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Abstract. This paper develops a theoretical framework to 1 Introduction

investigate the core dependence of peak flows on the geo-

morphic properties of river basins. Based on the theory ofA number of hydrological analyses require the evaluation of
transport by travel times, and simple hydrodynamic characthe highest peak-flow values expected to occur with a given
terization of floods, this new framework invokes the linearity return period. Most of the methods addressing this issue —
and invariance of the hydrologic response to provide analytfrom the simple rational methoblulvaney (1851), Doodge

ical and semi-analytical expressions for peak flow, time to(1957) to the use of distributed rainfall-runoff models (e.g.,
peak, and area contributing to the peak runoff. These reBeven 2001 —have been developed with the purpose of pro-
sults are obtained for the case of constant-intensity hyetoviding quantitative predictions of peak flows for engineering
graph using the Intensity-Duration-Frequency (IDF) curvesapplications more than a synthesis of their dependence on
to estimate extreme flow values as a function of the rain-the geomorphic and hydrodynamic characteristics of the wa-
fall return period. Results show that, with constant-intensitytershed. To this end, this paper develops a simplified the-
hyetographs, the time-to-peak is greater than rainfall duratiorPry based on the concepts of geomorphologic instantaneous
and usually shorter than the basin concentration time. Morelnit hydrograph (GIUH) and of width functiorR{naldo et
over, the critical storm duration is shown to be independentdl., 1991, 1995 D’Odorico and Rigon2003. This theory

of rainfall return period as well as the area contributing to €xtends the results dlenderson(1963 and Meynink and

the flow peak. The same results are found when the effect§&ordery(197§ and complements some findings Bybin-

of hydrodynamic dispersion are accounted for. Further, it isson and Sivapalagi997).

shown that, when the effects of hydrodynamic dispersion are In this paper we analyze the critical rainfall duration for
negligible, the basin area contributing to the peak dischargdinear systems as, for instance, Fiorentino et al.(1987)
does not depend on the channel velocity, but is a geomorphi@ndlacobellis and Fiorentin(2000 who found that the flow
propriety of the basin. As an examp|e this framework is ap-peak has a linear dependence on the rainfall excess intensity
plied to three watersheds. In particular, the runoff peak, theover a duration equalling the IUH lag-time. Our study pro-
critical rainfall durations and the time to peak are calculatedvides a geomorphic interpretation of these previous results.

for all links within a network to assess how they increaseTo this end, we use the framework of the GIUH theory to
with basin area. determine the rainfall duration that causes the highest peak -

flow.

The goals of the paper include: understanding the geo-
morphic structure of the highest peak-flow caused by rain-
fall with given return period; redefining the concept of con-
centration time within the framework of the GIUH theory;
determining the duration of the rainfall able to generate the
maximum peak flow under the assigned climatic conditions;

Correspondence taR. Rigon determining the time to peak as a function of rainfall and
- (riccardo.rigon@ing.unitn.it) basin characteristics.
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1.1 Basic concepts and results The graphic solution of Eq4] is illustrated in Fig. 1. For

t > 1¢, S(¢) is a constant (hencg,(r) =dS(¢r)/dt = 0), while
The concept of Unit HydrograptSierman 1932 is used  §(r — 1) is an increasing function of (i.e. f(t —1p) > 0).
in the representation of the hydrograph as a sum of the reTherefore the solution?, of Eq. @) needs to be searched in
sponses to different rainfall inputs observed throughout anhe interval[fp, 7c]. Figure 1, shows the existence of a de-

individual rainstorm lay, (At =1* —1p), between the end of the rainstorm and the
occurrence of the flow peak. This delay depends on the char-
o) = At /o f@ —1)pr)dr (1) acteristics of the IUH and its parameters. The defay,cor-

responding to the main (i.e. highest) peak can be easily deter-
with At being the total contributing areathe time,z the  mined: for example, in the case of the catchment discussed
time counted starting at the beginning of the rainstgsithe  in Sect. 3¢ is a decreasing function af and becomes null
intensity of effective precipitation at time, and f(s) the  asy, approaches; (Fig. 2). Moreover, Fig. 2 shows that
instantaneous unit hydrograph (IUH). The IUH representsfor small values of, multiple peak flows — corresponding
the travel time probability density function of a unit amount to secondary maxima — may occufendersorn(1963 and
of water instantaneously injected into the basBufta and  Robinson and Sivapalafi997 solved Eq. 4) using a tri-
Mesa 1988; f(t) can be determined either through some angular hydrograph. However it can be solved analytically
simple conceptual frameworks e.dNgsh 1957 or through  (Appendix B) in the case of Nash hydrograptesh 1957
the geomorphological theoryRpdriguez-lturbe and Valdes and with simple numerical code in the general case, as ex-
1979 Gupta et al. 1980. Depending on the physical hy- plained in the following section.
potheses underlying the different formulations of the IUH,  |f 1* s the time to peak — counted from the beginning of the
f(¢) can be defined either within an infinite or a finite time rainfall — the peak flowQ, is then estimated ag(¢*) using
domain. In the latter casg(r) =0 forr > 7., wherercis  Eq. (A5) for the case of hyetographs with constant intensity:
the concentration time of the rational method (i.e. the time pAT (S = S(* — 1) = pA* O < tp < 7
at which the whole basin contributes to the discharge at thee(") = { "0l g’ par N )

fh > Tc
outlet).
The) integral: with ¢* being a function oft, (through Eq.4) and S(¢*)
the fraction of contributing area at=r*. If the duration
t . . . . .
_ is smaller than the concentration time, the contributing area
SO = /0 S de @) att =1*is A* = A7 [S(t*) — S(t* —1p)].

is known in literature as-hydrograph (e.g.Doodge 2003 1.2 Extreme values of peak flows
p. 86) and represents the cumulative probability distribution
of travel times inside the basirf(f) =1 fort > 1), and  The maximum peak flow occurring after a rainstorm with
S(1) can be interpreted as the ratio between contributing area certain return period,, (hereafter referred to as extreme
attimer and basin area, sincér in Eq. (1) is the total con-  peak flow) can be determined by expressinm Eq. 6) as
tributing area. a function of durationzp, and return period;. These curves

In this simplified approach the rate of (effective) precipi- provide a statistical representation of the most severe rainfall
tation is assumed to be constant throughout individual rain-conditions for a certain geographic location and return pe-
storms of duratiomy: riod. Thus, the extreme peak-flow discharg®, (Eqg.5),

depends o, also throughp. Because for any given re-

i, tp) = p Hitp — 1) H(1), (3) turn period,; = p(tplty) is a decreasing function af, and
where H () is the Heaviside step function (i.&f(r) =1 for ~ S(*)=S(1p+ A1) is an increasing function of its argument,
t > 0 andH =0 otherwise). By definitionp can be con-  there is a particular rainfall duratio;, which maximizes
sidered the expected value of the effective intensity of rain-the peak-flow discharge. Such a duration needs to be shorter
fall during the storm. In what follows we will refer to the than (or equal to) the concentration timg This critical
expected value o as a first-order approximation of the duration can be found by solving the equatio@id, =
“real” storm hyetograph. This approach will allow us to ob- dQ(fp+ Ar)/dip = 0, whereAr = At (1p) is a smooth func-
tain semi-analytical results that could be easily generalized tdion of 7. We will indicate with Ar* the value ofAz(1p)
the case of hyetographs with non-constant intensity as sugcalculated forp =#5. The first order-derivative of Eq5&)
gested byD’Odorico et al.(2009 for the case of landslide- becomes

triggering precipitation. d Q(t ) N N N N
The time-to-peak;*, can be found by solving the follow- gz, [ (tp|’f> [S(’p + At ) — S(Ar )]
ing equation, first derived bjjendersor{1963 and hereafter . . ,
calledHenderson’s equatio(see also Appendix A): ( |tr> [f (tp + At ) A+ 40
O =flt—1) 1= @) ~f(ar) am]} =0 (®)
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f(t) which is equivalent to the main equation eynink and
Cordery (1976, though it is here derived for any shape of
the IUH. We use intensity-duration-frequency (IDF) curves
to relate rainfall intensity. Scaling models of IDF curves are
often based on power laws

p(tplte) = a(w) 1, (8)

where a(#y) is a function of the return period; and
0 <m < 1lisindependent of,. Equation 8) in Eq. (7)

gives
t ip f (%)
I S *
TS0 — s g(’P) ©)
0] wherer* =%+ Ar*. Because the dependencerpim Eq. @)

is througha(#y) — which does not appear in EQ)( Eg. ©)
implies that, according to this linear theory of the hydrologic
response, the critical rainfall durationjl associated with ex-
treme runoff peak flow values, is independent of the return
period. The same result applies also to the case of self- simi-
lar design storm hyetograph (e.Byrlando and Rossd996
and to the design storm hyetograph suggestddershfield
‘ t (1961 and commonly used in the engineering practice in the
t, t US sinceBell (1969.
The solution of the set of Eqs9) and @) can be used

Q) to determine the critical rainfall duratiomy, and the time
to peak,t*. It can be shown that(0) =1 andg(co) =0,
consistently with the common observation that values:of
span the interval0, 1] (m ranges most commonly between
0.5 and 1). Depending on the rainfall durationand on
the shape of the IUH, for some valuesmof it is possible to
have multiple solutions of Eq. (9), which correspond to local
minima or maxima of discharge, as shown on a case study in
Section3
Oncety is known from Eq. 9), Eq. () provides the maxi-

mum discharge under a rainfall of assigned return perjod,

t as

Owmax (tr) = P(fﬁltr) C(I*, t;) At (10)

Fig. 1. The solutions of Eq.4) are given by the crossing of the unit )

hydrography (+) with another unit hydrograpty, (s — o), shifted by where C.(t*,. té‘) = S() —S@* - ’;)-_ We notice that

a distanceyp. The figure shows(a) the graphical solution of the ~ EQ. (10) is similar to the well known rational method equa-

equation (in blackf () and in greyf (t —tp)); t* is the time to peak. ~ tion Chow et al.(1988; however, the runoff coefficient,

(b) r* is usually larger thamp. This is true for constant intensity depends on the effective fraction of contributing area eval-

uniform hyetograph(c) the discharge obtained by the convolution uated as a function of time to peak, and on the critical

of the IUH in(a) with the rainfall in(b). rainfall duration,; (Eq. 6), rather than on the concentra-
tion time. The total contributing areadt, can be deter-
mined as explained in the following section. We note that in

Wherep’(tg|tr) is the first-order derivative of thp(t5‘| fr) with the rational method the coefficieGtaccounts for effects of

respect ta, and the first-order derivative df(¢) has been  "within-storm” rainfall variability, runoff-generation (i.e¢
expressed as the IUH (i.8/(tp+ At) = f (tp+ At)). Substi- is a runoff coefficient), and runoff routing. Our approach ex-
tuting Eq. @) into Eq. 6) we obtain plains only the dependence 6fon routing processes, while
the effects of “within-storm” rainfall patterns are not inves-
tigated. We also note that, unlike the rational method, our
theory does not assume values of contributing area and rain-
fall duration. Rather, boti andt;)k are the outcome of the

p' (tpltr) L f(tp + A1) @)
pltolt) — S(tp + At) — S(AD)’
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Fig. 2. Delay, At, of time to peak with respect to the end of the rainstorm, as a function of rainfall durgfjdor, the case study of Longo

watershed (ltaly), illustrated in detail Paragrepm is a decreasing function @f and for valuesp > 1c, the delay is null. For smallep
multiple peak flows are possible. The grey points correspond to secondary peak flows and the black points to the largest peak flow.

interplay of basin and climatic characteristics, and are calcuwheref (¢|x) is the travel time distribution in a path of length
lated as values associated with the maximum peak flows. x, andL is the length of the longest drainage path.

2.1 The kinematic case
2 The geomorphological analysis of runoff peaks

When the effects of hydrodynamic dispersion are negligible,
The geomorphological theory of the hydrologic responsewater is subject mainly to advection (kinematic wave), and
(Rodriguez-lturbe and Valde$979 Gupta et al.198Q Ri- the probability distribution of travel timesf (¢|x), for the
naldo et al. 1991, Rinaldo and and Rodriguez-Iturb#996  rain falling at a distance (measured along the flow path)
provides an interpretation of the IUH, based on the basinfrom the outlet is
morphology and simple dynamical assumptions. In this pa- X
per we express the Geomorphologic Instantaneous Unit Hyf(”x) =us (t - ;) (12)
drograph (GIUH) through a generalization of the width func-
tion, W(x), (e.g.,Shreve 1969 Kirkby, 1986 Gupta and
Mesa 1988 Brutsaert2005. W (x) is the probability distri-
bution of distances; (measured along the network), between () = 4 W (u 1). (13)
any pointin the basin and the outlet. In recent years a number
of studies have recognized the soundness of this approach) this framework, which generalizé2oss(1921), the con-
strengthened its theoretical basBin@ldo et al, 1991, 1995  centration time is rigourouslyc = L/u, with L being the
Saco and Kuma®002ab; D'Odorico and Rigon2003 Bot- longest drainage path. When the IDF curves are expressed
ter and Rinaldp2003 and shown its applicability and cal- by Eq. @) and f(z) by Egs. (3), (4) and ©) become:
ibration to small and large catchments (eMaden 1992

with u being the flood wave celerity aréd) the Dirac delta-
function. Hence, Eq.1Q) in Eq. (11) gives:

Snell and SivapalarL994 Franchini and O’Connell1996 W = W(u (= 1p)). (14)
Da Ross and Borga 997 Naden et al.1999 Yang et al, o i W (u(rp + A1) (15)
2002 Brutsaert2005. (S(tp + A1) — S(AD)

The basin-scale travel time distributiofi(r), can be ex-

pressed as a function & (x) Equation (4) provides the lag\t =¢* — 1, between the end

of the storm and the peakflow occurrence, while Ekp) (
L gives the critical rainfall duratior. As noted beforer)
f@ = /0 Wx) f(tlx) dx (11)  isindependent of. When Eqgs.14) and (L5) are solved for
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different values of the parameteythe drainage area contri- Notice that d®(t|x)/dt = f(¢t|x) with f(¢]x) given by

bution to the peak flowA* = AT(S(t*) — S(t* —1p)), does  Eq. (17); therefore, forr > #,, Henderson’s equation can be

not change. As shown in Figure 3(z) shrinks in width as  written as

u increases, but at the same time it increases in height, main-

taining a constant ared,” = At(S(t*) —S(t* —1p)). dx W(x) [f(t1x) — f(t — tplx)] = O. (20)
The maximum peak discharge depends hyperbolically ornv/o

rainfall durations (and flow velocity): The timer* satisfying Eq. 20) is always larger than the

A . R precipitation duration as in the case discussed in Sect. 2.
Omax = a(f) (’p) C(’ ; ’p) At = a(t) (’p) A" (16)  The other results developed in the previous section can be

tended to th D > 0, the functior’ [
Equation (3) provides a model of IUH which depends only %sn@% (104) aidcgtsq 55) is ;)enpclzcedeb;nc o (u 1) in
on the parameter and on the basin morphology (i.e. on the e '

shape of the width function). Becaugg is independent L
of u, both A* and Quax depend only on the form afv(), @) = / W(x) f(tlx) dx. (21)
i.e. on the structure of the flow paths. 0

Thus, the critical rainfall time; can be calculated by in-
2.2 The effect of diffusive wave propagation serting Eq. 21) into Egs. (4) and (5. It is found that

the area,A*, contributing to the flow peak is independent
The analysis presented in the previous section accounts fasf the return period. However, wheh assumes large values
the mean and most of the variance of the unit hydrograph~ 1000m2s1), it can be shown that* depends oD, the
(e.g.,D’'Odorico and Rigon2003. However, it does not in- shape of¥ (x), and onu.
clude the effects of hydrodynamic diSperSion which intro- The peak discharge can be obtained numerica”y by sub-
duces a smoothing on the peak flows. In this case floodtituting the time to peak:*, into Eq. (L8). Interestingly,
routing can be expressed by a parabolic differential equationhe concept of concentration time, used in the non-diffusive
which is obtained either as a diffusive-wave approximation Of(kinematic) framework, would be meaningless in this case
the de Saint-Venant equations, or through the assumption thaecause the domain of(r) and f(z|x) are infinite. How-
water parcels are subject to Wiener dynamics, superimposegher, it can be here re-introduced as a stochastic variable,
to the deterministic advection discussed in the previous secz; with distribution given by Eq.7). In fact, in the case
tions. This assumption leads to the estimation of the traveID#(), after a timerc = L /u has elapsed from the beginning
time distribution as a solution of the Kolmogorov’s backward of the rainstorm, the furthermost portions of the basin may

Eq. Mesa and Mifflin 1986 with suitable boundary con-  still contribute to the hydrologic response with probability
ditions. Thus, the probability distribution of travel times is gmaller than 1.
expressed by the Gaussian inverse functiemdldo et al,
1991), defined now for € [0,
) ! wior €0, ool 3 Case study
X ox (x—u 1)? An application of the theory developed in this paper, was
/A7 D t3 P 4Dt carried out for the cases of the Longo watershed, a small
alpine catchment4 = 10.3km?) within the Avisio basin

where D is the coefficient of hydrodynamic dispersion; the (A = 469kn?) at Predazzo (Italy) and of the Salt River in

fllx) = 17

kinematic case (EdL2) is obtained forD — 0. California (USA) (A = 2020 kn?).
In this case the hydrograph can be expressed (se€Eq. In this application the width function was calculated differ-
in Appendix C) as entiating for the velocities in channels,, and in hillslopes,
uy, (Rinaldo et al. 1995 D’'Odorico and Rigon2003, and
& — introducing a rescaled-width functiof’(x), which is de-
At p(tp, 1r) fined by measuring the length of the drainage paths as sum
L : of the portion inside the river networlk,, and that across
dx W(x) O( ifO <t <t <1
fOL * W) 8l .~ ~— 'P(18)  the hillslope,x;, with the latter being amplified by a factor
Jo dx W) [0@]x) — ©(t — tplx)]if t > 1, r =g fuy
where x’ =X.+7r xp. (22)
1 X u |t 1 ux . .
® = ZErfc] —— —Z .| — ZExp(—= The geomorphologic unit hydrograph can be thus expressed
() = 3 rc(zﬁ 2,/D>+2 xp(D) The g pholog ydrograp p
X u t 1 L
Erfe| ——+2,/— ). (19) _ / W () o= —Uc)2/ADI g 1
(2«/_”3 2 D) f@) ol W' (x') e dx (23)
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Fig. 3. Two examples unit hydrographs derived from the width function wita2m s (with higher peak on the left) and=1m s

(with smaller peaks on the right). The area contributing to the maximum discharge, as derived from the Henderson’s equation and Eq. (17),
is 80 % of the total contributing area for each of the hydrograph and marked in grey (darker for tle=chssnd of an intermediate tone

for both the cases). In the=1ms! case, the rainfall duration which give@1)max =14 P s Lis (11)}; = 5828 s; is alsary)* = 6808 s

(the right limit of the grey). In the case=2ms L itis: (Q2)max =212m3s™L, (1)} = 2914 5,(1p)* = 3404 s.

using the rescaled width function to express the probability Table 1 reports the values of the variabigst*, 75, A*
distribution of drainage paths as if it was in a fictitious net- and 0* in the Longo basin for different values of the satu-
work where flood waves propagate at constant velogity, rated fraction of the basin. Itis observed thgtnon-linearly
Furthermore, different moisture condition®’Qdorico increases with increasing values @f It is also observed
and Rigon2003 are expressed through the quantilgspfa  thats* is usually less than half.. This difference is due
wetness index distributiolBgven and Kirkby1979 Barling to the long tails of the width functior{Odorico and Rigon
et al, 1994, which defines the parts of the basins contribut- 2003. The area contributing to the peak is about eighty per
ing to the hydrograph as saturation overland flow (Siya- cent of the total saturated are#;, and this fraction remains
palan et al.1987 Beven and Woodl 993 Woods and Siva-  almost constant with varying, i.e. a first rough estimation
palan 1997 1999. Thus, the total contributing area.r, gives:
is a function of the degree of saturation of the watershed,
AT =g Ap, WhereAp, is the basin area; the width function A" ~ 0.8 At ~ 0.8¢ Ap (24)
is calculated using only the saturated part of the basins (an
not the whole basin area) and depends on the channel velo
ity, u., the scale parameterand the saturated fractioa, of
the basin, while the area contributing to the peak flaw,
depends also oaq.
Figure 4 provides the graphical solution (i#5),of Eq. (9),
for the case of the Longo basin, whebe= 0, and for the
value of the IDF curven = 0.63, found by analyzing the
extreme precipitation in the area. It illustrates a typical de-
pendence og(#p) on fp (with Az(¢*) given by Eq.4). The
non-monotonic decrease makes clear the possibility to hav
multiple solutions of Eq.9), which correspond to local min- Omax (A) ~ 0.906 A%984 (25)
ima or maxima of discharge. The Figure shows also how
by increasing the velocity the time to peak decreases and thethere the discharge is in%s~! and the contributing area
peak discharge increases. However the area contributing tm km?. In this case, the parameterg £ 30%, uc =
the peak flow remains constant. 2ms1, r=100) were derived from calibration on a few

%xcluding the lowest saturation conditions, the critical rain-
fall duration increases almost linearly wigh> 20 %, while
the delayAr* of the maximum peak increases non-linearly.
Because of its simplicity, the flow peak analysis can be
easily extended to estimate the runoff peak in all the chan-
nel network links inside a basin, providing a regionalization
of peak flows. Figure 5a, b and ¢ show an example for the
Avisio basin. Figure 5a shows how the maximum discharge
Omax (with rainfall return periody = 100 yr) at any link
(iancreases with the contributing ardaas:

Hydrol. Earth Syst. Sci., 15, 1853863 2011 www.hydrol-earth-syst-sci.net/15/1853/2011/
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Fig. 4. Graphical solution of Eq. (9) for three values of channels celegtyl he value ofn = 0.63 (horizontal line) is found by analysing the

extreme precipitation in the area of the Longo watershed (ltaly); the other curves represent the fugtigiven by Eq. (9) with different

channel velocities. By increasing the velocity the time to peak decreases and the peak discharge increases. However the area contributing t
the peak flow remains constant in all of the three cases.

Table 1. Relevant quantities calculated for the rescaled width func-We"’lkly deper_]dent on (i.e., ,'”C_reas'”g with) the area. For
tions of the Longo catchment € 10): ¢ is the fraction of saturated ~SMaller contributing areas (indicated in the Figure as grey
areasy is the duration of the rainfall which gives the largest peak Points) the critical rainfall duration is even more affected by
discharge; r* the time to peakrc the concentration timed* the the variability of the hillslope length. Even though data were
area contributing to the peal@* is the largest dischargeft the not available to confirm the variability Gg in the smaller

total saturated area. basins, these results are consistent with thod&/'add et al.
(1990. Figure 5c shows the delayz, of the time to peak
th t* Tc A* o* A1 with respect to rainfall duration as a function of the contribut-
q (s) (s) (s)  (knf) (m3s7l) (km?) ing areas. It is found thaks increases non-linearly with the

0.05 4624 5075 14631 0418 625 05009 Ccontributing area. The flow peak is delayed with respect to
013 5834 6808 15721 1.086 14 1373 theend of the rainstorm and this delay is larger in the larger
0.28 6063 7632 16287  2.288 28.85 2931 Subbasins.
0.55 6407 8325 16570 4.497 54.8 5.668

0.82 6763 8884 17496  6.799 80.07 8.472 The effect of the hydrodynamic dispersion is presented in
1 7292 9925 17496 83171 94.012 10.33 Fig. 6a, which shows* as a function ofy, in a mid-size basin
(Salt River — CA, 2020 k/f). Notice howr* is always larger
thansp whensp < ¢ (in this basine.=L/u=11.2 h), as opposed
to the classic assumptions of the rational method#hatz,
high-flow events (with approximatively 100 years of return whens, < .. Because from Eq.5) Qp/(p A1) = A*/A,
period) measured for the largest sub-catchments of the AviFig. 6b shows the portion of the watershed contributing to the
sio. Clearly the discharges obtained are not representativbasin response at the peak flow. It is observed that, with low
of small basins 4 < 50 kn?), in which flow parameters and values of the dispersion coefficient, the response is similar to
rainfall should be chosen differently. The heterogeneity ofthe kinematic case and the contributing saturated source area
the responses shown in Fig. 5 for the small contributing ar-is almostAr (i.e. A* ~ At) whent, ~ e =112h. With
eas is completely due to the different pathway lengths andelatively large values ob (hence of the variance of travel
their subdivision between hillslopes and channels. The maxtimes), A*/ At remains smaller than 1 in a broader interval
imum discharge at any link is due to rainfall of different du- of values ofz,. The adimensional parametél,/(p A1)
ration as shown in Figure 5b. The critical duration is only is called in literature “the peakdeness” of the hydrograph
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Fig. 5. (a)Plot of the peak discharg@max for all the links within

the Avisio basin (Italy) as a function of contributing area. The pa-
rameters 4 = 30%, uc =2ms 1, r = u/up = 100) were obtained
from calibration on some real event in a few subcatchments an
using IDF curves for a return periag=100yr. (b) Critical rain-

fall duration, 5, of links ends inside the Avisio basin (ltaly). For

£Xxtreme precipitation is expressed by a power |
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Fig. 6. (top) Time to peak (*) and (bottom) normalized peak
flow values as a function of the rainstorm duratiag) {n the Salt

River (CA).

4  Conclusions

The paper has developed a method for the evaluation of
extreme peak-flows based on the theory of the instanta-
neous unit hydrograph and on the assumption that storm
hyetographs have constant rainfall intensity. The system of
two Egs. (14) and (15) gives the maximum allowable dis-
charge,Qmax , produced by a precipitation event with a cer-
tain return periods, time to peaks* =+ At (zp) and con-
stant intensity. When the intensity-duration dependence of
nd

At, and the area contributing to the peak do not depend on
the return period. Analytical expressions &f where ob-

smaller contributing areas (indicated in the Figure as grey points)iained in particular for the linear reservoir and for the Nash

tg‘ andQpmax are affected by the variability of the hillslope length.

(c) Delay of the time to peak with respect to the rainfall duration as

a function of the contributing areas.

(Meynink and Cordery1976 and was found to vary in real

models (in AppendiB).

These methods were also applied to the geomorphological
IUH using the framework of the rescaled width function. It
was found that, in the kinematic case, the areq,contribut-
ing to extreme peak flowg)vax , does not depend on chan-
nel celerity but on the saturated fraction of the basginthe

cases between 0.5 and 1.5. Values larger than 1 must thenyin petween channel and hillslope velocities/un. When

be due to the variability of the rainfall and not to the basin
geomorphology.

Hydrol. Earth Syst. Sci., 15, 1853863 2011

dispersion is introduced, the same area depends not only on
dispersionD, also on the velocity in the channels. Thus, the
extreme peakflonQmax , is expressed through a framework
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that generalizes and clarifies the traditional expression of thé\otice that the solution of EQAG) might not correspond to
rational method. the actual maximum discharge. In fact, the maximum could
It was also shown that the peak discharge due to surfaceccur in correspondence of the discontinuity point (re=
runoff increases almost linearly with the contributing area.#,) in the first-order derivative oD (¢) (see EquationA5).
Moreover, both the critical rainfall duratiom,, associated Therefore, there is the need to check which one between the
with maximum peakflow values, and the delay between solution of Eq. A6) and:* =1, corresponds to an actual
and the time-to-peak are increasing functions of the con-maximum inQ(z).
tributing area. The applicability of this framework is partly By definition in Eq. A6a) f(¢) is null for * = 0 — which
shown through a few basins with different sizes and mor-represents a trivial and unphysical solution — or foe= ..
phologies. The semi-analytical character of the simplifiedThus, ifz, > 7 the time to peak coincides with the concen-
theory allows for a fast estimation of the maximum dischargetration time, otherwise (i.e. fap < tc) the solution is found
flowing in any link of the river network. by solving Eq. £6b), which is equivalent to Eq4J.

A dix A
ppendix Appendix B

Whenr < 1, and the rainfall is given by Eq3] the rate of
flow is: An interesting application of Henderson’s equation is found
for the case of the Nash IUHN@sh 1957%):

t 0
Q@) = ATP[ f@ —1ydr = —ATP/ f(11) dny 1
0 ! = 1 T —t/k Bl
= p AT 5(1) wy SO=217) ¢ (B1)

n!
where the change of variable in the integral is straightforward

. oS wheren andk are two calibration parameters. Foe 1 the
andA(t) = ATS(¢) is the watershed area contributing to the : . o .
flood discharge at time as follows from the definition of hydrograph is a negative exponential (linear reservoir) and

) N
width function. Forr > 1, we have instead: the peakiis ay (i.e.1™ =1p). Forn = 2, Eq. ) becomes

fp ¢ n—1
o) = ATpfo fe—ndr (A2) < — 7") = e/t (B2)
After the change of variablg =t — t we obtain: which is solved as:
t—tp
o) = —ATPf f(t) dny o= p (B3)
t

1— (exp(—tp/k)" "

t 1—1,
AT p [./o f(ty) dtp — /o ' f ) dfl:| (A3)

It is easy to observe that is always greater thas and that
* is an increasing function of the parameter

from which, we finally have: i - s R .
The resulting critical rainfall time is determined (E9).by

Q@) = p At [S() — S(r — 1p)]. (A4)  solving:
Q(1) is a continuos function afatr = . t (tF(n—1)) '/
Thus, the basin response Efj) ¢an be expressed as m = P (B4)
T (n, (t* — tp)/k) — T(n, t*/k)
_[pATS® (0<1 <1
Q@) = {p AT (S(t) — S(, — tp)) (; - tp), (AS) whererl is the incomplete gamma function:
where S(¢) is the the S-hydrograptDpodge 2003. No- © 1
tice thatS(¢) is a continuos function of time an@(¢) has [(a,x) = /o 17 e dr. (BS)
a possible discontinuous derivativerat p. The maximum
discharge is obtained at the time to peetk,which is found As noted, the linear-reservoir model£ 1 case), is a par-
by solving the equatiod Q /dt =0 (Henderson1963: ticular case of Eq.K2). In this caseAt = 0 for anyzy. In
AS(t) this case Eq.9) becomes
T =ft)=0 0=<t=<1p
to/ k) e~to/k
ds ds(t —t = (p—_
dit) = (dt p) t > tp. (A6) m 1 — e~ fo/k (B6)
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Appendix C

The hydrograph response is expressed by Epwith p
given by Eq. 8) and f (r — t) by Eq. @L1):

t
Q@t) = A1 p(tp, 1) /0 H(tp — 1)

L
x / W) f(t — tlx)dx d . (C1)
0

When £ (t —t|x) is expressed by Egl{), the change of vari-
abler —t—1' leads to

o)
p (tp, Tr) At

Jodx W) [y £(t'1x) di’
= [fdx Wx)O(@|x)
for0<t <1t

T Jodx wn S, f@ix) ar (€2
= Jdx W) [0(1x) = O (t —tp]x)]
for t > 1p
where
, A
@) = f fWx)ydl’ = £71 [@} (C3)
0 t'=t

In Eq. €3 L£~1[] represents the inverse Laplace-transform,
while f(s|x) is the Laplace transform of EqLT)

— JiZ X 45D
F(slx) = Exp |:x " ”;DJF 4s D}. (C4)
Equation C4) in Eqg. (C3) gives
Exp (—a «/s + b2
O(r) = Exp (%) £t ( - ) (C5)

wherea = x/+/D andb =u/2+/D. The inversion of the
Laplace transform leads to E4.9).
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