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Abstract. Base-level maps (or “isobase maps”, as origi-
nally defined by Filosofov, 1960), express a relationship
between valley order and topography. The base-level map
can be seen as a “simplified” version of the original topo-
graphic surface, from which the “noise” of the low-order
stream erosion was removed. This method is able to iden-
tify areas with possible tectonic influence even within litho-
logically uniform domains. Base-level maps have been re-
cently applied in semi-detail scale (e.g., 1:50 000 or larger)
morphotectonic analysis. In this paper, we present an evalu-
ation of the method’s applicability in regional-scale analysis
(e.g., 1:250 000 or smaller). A test area was selected in north-
ern Brazil, at the lower course of the Araguaia and Tocantins
rivers. The drainage network extracted from SRTM30PLUS
DEMs with spatial resolution of approximately 900 m was
visually compared with available topographic maps and con-
sidered to be compatible with a 1:1,000 000 scale. Regard-
ing the interpretation of regional-scale morphostructures, the
map constructed with 2nd and 3rd-order valleys was con-
sidered to present the best results. Some of the interpreted
base-level anomalies correspond to important shear zones
and geological contacts present in the 1:5 000 000 Geolog-
ical Map of South America. Others have no correspondence
with mapped Precambrian structures and are considered to
represent younger, probably neotectonic, features. A strong
E-W orientation of the base-level lines over the inflexion of
the Araguaia and Tocantins rivers, suggest a major drainage
capture. A N-S topographic swath profile over the Tocantins
and Araguaia rivers reveals a topographic pattern which, al-
lied with seismic data showing a roughly N-S direction of
extension in the area, lead us to interpret this lineament as an
E-W, southward-dipping normal fault. There is also a good
visual correspondence between the base-level lineaments and
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geophysical anomalies. A NW-SE lineament in the southeast
of the study area partially corresponds to the northern border
of the Mosquito lava field, of Jurassic age, and a NW-SE lin-
eament traced in the northeastern sector of the study area can
be interpreted as the Picos-Santa Inês lineament, identifiable
in geophysical maps but with little expression in hypsometric
or topographic maps.

1 Introduction

The concept of base level was defined byPowell (1875) as
a level “below which the dry lands cannot be eroded”. Al-
though the sea level remains the ultimate base level, several
authors have acknowledged that local base levels can be de-
fined according to different geological/temporal conditions
across regions or even within the same watershed (e.g.,Pow-
ell, 1875; Davis, 1902; Mackin, 1948; Penck, 1953; Quirk,
1996).

Base-level maps(Dury, 1952; Filosofov, 1960; Pan-
nekoek, 1967) express a relationship between valley order
and topography. The valley order refers to the relative posi-
tion of stream segments in a drainage basin network, where
streams of similar orders relate to similar geological events
and are of similar geological age (Horton, 1945; Strahler,
1952; Golts and Rosenthal, 1993). Each base-level surface
is related to similar erosional stages, and can be considered a
product of erosional-tectonic events, mainly the most recent
ones (Golts and Rosenthal, 1992, 1993).

The drainage network is a reliable indicator of tectonic ac-
tivity. It is important to note, however, that stream long pro-
files are sensitive to other forces than tectonics, such as lithol-
ogy, climate and bed-load, among others. For instance, a
lithologic boundary of two rocks of different erosional prop-
erties will results in a change in the channel slope and the
local order base-levels will therefore be different even in the
absence of deformation. Another example is the case of an
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Fig. 1. Location of study area (red rectangle). Stars represent epicenters of earthquakes. See text for details.

uniform rock uplift. If the entire stream network is elevated
the relative base-levels that are investigated will show no
difference relative to one another. In this case, other chan-
nel metrics such as the reference slope (Sklar and Dietrich,
1998), or the channel steepness (Hack, 1973), are capable of
recording such strain.

The concept of base-level map, as used in this paper, is the
same as the “isobase map” ofFilosofov (1960, 1970, 1975)
andGolts and Rosenthal(1992, 1993), and is similar to the
“Thalweg” of Annaheim(1946), the “Reliefsockel” ofLouis
(1957), the “streamline surface map” ofDury (1952) and
Pannekoek(1967), the “subenvelope map” ofHack(1960) ,
or the “Sloping Local Base Level” ofJaboyedoff et al.(2004,
2009). The main goal of this method is to be able to identify
areas with possible tectonic influence even within lithologi-
cally uniform domains.

Base-level maps have been recently applied in semi-
detail scale (e.g., 1:50 000 or larger) morphotectonic analysis
(Golts and Rosenthal, 1993; Modenesi-Gauttieri et al., 2002;
Grohmann et al., 2007; Jaboyedoff et al., 2009). Filoso-
fov (1960) recommended to use 1:100 000 topographic maps
with 20 m contours for flat terrains and 1:50 000 or less for
“poor”-manifested topography or poor topographic maps.
This author also recommended to use 1:1 000 000 topo-
graphic maps to reveal a general tectonic composition of
large territories. Moreover, the Filosofov method has been
used by former-USSR petroleum geologists for about 30 yr,
who have observed and reported correlations between base-

level and gravity maps (I. Florinsky, personal communica-
tion, 11 January 2011).

In this paper, we present an evaluation of the method’s
applicability in regional-scale analysis (e.g., 1:250 000 or
smaller). A test area was selected in northern Brazil, at the
lower course of the Araguaia and Tocantins rivers (Fig.1).
Also, a comparison with available geological maps and geo-
physical (gravimetric and magnetometric) data is presented.

2 Study area

The Parnáıba Sedimentary province, as defined byGoés
(1995) encompasses three sedimentary basins, with distinct
ages and origins: the Parnaı́ba Basin (Silurian-Triassic), the
Alpercatas Basin (Jurassic-Cretaceous) and the Grajaú Basin
(Cretaceous). The basement of the Parnaı́ba Sedimentary
Province in the study area are igneous and high- to low
grade metamorphic rocks of the Amazonian Craton and
Araguaia Belt, with ages ranging from Archean to Nepro-
terozoic (Schobbenhaus et al., 1984). Structures in the pre-
cambrian basement had a great influence in the installation
and development of the sedimentary basins of the Parnaı́ba
Sedimentary Province, the main ones in the study area being
the Tocantins-Araguaia Lineament, the Picos-Santa Inês Lin-
eament, the Xambióa Arch and the Rio Grajáu Lineament.

The N-S-oriented Tocantins-Araguaia Lineament (Kegel,
1965) follows the N-S-trending Precambrian structural grain
of the Araguaia Belt and represents the western border of
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the Parnáıba Basin, which was installed in the Silurian. N-
S-trending structures also influenced the Permian sedimenta-
tion in the Parnáıba Basin and were the sites of basaltic mag-
matic activity during Triassic and Jurassic times (Cordani
et al., 1984). The NW-SE-oriented Picos-Santa Inês Linea-
ment probably corresponds to a shear zone and is marked
in the study area by an alternance of positive and negative
Bouger anomalies (Cunha, 1986) probably associated with
intrusive Mesozoic basic rocks.

Along the E-W-oriented Xambióa Arch more than 1000 m
of Late Carboniferous to Middle Triassic deposits of the Bal-
sas Group were accumulated (Goés, 1995), the structure rep-
resenting a probable rift basin at that time-interval. Other
E-W-trending structures delimit the Alpercatas Basin and
the area of occurrence of the Jurassic volcanic rocks of the
Mosquito Formation (CPRM, 2004). In the Early Creta-
ceous, the Xambióa Arch was uplifted, acting as a divide be-
tween the Grajáu Basin, to the north, and the Espigão-Mestre
Basin, to the south (outside of the study area). The deposi-
tional axis of the Grajáu Basin is parallel to the Rio Grajaú
Lineament (Goés, 1995).

To the north of the study area,Costa et al.(2001) con-
siders that the neotectonic evolution is marked by two sets
of structures, NW-trending normal faults which control the
deposition of Late Tertiary deposits, and E-W trendind right-
lateral strike-slip faults controlling the deposition of Late-
Pleistocene to Holocene alluvial deposits. In this context,
N-S oriented structures (the Tocantins-Araguaia and paral-
lel faults) behave as reverse faults whereas the NW-oriented
structures (as the Picos-Santa-Inês Lineament) behave as
normal faults. It is worth to note that a few seismic events
were recorded in the study area (epicenters are marked by
yellow stars in Fig.1). Around the town of Redenção two
events with mb 4.7 and 4.2 occurred in December 1980 and
November 2010, respectively, the first with a normal-fault
focal mechanism and a general N-S direction of extension
(Assumpç̃ao et al., 1985). A set of induced earthquakes
occurred between November 1985 and March 1988 after
the impoundment of the Tucuruı́ reservoir, the larger with
mb 3.6, but no focal mechanisms were obtained for these
events (Assumpç̃ao et al., 2001). The epicenters are concen-
trated around the dam and roughly distributed along a N-S-
trending Precambrian reverse fault (Tocantins-Araguaia Lin-
eament). Farther North, in the Marajó Island (Amazon River
mouth), a mb 4.8 earthquake with a NNW-SSE direction of
extension and an ENE-SSW direction of compression was
recorded on August 1977 (Assumpç̃ao et al., 1985). These
data indicate a present-day, roughly N-S direction of exten-
sion in the region.

It is worth noting that until the mid-1990’s, the concept of
neotectonics was new to Brazilian geologists, and the con-
tinental shield was considered to be stable (Riccomini and
Assumpç̃ao, 1999). The geological mapping of the whole
country carried out at a 1:1 000 000 scale during the 1970’s
and 1980’s (Radambrasil Project) payed more attention to

Fig. 2. Stream ordering in a watershed, according toStrahler
(1952). Streams without tributaries are assigned first order; a
second-order stream is the segment downstream the confluence of
any two first-order streams; a third-order segment is formed by the
junction of any two second-order streams and so on. Modified from
FISRWG(1998).

Precambrian shear zones, and did not considered much the
younger brittle structures in its maps. Thus, a lineament or
structure interpreted on a morphostructural map that does
not have a correspondence with a Precambrian shear zone
is likely to be of neotectonic origin.

3 Base-level maps

Given that in Earth Sciences the term “isobase” is used in
the sense of a “line of equal uplift” and is commonly ap-
plied to marine terraces and shorelines raised in the Holocene
(e.g., Leverington et al., 2002), we think that “base-level
map” should be used instead of “isobase map” in morphotec-
tonic studies, even though the latter has been used recently in
this sense (e.g.,Golts and Rosenthal, 1993; Grohmann et al.,
2007).

3.1 Construction and interpretation

Base-level maps are constructed from an initial map of val-
ley orders, classified according to theStrahler(1952) sys-
tem, which is based on the number of tributaries upstream
of a valley segment. Streams without tributaries are assigned
first order (headwater streams). A second-order stream is the
segment downstream the confluence of any two first-order
streams and a third-order segment is formed by the junction
of any two second-order streams and so on (Fig.2).

The points where individual thalwegs are crossed by con-
tours of the same elevation are connected by smooth lines
(isobases). These lines should cross the thalwegs at right an-
gles and are plotted in a similar manner of topographic con-
tours (Zuchiewicz, 1989) (Fig. 3). Several base-level maps
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Fig. 3. Development of a 2nd-order base-level map.(a) Original topography (contours) and drainage network.(b) Classification of drainage
network and selection of 2nd and 3rd-order channels. In this case,1st-order streams are discarded.(c) Determination of intersection points of
contours and selected stream channels. Elevation of contour is assigned to each point.(d) Interpolation of base-level lines (or surface) from
elevation of intersection points.(e)Fault traced according to deviations of base-level lines. Modified fromGolts and Rosenthal(1993).
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Fig. 4. Schematic evolution of a normal fault scarp, with development of knickpoints and new 1st-order streams. The scarp will be segmented
into a series of trapezoidal facets, which will became triangular and will be progressively eroded, until the original morphology cannot be
recognized. A base-level map, constructed from the elevations of 2nd and 3rd-order channels, shows an inflexion in the faultline area.

can be made for a given region. For instance, in the 2nd-
order base-level map, all valleys except those of 1st-order
will be used for plotting. The 3rd-order base-level map is
constructed from all valleys except those of 1st- and 2nd-
order, and so on. The base-level map can be seen as a simpli-
fied form of the original topography, where the relief above
the base-level surface is disregarded.

Manual production of base-level maps is a time-
consuming process. Classification of valley orders and in-
terpretation of base-level lines demands topographic maps of
good quality and in a proper scale. Using digital elevation
models (DEMs) for automatic extraction and classification of
stream channels allows the data for a large area to be obtained
faster and usually at no cost (Grohmann et al., 2007). Shut-
tle Radar Topography Mission (SRTM –Farr et al., 2007)
DEMs have a spatial resolution of 0◦0′03′′ (∼90 m at the
Equator), which can be approximated to a 1:100 000 scale.
For regional-scale analysis, one can use SRTM30PLUS V3
DEMs (Becker and Sandwell, 2007), a global dataset with
spatial resolution of 0◦0′30′′ (∼900 m at the Equator). It

should be noted that stream classification depends on the res-
olution of the DEM, that is, with higher spatial resolutions
the drainage network will tend to be denser, with more low-
order streams than with a lower resolution, so trunk rivers are
more likely to present a higher Strahler order.

Construction of base-level maps in a GIS environment is
fairly simple. From a DEM of the area of interest, one
can derive the drainage network using several available al-
gorithms, depending on the characteristics of the landscape
and the spatial resolution of the data source (e.g.,Tarboton
and Bras, 1991; Orlandini et al., 2003; Grimaldi et al., 2007,
2010; Nardi et al., 2008). This drainage can be classified
and the elevation points used to interpolate the base-level
surface can be extracted by overlaying the desired stream or-
ders with contours derived from the DEM. Using contours
as a source for elevation (resembling the manual method) in-
stead of using all the elevation values along the stream lines
might sound as an unnecessary complication, but our expe-
rience shows it provides better results. As with any inter-
polation procedure, one must avoid clusters of data points
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Fig. 5. (a)Colored shaded relief image of the study area (illuminant at N045◦, 30◦ above horizon).(b-c-d) Base-level maps constructed for
the study area. See text for details.

and use, whenever possible, points with a uniform distribu-
tion over the target area in order to prevent interpolation ar-
tifacts (Chaplot et al., 2006; Berry, 1997; Yilmaz, 2007; Yue
et al., 2007). Extracting the elevation from the intersection
of streams and contours yields a smaller number of points to
be interpolated, without clusters along streams.

Disregarding 1st-order streams intends to eliminate the
“noise” that could prevent the identification of a scarp or
other significant feature of the topographic surface. As an
example, Fig.4 presents a schematic scenario for the geo-
morphological evolution of a normal fault scarp. The initial
condition (Fig.4a) is disturbed by a fault and knickpoints in-
dicate the break-of-relief (Fig.4b). As erosion progresses,
new 1st-order streams appear and a segmentation of the the
fault scarp into trapezoidal facets can be observed (Fig.4c–
d). These facets will evolve into triangular forms (Fig.4e)
and will eventually be suppressed, when the clear identifica-

tion of the fault may be hard or impossible. A time span of
about 105 yr would be sufficient to degrade a fresh fault scarp
to a point where all remnants of the tectonic surface were re-
moved (Stewart and Hancock, 1990). A base-level map, con-
structed from the elevations of 2nd and 3rd-order channels,
although smoother and simpler than the original topography,
would show an inflexion in the faultline area (Fig.4f).

Interpretation of base-level maps and identification of
base-level lineaments is not an exact science, and experience
plays an important role here. One must look for patterns in
the base-level isolines, such as aligned and elongated fea-
tures, compression or spreading and sharp deviations in con-
tours which can be indicative of structures associated to tec-
tonic movements, extreme lithological changes or important
geomorphological features. Working with contours overlaid
over the base-level surface map is easier than working only
with a colored or greyscale map. Relief shading might be
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very useful, but one must consider the effects of illumina-
tion over linear terrain features (Grohmann, 2004; Smith and
Wise, 2007). In the example of Fig.4, the inflexion is marked
by a compression of base-level lines, while in Fig.3 the base-
level anomaly is given by the abrupt deviation of contours.
These areas would be interpreted as the most probable targets
for field investigation and possible confirmation of structures
whose recent tectonic activity left signals in landscape.

Therefore, results from a base-level map interpretation
should be taken asqualitative(not quantitative) in the sense
that they will not predict the exact location of tectonic struc-
tures, but would be used to guide and plan in situ investiga-
tions. It is particularly useful to optimize an otherwise costly,
time-consuming field survey in large, heavily vegetated areas
of poor accessibility, such as the study area.

3.2 Previous applications

In this section, some applications of base-level maps
(“isobase maps” ofFilosofov, 1960) in morphotectonic stud-
ies are presented.

Golts and Rosenthal(1993) derived a morphotectonic map
from base-level lines for an area of approximately 1100 km2

in northern Arava, a part of the Jordan-Dead Sea Rift Valley.
They conclude that in young sedimentary basins character-
ized by flat and weakly incised relief, the base-level map was
useful as structural background for designing detailed inves-
tigations, such as seismic surveys.

The influence of the geological structure on the geomor-
phology of an area of the Basin and Range Province (NE
Utah, USA) was analysed byZuchiewicz and Oaks(1993).
From topographic data at 1:100 000 scale, base-level maps
of 1st-, 2nd- and 3rd-order were made. The maps of 1st- and
2nd-order were considered to closely resemble the original
topography, but the map of 3rd-order showed the dominant
faults and folds undulations.

Sant’Anna et al.(1997) studied the Cenozoic tectonics
of the Fonseca Basin region, in the Quadrilátero Ferŕıfero
(southeastern Brazil). The morphostructural map confirmed
the existence of major tectonic discontinuities with N-S and,
less frequently, E-W, NE and NW directions. The same area
was studied byGrohmann(2004), who compared manually
created base-level maps with automatic processing of digital
elevation data in a GIS environment and concluded that both
products were similar.

The morphotectonic analysis of a high plateau on the
northwestern flank of the Continental Rift of southeastern
Brazil showed that fault reactivation along Precambrian shear
zones was responsible for drainage captures and segmenta-
tion of the plateau into smaller blocks, which could be identi-
fied in the 2nd-order base-level map (Hiruma and Riccomini,
1999; Modenesi-Gauttieri et al., 2002).

Ribeiro et al.(2006) applied base-level maps in a morpho-
tectonic analysis of an area at the top of the Serra do Mar

Fig. 6. (a) Simplified geological map of the area (Modified from
Schobbenhaus and Bellizzia, 2001). TA: Tocantins-Araguaia Lin-
eament. PS: Picos-Santa Inês Lineament. RG: Rio Grajaú Linea-
ment. XA: Xambióa Arch. (b) Interpreted structures for the base-
level map constructed with 2nd and 3rd valley orders. See text for
details.

coastal range of the State of São Paulo, Brazil. A 2nd-order
base-level map was manually created from 1:10 000 topo-
graphic maps and showed that the drainage of the Guaratuba
river basin is controlled by NW-trending faults, which were
responsible for drainage capture and subsequent isolation of
this sub-basin from the upper Tietê river. Since the fish
species occurring in the upper Guaratuba river are identical
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Fig. 7. N-S swath profile of 2nd-order base-level map (Fig.5b). Swath location is the gray area in upper left inset. Lower right inset shows
an interpretation as a southward-dipping normal fault.

to the ones that occur in the upper Tietê river, the river piracy
event is of young geological age and was inferred to be of
Late Pleistocene-Holocene.

The Pocos de Caldas Alkaline Massif is a 33 km-diameter
Late Cretaceous collapsed volcanic caldera located in south-
eastern Brazil. The massif’s main morphology is a semi-
circular plateau with average altitude of 1300 m rising up
to 400 m above surrounding flatlands (Poco̧s de Caldas
Plateau), with elevations up to 1500–1600 m at its borders. A
2nd-order base-level map of the massif showed a partial coin-
cidence of a lithologic change in the northeastern portion of
the massif with a strong NE-SW base-level anomaly, which
turns abruptly to NW-SE in the central area of the plateau,
without any associated variation in lithology. The large
NE-SW anomaly was related byGrohmann et al.(2007) to
a faultline previously identified byAlmeida Filho and Pa-
radella(1977) while the NW-SE smaller anomaly was con-
sidered a result of recent tectonic activity.

The Sloping Local Base Level (SLBL) ofJaboyedoff et al.
(2004) is a generalization of the base level concept applied to
landslides. It is very similar to the original isobase surface of
Filosofov(1960) and allows the definition of a surface above
which a rock mass is assumed erodible.Jaboyedoff et al.
(2009) used the SLBL method to estimate the present unsta-
ble volumes in the main scar of a 30 M m3-rockslide in the
eastern slope of Turtle Mountain (Alberta).

4 Methods

All data processing was carried out with GRASS-GIS
version 6.4 (Neteler and Mitasova, 2008; GRASS Devel-
opment Team, 2009). As topographic base, we used
SRTM30PLUS V3 DEMs (Becker and Sandwell, 2007),
with spatial resolution of 0◦0′30′′ (∼900 m). Drainages
were extracted using an AT least-cost search algorithm
designed to minimize the impact of DEM data errors
(Ehlschlaeger, 1989).

This algorithm provides more accurate results in areas of
low slope and also on DEMs where canopy top might be
mistaken as ground elevation, such as SRTM (Kinner et al.,
2005). Water flow was calculated using a multiple flow direc-
tion (MFD) method, where the water flow is distributed to all
neighboring cells with lower elevation using slope towards
these cells as a weighing factor for proportional distribu-
tion, a convergence factor of 5 as recommended byHolmgren
(1994) and a minimum size of an exterior watershed basin of
25 cells (∼ 640 km2). The extracted drainage network was
visually compared with available topographic maps and was
considered to be compatible with a 1:1 000 000 scale.

The base-level maps were constructed with an adaptation
of the methods proposed byGrohmann(2004). First, the
drainage network in raster format was classified according to
Strahler’s system and converted to a vector format. The ele-
vation of intersection points between drainage and contours
(derived from the DEM) was used to create 3-D vector points
and interpolated into a continuous surface with Regularized
Splines with Tension (RST –Mitasova and Mitas, 1993; Mi-
tas and Mitasova, 1999; Hofierka et al., 2002). Base-level
maps were constructed according to the following valley or-
ders combinations: 2nd + 3rd, 3rd + 4th, 4th + 5th. The result-
ing maps are presented in Fig.5.

5 Results and discussion

Regarding the interpretation of regional-scale morphostruc-
tures, the map constructed with 2nd and 3rd-order valleys
(Fig. 5b) was considered to present the best results. In the
map of 3rd and 4th orders (Fig.5c), the large structures still
can be identified, although with less detail. The map of 4th
and 5th orders (Fig.5d) is oversimplified and does not pro-
vide useful information.

A simplified geological map of the area is shown in
(Fig. 6a, and the interpreted base-level anomalies are pre-
sented in Fig.6b. In Fig.6b, lineaments numbered from #1
to #6 correspond to Pre-Paleozoic faults or with geological
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Fig. 8. Magnetic total field intensity anomaly (IGRF corrected),
1x1km grid (CPRM, 2004). (a) Contours for base-level map con-
structed with 2nd and 3rd valley orders.(b) Structures interpreted
from base-level map. The cyan solid line represents the limits of the
Parnáıba Sedimentary Province. See text for details.

contacts present in the 1:5 000 000 Geological Map of South
America (Schobbenhaus and Bellizzia, 2001); lineament #7
is related with the present-day valley of Tocantins river and
lineaments #8 to #16 do not have a clear correspondence with
the geological map.

Although none of these mapped structures have ever been
connected to recent tectonic events, we must note that some
of them, such as the NNW-SSE-trending thrust north of the
rivers major inflexion (#1 in Fig.6b), correspond to the phys-
ical limits of the Parnáıba Sedimentary Province. Therefore,
we cannot rule out the possibility that these structures were
active during or after the sedimentation of these rocks.

Fig. 9. Gravimetric Bouger anomalies (Redrawn fromPetersohn,
2007). (a) Contours for base-level map constructed with 2nd and
3rd valley orders.(b) Structures interpreted from base-level map.
The cyan solid line represents the limits of the Parnaı́ba Sedimen-
tary Province. See text for details.

A strong E-W orientation of the base-level lines over the
inflexion of the Araguaia and Tocantins rivers (#9 in Fig.6b),
previously identified byCosta et al.(1996) as a right-lateral
transcurrent fault zone, suggest a major drainage capture.
The Tocantins river flows in a North-Northeast path before
this sudden inflexion, and it would seem more natural for it
to continue in its lower course towards the sea following the
Guruṕı river valley, which also has a NNE-SSW orientation
(see Figs.1 and6a).

Topographic swath profiles (or projected profiles,Baulig,
1926; Tricart and Cailleux, 1957) are those were intersec-
tions of contours with equally spaced profile lines are marked
within a swath, or band. This kind of profile can provide a
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broader view of altimetric behavior, and help to determine
inclination of large topographic features (Meis et al., 1982).
Figure7 shows a N-S swath profile constructed in a band of
2◦ with a 10′ interval between individual profiles. There is
a general trend of decreasing elevation towards north, which
is interrupted about halfway along the profile by a strong in-
crease in elevation and subsequent gradual decrease.

The general topographic pattern admits different interpre-
tations: a southward-dipping normal fault; a northward dip-
ping low-angle reverse fault or even an anticline growth in
the northern portion of the profile. The reverse fault interpre-
tation is unlikely since the elevated area in the central sector
of the profile would have to be an abnormally-large preserved
relief in the hanging wall. A compressive style of deforma-
tion is not expected in the intracratonic extensional regime
of the Grajáu Basin. Therefore, the most likely interpretation
for this structure is an E-W-oriented southward-dipping nor-
mal fault (lower right inset in Fig. 7), which allows a best fit
to the observed boundary between the Grajaú Basin and the
Araguaia Belt. This scenario would imply in a N-S direction
of extension, which is in accordance with available seismic
data (Assumpç̃ao et al., 1985). Given that the abrupt change
of elevation in the swath profile corresponds to the E-W in-
flexion of the Tocantins river, this adds to the hypothesis of a
major drainage capture in the lower Tocantins and of tectonic
influence in the landform configuration of the study area.

In Figs.8 and9, the base-level lines and interpreted struc-
tures are overlaid over geophysical data available for the
study area (the cyan solid line represents the limits of the
Parnáıba Sedimentary Province). Figure8 shows the mag-
netic total field intensity anomaly corrected from IGRF in
a 1× 1 km grid (CPRM, 2004), and Fig.9 shows gravimet-
ric Bouger anomalies (Petersohn, 2007). In both cases there
is a good visual correspondence between the base-level lin-
eaments and geophysical anomalies (such as alignments of
high or low values, or sudden changes in values). Both the
NE-SW (lineaments #8,#13, #14, #15 in Fig.8b) and NW-SE
(lineaments #5,#6, #10, #12, #16 in Fig.8b) trends are eas-
ily identified in the magnetic data and some of these struc-
tures correspond to sharp changes in gravimetric values (lin-
eaments #12,#13 in Fig.9b).

The NW-SE lineament in the southeast of the study area
(#16 in Figs.6b, 8b and 9b) partially corresponds to the
northern border of the Mosquito lava field, of Jurassic age
(Marzoli et al., 1999), and the NW-SE lineament traced in
the northeastern sector of the study area (#12 in Fig.6b, 8b
and9b) can be interpreted as the Picos-Santa Inês lineament
(Cunha, 1986), identifiable in geophysical maps but with lit-
tle expression in hypsometric or topographic maps (Fig.5a).

6 Conclusions

Base-level analysis has been successfully applied to semi-
detail scale morphotectonic studies in the past. In this paper

we presented an example of the applicability of the method
to regional-scale investigations. The base-level map con-
structed with 2nd and 3rd-order valleys was considered to
present the best results and was used for the interpretation of
regional-scale morphostructures. The method provided re-
sults consistent with the scale of the data used as topographic
base and with the drainage network (1:1 000 000). Some of
the base-level anomalies interpreted correspond to important
Precambrian shear zones and geological contacts present in
the 1:5 000 000 Geological Map of South America. Others
have no correspondence with mapped structures and are con-
sidered to represent younger, probably neotectonic, features.
The E-W inflexion of the lower Tocantins is considered as a
major drainage capture, originated by an E-W, southward-
dipping normal fault. The structures interpreted from the
base-level map also presented a good visual correlation with
anomalies in geophysical data, allowing the identification of
structures with little expression in topographic maps.
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N., and Phachomphom, K.: Accuracy of interpolation techniques

Hydrol. Earth Syst. Sci., 15, 1493–1504, 2011 www.hydrol-earth-syst-sci.net/15/1493/2011/

http://topex.ucsd.edu/WWW_html/srtm30_plus.html
http://topex.ucsd.edu/WWW_html/srtm30_plus.html


C. H. Grohmann et al.: Regional scale analysis of landform with base-level (isobase) maps 1503

for the derivation of digital elevation models in relation to land-
form types and data density, Geomorphology, 77(1–2), 126–141,
2006.

Cordani, U. G., Brito Neves, B. B., Fuck, R. A., Porto, R., Thomaz-
Filho, A., and Cunha, F. M. B.: Estudo preliminar de integração
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