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Abstract. In this paper, reanalysis fields from the ECMWF
have been statistically downscaled to predict from large-scale
atmospheric fields, surface moisture flux and daily precipita-
tion at two observatories (Zaragoza and Tortosa, Ebro Valley,
Spain) during the 1961–2001 period. Three types of down-
scaling models have been built: (i) analogues, (ii) analogues
followed by random forests and (iii) analogues followed by
multiple linear regression. The inputs consist of data (predic-
tor fields) taken from the ERA-40 reanalysis. The predicted
fields are precipitation and surface moisture flux as measured
at the two observatories. With the aim to reduce the dimen-
sionality of the problem, the ERA-40 fields have been de-
composed using empirical orthogonal functions. Available
daily data has been divided into two parts: a training pe-
riod used to find a group of about 300 analogues to build
the downscaling model (1961–1996) and a test period (1997–
2001), where models’ performance has been assessed using
independent data. In the case of surface moisture flux, the
models based on analogues followed by random forests do
not clearly outperform those built on analogues plus multi-
ple linear regression, while simple averages calculated from
the nearest analogues found in the training period, yielded
only slightly worse results. In the case of precipitation, the
three types of model performed equally. These results sug-
gest that most of the models’ downscaling capabilities can be
attributed to the analogues-calculation stage.

Correspondence to:G. Ibarra-Berastegi
(gabriel.ibarra@ehu.es)

1 Introduction

Global Climate Models (GCM) and Numerical Weather
Forecast (NWF) models solve discretized versions of the
primitive equations that govern the evolution of the climate
system and, particularly, its atmospheric component. Due
to technical limitations of current supercomputers, GCM
are currently run using resolutions ranging from about 4 to
1.5 degrees for climate simulations and most recent NWF
operate with a spatial resolution as high as T1279 L91 (at
ECMWF), with a 16 km resolution globally (0.1 degree).

Statistical downscaling is one of the approaches that have
been developed and used to regionalize the outputs from
GCM and NWF i.e. to construct region- or site-specific sce-
narios. The rationale for this is based on the fact that the
GCM and NWF are not able to simulate surface variables
with enough accuracy on regional and local scales. Statis-
tical downscaling consists in a search in the observed data
for a statistical relationship or transfer function between
the surface climate variable to be downscaled (predictand)
and potential predictors, which are frequently the large-scale
upper air variables. Statistical downscaling is very often
used in the development of regional climate change, sce-
narios but it has also been used for NWF, particularly for
short time ranges with (Fernandez-Ferrero et al., 2009, 2010;
Hamill and Whitaker, 2006; Voisin et al., 2010 and refer-
ences therein).

The analogue downscaling approach tries to identify from
historical records, synoptic conditions that are similar to the
current atmospheric state as described by GCM and NWF
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models. The idea is that historical records at a given loca-
tion obtained under past similar atmospheric conditions, can
now be expected to be a good estimate for current observa-
tions at the same place. The Euclidean distance is usually
employed (Matulla et al., 2008) to compare current and past
synoptic conditions and then identify those which are close
(similar) to the current state of the atmosphere. In order to
reduce the dimensionality of the phase space and to help in
the finding of good analogues, empirical orthogonal func-
tions (EOF) are usually calculated from raw synoptic data.
It is recommended to retain a number of EOF representing
80 %–90 % of the overall variability (Matulla et al., 2008).

The analogue technique has often been used as a down-
scaling method (Zorita and von Storch, 1999; Fernández
and Śaenz, 2003; Timbal and Jones, 2008) and it performs
similarly when compared with Canonical Correlation Anal-
ysis (CCA) while outperforming nonlinear approaches like
Classification and Regression Trees (CART) and neural net-
works (NN) (Zorita and von Storch, 1999).

For downscaling purposes, several regression techniques
– linear or not – have been also widely used. In this line,
for surface temperature, a classical CCA seems to perform
better than other linear methods (Huth, 2002). Among non-
linear methods is worth mentioning the use of different types
of NN which are reported to outperform linear models (We-
ichert and B̈urger, 1998; Miksovsky and Raidl, 2005; Davy
et al., 2010). Other works suggest that for statistical down-
scaling of temperature, linear models cannot be beaten by
NN (Huth et al., 2008).

A combination of analogues with other techniques like
CCA, NN or a Bayesian model for precipitation downscal-
ing but at 6-hourly level and in forecasting mode has also
yielded good results (Fernández-Ferrero et al., 2009, 2010).
In general, several studies exist which as a first step, have
used an initial search of analogues followed by some cali-
bration step (bayesian or not) (Benestad, 2008, 2010; Hamill
and Whitaker, 2006; Voisin et al., 2010). The use of bayesian
techniques for calibration purposes of ensemble forecasts
is the focus of other studies focused on multivariate gaus-
sian data (Stephenson et al., 2005). It is well known that
analogue-based statistical downscaling models cannot pro-
duce non-observed record-breaking output values and some
calibration techniques have been proposed to overcome this
problem (Benestad, 2010).

In the last decade, a great number of machine learning
algorithms have been developed (Witten and Frank, 2005).
Among them, Random Forests (RF) has become increasingly
popular for several reasons, being the most important one its
ability to model nonlinear relationships.

When compared with other techniques also intended to
deal with nonlinear regression, in the case of similar down-
scaling problems the literature shows that RF and a type of
NN, the multilayer perceptron, perform similarly (Eccel et
al., 2007).

RF is based on the CART technique, in which a tree is built
to relate a set of inputs to a group of output variables. The
relationship between inputs and outputs may be highly non-
linear if taken as a whole, but if analyzed at different ranges,
the nature of the relationships inside each range may be mod-
elled in a simpler way. For this reason, in a CART the feature
space is recursively splitted into a set of regions in which a
simple model like a constant (Hastie et al., 2001) or a sim-
ple linear regression can be fitted. As the splitting process
progresses starting from the root, the tree is divided at sub-
sequent nodes into branches and sub-branches until reaching
the leafs (a more homogeneous region where a simple re-
gression between inputs and outputs is more evident). The
final stage implies going backwards to the tree obtained and
prune it using cost-complexity pruning algorithms. (Hastie
et al., 2001).

Random forests are built using CART but adding two lay-
ers of randomness (Liaw and Wiener, 2002):

1. If a number of bootstrap samples from original data are
drawn, a regression tree can be obtained with each sam-
ple, thus obtaining a “forest”.

2. In standard trees, each node is split using the best split
among all variables. In a random forest, for each tree,
each node is split using the best among a subset ofm

predictors randomly chosen at that node.

Each tree is grown to the largest extent possible. There is
no pruning. The most relevant parameters in running the RF
algorithm are (i)m the number of predictors made available
to each node and (ii) the number of trees grown Beingp the
number of candidate predictors, values ofm like p/3 orp0.5

are usually adopted. Nevertheless, results do not strongly
rely on the choice ofm (Breiman, 2001). The number of
trees necessary for good performance grows with the number
of predictors. The best way to determine how many trees
are necessary is to compare predictions made by a forest to
predictions made by a subset of a forest. When the error
obtained with the subset is the same as the error obtained
with the full forest, this means that the forest has got enough
trees (Breiman, 2001).

RF can be used for classification and regression purposes.
In the case of regression, the output of the RF model will sim-
ply be the average of the outputs obtained in each tree. RF are
reported to clearly outperform CART (Siroky, 2009), being
one of RF’s most important advantages when compared with
other techniques, that overfitting never takes place (Siroky,
2009). The relative importance of each predictor on the pre-
dictand is estimated at each tree by calculating the increase
in the mean square error due to permuting a given predic-
tor. If that regressor has no predictive value for the response,
it should not make a difference if its values are randomly
permuted before the predictions are generated (Grömping,
2009). Then, differences due to these permutations in all the
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trees are averaged and normalized by the standard error. This
is known as mean decrease in accuracy of the predictor.

A thorough revision regarding the major mathematical as-
pects of RF, can be found in the literature (Breiman et al.,
1984; Breiman, 2001, 2002; Hastie et al., 2001; Liaw and
Wiener, 2002; Ishwaran, 2007; Siroky, 2009; Grömping,
2009).

In the case of the Iberian Peninsula (IP), precipitation
shows an important spatial variability with typical yearly val-
ues ranging from 300 to 3000 mm depending on the location.
The variability of precipitation is associated with several at-
mospheric patterns, depending on the location or the season
of the year: the most important patterns influencing Iberian
precipitation are East Atlantic (EA), North Atlantic Oscilla-
tion (NAO); Southern Oscillation Index (SOI) and Scandi-
navia (SCAND) (Rodriguez-Puebla et al., 1998; Fernández
et al., 2003).

Although in precipitation downscaling there is little con-
sensus as to the choice of atmospheric predictor variables
(Wilby and Wigley, 2000), the most common input vari-
ables have been 850 and 500-hPa heights. In other works,
additional variables like 500-hPa temperature, 700 hPa lev-
els, 500-hPa relative humidity, 500-hPa wind components,
1000–500-hPa thickness and 850-hPa temperature fields to
mention a few, have also been used (Cavazos, 2000; Wilby
and Wigley, 2000; Schoof and Pryor, 2001). In more re-
cent works, the predictors for the downscaling procedure in-
clude mean sea level pressure, geostrophic wind field, spe-
cific humidity and moisture flux (Wei et al., 2010) or total
precipitable water (Timbal and Jones, 2008). A thorough
analysis of different combinations of predictors applied to
short range quantitative precipitation forecast was presented
by Fernandez-Ferrero et al. (2009).

In the case of precipitation, using highly nonlinear tech-
niques like radial basis function (RBF) NN instead of more
simple linear models, only represents a marginal improve-
ment (Weichert and B̈urger, 1998). Other works also sug-
gest that in the case of precipitation, a linear model of down-
scaling can perform equally or even better than highly non-
linear NN (Trigo et al., 2001). A comparison between NN
and linear downscaling for daily temperature and precipita-
tion showed that NN performed better, although the results
with precipitation have been significantly poorer (Schoof and
Pryor, 2001). As reported in the literature, performance
tends to be better in winter (Timbal and Jones, 2008; Wei et
al., 2010) and mid latitudes (Cavazos and Hewitson, 2005).
Typical correlation coefficients between predictions and ob-
servations may reach values around 0.7 for downscaling of
monthly averages and about 0.5 for daily precipitation.

The technique of analogues have been used for precip-
itation downscaling in the IP with similar results and are
reported to outperform NN (Zorita and Von Storch, 1999).
Analogues followed by a bias-correcting heuristic formula
has also been used for precipitation downscaling (Timbal
and Jones, 2008). Generally speaking, the combination

of classification schemes like Cluster Analysis (Schoof and
Pryor, 2001), or self-organizing maps (Cavazos and Hewit-
son, 2005) followed by regression techniques (linear or not)
seem to yield the best results for precipitation downscaling.
A comprehensive review of methods and predictors used can
be found in the literature (Wilby and Wigley, 2000).

At a hemispheric scale, changes in the vertically integrated
moisture transport are connected to the different phases of
the NAO (Hurrell, 1995). Regarding the moisture transport
on the Iberian Peninsule (IP), the NAO and EA patterns are
known to play a key role (Fernandez et al., 2003). The two
most important moisture source regions affecting the IP are
in a tropical–subtropical North Atlantic corridor that extends
from the Gulf of Mexico to the IP, and the IP itself and the
surrounding Mediterranean (Gimeno et al., 2010). The im-
portance of these two source areas varies throughout the year,
and also with respect to different climatic regions inside the
IP.

Some works have also focused on the downscaling of dif-
ferent moisture variables. A set of downscaling models built
on multiple linear regression showed that in the case of hu-
midity variables, the most efficient predictors are the low-
medium tropospheric air humidity variables (up to 500 hPa)
and adding circulation and/or temperature variables to the
predictors could only bring a marginal or even no improve-
ment over the downscaling models based on the humidity
variables only (Huth, 2005). The results show that in the case
of water vapour pressure and dew point temperature, results
are better than those obtained for relative humidity and dew
point depression (Huth, 2005). Like in the case of precipi-
tation, a comparison of water vapour downscaling methods
using linear regression and RBF NN, showed that a nonlin-
ear model like RBF outperfoms linear models, although not
dramatically (Wilby and Wigley, 2000).

In this study, a combination of analogues, RF and lin-
ear regression techniques are applied, analyzed and com-
pared for downscaling purposes in the Ebro Valley (Spain)
(Fig. 1). The main objective of the study is to compare
the performance of different techniques for the downscaling
of moisture-related variables. All of the techniques share a
common core, the search of analogues in the space spanned
by the EOF of the predictor fields, but they differ in the way
the output from the analogue phase is postprocessed.

The target variables are the moisture flux and precipita-
tion. Changes in the variables involved in the water cycle
in the area of interest (Ebro Valley) like moisture flux and
precipitation, are likely to have an impact on future changes
regarding the overall water cycle in the Mediterranean Sea.
Gaining a better knowledge on downscaling techniques ap-
plied to the variables involved in the water cycle, may con-
tribute to a more accurate regionalization of future projec-
tions as described by large-scale climatic models (Mariotti,
2010).

Precipitation is one of the most commonly used variables
for climate change studies.The reason is that the evolution
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Fig. 1. Area of study. ERA-40 and ERA-Interim 35 gridpoints, Ebro Valley, Zaragoza (Zar) and Tortosa (Tor).

in the amount of precipitation over a country is crucial for a
whole set of natural and economic processes.

In the case of the surface moisture flux (in this paper, de-
noted as the vectorq10 with zonal and meridional compo-
nentsqx andqy), it is a variable closely related with the hy-
drological cycle over any area. Most of the humidity trans-
port takes place through low-level atmospheric layers and is
affected by several surface characteristics such as topogra-
phy, land surface and others that vary in the smallest scales.
In general, a complete study of the moisture cycle over the re-
gion would require the analysis of vertically integrated mois-
ture transports and water column, which are the quantities
related through conservation laws with moisture sinks and
sources such as precipitation or evaporation (Berbery and
Rasmusson, 1999).

Unfortunately, historical data from rawinsonde observa-
tions are quite scarce, and the study cannot be currently eas-
ily extended to vertically integrated moisture transports in or-
der to close the atmospheric hydrological cycle through the
whole troposphere. Thus, for this study the moisture fluxes
at the surface are considered as an initial problem before fur-
ther studies allow an analysis of tropospherically integrated
transports. Additionally, moisture flux at the low levels of
the troposphere is a variable obtained from the product of
two original variables forecast by a NWF or a GCM model.
It is interesting to check the ability of the downscaling model
to forecast it, since there are other variables, such as the wind
speed that involve multiplication of original variables and are
of special interest, for instance in wind energy.

The previous experiences gained by the research group
in the combination of analogues and linear/nonlinear tech-
niques (Ferńandez and Śaenz, 2003; Ferńandez-Ferrero et
al., 2009, 2010) has inspired the methodology used in this
paper. In this work, analogues, linear regression and ran-
dom forests have been used to build statistical downscaling
models for surface moisture flux and precipitation at two
observatories (Zaragoza and Tortosa, Ebro Valley, Spain)

corresponding to the period 1961–2001. The models have
been built at a daily time scale.

Section 2 presents the data used in the study and the
methodology applied to perform and evaluate the forecasts.
Results are presented in Sect. 3. Finally, conclusions and
prospects for future work are presented in Sect. 4.

2 Data and methodology

2.1 Data

For q10 and precipitation downscaling purposes, the large-
scale observed predictors have been derived from the Eu-
ropean Centre Medium-Range Weather Forecast (ECMWF),
corresponding to the ERA-40 (Uppala et al., 2005) and ERA-
Interim reanalysis, downloaded from ECMWF’s MARS
server with a 1.125◦ × 1.125◦ resolution. ERA-40 and ERA-
Interim reanalysis are projected onto the same grid. The
studied area is a rectangle of 35 gridpoints with latitudes
in the range (39.375◦ N, 43.875◦ N) and longitudes between
−3.375◦ E and 3.375◦ E, that is, the North-Eastern part of
the Iberian Peninsule, and more specifically, the Ebro val-
ley (Fig. 1). In order to check the sensitivity of the results
to the size of the domain, two additional domains with 90
and 9 gridpoints have been used, and additional information
on them can be found in the discussion paper, whilst results
from these domains will only briefly presented here. Consid-
ering the spatial resolution of the original dataset, the daily
frequency (that is the large sample used) and the high num-
ber of vertical levels used, larger domains could not be used
due to memory constraints in the available computers. How-
ever, previous results from the authors suggest (Fernandez
and Saenz, 2003; Figs. 13 and 14; and Table 1) that very
big domains do not imply a real advantage when using ana-
logues in the EOF space. The reason is that the EOF select
the directions of the phase space with the maximum variabil-
ity, which, for very large domains, can happen in areas very
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Table 1. The 79 leading EOF for ERA-40.

Percentage of overall
variability in:

Variable Number All 1st 2nd 3rd
of EOF retained EOF EOF EOF
retained EOF

Z 5 97.6 77.7 15.6 2
T 5 93.9 84.2 4.4 2.8
U 7 80.6 55.9 9.2 5.3
V 7 83.4 59.9 10.3 5
RH 28 80 27.3 10 5.4
MSL 5 98.8 89.6 4.5 2.5
U10 7 80.5 49.9 10.4 6.3
V 10 5 80 56.4 9.7 7.2
T 2 5 97.6 91.2 2.9 1.7
D2 5 94.6 86.4 3.2 2.2

remote to the placement of the observatories where the fore-
cast is done.

The original predictors as defined in ERA-40 and ERA-
Interim reanalysis grid were as follows: geopotential (Z),
temperature (T ), zonal wind speed (U ), meridional wind
speed (V ) and relative humidity (RH) defined at the fol-
lowing 5 levels: 300, 500, 700, 850 and 1000 hPa, Ad-
ditional variables considered were mean sea level pressure
(MSL), surface pressure (SP), zonal wind speed at 10 m
(U10), meridional wind speed at 10 m (V 10), temperature
at 2 m (T 2) and dew point temperature at 2 m (D2). The se-
lection of predictors is consistent with previous results of the
authors regarding the optimal set of predictors (Fernandez-
Ferrero et al., 2009). Finally, for all these variables at the
35 gridpoints, data were available at 00:00, 06:00, 12:00 and
18:00 GMT. That made a total of 4200 daily predictor vari-
ables in the area considered. Due to their different nature
and ranges, all predictors were rescaled to have a mean of
zero and a standard deviation of one (Imbert and Benestad,
2005)

With the aim to reduce the dimensionality of ERA-40 and
ERA-Interim data, Empirical Orthogonal Functions (EOF)
were calculated, selecting for each variable a varying num-
ber of EOF under the condition that the retained fraction of
variance was at least 80 %. With this criterium, the number
of EOF for each variable ranged from 5 to 28, thus notori-
ously reducing the number of predictors from 4200 to a final
global amount of 79. These 79 leading EOF were calculated
for ERA-40 (Table 1) and ERA-Interim (Table 2). The four
values corresponding to the same days (00Z, 06Z, 12Z and
18Z) are considered as four samples at different times during
the computation of the EOF in the same way that data with
time delays is used during the computation of extended EOF
(Weare and Nasstrom, 1982).

Table 2. The 79 leading EOF for ERA-Interim.

Percentage of overall
variability in:

Variable Number All 1st 2nd 3rd
of EOF retained EOF EOF EOF
retained EOF

Z 5 97.6 74.7 18.2 2.2
T 5 93.7 83.8 4.4 2.9
U 7 84.5 58.2 9.7 5.5
V 7 85.8 61.2 11.2 5.3
RH 28 78.3 25.6 10.6 5.5
MSL 5 98.9 90 4.3 2.5
U10 7 86.5 56.1 13.7 6.2
V 10 5 83.3 58.7 10.4 7.6
T 2 5 97.1 90.7 3.1 1.5
D2 5 94.3 86.4 3.1 3.1

Surface observations at two locations (Zaragoza and Tor-
tosa) were obtained from the European Climate Assessment
(ECA) datasethttp://eca.knmi.nl(Klein Tank et al., 2002).
The variables obtained from ECA repository were temper-
ature, relative humidity, mean sea level pressure, precipi-
tation and wind speed and direction from which zonal and
meridional components (Us andVs) were computed. Mean
sea level pressures at Tortosa (48 m altitude.) and Zaragoza
(247 m altitude) were corrected to surface pressure (SP) by
assuming that the vertical temperature profile corresponds to
the adiabatic lapse rate. Combining SP with observed tem-
perature and relative humidity, specific humidity (q) values
(kg water vapour/kg air) at surface level were calculated at
both locations using the Clausius-Clapeyron equation. Zonal
and meridional moisture fluxes (qx andqy expressed as kilo-
grams of water vapour per square meter per second) were
calculated as follows:

qx = qρUs (1)

qy = qρVs (2)

whereρ represents the density of air as a function of temper-
ature.

In Zaragoza, the meridional component ofq10 (qy) ac-
counts for 29.3 % of the overall variance associated to the
q10 vector, while in Tortosa, the meridional component rep-
resents as much as 67.3 %. The most important values of the
variables measured in Zaragoza and Tortosa can be seen in
Table 3.

In a similar way as described above, (Clausius-Clapeyron
followed by Eqs. (1) and (2) fed withU10 andV 10 instead
of Us andVs), zonal and meridional components ofq10 were
calculated on the ERA-40 and ERA-Interim gridpoints us-
ing T 2, D2, SP andρ. For comparison purposes, zonal and
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Table 3. Observed values in Zaragoza and Tortosa (1961–2001).

Average 5th percentil 95th percentil

Zaragoza

Temp (K) 288.42 277.15 300.15
Rel. Hum. (%) 64.46 43.00 91.00
Prec. (mm day−1) 0.90 0.00 5.30
qx (kg vapour m−2 s−1) 0.02 −0.04 0.07
qy (kg vapour m−2 s−1) −0.01 −0.05 0.02

Tortosa

Temp (K) 290.68 281.15 300.35
Rel. Hum. (%) 66.61 41.00 89.00
Prec. (mm) 1.55 0.00 8.30
qx (kg vapour m−2 s−1) −0.0016 −0.034 0.03
qy (kg vapour m−2 s−1) 0.001 −0.037 0.045

meridional components ofq10 (qx and qy) at the nearest
gridpoints to Zaragoza (13.6 km away) and Tortosa (65.1 km
away) were considered. The reason is that any downscal-
ing effort onq10 should yield better results that the values of
q10 as calculated from both reanalyses at the geographically
closest gridpoints.

Additionally, daily precipitation data were also retrieved
from Global Precipitation Climatology Project (GPCP)
http://jisao.washington.edu/data/gpcp/daily/which provides
gridded precipitation data with a 1◦

× 1◦ resolution (Huff-
man et al., 2001, Adler et al., 2003).

The precipitation data from the GPCP dataset (Adler et al.,
2003; Huffmann et al., 2001) is used because previous stud-
ies (Lucarini et al., 2007) have already found inadequacies
in precipitation data from ECMWF reanalyses. Precipitation
observations are not directly assimilated during the prepara-
tion of reanalyses and therefore, they are produced by the
model used in the data assimilation system. Therefore, it is
better to use precipitation data from other sources like GPCP.

In the GPCP grid, the closest gridpoints to Zaragoza and
Tortosa are located respectively 59 and 36 km away from the
observatories. Persistence and precipitation data as given by
the GPCP dataset at these two gridpoints were used as ad-
ditional reference values. Again, the idea behind the use
of these data is that any downscaling effort on precipitation
could only be justified if better results than local persistence
and/or raw GPCP data at these two nearest gridpoints were
obtained. That is, it can not be assumed that observations
are error free, particularly for a magnitude such as precipita-
tion. If two different observational estimations of precipita-
tion (ECA and GPCP) differ in a given amount, it can not be
expected that a particular downscaling model could be more
accurate than any of the observational datasets with respect
to the other is.

2.2 Building the models

The original database consisted of 14 975 daily cases span-
ning from 1961 through 2001 and was splitted into a train-
ing (years 1961–1996, 13 149 cases) and a test period (years
1997–2001, 1826 cases). In both the training and the test pe-
riods, daily ERA-40 and surface ECA values were available.
Additionaly, for the test period ERA-Interim data were also
available.

In this study, downscaling models have been built for two
locations (Zaragoza and Tortosa) and three variables: zonal
and meridional components ofq10 and precipitation. The
steps followed in all cases have been:

1. For each of the 1826 days belonging to the test dataset,
the 300 nearest cases among the 13 149 days corre-
sponding to the training database are selected. The near-
est cases are those with the smallest Euclidean distance
to the current case as defined in the 79-dimensional hy-
perspace corresponding to the historical ERA-40 data
(Table 1). The reason for choosing a number of 300 ana-
logues was to allow for a reasonable number of cases
(4–5) for each of the 79 candidate predictors, thus
avoiding overfitting when applying linear regression at
the following regression stage.

2. With these 300 analogues, two downscaling regression
models are built using as candidate predictors the 79
ERA-40’s principal components and, as predictand, the
chosen variable (any of the the two components ofq10
or precipitation in Zaragoza or Tortosa). Two tech-
niques are used to build the models: random forests
(RF, with m = 9 predictors) and multiple linear regres-
sion (MLR, stepwise regression).

Being 79 the number of predictors, several values
of m as suggested by the literature were tested with
RF: m = 9 (790.5, usually employed for classification),
m = 26 (79/3, usually employed for regression),m = 79
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plus the sequence ofm = 10, 20, 30, 40, 50, 60, 70. For
these ten candidate values ofm, the correlation coeffi-
cients between observations and predictions were com-
puted for all the variables and also, the most influen-
tial inputs were identified. The correlation coefficients
obtained with the different candidate values ofm were
not different at a 95 % confidence level for all the vari-
ables studied. Also, the relevant inputs identified were
the same – as could be expected from CART-based RF
(Grömping, 2009) –, so for the sake of simplicitym = 9
was the final value selected for this study.

At a preliminary stage of this work, several values of
the number or trees were considered and it could be
seen that the test set error did not decrease beyond ap-
proximately 100 trees. As suggested by the literature
(Breiman, 2002; Peters et al., 2007) and since RF pro-
duces trees very rapidly, 1000 was the number of trees
finally selected for all predictands. The predicted val-
ues was the average of the outputs from the 1000 trees
(Breiman, 2001).

As mentioned above, two regression models for each
predictand are fitted on the 300 nearest cases. In all
cases, the candidate predictors are the 79 EOF from
ERA-40 reanalysis and the predictand, the surface vari-
able (qx , qy or precipitation in Zaragoza or Tortosa as
derived from ECA observations). One of the models is
fitted using a MLR and the other using random forests.
Due to the gaps in the ECA database, some historical
records of the predictands corresponding to the most
similar 300 days identified in the atmospheric circula-
tion analogues (reanalysis), are not present. For this
reason, regression is carried out using a set of cases in
which predictors and predictand are present that typi-
cally ranges between 250 and 300. For each case be-
longing to the test dataset, two models (RF and MLR)
are fitted in this way.

3. Using the 79 EOF corresponding to every day of the test
dataset as inputs, the two models previously fitted (RF
and MLR) on the 250–300 most similar historic records
were used to calculate an estimated value of the chosen
variable for the same day in Zaragoza or Tortosa. To
test the sensitivity of both techniques (RF and MLR) to
the use of ERA-40 or ERA-Interim analyses, once the
two models have been fitted on ERA-40 data, both mod-
els are run with two different sets of inputs: (i) the 79
EOF from ERA-40 (models denoted as RF ERA-40 and
MLR ERA-40) and (ii) the 79 EOF obtained with ERA-
Interim (RF ERA-Interim and MLR ERA-Interim). Ad-
ditionally, a plain average obtained from ECA values
corresponding to the 250–300 most similar daily cases
identified, is used to build an dditional analogue-type
downscaling model (denoted as “Analogues” model).

4. Finally, as mentioned above, the most evident estima-
tions ofq10 and precipitation were also considered. In
the case of zonal and meridional components ofq10,
(qx , qy ,) the values directly calculated using ERA-40
and ERA-Interim reanalyses raw data at the geographi-
cally nearest points to Zaragoza and Tortosa. In the case
of precipitation, the idea is the same but two other ref-
erences were used. The first one was the GPCP satellite
and rain gauge merged precipitation data set. The sec-
ond one was just to consider the persistence of levels
from the previous day.

It is worth mentioning that the sensitivity of this method-
ology to (i) the domain size and (ii) the use of “mixed EOF”
(Benestad et al., 2002) instead of independent EOF, was in-
tensivily tested. The results show that for this area of the
Iberian Peninsule, changing the area covered by the domain
by an order of magnitude (in km2) does not have an impor-
tant impact on results. This is due to the fact that the most in-
fluential variables used for downscaling exhibit a small spa-
tial variability. As a consequence, using independent EOF or
mixed EOF obtained from variables that do not have an im-
portant spatial variability, does not have an important effect
on results either (for in-depth details, please see the discus-
sion forum of HESS corresponding to this paper).

2.3 Evaluation of models

All the models have been evaluated and intercompared us-
ing the 1826 observations corresponding to the test dataset.
Being the objective of this paper to assess the overall per-
formance of the models mentioned above, a set of statisti-
cal indicators has been chosen to compare observations and
models’ predictions:

i. Correlation coefficient (R).

ii. Ratio of standard deviations (RSD) between observa-
tions and model’s standard deviations. A good model
should show values near one.

iii. Root mean square error (RMSE).

With the aim to summarize in a visual manner models’ per-
formance according to this group of three statistical indica-
tors (R, RSD and RMSE), Taylor diagrams (Taylor, 2001)
have been plotted. Additionally, three more statistical indi-
cators have also been considered:

iv. Fraction of two (FA2). FA2 indicates the fraction
of cases in which the ratio between observations and
model’s predictions falls in the range [0.5–2].

v. Ratio of means (RM) between observations and model’s
averages.

vi. Index of agreementD. In order to overcome some of the
widely reported problems associated to the plain use of
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Fig. 2. Taylor’s diagram of the models for daily zonalq10 in
Zaragoza. 1826 test cases (1997–2001). In brackets, percentage of
the overallq10 variability corresponding to the zonal component.

the correlation coefficient, an additional indicator called
index of agreement has been proposed (Wilmott, 1981,
1982; Wilmott et al., 1985) and adopted for this study. It
is an indicator of the overall agreement between model
and observations that ranges between 0 and 1 (perfect
model).

In all cases, bootstrap resampling (1000 samples extracted
from the test data set) has been used to calculate 95 % confi-
dence intervals corresponding to these statistical indicators.
Likewise, for model intercomparison purposes, 95 % confi-
dence intervals have also been calculated to assess differ-
ences between two models’ performances as described by the
set of indicators metioned above.

The relative importance of input variables is to be assessed
in two different ways, depending on the nature of the model.
In the case of RF models, input relevance is related to the
increase of the mean square error MSE (%) due to the ran-
dom permutation of the input variable’s values. For linear
regression models, the most important variables will be the
ones that after being incorporated into the equation, are re-
sponsible for the highest increases in the overall determina-
tion coefficientR2 (Grömping, 2009). The most influential
predictors with one technique or another (MLR or RF) are
roughly the same, as could be expected from the literature
(Grömpig, 2009).
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Fig. 3. Taylor’s diagram of the models for daily meridionalq10 in
Zaragoza. 1826 test cases (1997–2001). In brackets, percentage of
the overallq10 variability corresponding to the meridional compo-
nent.

3 Results

The main results can be seen in Tables 4–5 and Figs. 2–7.
In both locations (Zaragoza and Tortosa) models’ best per-
formance for precipitation (R ∼ 0.5) are notoriously poorer
than for any of the two components ofq10 (R ∼[0.8,0.85]).
The reason for this is that the nature of precipitation is much
more intermitent and dependent of very local factors than in
the case ofq10.

It is worth mentioning that models fitted with ERA-40,
when they are fed with ERA-Interim data, experiment a dete-
rioration in performance which is more evident in analogues
followed by MLR. In the case of analogues+RF, the degrada-
tion is much smaller being a reasonable option for the future
fitting RF models on ERA-40 data (covers the period from
mid-1957 to mid-2002) and use them with the more recently
available ERA-Interim (from 1989 onwards). For zonal and
meridional components ofq10 at both locations, the compar-
ison of the downscaling using raw ERA-40 or ERA-Interim
data at the nearest gridpoints, indicates that ERA-Interim val-
ues tend to be more accurate than those yielded by ERA-40.
The lack of continuity between both reanalyses suggests that
the procedures and algorithms used in ERA-Interim provide
a better description of at leastq10. Even though they per-
form worse than RF ERA-40 and MLR ERA40 models, both
reanalyses’ direct outputs yield reasonable estimates ofq10,
particularly for the meridional component. The overall per-
formance of raw ERA-Interim predictions, particularly, in
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Table 4. Models’ results in Zaragoza when applied to the 1826 cases corresponding to the test dataset (1997–2001).

RF RF MLR MLR ERA-40*/ ERA-Interim*/
ERA-40 ERA-Interim ERA-40 ERA-Interim Analogues GPCP** Persistence**

ZARAGOZA

Zonalq10*

R 0.86 0.84 0.81 0.20 0.82 0.46 0.61
RSD 0.90 0.87 1.01 1.93 0.79 0.40 0.50
RMSE 16.35 17.89 19.41 61.80 18.42 27.56 24.72
FA2 0.70 0.66 0.63 0.35 0.63 0.28 0.36
RM 1.46 1.54 1.40 2.21 1.45 0.54 0.62
D 0.74 0.71 0.70 0.38 0.69 0.37 0.47

Meridionalq10*

R 0.85 0.82 0.78 0.46 0.82 0.75 0.82
RSD 0.62 0.58 0.93 1.70 0.52 0.55 0.77
RMSE 14.59 15.39 15.65 37.62 16.00 21.40 17.48
FA2 0.56 0.53 0.57 0.35 0.53 0.34 0.53
RM 0.78 0.83 1.01 1.25 0.86 0.14 0.32
D 0.68 0.65 0.70 0.47 0.63 0.55 0.66

Precipitation**

R 0.55 0.43 0.47 0.15 0.53 0.38 0.16
RSD 0.33 0.37 0.68 1.20 0.26 1.17 1.00
RMSE 2.97 3.10 3.13 5.12 3.05 4.24 4.43
FA2 0.08 0.08 0.07 0.05 0.09 0.05 0.03
RM 0.66 1.13 1.48 2.56 0.80 2.02 1.00
D 0.60 0.45 0.52 0.32 0.53 0.49 0.51

Table 5. Models’ results in Tortosa when applied to the 1826 cases corresponding to the test dataset (1997–2001).

RF RF MLR MLR ERA-40*/ ERA-Interim*/
ERA-40 ERA-Interim ERA-40 ERA-Interim Analogues GPCP** Persistence**

TORTOSA

Zonalq10*

R 0.80 0.75 0.71 0.13 0.76 0.53 0.55
RSD 0.63 0.55 0.83 1.60 0.55 0.76 0.72
RMSE 12.12 13.37 13.88 34.14 13.31 18.99 18.58
FA2 0.49 0.41 0.48 0.24 0.45 0.34 0.34
RM 0.90 0.68 1.02 0.53 1.48 −2.26 −2.35
D 0.65 0.59 0.63 0.35 0.60 0.50 0.49

Meridionalq10*

R 0.83 0.79 0.77 0.22 0.79 0.71 0.74
RSD 0.93 0.82 1.02 1.70 0.82 0.66 0.79
RMSE 12.71 13.87 15.47 40.51 14.31 16.30 15.65
FA2 0.65 0.57 0.57 0.30 0.60 0.46 0.52
RM 1.02 0.73 0.48 −1.12 2.61 −0.14 −0.61
D 0.76 0.70 0.70 0.39 0.71 0.61 0.66

Precipitation**

R 0.49 0.40 0.46 0.21 0.50 0.33 0.26
RSD 0.41 0.47 0.75 1.50 0.34 0.75 1.00
RMSE 4.70 4.96 5.05 9.20 4.72 5.56 6.54
FA2 0.07 0.06 0.06 0.03 0.07 0.03 0.02
RM 0.74 1.34 1.50 3.31 0.94 1.38 1.00
D 0.61 0.43 0.53 0.29 0.53 0.52 0.55

the meridional component ofq10 at Zaragoza and Tortosa,
compares well with that obtained by analogues. Zaragoza
(13.6 km) is closer than Tortosa (65.1 km) to its correspond-
ing nearest gridpoint and this can explain why results at
Zaragoza are somewhat better than those at Tortosa.

Analyzing in detail the downscaling ofq10 in Zaragoza,
it can be seen that RF ERA-40 gives the best results with

values ofR of 0.86 (zonal) and 0.85 (meridional). How-
ever, the comparison with MLR-ERA40 (Table 4) indicates
only a marginal improvement in favour of RF ERA-40. For
the zonal component ofq10 (70.7 % of variance),R, RMSE,
FA2, andD skill scores exhibit better values with RF ERA-
40 model than with MLR ERA-40. RM values are not dif-
ferent at a 95 % confidence level while RSD is closer to 1 for
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MLR ERA-40 (Fig. 2). In the case of the meridional compo-
nent ofq10 (29.3 % of variance), RMSE, RM andD are not
different at a 95 % confidence level, while RSD and RM are
better for the linear MLR ERA40 model. Only the correla-
tion coefficient is higher for RF ERA-40 (Fig. 3).

In the case of the zonal component ofq10 in Tortosa
(Fig. 4) (Table 5), RF ERA-40 and MLR ERA-40 at a 95 %
confidence level do not have different values of FA2, RM,
andD. R and RMSE are better for RF ERA-40 while MLR
ERA-40 has got a better RSD indicator. For the meridional
component ofq10, (Fig. 5) (Table 5), RF ERA40 slightly out-
performs MLR ERA40 in all the statistical indicators, except
for RSD. In all the cases mentioned above, it can be seen that
analogues only have a little worse performance when com-
pared with RF ERA-40 and MLR ERA-40. Therefore, it can
be concluded that obtaining analogues represents the most
efficient step in the model building process and accounts for
the most important part of the goodnes of fit. Using RF or
MLR at a next stage adds a much smaller improvement. The
employment at this second stage of RF, a recently developed
machine learning algorithm intended to deal with highly non
linear mechanisms like the ones known to be involved in at-
mospheric processes, does not represent a net improvement
when compared with the classical MLR model.

The most influential variables in the downscaling ofq10 at
both locations, have been identified, as mentioned above, by
computing the increase (%) of MSE due to the permutation
of their data when acting as inputs for the RF. In the 1826
RF models fitted, the most frequently selected as influential
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Fig. 5. Taylor’s diagram of the models for daily zonalq10 in Tor-
tosa. 1826 test cases (1997–2001). In brackets, percentage of the
overallq10 variability corresponding to the zonal component.

inputs have been the first EOF ofV 10, the first EOF of T2
and the first and second EOF of D2 The interpretation is as
follows. As can be seen inq10 roses at both locations (not
shown) the direction ofq10 at both locations is mainly zonal.
The meridional component of surfaceq10 affects moisture
fluxes due to the fact that meridionally flowing air must cross
mountain ranges over central Iberian Peninsula, thus suffer-
ing a strong F̈ohn effect. Similarly, warmer air leads to a
higher moisture flux as explained by the Clausius-Clapeyron
equation. The variability in the dew-point temperature en-
closed in the two leading EOF reflect the main temporal
(1st EOF) and spatial changes (2nd EOF) of the humidity
in the air.

Regarding precipitation at both locations, for RF ERA-
40, MLR ERA-40 and analogues, the statistical indicators R,
RMSE and FA2 do not differ at a 95 % confidence level. In
both locations, the model of analogues can represent better
the observed mean, MLR ERA-40 exhibits the best RSD and
RF ERA-40 has the bestD value. Therefore, it can be con-
cluded that, if globally considered, RF ERA-40 and MLR
ERA-40 models do not represent any significant improve-
ment over the plain use of analogues (Tables 4–5). At both
locations, these three models outperform GPCP predictions
and also persistence. The results are similar to those found
in the literature (see Introduction) and all models tend to un-
derpredict extreme values (please, see discussion forum on
HESS website). The most important input variables for pre-
cipitation downscaling have been the first EOF of relative
humidity RH, the first EOF of meridional wind speedV
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and the second EOF of dew-point temperatureD2. Simi-
larly, precipitation depends on the availability of moisture
and the saturation of air (leading EOF of relative humidity),
the direction (northern/southern) from which the air flows
(1st EOF ofV ) and local effects accounted for by the sec-
ond EOF ofD2.

4 Conclusions and future outlook

The results of the statistical downscaling carried out forq10
and precipitation indicate that analogues represent a power-
ful and at the same time, easy-to-use tool. In most cases,
their results outperform raw predictions derived from reanal-
ysis data (ERA-40, ERA-Interim and GPCP) at the nearest
gridpoints or persistence of daily precipitation. Incorporat-
ing a second regression stage represents a clear though not
overwhelming improvement. However, using at this second
stage either a classical linear model or a more sophisticated
tool like RF, does not make a net difference. As mentioned
in the Introduction, similar effects with other nonlinear tech-
niques like NN have been described in the literature. The ex-
planation for this may lay in the fact that the combination of
a great number of highly nonlinear mechanisms involved in
the downscaling might result in a linearization of the overall
effect. A further explanation already pointed out in the lit-
erature (Zorita and Von Storch, 1999) might be that most of
the overall nonlinearity involved, has been already captured
and described at the stage of the selection of analogues. As
a conclusion, the combination of two techniques which are
quite easy to use and implement like analogues and multi-
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ple linear regression, can be the best compromise between
accuracy and simplicity in similar downscaling problems.
However, an important shortcome of MLR is the lack of con-
tinuty between ERA-40 and ERA-Interim which introduces
a heavy degradation in model’s performance, thus not mak-
ing possible the use of an important set of historical records
and learning periods, currently available only as ERA-40. In-
stead, RF models fitted on ERA-40 data and fed with ERA-
Interim, experiment a much smaller deterioration. The rea-
son might be that MLR models heavily rely on the coeffi-
cients of an equation and the differences between ERA-40
and ERA-Interim input data tend to be amplified by the val-
ues of the coefficientes. However, the nature of the regression
with RF is different and is based on CART where homoge-
neous areas in the final leafs are sought as the trees split at
the different stages. In this sense, it can be expected that sim-
ilar homogeneous areas can be described either using ERA-
40 or ERA-Interim EOF (Tables 1–2) as inputs, since lead-
ing EOF from both reanalysis are likely to be describing the
same physical effects on the studied area. Anyway, before
considering it as definitive, this result should be confirmed
for other variables, since it might happen that it cannot be
generalized to other cases with, for instance, larger biases,
as could happen when using GCM output in a perfect-prog
approach

Further research is currently being carried out by this
group in two directions: (i) to find a relationship between
ERA-Interim reanalysis and moisture flux at several loca-
tions on the Ebro Valley but at different upper levels (ii) to
apply the methodology followed so far to other variables
involved in the water cycle.
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All the calculations have been carried out using the freely
available software R (R core development team, 2009) and
apart from the core module, four specific packages have been
used: (i) “FactoMineR” for calculation of EOF (Husson et
al., 2008), (ii) “MASS” for multiple linear regression (Ven-
ables and Ripley, 2002), (iii) “randomForest” for RF (Liaw
and Wiener, 2002) and (iv) “plotrix” for Taylor diagrams
(Lemon, 2006).
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