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Abstract. Rain gauges can offer high quality rainfall mea-
surements at their locations. Networks of rain gauges can
offer better insight into the space-time variability of rain-
fall, but they tend to be too widely spaced for accurate es-
timates between points. While remote sensing systems, such
as radars and networks of microwave links, can offer good
insight in the spatial variability of rainfall they tend to have
more problems in identifying the correct rain amounts at the
ground. A way to estimate the variability of rainfall between
gauge points is to interpolate between them using fitted var-
iograms. If a dense rain gauge network is lacking it is dif-
ficult to estimate variograms accurately. In this paper a 30-
year dataset of daily rain accumulations gathered at 29 au-
tomatic weather stations operated by KNMI (Royal Nether-
lands Meteorological Institute) and a one-year dataset of 10
gauges in a network with a radius of 5 km around CESAR
(Cabauw Experimental Site for Atmospheric Research) are
employed to estimate variograms. Fitted variogram parame-
ters are shown to vary according to season, following simple
cosine functions. Semi-variances at short ranges during win-
ter and spring tend to be underestimated, but semi-variances
during summer and autumn are well predicted.

1 Introduction

Rainfall is highly variable both in time and space and ac-
curate measurements are important in hydrology (Bell and
Moore, 2000; Arnaud et al., 2002; Tetzlaff and Uhlenbrook,
2005). Especially in urban settings where the response time
of runoff is typically very short these accurate estimates are
needed (Smith et al., 2002, 2005; Vaes, 2005; Olsson et al.,
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2009; Villarini et al., 2010). There are several instruments
available to measure these rainfall distributions. The tra-
ditional instrument to measure rainfall is the rain gauge.
While rain gauges measure rain accurately and continuously
at a point, they offer little information on rainfall between
gauges. Rain gauges themselves are not fully accurate and
are influenced by factors such as calibration accuracy, wind
effects and sampling uncertainty, which also limits the accu-
racy for sampling intervals smaller than 10 min (Humphrey
et al., 1997; Calder and Kidd, 1978; Marsalek, 1981; Habib
et al., 2001; Ciach, 2003; Sieck et al., 2007). Frozen pre-
cipitation like snow and hail also offers a problem as these
hydro-meteors do not melt immediately and therefore will
result in a lower precipitation rate estimate over a longer pe-
riod than actually occurred.

Other measurements with instruments like microwave
links (Leijnse et al., 2007) and disdrometers (Joss and Wald-
vogel, 1977) offer alternative methods for measuring rainfall,
but are more expensive and do not measure the spatial vari-
ability for an entire catchment area. Weather radars are able
to measure spatial variability of rainfall at different spatial
resolutions depending on wavelength and antenna size and
measure at typical intervals of 5 to 15 min for ground based
systems and with an interval of 3 h or more for satellites (e.g.
Uijlenhoet, 2008). Quantifying these rainrate measurements
is non-trivial as the reflected signal of a volume in the air
has to be transformed into an accurate estimate of rainfall
at the ground. It requires knowledge of the microstructure
and the vertical variation of rainfall, which is generally not
available. Furthermore, a good calibration of the radar sys-
tem itself and correction of factors such as attenuation and
ground clutter are important for accurate radar rainfall esti-
mation (Hitschfeld and Bordan, 1954; Marshall et al., 1955;
Marzoug and Amayenc, 1994; Delrieu et al., 1999; Krajew-
ski and Smith, 2002; Villarini and Krajewski, 2010; van de
Beek et al., 2010).
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There are many examples of studies into the optimal sam-
pling density and interval for these instruments (Villarini
et al., 2008; Villarini and Krajewski, 2008; Nour et al., 2006;
Cheng et al., 2008). The variability of rainfall both in space
and time has also been studied extensively, mainly using
rain gauge and radar data (Ensor and Scott, 2008; Krajew-
ski et al., 2000; Berne et al., 2004b; Knox and Anagnostou,
2009; Habib et al., 2009). Rainfall variability has also been
investigated in The Netherlands (Buishand and Velds, 1980;
Witter, 1984; Schuurmans et al., 2007), where focus in the
last few years has been on extremes for water management
and possible changes in climate. Buishand et al. (2008), us-
ing 30 years of data of 32 rainguages in the province of No-
ord Holland, The Netherlands investigate the amount of daily
rainfall for an extreme once-in-100-years event. This work
is continued by Buishand et al. (2009), using the daily rain
sums of 141 stations in The Netherlands between 1951 and
2005 to find the regional rainfall differences using general-
ized extreme value distributions (GEV). They identify 4 dif-
ferent precipitation regimes in The Netherlands. Overeem
et al. (2009) use the rainfall data of 12 stations to create a
514 year record. A GEV is fitted to this data for durations
between 1 and 24 h and used to construct depth-duration-
frequency (DDF) curves. Using a bootstrap method the un-
certainty of these DDFs is estimated.

The goal of this study is to produce a simple equation to
estimate the daily rainfall variogram as a function of the time
of year. This allows the creation of areal rainfall maps for
hydrological modeling purposes at smaller catchment scales
where often only one or very few gauges are available to
estimate rainfall amount and distribution. For hydrological
modeling variograms are often used in the creation of rain-
fall maps by interpolating sparse rain gauge data using krig-
ing (Creutin et al., 1986; Krajewski, 1987; Papamichail and
Metaxa, 1996; Nour et al., 2006; Haberlandt, 2007; Kirstet-
ter et al., 2010). Kriging of the data has the advantage that
the associated variance for each estimated location can be
obtained. The associated uncertainty of the estimated areal
rainfall found from the kriging variance can be used as in-
put in a hydrological model and offers a better understanding
of the upper and lower margins of the estimated discharge.
The estimated variograms also offer a way of generating ran-
dom fields for research purposes (Cressie, 1993; Diggle and
Ribeiro Jr., 2007; Li et al., 2008).

The data used is this study are 30 years of daily rainfall
data as well as one year of high-resolution gauge network
data. In Sect. 2 the data and study area are described. The
theory is described in Sect. 3. Section 4 concerns the meth-
ods used to estimate the seasonal variograms and Sect. 5 de-
scribes the results. Finally Sect. 6 summarizes the study and
offers recommendations for future work.

2 Study area and data

In The Netherlands the rain maximum typically occurs
around November with a rain sum between 60 and 100 mm
during this month. The minimum occurs around April with
around 40–60 mm. The yearly rain sum lies around 800 mm.
While The Netherlands is fairly small, with a land surface
area of less than 34 000 km2, differences in yearly rainfall
between locations can be up to 200 mm (source: KNMI1).

2.1 KNMI station data

Data from 33 automatic KNMI stations between 1 Jan-
uary 1979 and 15 February 2009 were considered for this
study (top panel Fig. 1). They offer a good way to eval-
uate larger scale variation of rainfall. Their distribution is
shown in Fig. 2, with an average inter-gauge distance of
120 km. One-day rainfall accumulations are used for the
climatological study in this paper. The hourly accumula-
tions are available with a volumetric resolution of 0.1 mm.
Nonzero rainfall accumulations below 0.05 mm have been
set to 0.05 mm in this dataset to indicate nonzero rain (this
would otherwise be rounded to zero). While rounding these
measured data to 0.05 mm might lead to some slight over-
estimations this was chosen to be preferable by the authors
as now all rainfall is included. Data of the KNMI volun-
teer network with 329 locations of daily rainfall accumula-
tions were also considered. Because of errors introduced
by observers (Daly et al., 2007), causing high variance for
data pairs located close to each other, it was decided that
this dataset was not suitable for this study. The accuracy of
these gauges is described in Wauben (2006) and the history
of each individual gauge can be found at the KNMI site at
http://www.knmi.nl/klimatologie/metadata.

2.2 Dense rain gauge network

The second dataset was collected using a dense network of 30
tipping-bucket rain gauges around CESAR (Cabauw Exper-
imental Site for Atmospheric Research) which were jointly
operated by University of Utrecht and Wageningen Univer-
sity (Schuurmans et al., 2007; Leijnse et al., 2010). The
gauges had a volumetric resolution of 0.2 mm and a time res-
olution of 0.5 s and were placed within a 5 km radius around
CESAR (bottom panel of Fig. 1). Of this dataset 10 gauges
were selected as they operated well and continuously be-
tween March 2004 and March 2005. The data were converted
to one day accumulations for this study by estimating the rain
rate from the number of tips per day. Periods of 6 h or longer
without a tip were assumed to be dry. The resulting data are
used for estimating the short range rainfall variation for the
detailed one-year study.

1http://www.knmi.nl/klimatologie/normalen1971-2000/index.
html
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Fig. 1. (A) station locations of the 33 KNMI measurement stations.
The square near the centre of The Netherlands is shown in(B) and
is a detail of the 10 selected gauges of the dense gauge network.
(C) The 30-year mean rainfall in The Netherlands, where the thin
black line is the average rainfall for each day, the thick black line the
90-day moving average and the thick grey line the 90-day moving
average for rainfall events only (i.e. with dry days excluded).

3 Theory

A standard method for evaluating rainfall variability is to es-
timate variograms. Assuming stationarity and isotropy of
the rainfall field, which is not an unreasonable assumption
on the daily scale, the experimental omnidirectional semi-
variogram can be found by taking half the average of the
squared difference between data pairs within the same dis-
tance interval (Cressie, 1993):

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Distance [km]

N
um

be
r 

of
 s

ta
tio

n 
pa

irs

Fig. 2. Histogram of the distance between the KNMI automatic rain
gauges.

γ̂ (|h|) =
1

2n(|h|)

n(|h|)∑
i=1

(z(xi +h)−z(xi))
2, (1)

wherexi is the location of gaugei andxi +h the locations at
distanceh from locationxi . For a dataset with measurements
atn locations this means there aren(n−1)/2 data pairs with
different separation distances, i.e. 528 pairs for the nation-
wide network and 45 pairs for the dense network. Rainfall
anisotropy has been studied extensively in the past (Guillot
and Lebel, 1999; Velasco-Forero et al., 2009; Schleiss et al.,
2009). While anisotropy is always an issue with rainfall the
effects are reduced by the averaging over 90 days. Another
reason is that we want to keep the number of parameters as
low as possible to maintain a simple model. If too many
parameters are included they might become interdependent
and a sound statistical analysis would become highly com-
plicated. For a sound analysis of possible anisotropy and
stationarity a more extensive dataset would be needed and
inclusion from the Belgian and German network might offer
interesting future research.

As the empirical variogram values will not offer values
for each distanceh one of several possible models has to be
fitted to estimate these semi-variances. While many types,
like exponential, Gaussian or logarithmic exist (Diggle and
Ribeiro Jr., 2007) it was decided to take a simple spherical
variogram as this model adequately fits the variogram values
with only a few parameters, unlike more complex models
where the parameters can become highly complicated to in-
terpret (Berne et al., 2004b):

γ (h) =

{
c0+c1

(
3
2

h
a
−

1
2

(
h
a

)3
)

if h ≤ a

c0+c1 if h >a
(2)

Here c0 is the nugget (the semi-variance at zero distance),
c1 is the sill (the maximum value of the fitted semi-variance
function) anda is the range (distance at which data pairs are
completely decorrelated). See Fig. 3 for an illustration.

As the semi-variance for two gauges from the dense gauge
network at a distance of 8 m using a 90-day moving window
was found to be only 0.035 mm2 with a standard deviation
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Fig. 3. Example of variogram parameters based on actual data,
where the circles represent the binned semi-variance. The solid line
is the fitted spherical variogram. The horizontal dashed line is the
sill and the vertical dashed line is the range.

(σ ) of 0.018 mm2, the nugget was assumed negligible and
therefore Eq. (2) reduces to:

γ (h) =

{
c1

(
3
2

h
a
−

1
2

(
h
a

)3
)

if h ≤ a

c1 if h >a
(3)

which only depends on the sill and range. The spherical vari-
ogram near zero distance is approximately linear. This means
that forh � a the equation can be reduced to:

γ (h) =
3

2

c1

a
h (4)

4 Methodology

The data are analyzed by estimating the daily omnidirec-
tional semi-variance and subsequently averaging these over
90-days using the fitting method described in Chapter 5 of
Diggle and Ribeiro Jr. (2007). The weights are equal for each
day and the day of interest is taken at the center of the period.
To find a signal in the fitted variogram parameters it is nec-
essary to average over an optimal range of days to avoid the
noise of day-to-day variations. It was decided to average over
90 days to avoid shorter periods without rainfall, e.g. early
spring 2007 with a total of 45 dry days. In addition, as 90
days is the length of a season it is an appropriate length for
the purpose of this study.

Even though other weights like a Gaussian or triangular
distribution might be used, to keep the fit simple, the win-
dow has equal weights for the entire 90-day period, which is

in line with the idea of this study to create a simple method
of modeling daily variograms. The effect of using triangu-
lar weights has been tested and was found to have very little
effect. An averaging window of 60 days was also tested and
was found to differ very little from the 90-day averaging win-
dow.

Finally, the data are binned in distance classes with a 5 km
class width for both faster fitting of the spherical variogram
and easier interpretation of the figures. With the furthest
gauge pair in the dataset at 315 km it was decided to set
the maximum range at 200 km for fitting the spherical var-
iogram. Cases where the range is apparently larger than this
maximum distance occur mostly around November, when the
variogram data tends to be nearly linear over the full domain
from 0 to 315 km. In cases like this, where|h| is always
smaller than the estimated range of the variogram, Eq. (4)
becomes valid.

In Sect. 5 the climatological data will be assessed to find
the daily trend in the sill and range. To fit a cosine function to
this trend spectral analysis is applied. A simple time-series
of a cosine function could be expressed as:

xt = x0+Acos(2πf (t − t0)) (5)

Herex0 is the offset,A is the amplitude,f is the frequency
andt0 defines the start day of the cosine function (Shumway
and Stoffer, 2006).

5 Results and discussion

With rainfall being highly variable both in time and space it
is difficult to model the process accurately. In this section it
will be shown that there are stable factors in rainfall variabil-
ity, which can be used for hydrological purposes. The cli-
matological analysis is applied to the KNMI gauges for the
30-year period between January 1979 and February 2009.

5.1 Climatological variation of rainfall

While there can be a strong day-to-day fluctuation of rain, a
seasonal trend can be found. This is shown in Fig. 4, where
the variation of the daily rain accumulation is assessed by
taking the average of the data from the 33 KNMI stations
and using a 90-day averaging window. In Fig. 4a the mean
rain sum can be seen to fluctuate strongly and it is difficult to
find a clear trend in the data. While the seasonal signal is the
strongest there are very strong deviations from the estimated
cosine function and therefore the mean rain sum is difficult
to capture in a single function.

For the standard deviation (σ ) of rainfall between the sta-
tions the signal already becomes much clearer (see Fig. 4b).
While there are still departures of more than a factor of two
from the fitted cosine the seasonality is clear. This can be ex-
plained by the more convective type of rain during summer
with more localized events and the more common stratiform
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Fig. 4. Temporal variation of rainfall spatial statistics, determined using a 90-day moving window.(a) is the 90-day moving average of the
daily rainfall sum.(b) is the average standard deviation for a 90-day moving window.(c) is the coefficient of variation. Bold lines are cosines
fitted through the data.(d) is the 90-day moving average of the percentage of dry stations.(e) is the ratio of the mean without dry stations
and the mean with dry stations included.

rain type during winter months. The rainfall climate of The
Netherlands is such that total rainfall amounts are approx-
imately constant throughout the year. However, the spatial
variation is governed by storm type, which does show clear
temporal variation in The Netherlands. Finally, a good way
to express the relative variation of rainfall is by dividing the

standard deviation by the mean to find the coefficient of vari-
ation (see Fig. 4c). The fitted simple cosine function can
be seen to follow the seasonal variation in the coefficient of
variation (CV) very closely. The values found for the fitted
functions for mean,σ and CV can be found in Table 1 witht
expressed as Day of Year (DOY) andx0 the mean of the data.
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Table 1. Parameters of the fitted cosine functions for mean, stan-
dard deviation (σ ) and coefficient of variation (CV) of the daily
rain sums of the KNMI stations between 15 February 1979 and 15
February 2009 using a 90 day moving averaging window.

1/f A t0 x0

mean 365 0.30 109.9 2.80
σ 365 0.69 68.2 2.12
CV 365 0.48 54.4 1.67

The amount of stations with no rainfall measured also has
an impact on the statistical distribution of the data. In Fig. 4d
the fraction of stations without rainfall is shown, again using
a 90-day moving average. The lows in this figure coincide
with the lows in theσ , as could be expected with lower values
of σ corresponding to more widespread rain, leading to less
zeros present in the data. Figure 4e shows the 90-day mov-
ing mean with dry locations removed (as shown in Fig. 4a)
divided by the moving mean including the stations with zero
rainfall. Again the peaks can be found during the summer
and lows during winter. With the more localized rainfall oc-
curring during summer the effect of removing the zero rain-
fall locations from the data is larger during this season than
during winter. Due to this effect the mean during summer
can be up to 1.8 times larger if zeros are not included, while
the ratio during winter is fairly constant (around 1.2).

5.2 Variogram fitting on climatological data

With spherical variograms fitted to the 30-year climatologi-
cal rain data as described in Sect. 3 it is possible to find the
seasonal variation of sill and range. We will also investi-
gate the root mean square errors between the 90-day aver-
aged variograms and the corresponding fit. Again frequency
analysis is applied to find the best fit for the cosine function
to describe the seasonal variation using the rain data with dry
locations excluded. This was also tested with dry locations
included. While this gave slightly different values this effect
was found to be negligible.

5.2.1 Seasonal range

As mentioned before, rainfall is strongly seasonal and this
also applies to the range of the fitted variograms. The range
reaches a minimum in July and a maximum in January (see
Fig. 5a). Again this can be attributed to the prevailing rain
types during winter and summer. During summer the rain
tends to be convective, which means that the correlation
quickly decreases with the distance between two points. In
winter this changes with stratiform rain, where rain rates can
be similar over long distances. There are cases where the
fitted range is far beyond 200 km and thus even beyond the
furthest data pair at 315 km and therefore not reliable. This
causes the fitted variogram to be nearly linear up to 200 km

distance, in line with what could be expected from Eq. (4).
This is caused by the large-scale stratiform precipitation that
is common during this time of the year. As the range at these
times is far beyond the furthest data pair, because of a lin-
ear instead of a spherical relation, the estimation of the range
and sill would add little meaning and therefore the maximum
range was set to 300 km.

A square-root square-root (sqrt-sqrt) transform was ap-
plied to the fitted range values. There are numerous other
possible transforms like logarithmic, logistic and Box-Cox
(Shumway and Stoffer, 2006; Hartwig and Dearing, 1979),
but the sqrt-sqrt transform was chosen to try to reduce the
influence of extreme values for a better fit of the cosine func-
tion as well as making the resulting distribution more sym-
metrical (see Fig. 6a and b). The cutoff of the histograms
at the right hand side is caused by the maximum range of
300 km. The resulting fit can be modeled as:

xt = [x0+Acos(2πf (t − t0))]
4 (6)

This model is the same as Eq. (5) but transformed with a
power 4 (the inverse sqrt-sqrt transform). This transform has
only a slight effect for the range as can be seen in Fig. 6a,
but it is applied so the results are in line with that of the sill,
where the transform does have a large effect, as shown in
Sect. 5.2.2. While the fit is not perfect, the seasonal effect
is followed quite well. Most of the strong differences occur
in November when the variogram is more often linear than
spherical. The values for this fit can be found in Table 2.

Another way to look at the fit is to take the average for each
day of the year (DOY) of those 30 years. As shown in Fig. 7a,
this results again in a clear seasonal trend. The solid line is
the average of the estimated ranges from the 90-day moving
window spherical variograms, but with all ranges larger than
300 km removed. The dashed lines are the climatological fits
through the 30 year data, which follows the average rather
well. The exception to the smooth cosine of the climatolog-
ical fit is around November and December, when the semi-
variance tends to become more linear than spherical and the
range therefore becomes larger than 300 km. The slight low
here is due to the fact that when the range is linear beyond
300 km the data is filtered and remaining spherical fits tend
to have fairly short ranges, which influences the average.

5.2.2 Seasonal sill

Like the range in the previous section, the seasonality is
clearly apparent for the sill of the fitted variograms (Fig. 5b).
The sill data were again sqrt-sqrt transformed and fitted to
the cosine model of Eq. (6). The corresponding values are
found in Table 2.

Similar to the range in Fig. 7a the average sill is also plot-
ted as a function of the time of year. Figure 7b shows the re-
sults, where the solid line is the sill (with all values where the
range was more than 300 km removed) and the dashed lines
are the climatological fits. Again the seasonality is clear.
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Fig. 5. Variation of 90-day moving window variogram parameters range(a), sill (b) and root mean squared error(c) for 30 years of daily
rainfall data. The thin lines are the values found for each daily average and the bold lines are the cosines fitted through the data.

The sill reaches a maximum in August and a minimum in
February. Where at first a low could be seen in the fitted
cosine function of the range, there is now a peak in the sill.
Again this can be attributed to the prevailing rain types dur-
ing winter and summer. With convective rainfall in summer
the variance between pairs will be high, but in winter, with
similar rain rates over large distances, the daily rain sum will
be quite similar, which results in a low variance. Unlike with
the range exceptions do not noticeably occur when the fit is
more linear than spherical around November. There is a shift
of about 150 days between the fitted cosines of the sill and
range. A shift of approximately half a year is to be expected,
with the largest variance during late summer, when strong
convective thunderstorms are most common, resulting in a
large sill and small range, and the equal amounts of daily
rain sums between pairs at longer distances in winter, result-
ing in a large range and a small sill. The fact that the shift is
in fact only about 5 months can be partially explained by the
transition period at the end of summer when the rain events
become both larger in size and in amount. This causes both
the sill and the range to increase. From September the scale
of the rain events still grows, increasing the range, but the
amounts of precipitation will start to decrease, lowering the
sill.

5.2.3 Seasonal root mean square error

The sum of squared errors (SSE) is the sum of the squared
differences between the empirical semi-variogram values and
the fitted spherical variogram. Taking the root of the mean of

Table 2. Parameters of the sqrt-sqrt transformed cosine functions
of the sill, range and root mean square errors for the fitted spherical
variograms using the daily rain sums of 33 KNMI stations with a
90-day moving average window.

1/f A t0 x0

range 365 1.30 2.5 19.77
sill 365 0.31 217.9 1.83
RMSE 365 0.61 212.0 2.52

the SSE results in the root mean square error (RMSE). The
RMSE is small for most of the year, but becomes large dur-
ing summer, when measured amounts between gauges can
strongly differ (Fig. 5c). The peaks occur mostly around Au-
gust, but can be a month earlier or later. Again a cosine was
fitted to the sqrt-sqrt transformed data and the corresponding
parameter values can be found in Table 2.

Like the sill and range, the difference between the low val-
ues in winter and the high values in summer can be explained
by the type of precipitation during these times. It follows the
shape of the sill closely (see Fig. 7b and c). As the variability
between gauges tends to be small during winter, the squared
differences from the fitted variogram will not be high. In
summer the opposite occurs, which results in the high RMSE
values.
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Fig. 6. Histograms of the range, sill, and RMSE before (a, c, and
e, respectively) and after (b, d, andf, respectively) a sqrt-sqrt trans-
form.

5.2.4 Quality of the seasonal fits

To assess the quality of the climatological models for range
and sill these fits are compared with the actual range and sill
values. This can be done by looking at anomalies. In Fig. 8
the climatological fits (the cosine functions fitted to the trans-
formed range and sill values) are subtracted from the origi-
nal fits (the range and sill values determined for each day
separately), with ranges beyond 300 km removed, to find the
anomalies for sill and range. For both the sill and range it is
difficult to find a clear seasonal effect. In Fig. 9 the mean and
standard deviation for each DOY over the 30 years shown in
Fig. 8 are plotted. As can be seen in Fig. 8f the estimated
range can differ up to 12% of the actual range, but the distri-
bution is such that most values are concentrated around zero.
For the sill the errors can be up to 14%, but here the distribu-
tion is nearly uniform.
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Fig. 7. Average daily variation of the range(a), sill (b) and root
mean square error (RMSE)(c) for each day of year. The solid lines
are the estimated values, the black dashed lines the cosine functions
fitted on the normal data and the grey dashed lines the cosine func-
tions fitted on the sqrt-sqrt transformed data.

To look in more detail at the difference between the ac-
tual range and sill values and the climatological fit the one-
year period between March 2004 and March 2005 is evalu-
ated. In addition to the 33 KNMI stations, 10 gauges from
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the dense rain gauge network around Cabauw are employed.
This year has a fairly high sill and range and illustrates a
case where the spherical variogram parameters differ fairly
strongly from the climatological fit.

As can be seen from the fit of the sill, using KNMI and
UU-WUR data, in Fig. 10a, the climatological fit (dashed
cosine) for this year is fairly accurate, although its estimated
peak during summer is smaller than that of the actual sill for
this year (solid black line). The peak of the actual sill, while
similar in shape, is smaller than the estimated sill using only
the KNMI data (grey solid line) as well. The difference in
the estimated parameters is caused by the rain gauge network
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Fig. 10. Parameters of the fitted semi-variograms between March
2004 and March 2005. Left panel is sill and right panel is range of
the fitted variogram. The dashed cosines are the estimates from the
climatological variogram, the solid black lines are the fits for each
day using all KNMI and UU-WUR data, and the solid grey lines are
the fits for each day only using the KNMI data.

characteristics. This shows that the parameters are sensitive
to the density and location of the data points. The exact sen-
sitivity is beyond the scope of this paper. Note, however, that
for both range and sill the effect of network characteristics
is smaller than of the year-to-year variations. The compari-
son of range signals shown in Fig. 10b leads to conclusions
similar to those for the sill (Fig. 10a), but with larger overall
differences. The actual range has a much greater amplitude
than the climatological range and also has a less smooth sig-
nal than that of the sill. This again illustrates that the range
is less stable than the sill.

Figure 11 illustrates 4 cases throughout the year. In spring
(a) the climatological fits and the actual sill and range val-
ues are similar, but the climatologies overestimate both sill
and range slightly. The fit at short range does not seem to
be ideal either, as all points up to 50 km lie above the fitted
curve. Applying some sort of nested variogram with one fit-
ted up to 50 km and one beyond could result in a better fit
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Fig. 11. Example of fitted semi-variograms for four days between
March 2004 and March 2005. The solid line is the fitted variogram
and the dashed line is the climatological variogram.

(e.g. Berne et al., 2004a). From this a better climatological
fit might be estimated as well. The fits in summer (b) have a
large variance and tend to have a fairly large scatter around
the fit, resulting in a large RMSE (also see Fig. 5c). Due to
the large variability of summer rain, where it is possible to
have both strongly localized convective cells and more large
scale stratiform rain, the variance between data-pairs varies
quite a lot. As described in Sects. 5.2.1 and 5.2.2 this re-
sults in a large sill and a short range during summer. The
exact timing of the maximum variance during summer varies
from year to year and can even be absent or consist of several
peaks.

Figure 11c illustrates the common problem of fitting rain-
fall variograms in The Netherlands around November, where
often the fit to the data is nearly linear. This results in an es-
timated range far beyond the range of the furthest data-pair.

5.3 Short range analysis

For catchment hydrology in The Netherlands the relevant ar-
eas tend to be small and therefore an appropriate variogram at
short ranges is important. As mentioned before, a lack of rain
gauges for accurate estimates of catchment rainfall can be an
important factor in hydrology and therefore it is important
to find accurate variograms to interpolate between gauges or
even extrapolate from a single gauge in a catchment.

Figure 12 illustrates the short range fit using 10 gauges
from the dense rain gauge network around Cabauw men-
tioned in Sect. 2.2. As the semi-variance tends to be nearly
linear up to this maximum distance of 10 km and the range of
the variogram is far beyond this distance, the fit of the semi-

variance illustrated in these figures is carried out through lin-
ear regression (see Eq. 4). In fitting the climatological vari-
ogram to the KNMI data the binning of data pairs was carried
out using distance classes of 5 km. For this short range this
bin size is set to 500 m. The top left panel shows the semi-
variance in spring when rain variability is already increasing
to the summer maximum. The dashed line is the linear fit to
the data of only the 10 gauges around CESAR (UU-WUR),
the dotted line is the climatological fit, the solid line is the
fit based on the 33 KNMI gauges combined with the 10 UU-
WUR gauges (KNMI-UU-WUR), and the dash-dotted line
is the fit based on the 33 KNMI gauges only (KNMI). It is
clear that the actual semi-variances are higher than those re-
sulting from the different variogram models. This is the case
for most of May and June 2004. As can be seen in the top
left panel of Fig. 11 the semi-variances for the first 50 km
are indeed estimated to be lower than the values found for
the UU-WUR gauges. As an accurate estimate of the vari-
ance at short distances is especially important for the purpose
of small catchment hydrology it is clear that the fit found
for the KNMI and UU-WUR gauges combined is not per-
fect. The KNMI-UU-WUR fit does perform better than the
KNMI fit, but the effect is small. As mentioned before, ap-
plying nested variograms could solve the problem by merg-
ing a variogram fitted up to 50 km and one beyond 50 km.
For summer (top right panel) the slope of the actual fit and
the fits found for UU-WUR, KNMI and KNMI-UU-WUR
are very similar. While the RMSE is fairly large the fit of
the longer range with only one spherical variogram appears
to work rather well for the summer and autumn (bottom left
panel). Finally, during winter the fit to the semi-variance is
again larger than that of the other fits. Looking at the bottom
right panel of Fig. 11, it can be concluded that this is caused
by the same issue as was found for May and June 2004.

The results are summarized in Fig. 13 by estimating a lin-
ear slope for all fits for the first 10 km. Here the issues with
differences between fitting at only short distances and fit-
ting over longer distances become more clear. During winter
and spring the semi-variances at short ranges are larger than
KNMI-UU-WUR variogram fit estimates and during summer
and fall the values are fairly similar. Further differences are
difficult to correct for due to annual differences that cannot
be taken into account using a seasonal fit. Even though there
are these year-to-year differences it was shown in Sects. 5.2.1
and 5.2.2 that the sill and range can be predicted well on av-
erage, with the exception of November, when the variogram
tends to be linear.

6 Conclusions and recommendations

Variograms of daily rainfall are found to be strongly sea-
sonal. Such seasonal fluctuations can be parameterized by
very simple cosine functions. The average sill and range
found from the fitted spherical variograms follow a cosine
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Fig. 12. Four examples of fitted variograms using only 10 gauges
of the dense rain gauge network between March 2004 and March
2005. The dashed lines are the actual fits (UU-WUR), the dash-
dotted lines are the fits through the KNMI data (KNMI), the solid
lines are the fits found in Sect. 5.2.4 from the combined KNMI and
UU-WUR rain gauge data (KNMI-UU-WUR), and the dotted lines
are the climatological fits.

function over the entire year with the exception of November,
where the range often exceeds 300 km. Year-to-year varia-
tions of the fitted spherical variogram parameters have been
shown to exist, but they are found to be limited with respect
to the amplitude of the seasonal signal. On average, the sim-
ple cosine parameterizations of the variogram sill and range
have been shown to perform well.

For shorter ranges (up to 10 km) the climatological fit fol-
lows the seasonal trend well, but underestimates compared
to the fit for the year between March 2004 and March 2005.
The difference between the short-range fit and long-range
fit up to 10 km for the studied year is small during sum-
mer and autumn, but becomes stronger during winter and
spring. This problem is due to the year-to-year variabil-
ity in semi-variance and a possibly inappropriate variogram
model (linear for November) and transform. Most of the dif-
ference can be explained by daily fluctuations, as the long
and short ranges are mostly similar except for the afore-
mentioned problems of variogram fitting during winter and
spring, which could be solved by a nested variogram. In
conclusion, while the climatological fit in this case underes-
timates the actual values for both long and short ranges, the
semi-variance at short range could be estimated fairly well on
average, as the climatological parameterization was shown to
fit well for the 30 year data.
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Fig. 13. Slope of the first 10 km of the variogram for the period
between March 2004 and March 2005. The dashed line is the actual
fit, the solid line is the fit found in Sect. 5.2.4 from the combined
KNMI and UU-WUR rain gauge data and the dotted line the clima-
tological fit.

While the results for long range climatological variograms
are promising, the case study of short-range climatological
variograms reveals issues that need to be resolved. Some
recommendations for continued research would be to:

– use nested variograms for winter and spring periods;

– test variogram shape and stability for other time scales;

– evaluate the robustness of the climatological variogram
by leaving some gauges out of the network and quan-
tifying the differences (cross-validation), or alterna-
tively comparing the estimated values with radar rainfall
maps.
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