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Abstract. This paper proposes a novel hybrid forecast-
ing model known as GLSSVM, which combines the group
method of data handling (GMDH) and the least squares sup-
port vector machine (LSSVM). The GMDH is used to de-
termine the useful input variables which work as the time
series forecasting for the LSSVM model. Monthly river flow
data from two stations, the Selangor and Bernam rivers in
Selangor state of Peninsular Malaysia were taken into con-
sideration in the development of this hybrid model. The per-
formance of this model was compared with the conventional
artificial neural network (ANN) models, Autoregressive In-
tegrated Moving Average (ARIMA), GMDH and LSSVM
models using the long term observations of monthly river
flow discharge. The root mean square error (RMSE) and co-
efficient of correlation (R) are used to evaluate the models’
performances. In both cases, the new hybrid model has been
found to provide more accurate flow forecasts compared to
the other models. The results of the comparison indicate that
the new hybrid model is a useful tool and a promising new
method for river flow forecasting.

1 Introduction

River flow forecasting is one of the most important compo-
nents of hydrological processes in water resource manage-
ment. Accurate estimations for both short and long term
forecasts of river flow can be used in several water engi-
neering problems such as designing flood protection works
for urban areas and agricultural land and optimizing the al-
location of water for different sectors such as agriculture,
municipalities, hydropower generation, while ensuring that
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environmental flows are maintained. The identification of
highly accurate and reliable river flow models for future river
flow is an important precondition for successful planning and
management of water resources.

Generally, river flow models can be grouped into the
two main techniques: knowledge-driven modelling and
data-driven modelling. The knowledge-driven modelling is
known as the physically-based model approaches, which
generally use a mathematical framework based on catchment
characteristics such as storm characteristics (intensity and
duration of rainfall events), catchment characteristics (size,
shape, slope and storage characteristics of the catchment),
geomorphologic characteristics of a catchment (topography,
land use patterns, vegetation and soil types that affect the in-
filtration) and climatic characteristics (temperature, humid-
ity and wind characteristics) (Jain and Kumar, 2007). This
model requires input of initial and boundary conditions since
these flow processes are described by differential equations
(Rientjes, 2004). In the river flow modelling and forecast-
ing, it is hypothesized that the forecasts could be improved
if catchment characteristics variables which affect flow were
to be included. It is likely that the different combinations of
flow and catchment characteristics variables would improve
the forecast ability of the models. Although incorporating
other variables may improve the prediction accuracy, but,
in practice especially in developing countries like Malaysia,
such information is often either unavailable or difficult to ob-
tain. Moreover, the influence of these variables and many of
their combinations in generating streamflow is an extremely
complex physical process especially due to the data collec-
tion of multiple inputs and parameters, which vary in space
and time (Akhtar et al., 2009), and are not clearly understood
(Zhang and Govindaraju, 2000). Owing to the complexity
of this process, most conventional approaches are unable to
provide sufficiently accurate and reliable results (Firat and
Turan, 2010).
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The second approach which is the data-driven modelling is
based on extracting and re-using information that is implic-
itly contained in the hydrological data without directly tak-
ing into account the physical laws that underlie the rainfall-
runoff processes. In river flow forecasting applications, data-
driven modelling using historical river flow time series data is
becoming increasingly popular due to its rapid development
times and minimum information requirements (Adamowski
and Sun, 2010; Atiya et al., 1999; Lin et al., 2006; Wang et
al., 2006, 2009; Wu et al., 2009; Firat and Gungor, 2007; Fi-
rat, 2008; Kisi, 2008, 2009). Although the data-driven mod-
elling may lack the ability to provide physical interpretation
and insight of the catchment processes but it is able to pro-
vide relatively accurate flow forecasts.

Computer science and statistics have improved the data-
driven modelling approaches for discovering patterns found
in water resources time series data. Much effort has been de-
voted over the past several decades to the development and
improvement of time series prediction models. One of the
most important and widely used time series models is the
autoregressive integrated moving average (ARIMA) model.
The popularity of the ARIMA model is due to its statistical
properties as well as the well known Box-Jenkins method-
ology. Literature on the extensive applications and reviews
of ARIMA model proposed for modeling of water resources
time series are indicative of researchers’ preference (Yurekli
et al., 2004; Muhamad and Hassan, 2005; Huang et al., 2004;
Modarres, 2007; Fernandez and Vega, 2009; Wang et al.,
2009). However, the ARIMA model provides only a rea-
sonable level of accuracy and suffer from the assumptions of
stationary and linearity.

The data-driven models such as artificial neural networks
(ANN) have recently been accepted as an efficient alternative
tool for modelling a complex hydrologic system compared
with the conventional methods and is widely used for predic-
tion (Karunasinghe and Liong, 2006; Rojas et al., 2008; Ca-
mastra and Colla, 1999; Han and Wang, 2009; Abraham and
Nath, 2001). ANN has emerged as one of the most success-
ful approaches in the various areas of water-related research,
particular in hydrology. A comprehensive review of the ap-
plication of ANN in hydrology was presented by the ASCE
Task Committee report (2000). Some specific applications
of ANN to hydrology include modelling river flow forecast-
ing (Dolling and Varas, 2003; Muhamad and Hassan, 2005;
Kisi, 2008; Wang et al., 2009; Keskin and Taylan, 2009),
rainfall-runoff modeling (De Vos and Rientjes, 2005; Hsu et
al., 1995; Shamseldin, 1997; Hung et al., 2009), ground wa-
ter management (Affandi and Watanabe, 2007; Birkinshaw et
al., 2008) and water quality management (Maier and Dandy,
2000). However, there are some disadvantages of the ANN.
Its network structure is hard to determine and this is usually
determined by using a trial-and-error approach (Kisi, 2004).

More advanced artificial intelligent (AI) is the support vec-
tor machine (SVM) proposed by Vapnik (1995) and his co-
workers in 1995 based on the statistical learning theory, has

gained the attention of many researchers. SVM has been
applied to time series prediction with promising results as
seen in the works of Tay and Cao (2001), Thiessen and Van
Brakel (2003) and Misra et al. (2009). Several studies have
also been carried out using SVM in hydrological and water
resources planning (Wang et al., 2009; Asefa et al., 2006; Lin
et al., 2006; Dibike et al., 2001; Liong and Sivapragasam,
2002; Yu et al., 2006). The standard SVM is solved using
quadratic programming methods. However, this method is
often time consuming and has a high computational burden
because of the required constrained optimization program-
ming.

Least squares support vector machines (LSSVM), as a
modification of SVM was introduced by Suykens and Van-
dewalle (1999). LSSVM is a simplified form of SVM that
uses equality constraints instead of inequality constraints and
adopts the least squares linear system as its loss function,
which is computationally attractive. Besides that, it also has
good convergence and high precision. Hence, this method
is easier to use than quadratic programming solvers in SVM
method. Extensive empirical studies (Wang and Hu, 2005)
have shown that LSSVM is comparable to SVM in terms
of generalization performance. The major advantage of LS-
SVM is that it is computationally very cheap besides having
the important properties of the SVM. LSSVM has been suc-
cessfully applied in diverse fields (Afshin et al., 2007; Lin
et al., 2005; Sun and Guo, 2005; Gestel et al., 2001). How-
ever, in the water resource filed, this LSSVM method has
received very little attention and there are only a few applica-
tions of LSSVM to modeling of environmental and ecolog-
ical systems such as water quality prediction (Yunrong and
Liangzhong, 2009).

One sub-model of ANN is a group method data han-
dling (GMDH) algorithm which was first developed by
Ivakhnenko (1971). This is a multivariate analysis method
for modeling and identification of complex systems. The
main idea of GMDH is to build an analytical function in
a feed-forward network based on a quadratic node transfer
function whose coefficients are obtained by using the re-
gression technique. This model has been successfully used
to deal with uncertainty and linear or nonlinearity systems
in a wide range of disciplines such as engineering, science,
economy, medical diagnostics, signal processing and con-
trol systems (Tamura and Kondo, 1980; Ivakhnenko and
Ivakhnenko, 1995; Voss and Feng, 2002). In water resource,
the GMDH method has received very attention and only a
few applications to modeling of environmental and ecolog-
ical systems (Chang and Hwang, 1999; Onwubolu et al.,
2007; Wang et al., 2005) have been carried out.

Improving forecasting especially for the accuracy of river
flow is an important yet often difficult task faced by deci-
sion makers. Most of the studies as reported earlier in this
paper were simple applications of using traditional time se-
ries approaches and data-driven models such as ANN, SVM,
LSSVM and GMDH models. Many of the river flow series
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are extremely complex to be modeled using these simple ap-
proaches especially when a high level of accuracy is required.
Different data-driven models can achieve success which is
different from each other as each would capture various pat-
terns of data sets, and numerous authors have demostrated
that a hybrid based on the predictions of several models fre-
quently results in higher prediction accuracy than the pre-
diction of an individual model. The hybrid model is widely
used in diverse fields, such economics, business, statistics
and metorology (Zhang, 2003; Jain and Kumar, 2006; Su et
al., 1997; Wang et al., 2005; Chen and Wang, 2007; On-
wubolu, 2008; Yang et al., 2006). Many studies have also
developed a number of hybrid forecasting models in hydro-
logical processes in order to improve prediction accuracy as
reported in the literature. See and Openshaw (2009) pro-
posed a hybrid model that combines fuzzy logic, neural net-
works and statistical-based modeling to form an integrated
river level forecasting methodology. Another study by Wang
et al. (2005) presented a hybrid methodology to exploit the
unique strength of GMDH and ANN models for river flow
forecasting. Besides that Jain and Kumar (2006) proposed
a hybrid approach for time series forecasting using monthly
stream flow data at Colorado river. Their study indicated that
the approach of combining the strengths of the conventional
and ANN techniques provided a robust modeling framework
capable of capturing the nonlinear nature of the complex time
series, thus producing more accurate forecasts.

In this paper, a novel hybrid approach combining GMDH
model and LSSVM model is developed to forecast river flow
time series data. The hybrid model combines GMDH and
LSSVM into a methodology known as GLSSVM. In the first
phase, GMDH is used to determine the useful input variables
from the under study time series. Then, in the second phase,
the LSSVM is used to model the generated data by GMDH
model to forecast the future value of the time series. To ver-
ify the application of this approach, the hybrid model was
compared with ARIMA, ANN, GMDH and LSSVM mod-
els using two river flow data sets: the Selangor and Bernam
rivers located in Selangor, Malaysia.

2 Individual forecasting models

This section presents the ARIMA, ANN, GMDH and
LSSVM models used for modeling time series. The reason
for choosing these models in this study were because these
methods have been widely and successfully used in forecast-
ing time series.

2.1 The Autoregressive Integrated Moving Average
(ARIMA) models

The ARIMA models introduced by Box and Jenkins (1970),
has been one of the most popular approaches in the analysis
of time series and prediction. The general ARIMA models

are compound of a seasonal and non-seasonal part are repre-
sented as:

φp(B) 8P

(
Bs) (1 − B)d

(
1 − Bs)D xt = θq(B) 2Q

(
Bs) at (1)

whereφ(B) andθ(B) are polynomials of orderp andq, re-
spectively;8(Bs) and2(Bs)are polynomials inBs of de-
greesP andQ, respectively;p is the order of non-seasonal
auto regression;d is the number of regular differencing;q is
the order of the non-seasonal moving average;P is the order
of seasonal auto regression;D is the number of seasonal dif-
ferencing;Q is the order of seasonal moving average; and s
length of season. Random errors,at are assumed to be inde-
pendently and identically distributed with a mean of zero and
a constant variance ofσ 2. The order of an ARIMA model is
represented by ARIMA (p, d, q) and the order of an seasonal
ARIMA model is represented by ARIMA(p, d, q) × (P , D,
Q)s. The term (p, d, q) is the order of the non-seasonal part
and (P , D, Q)s is the order of the seasonal part.

The Box-Jenkins methodology is basically divided into
four steps: identification, estimation, diagnostic checking
and forecasting. In the identification step, transformation is
often needed to make time series stationary. The behavior of
the autocorrelation (ACF) and partial autocorrelation func-
tion (PACF) is used to see whether the series is stationary
or not, seasonal or non-seasonal. The next step is choos-
ing a tentative model by matching both ACF and PACF of
the stationary series. Once a tentative model is identified,
the parameters of the model are estimated. Then, the last
step of model building is the diagnostic checking of model
adequacy. Basically this is done to check if the model as-
sumptions about the error,at are satisfied. If the model is
not adequate, a new tentative model should be identified fol-
lowed by the steps of parameter estimation and model verifi-
cation. This process is repeated several times until a satisfac-
tory model is finally selected. The forecasting model would
then be used to compute the fitted values and forecasts val-
ues.

To be a reliable forecasting model, the residuals must sat-
isfy the requirements of a white noise process i.e. indepen-
dent and normally distributed around a zero mean. In order to
determine whether the river flow time series are independent,
two diagnostic checking statistics using the ACF of residuals
of the series were carried out (Brockwell and Davis, 2002).
The first one is the correlograms drawn by plotting the ACF
of residual against a lag number. If the model is adequate, the
estimated ACF of the residual is independent and distributed
approximately normally about zero. The second one is the
Ljung-Box-Pierce statistics which are calculated for the dif-
ferent total numbers of successive lagged ACF of residual in
order to test the adequacy of the model.

The Akaike’s Information Criterion (AIC) is also used to
evaluate the goodness of fit with smaller values would indi-
cate a better fitting and more parsimonious model than larger
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values (Akaike, 1974). Mathematical formulation of AIC is
defined as:

AIC = ln

(∑n
t=1 e2

t

n

)
+

2 p

n
(2)

wherep is the number of parameters andn is the periods of
data.

2.2 The Artificial Neural Network (ANN) model

The ANN models based on flexible computing have been
extensively studied and used for time series forecasting in
many areas of science and engineering since early 1990s.
The ANN is a mathematical model which has a highly con-
nected structure similar to brain cells. This model has the ca-
pability to execute complex mapping between input and out-
put and could form a network that approximates non-linear
functions. A single hidden layer feed forward network is the
most widely used model form for time series modeling and
forecasting (Zhang et al., 1998). This model usually consists
of three layers: the first layer is the input layer where the
data are introduced to the network followed by the hidden
layer where data are processed and the final or output layer
is where the results of the given input are produced. The
structure of a feed-forward ANN is shown in Fig. 1.

The output of the ANN assuming a linear output neuron
j , a single hidden layer withh sigmoid hidden nodes and the
output variable (xt ) is given by:

xt = g
(∑h

j=1
wj f

(
sj
)

+ bk

)
(3)

whereg(.) is the linear transfer function of the output neuron
k andbk is its bias,wj is the connection weights between
hidden layers and output units,f (.) is the transfer function of
the hidden layer (Coulibaly and Evora, 2007). The transfer
functions can take several forms and the most widely used
transfer functions are:

Log−sigmoid: f (si) = logsig (si) =
1

1 + exp(−si)
(4)

Linear: f (si) = purelin (si) = si

Hyperbolic tangent sigmoid: f (si) = tansig(si)

=
2

1 + exp (−2 si)
− 1

wheresi =
∑n

i=1 wi xi is the input signal referred to as the
weighted sum of incoming information.

In a univariate time series forecasting problem, the
inputs of the network are the past lagged observations
(xt−1, xt−2, ..., xt−p) and the output is the predicted value
(xt ) (Zhang et al., 2001). Hence the ANN of Eq. (3) can be
written as:

xt = g
(
xt−1, xt−2, ..., xt−p, w

)
+ εt (5)

Fig. 1. Architecture of three layers feed-forward back-propagation
ANN.

wherew is a vector of all parameters andg(.) is a function
determined by the network structure and connection weights.
Thus, in some senses, the ANN model is equivalent to a non-
linear autoregressive (NAR) model.

Several optimization algorithms can be used to train the
ANN. Among the training algorithms available, the back-
propagation has been the most popular and widely used al-
gorithm (Zou et al., 2007). In a back-propagation network,
the weighted connections only feed activations in the for-
ward direction from an input layer to the output layer. The-
ses interconnections are adjusted using an error convergence
technique so that response of the network would be the best
matches as well as the desired responses.

2.3 The Least Square Support Vector Machines
(LSSVM) model

The LSSVM is a new technique for regression. In this tech-
nique, the predictor is trained by using a set of time series
historic values as inputs and a single output as the target
value. In the following sections, discussions on how LSSVM
is used for time series forecasting is presented.

The first step would be to consider a given training set of
n data points{xi, yi}

n
i=1 with input dataxi∈Rn, p is the total

number of data patterns and outputyi∈R. SVM approxi-
mates the function in the following form:

y(x) = wT φ(x) + b (6)

whereφ(x) represents the high dimensional feature spaces
which is mapped in a non-linear manner from the input space
x. In the LSSVM for function estimation, the optimization
problem is formulated (Suykens et al., 2002) as:

min J (w, e) =
1

2
wT w +

γ

2

n∑
i=1

e2
i (7)
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Fig. 2. Architecture of GMDH.

Subject to the equality constraints:

y(x) = wT φ(xi) + b + ei i = 1, 2, ..., n (8)

The solution is obtained after constructing the Lagrange:

L(w, b, e, α) = J (w, e) −

n∑
i=1

αi{w
T φ(xi) + b + ei − yi} (9)

With Lagrange multipliersαi . The conditions for optimality
are:

∂L

∂w
= 0 → w =

N∑
i=1

αi φ(xi),

∂L

∂b
= 0 →

N∑
i=1

αi = 0,

∂L

∂ei

= 0 → αi = γ ei,

∂L

∂αi

= 0 → wT φ(xi) + b + ei − yi = 0, (10)

for i = 1, 2, ..., n. After elimination ofei andw, the solution
is given by the following set of linear equations:[

0 1T

1 φ(xi)
T φ(xi) + γ −1 I

] [
b

α

]
=

[
0
y

]
(11)

wherey = [y1, ..., yn], 1= [1, ..., 1], α = [α1, ..., αn]. Ac-
cording to Mercer’s condition, the kernel function can be de-
fined as:

K
(
xi, xj

)
= φ(xi)

T φ
(
xj

)
, i, j = 1, 2, ..., n (12)

This finally leads to the following LSSVM model for func-
tion estimation:

y(x) =

n∑
i=1

αi K
(
xi, xj

)
+ b (13)

whereαi , b are the solution to the linear system. Any func-
tion that satisfies Mercer’s condition can be used as the kernel
function. The choice of the kernel functionK(.,.) has sev-
eral possibilities.K(xi, xj ) is defined as the kernel function.
The value of the kernel is equal to the inner product of two
vectorsXi andXj in the feature spaceφ(xi)andφ(xj ), that
is, K(xi, xj ) =φ(xi) × φ(xj ). The structure of a LSSVM is
shown in Fig. 2.

Typical examples of the kernel functions are:

Linear: K
(
xi, xj

)
= xT

i xj

Sigmoid: K
(
xi, xj

)
= tanh

(
γ xT

i xj + r
)

Polynomial: K
(
xi, xj

)
=

(
γ xT

i xj + r
)d

, γ > 0

Radial basis function(RBF) : K
(
xi, xj

)
(14)

= exp
(
−γ

∥∥xi − xj

∥∥2
)
, γ > 0

Hereγ , r andd are the kernel parameters. These parameters
should be carefully chosen as they implicitly define the struc-
ture of the high dimensional feature spaceφ(x) and would
control the complexity of the final solution.

www.hydrol-earth-syst-sci.net/15/1835/2011/ Hydrol. Earth Syst. Sci., 15, 1835–1852, 2011



1840 R. Samsudin et al.: River flow time series using least squares support vector machines

2.4 The Group Method of Data Handling
(GMDH) model

The algorithm of GMDH was introduced by Ivakhnenko in
the early 1970 as a multivariate analysis method for mod-
eling and identification of complex systems. This method
was originally formulated to solve higher order regression
polynomials specially for solving modeling and classifica-
tion problems. The general connection between the input and
the output variables can be expressed by complicated poly-
nomial series in the form of the Volterra series known as the
Kolmogorov-Gabor polynomial (Ivakhnenko, 1971):

y = a0 +

M∑
i=1

ai xi +

M∑
i=1

M∑
j=1

aij xi xj (15)

+

M∑
i=1

M∑
j=1

M∑
k=1

aijk xi xj xk + ...

wherex is the input to the system,M is the number of in-
puts andai are coefficients or weights. However, many of
the applications of the quadratic form are called partial de-
scriptions (PD) where only two of the variables are used in
the following form:

y = a0 + a1 xi + a2 xj + a3 xi xj + a4 x2
i + a5 x2

j (16)

to predict the output. To obtain the value of the coefficients
ai for eachm models, a system of Gauss normal equations
is solved. The coefficientai of nodes in each layer are ex-
pressed in the form:

A =

(
XT X

)−1
XT Y (17)

whereY = [y1 y2 ... yM ]
T , A = [a0, a1, a2, a3, a4, a5],

X =



1 x1p x1q x1p x1q x2
1p x2

1q

1 x2p x2q x2p x2q x2
2p x2

2q

. . . . . .

. . . . . .

. . . . . .

1 xMp xMq xMp xMq x2
Mp x2

Mq


(18)

andM is the number of observations in the training set.
The main function of GMDH is based on the forward

propagation of signal through nodes of the net similar to the
principal used in classical neural nets. Every layer consists
of simple nodes ans each one performs its own polynomial
transfer function and then passes its output to the nodes in
the next layer. The basic steps involved in the conventional
GMDH modeling (Nariman-Zadeh et al., 2002) are:

– Step 1: Select normalized dataX = {x1, x2, ..., xM} as
input variables. Divide the available data into training
and testing data sets.

Fig. 3. Architecture of LSSVM.

– Step 2: ConstructMC2 =M(M −1)/2 new variables in
the training data set and construct the regression poly-
nomial for the first layer by forming the quadratic ex-
pression which approximates the outputy in Eq. (16).

– Step 3: Identify the contributing nodes at each of the
hidden layer according to the value of mean root square
error (RMSE). Eliminate the least effective variable by
replacing the columns ofX (old columns) with the new
columnsZ.

– Step 4: The GMDH algorithm is carried out by repeat-
ing steps 2 and 3 of the algorithm. When the errors of
the test data in each layer stop decreasing, the iterative
computation is terminated.

The configuration of the conventional GMDH structure is
shown in Fig. 3.

2.5 The hybrid model

In this proposed method, the combination of GMDH and
LSSVM as a hybrid model to become GLSSVM is applied to
enhance its capability. The input variables selected are based
on the results of the GMDH and LSSVM models which
would then be used as the time series forecasting. The hy-
brid model procedure is carried out in the following manner:

– Step 1: The normalized data are separated into the train-
ing and testing sets data.

– Step 2: All combinations of two input variables(xi, xj )

are generated in each layer. The number of input vari-
ables areMC2 = M!

(M−2)! 2!
. Construct the regression

polynomial for this layer by forming the quadratic ex-
pression which approximates the outputy in Eq. (10).
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The coefficient vector of the PD is determined by the
least square estimation approach.

– Step 3: Determine new input variables for the next layer.
The outputx′ variable which gives the smallest of root
mean square error (RMSE) for the train data set is com-
bined with the input variables{x1, x2, ..., xM , x′

} with
M =M +1. The new input{x1, x2, ..., xM , x′

} of the
neurons in the hidden layers are used as input for the
LSSVM model.

– Step 4: The GLSSVM algorithm is carried out by re-
peating steps 2 to 4 untilk = 5 iterations. The GLSSVM
model with the minimum value of the RMSE is selected
as the output model. The configuration of the GLSSVM
structure is shown in Fig. 4.

3 Case study

In this study, monthly flow data from Selangor and Bernam
rivers in Selangor, Malaysia have been selected as the study
sites. The location of these rivers are shown in Fig. 5.
Bernam river is located between the Malaysian states of
Perak and Selangor, demarcating the border of the two states
whereas Selangor river is a major river in Selangor, Malaysia.
The latter runs from Kuala Kubu Bharu in the east and con-
verges into the Straits of Malacca at Kuala Selangor in the
west.

The catchment area at Selangor site (3.24◦, 101.26◦) is
1450 km2 and the mean elevation is 8 m whereas the catch-
ment area at Bernam site (3.48◦, 101.21◦) is 1090 km2 with
the mean elevation is 19 m. Both these rivers basins have sig-
nificant effects on the drinking water supply, irrigation and
aquaculture activities such as the cultivation of fresh water
fishes for human consumption.

The periods of the observed data are 47 years (564 months)
with an observation period between January 1962 and De-
cember 2008 for Selangor river and 43 years (516 months)
from January 1966 to December 2008 for Bernam river.
The training dataset of 504 monthly records (Jan. 1962
to Dis. 2004) for Selangor river and 456 monthly records
(Jan. 1966 to Dis. 2004) was used to train the network
to obtain parameters model. Another dataset consisting of
60 monthly (Jan. 2005 to Dis. 2008) records was used as test-
ing dataset for both stations (Fig. 6).

Before starting the training, the collected data were nor-
malized within the range of 0 to 1 by using the following
formula:

xt = 0.1 +
yt

1.2 max(yt )
(19)

wherext is the normalized value,yt is the actual value and
max(yt ) is the maximum value in the collected data.

The performances of each model for both training and
forecasting data are evaluated according to the root-mean-
square error (RMSE) and correlation coefficient (R) which
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Fig. 4. The structure of the GLSSVM.

are widely used for evaluating results of time series forecast-
ing. The RMSE andR are defined as:

RMSE =

√√√√1

n

n∑
t=1

(yi − oi)
2 (20)

R =

1
n

∑n
i=1 (yi − ȳ) (oi − ō)√

1
n

∑n
i=1 (yi − ȳ)2

√
1
n

∑n
i=1 (oi − ō)

(21)

whereoi andyi are the observed and forecasted values at data
point i, respectively,ō is the mean of the observed values,
andn is the number of data points. The criterions to judge
for the best model are relatively small of RMSE in the train-
ing and testing. Correlation coefficient measures how well
the flows predictions correlate with the flows observations.
Clearly, theR value close to unity indicates a satisfactory re-
sult, while a low value or close to zero implies an inadequate
result.
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Fig. 5. Location of the study sites.

4 Result and discussion

4.1 Fitting the ARIMA models to the data

The sample autocorrelation function (ACF) and partial auto-
correlation function (PACF) for Selangor and Bernam river
series are plotted in Figs. 7 and 8 respectively. The ACFs
curve of the monthly flow data of these rivers decayed with
mixture of sine wave pattern and exponential curve that re-
flects the random periodicity of the data and indicates the
need for seasonal MA terms in the model. For PACF, there
were significant lags at spikes from lag 1 to 5, which suggest
an AR process. In the PACF, there were significant spikes
present near lags 12 and 24, and therefore the series would
be needed for seasonal AR process. The identification of
best model for river flow series is based on minimum AIC
as shown in Table 1. The criteria to judge the best model
based on AIC show that ARIMA(1, 0, 0)× (1, 0, 1)12 was
selected as the best model for Selangor river and the ARIMA
(2, 0, 0)× (2, 0, 2)12 would be relatively the best model for
Bernam river.

Since the ARIMA (1, 0, 0)× (1, 0, 1)12 is the best model
for Selangor river and ARIMA (2, 0, 0)× (2, 0, 2)12 for
Bernam river, then the model is used to identify the input
structures. The ARIMA (2, 0, 0)× (2, 0, 2)12 model can be
written as:(
1 − 0.3515B − 0.1351B2

) (
1 − 0.7014B12

− 0.2933B24
)

xt =

(
1 − 0.5802B12

− 0.3720B24
)

at

xt = 0.3515xt−1 + 0.1351xt−2 + 0.7014xt−12

− 0.2465xt−13 − 0.0948xt−14 + 0.2933xt−24

Table 1. Comparison of ARIMA models’ Statistical Results for
Selangor and Bernam rivers.

Selangor River Bernam River

ARIMA Model AIC ARIMA Model AIC

(1, 0, 0)× (1, 0, 1)12 −4.765 (1, 0, 0)× (1, 0, 1)12 −4.458
(1, 0, 0)× (3, 0, 0)12 −4.620 (5, 0, 0)× (2, 0, 2)12 −4.251
(1, 0, 0)× (1, 0, 0)12 −4.514 (3, 0, 0)× (2, 0, 1)12 −4.459
(1, 0, 1)× (3, 0, 0)12 −4.614 (2, 0, 0)× (1, 0, 1)12 −4.466
(1, 0, 1)× (1, 0, 1)12 −4.757 (2,0,0)× (2,0,2)12 −4.467

− 0.1031xt−25 − 0.0396xt−26 − 0.5802at−12

− 0.3720at−24 + at

and the ARIMA (1, 0, 0)× (1, 0, 1)12 model can be written
as:

(1 − 0.4013B)
(
1 − 0.9956B12

)
xt = (1 − 0.9460B) at

xt = 0.4013xt−1 + 0.9956xt−12

− 0.3995xt−13 − 0.9460at−12 + at

The above equation for Selangor river can be rewritten as:

xt = f (xt−1, xt−12, xt−13, at−12) (22)

and for Bernam river as:

xt = f (xt−1, xt−2, xt−12, xt−13, xt−14, xt−24, (23)

xt−25, xt−26, at−12, at−24)
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Table 2. The Input Structure of the Models for Forecasting of Selangor River Flow.

Model Input Structure

M1 xt =f (xt−1, xt−2)

M2 xt =f (xt−1, xt−2, xt−3, xt−4)

M3 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6)

M4 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8)

M5 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9, xt−10)

M6 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9, xt−10, xt−11, xt−12)

M7 xt =f (xt−1, xt−2, xt−4, xt−5, xt−7, xt−9, xt−10, xt−12)

M8 xt =f (xt−1, xt−2, xt−5, xt−8, xt−10, xt−12)

M9 xt =f (xt−1, xt−12, xt−13, at−12)

Fig. 6. Time series of monthly river flow of Selangor and Bernam rivers.

4.2 Fitting ANN to the data

One of the most important steps in developing a satisfactory
forecasting model such as ANN and LSSVM models is the
selection of the input variables. In this study, the nine input
structures which having various input variables are trained
and tested by LSSVM and ANN. Four approaches were used
to identify the input structures. The first approach, six model
inputs were chosen based on the past river flow. The appro-
priate lags were chosen by setting the input layer nodes equal

to the number of the lagged variables from river flow data,
xt−1, xt−2, ..., xt−p wherep is 2, 4, 6, 8, 10 and 12. The
second, third and forth approaches were identified using cor-
relation analysis, stepwise regression analysis and ARIMA
model, respectively. The model input structures of these
forecasting models are shown in Tables 2 and 3.

In this study, a typical three-layer feed-forward ANN
model has been constructed for forecasting the monthly river
flow time series. The training and testing data were normal-
ized within the range of zero to one. From the input layer
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Table 3. The Input Structure of the Models for Forecasting of Bernam River Flow.

Model Input Structure

M1 xt =f (xt−1, xt−2)

M2 xt =f (xt−1, xt−2, xt−3, xt−4)

M3 xt = f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6)

M4 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8)

M5 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9, xt−10)

M6 xt =f (xt−1, xt−2, xt−3, xt−4, xt−5, xt−6, xt−7, xt−8, xt−9, xt−10, xt−11, xt−12)

M7 xt =f (xt−1, xt−2, xt−4, xt−5, xt−6, xt−7, xt−8, xt−10, xt−11, xt−12)

M8 xt =f (xt−1, xt−2, xt−4, xt−5, xt−7, xt−10, xt−12)

M9 xt =f (xt−1, xt−2, xt−12, xt−13, xt−14, xt−24, xt−25, xt−26, at−12, at−24)

Fig. 7. The autocorrelation and partial autocorrelation of river flow series of Selangor River.

Fig. 8. The autocorrelation and partial autocorrelation of river flow series of Bernam river.

to the hidden layer, the hyperbolic tangent sigmoid transfer
function commonly used in hydrology was applied. From
the hidden layer to the output layer, a linear function was
employed as the transfer function because the linear function
is known to be robust for a continuous output variable.

The network was trained for 5000 epochs using the con-
jugate gradient descent back-propagation algorithm with a
learning rate of 0.001 and a momentum coefficient of 0.9.
The nine models (M1–M9) having various input structures

were trained and tested by these ANN models. In addition,
the optimal number of neurons in the hidden layer was iden-
tified using several practical guidelines. These included the
use of I/2 (Kang, 1991), I (Tang and Fishwick, 1993), 2I
(Wong, 1991) and 2I + 1 (Lipmann, 1987), where I is the
number of input. The effect of changing the number of hid-
den neurons on the RMSE andR of the data set is shown in
Table 4.
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Table 4. Comparison of ANN structures for Selangor and Bernam River.

Selangor River Bernam River

Model Hidden Training Testing Training Testing

Input Layer RMSE R RMSE R RMSE R RMSE R

M1 I/2 0.1089 0.5376 0.1236 0.4792 0.1310 0.4798 0.1099 0.5021
I 0.1135 0.4779 0.1305 0.4055 0.1439 0.2728 0.1240 0.2165
2I 0.1119 0.4989 0.1254 0.4459 0.1316 0.4721 0.1192 0.3690
2I + 1 0.1090 0.5363 0.1339 0.363 0.1266 0.5300 0.1128 0.4735

M2 I/2 0.1057 0.5772 0.1255 0.4473 0.1243 0.5555 0.1099 0.5075
I 0.1054 0.5797 0.1281 0.4472 0.1260 0.5379 0.1131 0.4695
2I 0.1133 0.4830 0.1475 0.1758 0.1238 0.5597 0.1086 0.5195
2I + 1 0.1074 0.5582 0.1351 0.3096 0.1234 0.5641 0.1092 0.5179

M3 I/2 0.1098 0.5303 0.1273 0.4207 0.1232 0.5683 0.1056 0.5594
I 0.1081 0.5508 0.1223 0.4976 0.1235 0.5659 0.1186 0.4051
2I 0.1069 0.5645 0.1240 0.4798 0.1202 0.5965 0.1029 0.5946
2I + 1 0.1035 0.6005 0.1250 0.4729 0.1222 0.5777 0.1046 0.5674

M4 I/2 0.1079 0.5533 0.1238 0.4805 0.1244 0.5596 0.1133 0.4814
I 0.1126 0.4950 0.1170 0.5607 0.1174 0.6229 0.1026 0.6067
2I 0.1054 0.5814 0.1521 0.2685 0.1210 0.5914 0.1114 0.4986
2I + 1 0.1040 0.5963 0.1660 0.1374 0.1167 0.6289 0.1017 0.6068

M5 I/2 0.1029 0.6097 0.1201 0.5341 0.1159 0.6353 0.1113 0.5380
I 0.1046 0.5915 0.1194 0.5209 0.1176 0.6211 0.1106 0.5278
2I 0.1098 0.5331 0.1431 0.3273 0.1188 0.6114 0.1164 0.4778
2I + 1 0.1057 0.5813 0.1325 0.4606 0.1141 0.6495 0.1056 0.6035

M6 I/2 0.1016 0.6236 0.1206 0.5278 0.1142 0.6420 0.1132 0.4946
I 0.0967 0.6677 0.1128 0.6097 0.1165 0.6227 0.1157 0.4694
2I 0.1017 0.6226 0.1350 0.3925 0.1109 0.6674 0.1141 0.4698
2I + 1 0.1012 0.6272 0.1285 0.4737 0.1094 0.6779 0.1128 0.5023

M7 I/2 0.1029 0.6108 0.1180 0.5511 0.1210 0.5823 0.1148 0.4635
I 0.0998 0.6400 0.1184 0.5601 0.1160 0.6271 0.1111 0.5218
2I 0.0989 0.6487 0.1137 0.6097 0.1113 0.6640 0.1083 0.5397
2I + 1 0.1002 0.6367 0.1206 0.5162 0.1143 0.6409 0.1051 0.5806

M8 I/2 0.0999 0.6396 0.1117 0.6124 0.1138 0.6451 0.1092 0.5388
I 0.0988 0.6493 0.1216 0.5213 0.1147 0.6371 0.1064 0.5577
2I 0.1020 0.6198 0.1145 0.5852 0.1115 0.6626 0.1078 0.5498
2I + 1 0.0980 0.6565 0.1243 0.4773 0.1118 0.6604 0.1124 0.5208

M9 I/2 0.1073 0.5645 0.1158 0.5561 0.0602 0.9149 0.0709 0.8656
I 0.1065 0.5727 0.1092 0.6219 0.0641 0.9029 0.0759 0.8248
2I 0.1043 0.5968 0.1147 0.5677 0.0606 0.9136 0.0824 0.8378
2I + 1 0.1033 0.6068 0.1097 0.6163 0.0641 0.9028 0.0771 0.8330

Table 4 shows the performance of ANN varying with the
number of neurons in the hidden layer.

In the training phase for Selangor river, the M6 model with
the number of hidden neurons I obtained the best RMSE
andR statistics of 0.0967 and 0.6677, respectively. While
in testing phase, the M9 model with 2I + 1 numbers of hid-
den neurons had the best RMSE andR statistics of 0.1097
and 0.6163, respectively.

On the other hand, for the Bernam river, the M9 model
with the number of hidden neurons was I/2 obtained the best
RMSE andR statistics, in the training and testing phase.

Hence, according to these performances indices, ANN(4,
9, 1) has been selected as the most appropriate ANN model
for Selangor river whereas ANN (10, 5, 1) would be best for
Bernam river.
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Table 5. The RMSE andR statistics of GMDH, LSSVM and GLSSVM Models for Selangor and Bernam River.

Selangor River Bernam River

Model Training Testing Training Training

Model Input RMSE R RMSE R RMSE R RMSE R

GMDH M1 0.1079 0.5491 0.1251 0.4557 0.1235 0.5611 0.1072 0.5376
M2 0.1253 0.5907 0.1476 0.4896 0.1233 0.6100 0.1411 0.5760
M3 0.1025 0.6114 0.1199 0.5353 0.1025 0.6114 0.1199 0.5353
M4 0.1233 0.6086 0.1411 0.5767 0.1407 0.6228 0.1192 0.6287
M5 0.1233 0.6100 0.1411 0.5760 0.1386 0.6389 0.1196 0.6239
M6 0.0955 0.6776 0.1144 0.6052 0.1101 0.6733 0.1034 0.5850
M7 0.0973 0.6621 0.1176 0.5742 0.1142 0.6411 0.1008 0.6085
M8 0.0956 0.6750 0.1164 0.5797 0.1119 0.6598 0.0992 0.6244
M9 0.1065 0.5729 0.1224 0.5023 0.0578 0.9216 0.0853 0.8387

LSSVM M1 0.1053 0.5792 0.1196 0.5280 0.1244 0.5530 0.1080 0.5263
M2 0.1077 0.7217 0.1456 0.4950 0.1345 0.6760 0.1300 0.5209
M3 0.1035 0.0505 0.1216 0.5110 0.1035 0.6033 0.1216 0.5110
M4 0.1253 0.6056 0.1453 0.5280 0.1367 0.6511 0.1225 0.6026
M5 0.1208 0.6403 0.1442 0.5340 0.1269 0.7653 0.1300 0.5230
M6 0.1108 0.6809 0.1055 0.5572 0.1108 0.6809 0.1055 0.5572
M7 0.0997 0.6422 0.1163 0.5738 0.1044 0.6037 0.1031 0.6037
M8 0.0961 0.6747 0.1126 0.6269 0.1021 0.7294 0.1009 0.6118
M9 0.0938 0.6932 0.1119 0.5971 0.0579 0.9319 0.0621 0.8727

GLSSVM M1 0.0908 0.7107 0.1127 0.5907 0.1180 0.6207 0.1044 0.5701
M2 0.1010 0.7622 0.1456 0.5031 0.1253 0.7459 0.1257 0.5690
M3 0.0694 0.8441 0.1187 0.5458 0.0694 0.8441 0.1187 0.5458
M4 0.1187 0.6056 0.1453 0.5280 0.1439 0.6033 0.1233 0.5878
M5 0.1200 0.6386 0.1425 0.5625 0.1425 0.6123 0.1237 0.5839
M6 0.1006 0.7408 0.1014 0.6137 0.0900 0.7968 0.1046 0.5996
M7 0.0698 0.8432 0.1511 0.5875 0.0783 0.8508 0.1002 0.6402
M8 0.0853 0.7544 0.1123 0.6398 0.1039 0.7164 0.1010 0.6136
M9 0.0920 0.7076 0.1138 0.6008 0.0290 0.9808 0.0642 0.8761

4.3 Fitting LSSVM to the data

The selection of appropriate input data sets is an important
consideration in the LSSVM modelling. In the training and
testing of the LSSVM model, the same input structures of the
data set (M1–M9) have been used. The precision and conver-
gence of LSSVM was affected by (γ, σ 2). There is no struc-
tured way to choose the optimal parameters of LSSVM. In
order to obtain the optimal model parameters of the LSSVM,
a grid search algorithm was employed in the parameter space.
In order to evaluate the performance of the proposed ap-
proach, a grid search of (γ, σ 2) with γ in the range 10 to
1000 andσ 2 in the range 0.01 to 1.0 was considered. For
each hyperparameter pair(γ σ 2) in the search space, a 5-
fold cross validation on the training set is performed to pre-
dict the prediction error. The best fit model structure for
each model is determined according to criteria of the per-
formance evaluation. In the study, the LSSVM model was
implemented with the software package LS-SVMlab1.5 (Pel-
ckmans et al., 2003). As the LSSVM method is employed, a

kernel function has to be selected from the qualified function.
Previous works on the use of LSSVM in time series model-
ing and forecasting have demonstrated that RBF performs
favourably (Liu and Wang, 2008; Yu et al., 2006; Gencoglu
and Ulyar, 2009). Therefore, the RBF, which has a parame-
ter γ as in Eq. (14), is adopted in this work. Table 5 shows
the results of the performance obtained during in the training
and testing period of the LSSVM approach.

As seen in Table 5, the LSSVM models are evaluated
based on their performances in the training and testing sets.
For the training phase of Selangor river, the best value of
the RMSE andR statistics are 0.0938 and 0.6932 (in M9),
respectively. However, during the testing phase, the lowest
value of the RMSE was 0.1055 (in M6) and the highest value
of the R was 0.6269 (in M8). On the other hand, for the
Bernam river, the M9 model obtained the best RMSE andR

statistics, in the training and testing phase.

Hydrol. Earth Syst. Sci., 15, 1835–1852, 2011 www.hydrol-earth-syst-sci.net/15/1835/2011/



R. Samsudin et al.: River flow time series using least squares support vector machines 1847

Table 6. Forecasting performance indices of models for Selangor and Bernam River.

Selangor River Bernam River

Training Testing Training Testing

Model RMSE R RMSE R RMSE R RMSE R

ARIMA 0.0914 0.7055 0.1226 0.5487 0.1049 0.7098 0.1042 0.5842
ANN 0.1065 0.5727 0.1092 0.6219 0.0602 0.9149 0.0709 0.8656
GMDH 0.1101 0.6733 0.1034 0.5850 0.0578 0.9216 0.0853 0.8387
LSSVM 0.0961 0.6747 0.1126 0.6269 0.0579 0.9319 0.0621 0.8727
GLSSVM 0.0853 0.7544 0.1123 0.6398 0.0290 0.9808 0.0642 0.8761

4.4 Fitting GMDH and GLSSVM with the data

In designing the GMDH and GLSSVM models, one must de-
termine the following variables: the number of input nodes
and layers. The selection of the number of input that corre-
sponds to the number of variables plays an important role in
many successful applications of GMDH.

GMDH works by building successive layers with complex
connections that are created by using second-order polyno-
mial function. The first layer created is made by comput-
ing regressions of the input variables followed by the second
layer that is created by computing regressions of the output
value. Only the best variables are chosen from each layer and
this process continues until the pre-specified selection crite-
rion is found.

The proposed hybrid learning architecture is composed of
two stages. In the first stage, GMDH is used to determine the
useful inputs for LSSVM method. The estimated output val-
uesx′ is used as the feedback value which is combined with
the input variables{x1, x2, ... ,xM}in the next loop calcu-
lations. The second stage, the LSSVM mapping the combi-
nation inputs variables{x1, x2, ..., xM , x′

} are used to seek
optimal solutions for determining the best output for fore-
casting. To make the GMDH and GLSSVM models simple
and reduce some of the computational burden, only nine in-
put nodes (M1–M9) and five hidden layers (k) from 1 to 5
have been selected for this experiment.

In the LSSVM model, the parameter values forγ andσ 2

need to be first specified at the beginning. Then, the parame-
ters of the model are selected by grid searching withγ within
the range of 10 to 1000 andσ 2 within the range of 0.01 to 1.0.
For each parameter pair (γ, σ 2) in the search space, 5-fold
cross validation of the training set is performed to predict the
prediction error. The performances of GMDH and GLSSVM
for time series forecasting models are given in Table 5.

For Selangor river, in the training and testing phase, the
best value of the RMSE andR statistics for GMDH model
were obtained using M6. In the training phase, GLSSVM
model obtained the best RMSE andR statistics of 0.0694
and 0.8441 (in M3) respectively. While in testing phase,

the lowest value of the RMSE was 0.1014 (in M6) and the
highest value of theR was 0.6398 (in M8). However, in the
training and testing phase for Bernam river, the best value of
RMSE andR for LSSM, GMDH and GLSSVM models were
obtained by using M9.

The model that performs best during testing is chosen
as the final model for forecasting the sixty monthly flows.
As seen in Table 5, for Selangor river, the model input M8
gave the best performance for LSSVM and GLSSVM mod-
els, and M6 for the GMDH model. On the other hand, for
Bernam river, the model input M9 gave the best performance
for LSSVM, GMDH and GLSSVM models and hence, these
model inputs have been chosen as the final input structures
models

4.5 Comparisons of forecasting models

To analyse these models further, the error statistics of the
optimum ARIMA, ANN, GMDH, LSSVM and GLSSVM ar
compared. The performances of all the models for training
and testing data set are in Table 6.

Comparing the performances of ARIMA, ANN, GMDH,
LSSVM and GLSSVM models for in training of Selangor
and Bernam rivers, the lowest RMSE and the largest R
were calculated for GLSSVM model respectively. For test-
ing data, the best value of RMSE and R were found for
GLSSVM model. However, the lowest RMSE were observed
for GMDH model for Selangor river and LSSVM model
for Bernam river. From the Table 6, it is evident that the
GLSSVM performed better than the ARIMA, ANN, GMDH
and LSSVM models in the training and testing process.

Figures 9 and 10 show the comparison of time series and
scatter plots of the results obtained from the five models and
the actual data for the last sixty months during the testing
stage for Selangor and Bernam rivers, respectively. All the
five models gave close approximations of the actual obser-
vations, suggesting that these approaches are applicable for
modeling river flow time series data. However, the tested line
generated from GLSSVM is the closest to the actual value
line in comparison to the tested line generated from other
models. Similar toR and fit line equation coefficients, the
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Fig. 9. Comparison of the testing results of ARIMA, ANN, GMDH, LSSVM and GLSSVM models for Selangor river.
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GLSSVM is slightly superior to the other models. The re-
sults obtained in this study indicate that the GLSSVM model
is a powerful tool to model the river flow time series and
can provide a better prediction performance as compared
to the ARIMA, ANN, GMDH and LSSVM time series ap-
proach. The results indicate that the best performance can
be obtained by the GLSSVM model and this is followed by
LSSVM, GMDH, ANN and ARIMA models.

5 Conclusions

Monthly river flow estimation is vital in hydrological prac-
tices. There are plenty of models used to predict river flows.
In this paper, we have demonstrated how the monthly river
flow could be represented by a hybrid model combining the
GMDH and LSSVM models. To illustrate the capability of
the LSSVM model, Selangor and Bernam rivers, located in
Selangor of Peninsular Malaysia were chosen as the case
study. The river flow forecasting models having various input
structures were trained and tested to investigate the applica-
bility of GLSSVM compared with ARIMA, ANN, GMDH
and LSSVM models. One of the most important issues in
developing a satisfactory forecasting model such as ANN,
GMDH, LSSVM and GLSSVM models is the selection of
the input variables. Empirical results on the two data sets
using five different models have clearly revealed the effi-
ciency of the hybrid model. By using a evaluation of per-
formance test, the input structure based on ARIMA model
is decided as the optimal input factor. In terms of RMSE
andR values taken from both data sets, the hybrid model has
the best in training. In testing, high correlation coefficient
(R) was achieved by using the hybrid model for both data
sets. However, the lowest value of RMSE were achieved us-
ing the GMDH for Selangor river and LSSVM for Bernam
river. These results show that the hybrid model provides a
robust modeling capable of capturing the nonlinear nature of
the complex river flow time series and thus producing more
accurate forecasts.
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