Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 15, issue 5
Hydrol. Earth Syst. Sci., 15, 1483–1492, 2011
https://doi.org/10.5194/hess-15-1483-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Uncertainty in climate change impacts on basin-scale freshwater...

Hydrol. Earth Syst. Sci., 15, 1483–1492, 2011
https://doi.org/10.5194/hess-15-1483-2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

  17 May 2011

17 May 2011

Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin

R. Thorne R. Thorne
  • School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada

Abstract. Like many high latitude areas, the mountainous region of subarctic Canada has experienced recent warming and is an area of large inter-annual temperature variations, most notably during the winter. Quantifying how climate tendencies affect streamflow, especially in the spring melt season, is critical not only to regional water resource management, but to understanding the influence of freshwater on the Arctic sea-ice cover and global climate system. The impact of projected atmospheric warming on the discharge of the Liard River is unclear. Here, uncertainty in climate projections associated with GCM structure (2 °C prescribed warming) and magnitude of increases in global mean air temperature (1 to 6 °C) on the river discharge are assessed using a well-tested, semi-distributed hydrological model. Analyses have shown that the hydrological impacts are highly dependant on the GCM scenario. Uncertainties between the GCM scenarios are driven by the inconsistencies in projected spatial variability and magnitude of precipitation, rather than warming temperatures. Despite these uncertainties, the entire scenario simulations project that the subarctic nival regime will be preserved in the future, but the magnitude of change in river discharge is highly uncertain. Generally, spring freshet will arrive earlier, autumn to spring discharge will increase whereas summer flow will decrease, leading to an overall increase in annual discharge.

Publications Copernicus
Download
Citation