ouarda et al., 2001). In other words, CCA identifies
two new groups of artificial variables (canonical variables)
U={U1,U2,. . . ,Ur} andV ={V1,V2,. . . ,Vr}, with r=min{n,m},
by finding linear combinations of the originalXi , with
i=1,. . . ,n, andYj , with j=1,. . . ,m, in such a way that the
correlation between the canonical variables of a pair (Ui ,Vi)

is maximized and the correlation between the variables of
different pairs is null (Chokmani and Ouarda, 2004; Shu and
Ouarda, 2007).
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Table 1. Minimum, mean and maximum values, and 25th, 50th and 75th percentiles for the set ofX variables considered in the study. These
data were either derived from a SAR-DTM (Synthetic Aperture Radar – Digital Terrain Model) with grid size 100 m or * retrieved from
Rep. no 17 of the former Italian SIMN (National Hydrographic Service of Italy).

long. lat. A P zmax zmin zmean L SL SA 8 MAP*
(m) (m) (km2) (km) (m a.s.l.) (km) (%) (%) (deg.N.) (mm)

Minimum 319 450 4 170 550 3.2 8.0 284 3.0 127.0 2.6 1.8 6.2 0.7 602.0
Mean 704 261 4 752 661 1060.8 157.8 2092 342.0 986.7 54.8 10.1 29.1 186.6 1224.2
Maximum 1 162 850 5 195 450 17 512.1 1115.0 4727 1812.0 3110.0 357.9 35.4 63.0 359.3 2289.0
25th 505 825 4 545 450 98.0 52.75 1409 77.7 567.5 18.7 5.3 18.4 73.9 960.75
50th 680 450 4 814 250 331.0 102.5 1814 231.5 838.5 35.9 8.5 26.8 204.0 1152.5
75th 897 475 4 922 150 930.7 187.25 2625 462.5 1242.7 66.1 13.6 38.5 276.8 1410.0

If we denote byX andY the independent and dependent
variables respectively and we consider the linear transforma-
tions,

U = uT
X ·X andV = uT

Y ·Y (1)

characterized by the basis vectorsuX anduY , CCA can be
defined as the following optimization problem,

ρ = max
uX,vY

{corr(U ,V )} = max
uX,vY

cov(U ,V )
√

var(U)
√

var(V )
. (2)

4 Study area and available information

The study area consists of 296 Italian catchments scattered
nationwide, whose dataset was compiled within the national
research project “CUBIST – Characterisation of Ungauged
Basins by Integrated uSe of hydrological Techniques” (see
e.g., Claps et al., 2008), and is definitely heterogeneous in
terms of climatic and geomorphologic characteristics that
control the streamflow regime.

4.1 Geomorphoclimatic and streamflow variables

We refer to 12 different geomorphological and climatic de-
scriptors of the study catchments, which we term in the study
X variables, and 6 descriptors of the streamflow regime,
which we termY variables.

X variables:

– (1 and 2) long. and lat. – UTM longitude and latitude
of catchment centroid;

– (3) A – Drainage area;

– (4) P – Perimeter;

– (6) zmax – Highest elevation;

– (6) zmin – Elevation of the catchment outlet;

– (7) zmean– Mean altitude;

– (8) L – Maximum drainage length;

– (9) SL – Average slope along the maximum drainage
length;

– (10)SA – Catchment average slope;

– (11)8 – Catchment orientation;

– (12) MAP – Mean Annual Precipitation;

Y variables:

– (1) MAR – Mean Annual Runoff;

– (from 2 to 5)li – sample L moments of orderi=1 (i.e.,
sample mean), 2, 3 and 4 of the annual maximum series
AMS of flood flows (see e.g., Hosking, 1990);

– (6) REC/l1 – Ratio between the maximum value and the
sample mean of AMS of flood flows.

Tables 1 and 2 summariseX andY variables in terms of min-
imum, mean and maximum values, and 25th, 50th and 75th
percentiles for the set of 296 considered catchments.

Concerning theX variables, it is worth remarking that we
did not make any a-priori assumption to form the dataset
of physiographic and climatic descriptors, since we were
already constrained by the intrinsic difficulty of compiling
a homogeneous and consistent National dataset for∼300
catchments. We included as many relevant catchment de-
scriptors as possible, using multivariate analysis techniques
(i.e., PCA and CCA) to sort out noise and redundancy (Chok-
mani and Ouarda, 2004; Castiglioni et al., 2011) while re-
taining the information that is the most descriptive of the
streamflow regime (see e.g., Krzanowski, 1988; Ouarda et
al., 2001). ConcerningY andX variables, we acknowledge
that our dataset lacks information concerning base-flow, sub-
surface characteristics, land-cover and vegetation, which are
extremely relevant to the catchment-classification problem,
but unfortunately we could not find consistent and homoge-
neous information on these characteristics nationwide.
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Fig. 2. Coefficients of the linear transformation for the first three
PC’s of theX variables.

4.2 Application of PCA and CCA

We reduced the dimensionality of the 12-dimensional space
of the geomorphoclimatic descriptors (X variables) and the
6-dimensional space of the streamflow regime descriptors (Y

variables) through the application of PCA and CCA. In par-
ticular we computed all PC’s ofX variables relative to the
whole set of 296 basins. As said before, the full set of PC’s
is as large as the original set of variables. The 12 PC’s have
zero mean and a decreasing standard deviation (see Table 3),
but the most interesting property is that the first three prin-
cipal components explain roughly the two third of the total
variability, in this case more than the 75.4 % (Table 3).

Figure 2 reports the coefficients of linear transformation
of eachX variable for the first three Principal Components.
This information is explained from the eigenvalues calcu-
lated for our dataset.

Likewise, we applied the CCA to the set ofX andY vari-
ables relative to the whole of the 296 study basins. As re-
ported above, the number of canonical variables is equal to
the smallest dimension of the two sets of variables, in our
case theY variables. Therefore we obtained 6 canonical vari-
ables for each set,U andV.

The scatter-plots of Fig. 3 illustrate the relationships be-
tween the canonical variablesU (x-axis) andV (y-axis) com-
puted for the study area, also illustrating, as expected, a sig-
nificant correlation between the first canonical variablesUi

andVi . Table 4 shows the significance of the null hypothe-
sis that all correlation coefficients betweenUj andVj – with
j = i,. . . r=6 – are zero. As Table 4 shows, the first 4 canoni-
cal variables are the most descriptive for the problem at hand.
As done for PC’s, we report in Fig. 4 the coefficients of lin-
ear transformation associated with eachX variable for all six
components ofU.

5 Comparison of som classifications of the study
catchments

There are no predefined classes of the conditions character-
ising the basin: a clustering algorithm is here used as an
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Figure 3 803 

Fig. 3. Canonical variablesU and V computed for the study
area: scatter-plots between canonical variablesUi andVj , for i and
j equal to 1,2,. . . 6.
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Fig. 4. Coefficients of the linear transformation for the canonical
variables of theX variables.

unsupervisedclassifier, where the task is to learn a classi-
fication from the data. Such partitioning will be based on
the most relevant available information, that is, descriptors
of the streamflow regime and geomorphoclimatic character-
istics. Our study identifies several classifications on the ba-
sis of different sets of catchment descriptors (Sect. 5.1) by
implementing different SOM networks (Sect 5.2); we then
compare these classifications by looking at the similarity of
the partitions (Sect. 5.3) and by assessing the performance of
each classification for the prediction of streamflow indices in
ungauged basins (Sect. 5.4).

5.1 Reference and alternative SOM classifications

We considered 5 different SOM classifications: a reference
SOM classification and 4 alternative SOM classifications.
These classifications were obtained for the considered group
of catchments on the basis of the information described
below:
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Table 2. Minimum, mean and maximum values, and 25th, 50th and 75th percentiles for the set ofY variables considered in the study. These
data were either computed from the digital database of Italian AMS of flood flows compiled during the Italian VaPi (GNDCI-CNR) project
or * retrieved from Rep. no 17 of the former Italian SIMN (National Hydrographic Service of Italy).

MAR* l 1 l2 l3 l4 REC/l1
(mm) (m3 s−1) (m3 s−1) (m3 s−1) (m3 s−1) (–)

Minimum 84.0 1.0 0.3 −27.3 −32.3 1.2
Mean 780.6 309.0 86.1 21.0 16.5 2.7
Maximum 4406.0 1881.6 584.8 154.6 222.1 9.5
25th 384.7 56.1 17.8 2.6 2.3 1.9
50th 653 163.0 51.7 12.1 9.5 2.5
75th 1080.2 418.0 123.6 29.3 21.7 3.3

Table 3. Principal Components ofX variables: variability
accounted for.

Standard Proportion Cumulative
Deviation of Variance Proportion

(–) (%) (%)

PC1 2.11 37.00 37.00
PC2 1.84 28.20 65.20
PC3 1.11 10.20 75.40
PC4 0.97 7.90 83.30
PC5 0.89 6.53 89.83
PC6 0.67 3.69 93.52
PC7 0.60 3.02 96.54
PC8 0.49 1.98 98.52
PC9 0.28 0.64 99.16
PC10 0.25 0.54 99.70
PC11 0.15 0.19 99.88
PC12 0.12 0.12 100.00

– Reference Classification (RC)

– SOMY is obtained by using indices of the stream-
flow regime (Y variables);

– Alternative Classifications (ACs):

– SOMX is based upon the geomorphoclimatic de-
scriptors (X variables);

– SOMPC3 uses the first three Principal Components
of theX variables;

– SOMU uses all canonical variables computed by
applying CCA toX andY variables (i.e.,Ui , with
i=1,. . . , 6);

– SOMU4 uses a subset containing the most descrip-
tive canonical variables (i.e.,Ui , with i=1,. . . , 4).

5.2 SOM classification implementation

A different SOM network was implemented for each set of
catchment characteristics (Y, X, U, U4, PC3). The dimension

Table 4. Canonical Correlation Analysis: level of significanceα of
the null-hypothesis that theith through the 6th correlations are all
zero.

i ρ(Ui ,Vi ) Significanceα

1 0.900 0.00
2 0.830 0.00
3 0.498 0.00
4 0.362 0.00
5 0.244 0.06
6 0.165 0.34

of the input layer varies from 3 (PC3) to 12 (X). As far as the
output layer is concerned, there is not a predefined number of
classes and it was here chosen an hexagonal topology formed
by three rows by three columns, for a total of nine nodes,
each one corresponding to a class.

It is worth remarking here that the selection of the met-
ric, network topology and number of classes, are, to some
extent, subjective choices that may influence the application
of the SOM method. For this reason it is always advisable
to run exploratory analyses to guide the implementation of
the SOM network, and the selection of the most appropri-
ate scheme for the problem at hand. Preliminary analyses
(see Toth and Castellarin, 2008) revealed that nine classes is
a good compromise between homogeneity and size of each
class for classes identified on the basis of the physiographic
and climatic descriptors (i.e.,X variables), where homogene-
ity has to be interpreted in terms of variability of physio-
graphic and climatic catchment descriptors. Therefore, nine
was selected as the number of classes for all classifications
in order for the comparison to be consistent. Some classifi-
cations are based on a much smaller number of descriptors
(e.g. three for SOMPC3). Even though the first three princi-
pal components account for a large portion of the variability
in the original set of descriptors through linear combinations,
it has to be remembered that SOM’s are formed through a
non-linear and unsupervised process. We therefore believe
that a larger number of classes may be adequate also in this
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Fig. 5. SOM classifications of the study catchments (note that SOMU is omitted) and hexagonal topology of the output layer; bar-diagram
for Rand and Adjusted Rand Index.

case and deemed nine classes suitable for all classifications
(i.e., the one based upon 6Y variables, and those based upon
12 X variables and their linear combinations). We used the
Euclidean distance as a measure of the distance between the
vectors, according to the majority of hydrological applica-
tions.

Three out of five SOM’s classifications resulting from the
different sets of descriptors are represented in Fig. 5 (SOMX
and SOMU were omitted due to space limitations). Note that
no relationship exists between classes depicted by the same
colour in different classifications.

The three different SOM’s classifications resulted in visi-
bly different grouping of the catchments, but also a high level
of consistency exists across the three maps, suggesting that
groups of landscape-climate similarity are largely indepen-
dent of the method of classification used.

A detailed and comprehensive physically based interpre-
tation of the patterns emerging from the different classifi-
cations is clearly out of the scope of our analysis, which
assesses whether (unsupervised and objective) multivariate

techniques may improve the effectiveness of an unsupervised
and objective approach (Self Organizing Maps, SOM’s) to
the problem of catchment classification within the general
PUB context. Nevertheless, we believe that a brief discus-
sion of the reference classification, SOMY, may be of in-
terest and use for a number of reasons and, in particular,
for assessing the value of the RC itself from a hydrologi-
cal perspective. Figure 6 presents SOMY by mapping each
cluster separately onto the 9-node output layer, on which, as
mentioned above, similar clusters are close together, whereas
different clusters are far from each other. Concerning catch-
ment size and referring to it in relative terms in respect of the
study area, class 9 groups mainly large catchments, medium
catchments are largely grouped in classes 1, 4, 5, 6 and 8,
while small catchment belong mainly to classes 2, 3 and 7.
Class 7 is far from 2 and 3 and it may be noted that, while
class 7 groups many small Alpine catchments (high altitudes,
continental climate), classes 2 and 3, which are close to-
gether include mainly small Apenninic and medium inland
Sardinian catchments. Concerning medium catchments, it
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Figure 6 811 
Fig. 6. Reference classification SOMY.

may be noted that classes 8, 6, 5, 4 and 1 can be associ-
ated with very clear patterns: class 8 is mainly representative
of Northern catchments that, particularly for the Apenninic
ones show a high degree of homogeneity in the flood fre-
quency regime (see e.g., Castellarin et al., 2001; Castellarin,
2007); catchments belonging to class 6 are predominantly
characterized by a maritime regime, the class groups together
insular coastal catchments of Sardinia and Sicily, and Io-
nian catchments; class 5 includes mainly Apenninic medium
catchments characterized by relatively low altitudes; class
4 clusters low-permeability Apenninic catchments (see e.g.,
Castellarin et al., 2001, 2004); the majority of class 1 catch-
ments are located in areas characterized by limestones and
sandstones, often fractured, and, for the limestone areas the
presence of karst phenomena (ISPRA-DDS, 2004; Castel-
larin et al., 2004). Incidentally, it is worth noting that the
fact that SOMU4 groups together all Sardinian catchments is
a consequence of the rather significant weight longitude and
latitude have in the first four canonical variates (see Fig. 4).

Figure 7 compares the SOM classifications in terms of
number of basins belonging to each class. The figure reports
the sample cumulative distribution functions of the number
of basins belonging to the nine classes of each classification,
indicating the typical size of each class (average number of
basins is equal to 33), together with the variability around
the average value. All classifications present similar distri-
butions, even though AC’s clearly show a higher degree of
similarity among themselves in terms of number of basins
in each class. Concerning this point it is worth noting that
while RC is identified on the basis of indices characterizing
the streamflow regime, all AC’s are delineated by applying
SOM techniques to information that can be retrieved for un-
gauged basins.

Any ungauged basin, once characterized in terms of the 12
considered catchment descriptors, can be allocated to one of
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Figure 7 814 Fig. 7. Sample cumulative distribution function of the number of
basins in each class.

the nine classes of each alternative SOM classifications. The
regional streamflow information collected within the class to
which the ungauged site belongs can then be used to infer the
streamflow regime of the ungauged site itself. The next two
sections assess the effectiveness of AC’s in terms of (1) affin-
ity to the RC and (2) usability in the PUB context to predict
the streamflow regime in ungauged catchment.

5.3 Affinities of alternative SOM classifications with the
reference classification

Two indices of similarity were applied to quantify the affini-
ties between reference (SOMY) and alternative classifica-
tions: the Rand Index (Rand, 1971), RI, and its variation
proposed by Hubert and Arabie (1985).

Comparing two partitions (P1 andP2) of the same data
set, a couple of objects (i.e., catchments) can belong to the
same class or different classes inP1 andP2. Let us define
N00 as the number of catchments that belong to the same
class both inP1 andP2; N10 as the number of catchments
that belong to the same class inP2 but not in P1; N01 as
the number of catchments that belong to the same class inP1
but not inP2; N11 as the number of catchments that belong to
different classes both inP1 andP2. Under these assumptions,
RI reads,

RI =
N11+N00

N11+N00+N10+N01
(3)

RI varies between 1 (perfect agreement between the two par-
titions) and 0 (no agreement).

Hubert and Arabie (1985) proposed an adjustment to the
Rand Index so that its expected value is equal to zero for
random partitions having the same number of objects in each
class. The index is still equal to 1 for perfect agreement but
it can also take negative values (higher discriminatory power
than RI).

The original Rand Index is sensitive to the number of
classes in the partitions, and may be significantly impacted
(i.e., one obtains low index values) when the considered
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alternative classification differs from the reference one in
terms of number of classes. Also for this reason, we pre-
ferred to consider the same number of nodes (i.e., nine) for
all SOM classifications to facilitate the comparison.

The bar-diagrams of Fig. 5 show the values obtained for
these indices by comparing the RC (i.e., SOMY) with all
AC’s (i.e., SOMX, SOMPC3, SOMU and SOMU4). RC is
based on the use of hydrometric information, therefore the
effectiveness of all AC’s, which are suitable for ungauged
basins, is “measured” relative to SOMY.

Figure 5 shows that, as it was expected, SOMX and
SOMPC3 are similar to each other in terms of affinity with
SOMY. Figure 5 also shows that SOMU and SOMU4 are
more similar to SOMY than SOMX and SOMPC3, indi-
cating that SOMU4 outperforms all other classifications in
terms of affinity with the reference classification SOMY.

These results are a consequence of the intrinsic nature of
the alternative SOM classifications considered in our study.
SOMX uses all geomorphological and climatic descriptors,
therefore there is no direct relationship with the informa-
tion used for delineating SOMY and, also, the information
utilised to delineate SOMX presents redundancy that may
impact the efficiency of the classification process. SOMPC3
uses only the most descriptive portion of the available geo-
morphologic and climatic information, therefore removing
some noise from the input data, yet there is no direct re-
lation with the hydrometric information also in this case.
SOMU, instead, uses as input information geomorphologic
and climatic information rearranged to maximize the corre-
lation with the streamflow regime, and SOMU4 uses only
the geomorphologic and climatic information which shows
the highest correlation with the streamflow regime.

5.4 Quantitative comparison of SOM classifications in
the PUB context

The effectiveness of each classification has been further as-
sessed relative to the estimation of streamflow regime for un-
gauged sites. To this aim we developed a number of multiple
regression models for estimating the streamflow index of in-
terest in ungauged sites and we assessed the performances
of these models in cross-validation for all AC’s considered
in the study, to better understand whether or not the utiliza-
tion of PCA and CCA may improve the practical usability of
SOM catchment classifications, reducing the uncertainty of
predictions in ungauged sites.

For the sake of generality and simplicity, we referred in
the study to the simplest possible model structure, there-
fore adopting a linear multiregression model as the reference
model. The model reads,

ŷi = A0+A1PC1i +A2PC2i +A3PC3i +ϑ (4)

whereA0, A1, A2 and A3 are the parameters of the mul-
tivariate linear regression model; PC1i , PC2i and PC3i are
the first three principal components of variablesXfor site i,

with i= 1, . . . , 296, which explain more than the 75.4 % of
the total variance and, for consistency, are used as explana-
tory variables in all multiregression models developed in the
study;ϑ is the residual of the model; andŷi is the normalized
streamflow index of interest for sitei,

ŷi =
ẑi − z̄

sZ
, (5)

with ẑi empirical value of the streamflow index for sitei,
and z̄ andsZ empirical mean and standard deviation of the
streamflow index of interest for the entire dataset.

We performed this analysis by developing for each catch-
ment classification of interest four different multiregression
models (4), namely one model for estimating of Mean An-
nual Runoff (MAR) and three models for estimating the first
3 sample L moments of the annual maximum seriesl1, l2
andl3. In particular, four models were identified for RC (i.e.,
SOMY), which represents the optimal classification, and for
each of the four AC’s (i.e., SOMX, SOMPC3, SOMU and
SOMU4). Four multiple linear regression models were also
identified for the entire national set of basins (NOCLASS),
which represents a baseline condition in the comparison and
sets the minimum level of performance.

We assessed the efficiency of each alternative classifica-
tion AC by referring to the results of an extensive jack-knife
cross-validation of all 24 regression models developed for the
six identified classifications (i.e., RC -optimal-, AC’s, NO-
CLASS -baseline-).

The jack-knife cross-validation procedure is applied in or-
der to quantify the accuracy of each model when applied in
ungauged basins; it is also called in the literature as delete-
one or leave-one-out cross-validation procedure (see e.g.,
Efron, 1982; Zhang and Kroll, 2007; Brath et al., 2003;
Castellarin et al., 2004). This method is extremely versatile
and capable of providing adequate evaluation of the perfor-
mance of the interpolation techniques, since it simulates the
ungauged conditions for each site in the study region. The
procedure can be illustrated as follows,

1. one catchment is eliminated from the set ofN catch-
ments;

2. an empirical multiregression model is identified on the
basis of the information collected at theN -1 remain-
ing catchments (i.e., the first three principal components
are computed and the coefficientsAj of (4), with j =
0, . . . , 3, are estimated through linear multiregression
techniques);

3. the model developed at step (2) is used for estimating
the streamflow index at the discarded site;

4. steps (1) to (3) are repeatedN -1 times, each time by
eliminating a different catchment.

In a few words, the jack-knife procedure estimates the
streamflow index at stake in a given site without taking into
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account the hydrometric information available at the site
itself.

The results of the various cross-validations were quantified
in terms of Nash-Sutcliffe efficiency measure (NSE) (Nash
and Sutcliffe, 1970). NSE varies in the range ]-∞, 1], where
1 corresponds to a perfect agreement between modelled and
empirical values, NSE=0 indicates that estimated values are
as accurate as the mean of the observed values, while nega-
tive values occur when the observed mean value is a better
predictor than the model. The performance index reads

NSE=1−

∑
i=1,N

(
ηJK,i−ηi

)2
∑

i=1,N

(
ηi−

∑
i=1,N

( ηi

N

))2
(6)

whereηJK,i indicates the jack-knife estimate andηi the em-
pirical value for sitei, with i = 1, . . . ,N .

We computed the performance index relative to jack-knife
and empirical values of MAR (Mean Annual Runoff) and
l1 (mean annual flood). Producing reliable predictions of
MAR and l1 in ungauged sites is of primary concern (see
e.g., Brath et al., 2001; Castellarin et al., 2004; Kjeldsen and
Jones, 2010). Concerning the higher order L moments (i.e.,
l2 andl3), instead of comparing directly empirical and jack-
knife values we preferred to focus on flood quantiles (i.e.,
flood flows associated with a given recurrence intervalT ),
computed on the basis of the L-moments. We deem the flood
quantiles to be more meaningful and understandable thanl2
and l3 for summarising the flood frequency regime from a
practical viewpoint. Ultimately, hydrologists and practition-
ers are interested in the estimation of the design flood in un-
gauged sites rather than the L moments’ values.

We estimated the flood quantiles at each and every site
from a Generalized Extreme-Value (GEV) distribution es-
timated with the L moments method (GEV-LMOM algo-
rithm), which is often more efficient than the maximum like-
lihood when used with small to moderate length samples
(please refer to Hosking and Wallis, 1997 for details of the
frequency distribution and the method of L moments). The
GEV distribution was selected in light of its satisfactorily re-
production of the sample frequency distribution of hydrolog-
ical extremes in Italy and around the world (see e.g., Ste-
dinger et al., 1993; Robson and Reed, 1999; Castellarin et
al., 2001).

We arbitrarily selected three different return periods,
T =10, 50 and 100 years and we estimated the flood quan-
tiles through the GEV-LMOM algorithm by referring to the
sample L momentsl1, l2 andl3 and their jack-knife estimates
for all classifications of interest (RC, AC’s, NOCLASS). We
then compared these estimates in terms of (6). To avoid un-
duly extrapolations, we limited the comparison forT = 10
and 50 yr to the 92 out of 296 sites with at least 30 yr of ob-
served annual maxima, and to the 34 out of 296 sites with at
least 40 yr of observations forT = 50 and 100 yr.

It is worth highlighting here that even though the use of
NSE has become a natural part of the modelling practice, its
utilization is still a matter of concern (see e.g., Gupta et al.,
2009). In fact, the usefulness of the observed mean as a refer-
ence value varies strongly in practical applications. Like all
the squared measures, NSE weights the largest observation
very heavily at the expense of smaller values, to overcome
this problem we computed NSE on logflows, this is typically
considered valuable for flood and mean annual streamflows.

6 Results and discussion

Table 5 reports the values obtained for NSE for all cross-
validated streamflow indices and classifications. The scat-
ter plots of Fig. 8 report sample estimates of streamflow in-
dices of interest against predicted values obtained in cross-
validation for some of the classifications considered in the
study. Distribution of relative residuals between empirical
and jack-knifed values of the streamflow index of interest are
illustrated in Fig. 9 for NOCLASS, SOMY, SOMPC3 and
SOMU.

The comparison between the results obtained for the base-
line condition (NOCLASS) and alternative classifications
(i.e., SOMX, SOMPC3, SOMU, SOMU4) indicates that all
SOM classifications led to a remarkable improvement in the
prediction ability of the considered multiregressive model
for all streamflow indices considered in the study. NSE val-
ues show significant improvements for all streamflow indices
and alternative classifications relative to NOCLASS (see Ta-
ble 5). Also, the comparison between the results obtained for
SOMX and those relative to SOMPC3, SOMU and SOMU4
points out that combining SOM with PCA or CCA can im-
prove effectiveness and usefulness of SOM classifications in
the PUB context, that is for predictions of streamflow indices
in ungauged basins.

Results reported in Table 5 indicate that multiregression
models based on SOMU4 outperform the other models for
predicting MAR in ungauged basins. SOMU4 is as accurate
as the optimal classification SOMY in predicting MAR in
ungauged basins.

Table 5 illustrates a different picture for the prediction of
the annual flood (l1). In this case the application of SOMPC3
results in the best NSE value, but, above all, performances
of all alternative classifications are similar and low, defi-
nitely lower than SOMY and comparable with NOCLASS
performances. This result was somehow expected, ours study
adopts a very simplistic model (see Eq. 4) and the prediction
of the central tendency of the flood frequency distribution
(e.g., annual flood, median, index-flood, etc.) is indicated by
the literature as one of the most critical steps required by the
application of regional models to ungauged sites and is gen-
erally associated with a large uncertainty (see e.g., Brath et
al., 2001; Castellarin, 2007; Kjeldsen and Jones, 2010).
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Table 5. Cross-validation of multiple regression models: NSE values for log-transformed streamflow indices (QT indicates the flood quantile
with recurrence intervalT , the highest NSE value among alternative classifications is highlighted in bold-italics).

Minimum NSE

Record Length NO-CLASS SOMY SOMX SOMPC3 SOMU4 SOMU

MAR
No limit

0.53 0.75 0.69 0.66 0.75 0.64
l1 0.49 0.76 0.53 0.58 0.54 0.42

Q10 30 yr
0.52 0.76 0.45 0.55 0.48 0.59

Q50 0.48 0.80 0.45 0.53 0.55 0.61

Q50 40 yr
0.36 0.79 0.34 0.53 0.43 0.49

Q100 0.30 0.82 0.35 0.52 0.47 0.53

Concerning the prediction of flood quantiles, the results of
our study point out a clear supremacy of SOMU. Table 5 in-
dicates that SOMU is associated with the highest NSE values
3 out of 4 times. It is interesting to note that also SOMPC3
shows good performances, implying that the removal of re-
dundant information involved in the identification of SOMX
improves the accuracy of the regional models. Nevertheless,
the lower bias and variability of residuals of SOMU relative
to SOMPC3 is also evident in the boxplots of Fig. 9.

Concerning the box-plots of Fig. 9, a striking figure is
the large number of outliers (circles) of relative residuals for
the predictions of all streamflow indices considered in cross-
validation (outliers are defined as values situated at a distance
from the lower and upper quartiles which is 1.5 times larger
than the distance between the quartiles themselves). This
may be due to the extreme simplicity of the linear regional
model and the huge variability of climatic and hydrological
characteristics of the consider catchments.

Furthermore, results obtained for SOMY (reference clas-
sification) and SOMX, SOMPC3, SOMU4 and SOMU re-
ported in Table 5 and Fig. 9 also point out rather clearly that,
aside from predictions of MAR, there is still a great margin
for improvements. The gap in terms of performance between
regional models based on SOMY and models based on all al-
ternative classifications is significant. It is worth noting that
this outcome has nothing to do with the limitations of the
simplistic regional model adopted in the study (i.e., Eq. 4),
nor the information used by the regional model. The struc-
ture of the regional model does not vary and the predictions
in cross-validation of all regional model are based upon the
same information (i.e., first three principal components ofX

variables). Simply, SOMY transfers the streamflow informa-
tion from gauged sites to ungauged ones in a more effective
way. None of the catchment classifications based directly
(SOMX) or indirectly (SOMPC3, SOMU, SOMU4), on the
available catchment descriptors is as efficient as SOMY in
transferring the streamflow information from gauged to un-
gauged sites. This gap may be reduced by identifying more
informative catchment descriptors (see e.g., Savenije, 2010)
given the growing availability of easily accessible high res-

olution topographic and land-cover data, together with GIS
tools for hydrologic analysis. Further improvements may
probably stem from a process-based reorganization of the
available information based on physically-based criteria that
aims at further removing some noise characterizing the avail-
able set of catchment descriptors.

Concerning this point, future analyses could study the
variability of catchment characteristics within each class (or
node) of the SOM networks, testing whether this variability
can be related with the uncertainty in the predicted stream-
flow indices. Moreover, future analyses, possibly focussing
on larger datasets and diverse climatic and hydrological con-
ditions, could further test the same classification algorithm
(i.e., PCA/CCA and SOM) for catchment descriptors that
combine (1) raw morphological information (e.g., catchment
area, main channel and drainage network length, altimetry)
to compute hydrologically significant characteristics, such as
for instance the time of concentration or drainage density
(Pallard et al., 2009), and (2) raw climatic information (e.g.,
catchment scale mean monthly and annual precipitation and
temperature) to estimate aridity indices or net precipitation
(Castellarin et al., 2007).

7 Conclusions

Our study analyses the effectiveness of unsupervised neural
networks (Self Organising Maps, SOM) coupled with mul-
tivariate techniques for reducing the high dimensionality of
catchment descriptors (i.e., Principal Component Analysis,
PCA, and Canonical Correlation Analysis CCA) for produc-
ing catchment classifications on objective bases.

Catchment classification does not have a purpose in itself
in the context of our analysis, and does not represent a mere
scientific exercise, but represents the means to transfer in-
formation from gauged sites to ungauged ones, reducing the
uncertainty of hydrological predictions in ungauged sites.

We consider some 300 Italian catchments scattered na-
tionwide, which represent a complex compound featur-
ing all Italian hydro-climatic settings, from Alpine to
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Figure 8 818 

Fig. 8. Examples of scatter-plots (empirical vs. jack-knife values) obtained in cross-validation for some of the classifications considered in
the study (the baseline classification NO-CLASS is reported in grey in each panel).
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Figure 9 821 

Fig. 9. Distribution of relative errors in terms of 25th, 50th and 75th percentiles, maximum and minimum values, and outliers (circles).

Mediterranean, from humid to semiarid, and from continen-
tal to maritime conditions.

The catchments are grouped into five different classifica-
tions, all delineated by means of unsupervised neural net-
works. One reference classification is identified by using
as catchment descriptors indices of the streamflow regime
and flood statistics (reference classification). Four alternative
classifications are derived by referring to a number of geo-
morphologic and climatic catchment descriptors which can
be computed for ungauged basins. One of this classification
uses the entire set of descriptors as input variables to SOM,
whereas the remaining three alternative classifications utilize
as input variables a limited number of measures that are lin-
ear combinations of the original catchment descriptors ob-
tained by applying PCA or CCA.

We compared the similarity of the alternative classifica-
tions with the reference classification. We also compared the
accuracy of regional predictions of mean annual runoff, mean
annual flood and flood quantiles for various recurrence inter-
vals based on the alternative catchment classifications with
the accuracy of the same predictions based on (1) the refer-
ence classification and (2) a baseline condition which groups
together the entire system of Italian catchments (absence of
classification). The regional predictions are obtained through
the application of an extensive cross-validation procedure
that simulates the ungauged conditions at each and every site.

Main outcomes of the study may be summarised as fol-
lows: (i) SOM’s confirm their effectiveness and usefulness
as objective criteria for pattern recognition and, in particu-
lar, for delineating catchment classifications; (ii) PCA and
CCA can significantly improve the effectiveness and useful-
ness of SOM in the context of PUB, that is for reducing the

uncertainty of hydrological predictions in ungauged sites; we
strongly encourage to perform PCA, and in particular CCA,
on the available set of catchment descriptors before apply-
ing SOM; (iii) catchment classification provides a great deal
of information for enhancing hydrological predictions in un-
gauged basins, yet the application of objective but merely
statistical criteria and algorithms (PCA and CCA with SOM)
revealed some limitations that may be significantly reduced
by switching from data-driven to data- and process-driven
catchment classification. Designing a theoretical framework
for combining these two different perspectives is an excit-
ing open problem for future analyses. Our study focuses on
a multipurpose catchment classification, future analyses will
also consider hydrological classifications that are identified
by focusing on a more specific water-problem, e.g., predic-
tion of low-lows, flood flows, or surface water availability, to
assess whether or not the same conclusions still hold.
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