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Abstract. A statistical approach to LiDAR derived topo-
graphic attributes for the automatic extraction of channel net-
work and for the choice of the scale to apply for parameter
evaluation is presented in this paper. The basis of this ap-
proach is to use distribution analysis and statistical descrip-
tors to identify channels where terrain geometry denotes sig-
nificant convergences. Two case study areas with different
morphology and degree of organization are used with their
1 m LiDAR Digital Terrain Models (DTMs). Topographic
attribute maps (curvature and openness) for various window
sizes are derived from the DTMs in order to detect surface
convergences. A statistical analysis on value distributions
considering each window size is carried out for the choice
of the optimum kernel. We propose a three-step method to
extract the network based (a) on the normalization and over-
lapping of openness and minimum curvature to highlight the
more likely surface convergences, (b) a weighting of the up-
slope area according to these normalized maps to identify
drainage flow paths and flow accumulation consistent with
terrain geometry, (c) the standard score normalization of the
weighted upslope area and the use of standard score values
as non subjective threshold for channel network identifica-
tion. As a final step for optimal definition and representation
of the whole network, a noise-filtering and connection pro-
cedure is applied. The advantage of the proposed methodol-
ogy, and the efficiency and accurate localization of extracted
features are demonstrated using LiDAR data of two differ-
ent areas and comparing both extractions with field surveyed
networks.
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(giulia.sofia@unipd.it)

1 Introduction

Recent advances in data collection technology, such as air-
borne and terrestrial laser scanning, enabled rapid, accurate,
and effective acquisition of topographic information (Acker-
mann, 1999; Kraus and Pfeifer, 2001; Briese, 2004; Slatton
et al., 2007; Tarolli et al., 2009). A generation of high res-
olution (≤3 m) Digital Terrain Models (DTMs) is nowadays
widely available, offering new opportunities for the scientific
community to use detailed representations of surfaces.

Terrain geometry defines flow paths across a watershed,
and raster-based DTMs have been widely applied to de-
rive hydrogeomorphic features by using primary topographic
attributes such as slope, aspect, and curvature (Florinsky,
1998). The accuracy of feature identification depends on
that of the initial dataset, but remains a challenge, due to the
multi-scale nature of geo-morphological processes and partly
to the absence of objective thresholds for feature classifica-
tion.

Extracting drainage networks from DTMs is one of the
most important digital terrain analyses. Traditionally, ex-
traction methodologies are based on the flow routing model.
Various drainage algorithms offer possibilities of computing
drainage networks all over the raster surface (O’Callaghan
and Mark, 1984; Quinn et al., 1991; Tarboton, 1997; Or-
landini et al., 2003). They generally follow the procedure
of filling pits, computing flow direction, and computing the
contributing area draining to each grid cell (Tarboton, 2003).

The conversion from a drainage flow path to a meaningful
network requires a further step. The traditional approach is to
use a unique contributing area or slope-area threshold beyond
which the hydrographical network is chosen (O’Callaghan
and Mark, 1984; Band, 1986; Mark, 1988; Tarboton et al.,
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1991; Montgomery and Dietrich, 1994; Dietrich et al., 1993;
Dalla Fontana and Marchi, 2003). This approach, how-
ever, shows variable reliability and sensitivity over different
drainage basins and grid cell sizes, with a general tendency
to predict more channel heads than can be observed in the
field (Orlandini et al., 2011).

These approaches share the idea that flow direction is
strictly dependent from the topographic surface. Physical lo-
cation of channel heads, however, is not related just to topo-
graphic slope, but in some cases depends also on several fac-
tors as geomorphic processes involved, soil properties, cli-
matic environment, land use, etc. (Montgomery and Dietrich,
1988; Prosser and Abernethy, 1996; Wemple et al., 1996;
Beven and Kirby, 1979; McGlynn and McDonnel, 2003). In
these contexts, the identification of drainage network accord-
ing to the area or slope-area thresholds does not necessarily
correspond to the actual channel head location (Orlandini et
al., 2011) because the use of a unique value for the area or
slope-area thresholds is not enough to characterize all chan-
nels (Passalacqua et al., 2010b). Alternatively, some authors
proposed morphological reasoning to establish this threshold
(Rodriguez-Iturbe and Rinaldo, 1997; Heine et al., 2004).

Several studies pointed out that a robust delineation of
stream networks should be based on direct detection of mor-
phology, underlining how specific geometric properties of
surfaces calculated directly from DTMs can effectively avoid
the thresholding issue of classical methods on channel net-
work extraction. The core idea of these approaches is to la-
bel convergent cells and connect them on a second step us-
ing classical flow routing procedures or cost functions based
upon them. A large number of indexes directly derived from
LiDAR DTMs exists to describe correctly surfaces geometric
properties and to identify terrain convergences (Gallant and
Wilson, 2000). Some of them have already been used for
network extraction (Tarboton and Ames, 2001; Molloy and
Stepinski, 2007; Lashermes et al., 2007; Tarolli and Dalla
Fontana, 2009; Thommeret et al., 2010; Pirotti and Tarolli,
2010; Passalacqua et al., 2010a,b).

Tarboton and Ames (2001) suggested the use of a proxy
of curvature stemming from the Peuker and Douglas (1975)
algorithm to account for spatially variable drainage density.
Upwards curved grid cells have been used by other authors
to derive channel networks from digital elevation data (Band,
1986; Gallant and Wilson, 2000). Tarboton (2003) proposed
a procedure in order to provide a weight matrix to apply on
drainage area computation. He suggested the use of a statisti-
cal threshold based on the constant drop property of channel
networks (Broscoe, 1959) in order to choose the most suit-
able weighted support area threshold to map channels. How-
ever, some authors argued that this thresholding procedure is
not applicable when the network topology needs to be related
to morphology (Thommeret et al., 2010).

Wavelet analysis to locally filter LiDAR elevation data
and to detect threshold of topographic curvature and slope-
direction change has been used by Lashermes et al. (2007)
to define valleys and portions of probable channelized ar-
eas within the valley. Curvature maps derived from LiDAR
DTMs have been used by Tarolli and Dalla Fontana (2009)
and Pirotti and Tarolli (2010) to assess the capability of high
resolution topography for the recognition of convergent hol-
low morphology of channel heads and for channel network
extraction respectively. Thommeret et al. (2010) used a data-
driven and data-derived threshold based on DTM noise to ex-
tract badlands network, identifying convergent areas from a
combination of terrain morphology indices and a single flow
drainage algorithm. Passalacqua et al. (2010a,b) applied non-
linear diffusion filtering combined with a geomorphically-
informed geodesic cost function to identify automatically
channel initiation points and extract channel paths from Li-
DAR data.

The referenced studies dealt with a prior assessment of the
input data (Thommeret et al., 2010), calibration of the kernel
size by interactively testing its effectiveness related to the in-
vestigated features (Pirotti and Tarolli, 2010), fixed arbitrar-
ily chosen scales to evaluate topographic parameters (Tar-
boton and Ames, 2001; Molloy and Stepinski, 2007; Tarolli
and Dalla Fontana, 2009; Passalacqua et al., 2010a,b). Some
open questions still remain, as in how to identify thresholds
that are not data-driven and how to objectively select scale
without calibrating it on results and without considering a
previous analysis of the data and of the study area.

For the present work, we proposed a methodology rela-
tively independent of the input dataset or from the size of
the analyzed features. The approach is based on normalized
topographic attributes, such as openness (Yokoyama et al.,
2002; Prima et al., 2006) and minimum curvature (Evans,
1979) as a weight for the upslope area. The identification of
the optimum scale to use to evaluate topographic parameters
is based upon distribution analysis and statistical thresholds
provide the key for the choice of the parameters controlling
the extracted network.

2 Study and test areas

We selected two study areas based on the availability of high-
resolution LiDAR surveys and detailed independent field
based network location datasets. The main study site (Cor-
don), is a geometrically simple shaped area, defined intu-
itively in order to include a network and a pour point (max-
imum flow convergence), without any a priori reference to a
single well defined hydrological unit. The test area instead,
refers to a more complex structure: a headwater catchment
(Miozza). This choice has been done in order to show the ac-
curacy and the objectivity of the proposed methodology for
alpine environment with a complex morphology.
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Fig. 1. Maps showing the location of the study area on the Cor-
don basin(A) and the test area on the Miozza basin(B). Drainage
network and surveyed channel heads are shown.

The main study area refers to a rectangular selected area
(1.4 km2) located in the Rio Cordon basin (panel a in Fig. 1;
Fig. 2), a headwater alpine catchment in the Dolomites.
Available data of this area consist of several field surveys
conducted during the past few years, including LiDAR sur-
vey (data acquired during snow free conditions in Octo-
ber 2006) and DGPS (Differential Global Positioning Sys-
tem) ground observations carried out in 1995–2001 (Dalla
Fontana and Marchi, 2003) and during summer 2008–2009
(Pirotti and Tarolli, 2010).

The test area refers to the headwater catchment of Miozza
basin (panel b, Fig. 1): the area covers 4.4 km2. Basin eleva-
tion ranges from 834 to 2075 m a.s.l. with an average value
of 1530 m a.s.l. Geomorphological settings of the basin are
typical of the north eastern alpine region: deep valleys with
high value of slope and erosion areas. The basin is quite wild
and the only human activity is related to occasional forest
management activities. Available data consist of field sur-
veys conducted during the past few years (Tarolli and Tar-
boton, 2006), including LiDAR survey (data acquired during

Fig. 2. Example of complex morphology on the upper part of the
Cordon basin. The high degree of complexity(A) and the rapid
slope change(B) define two of the main issues related to channel
network extraction on this area according to topographic parameters
and classic thresholding procedure respectively.

snow free conditions in 2003) and a DGPS field campaign
conducted during 2006–2007 (Tarolli and Tarboton, 2006;
Tarolli and Dalla Fontana, 2008, 2009).

Channel heads were mapped in the field for both areas
(Pirotti and Tarolli, 2010; Tarolli and Dalla Fontana, 2009):
contributing area at channel head location varies signifi-
cantly. For the Cordon area, it ranges between approximately
110 m2 to 13 000 m2. Same analyses carried out for the
Miozza basin (Tarolli and Dalla Fontana, 2009), show val-
ues of contributing area ranging from 128.6 m2 to 96 680 m2.
Considering this high variability, area and slope-area thresh-
old procedures using a unique value have been proven to be
not reliable for channel network extraction if compared with
the real channel network, especially in morphologically com-
plex areas (Passalacqua et al., 2010b; Orlandini et al. 2011).
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3 Methods

Figure 3 shows a flow chart of the complete procedure. We
propose a three-step method based (a) on the normalization
of topographic parameters (openness and minimum curva-
ture) to highlight local morphology, (b) a weighting of the
upslope area according to such normalization to identify flow
convergences, and (c) the choice of a statistical parameter as
an objective threshold for channel network detection. As a
final step, according to the presence/absence of noises, an in-
dication is provided on how to perform a filtering approach
and then how to connect the network.

3.1 Local morphology analysis

The objective of this study is to delineate the network where
surface allows flows to converge. This analysis is done
through a direct detection of morphology from the digital
terrain maps. For the present work, DTMs were derived with
two different interpolation procedures: the natural neighbor
interpolator (Sibson, 1981) for the Cordon study site and an
algorithm with a spline function in the ESRI TOPOGRID
tool for the Miozza one (Tarolli and Tarboton, 2006; Tarolli
and Dalla Fontana, 2008, 2009). Depending on the spatial
variation of the accuracy and density of the data, and on
the suitability of the interpolation method for a certain re-
lief, DTM quality might vary locally and regionally (Karel
et al., 2006). For some parts of the Cordon study area we
registered the presence of some small artifacts, probably due
to changes of the bare ground point density derived by the
filtering procedure (Cavalli and Tarolli, 2011). When deal-
ing with surface derivatives, one of the limits of their use
is that artifacts present on the input DTMs, even when con-
trolled and limited by appropriate methods, might amplify
when differentiating (Burrough and McDonnell, 1998; Gal-
lant and Wilson, 2000).

On the idea of proposing an unsupervised extraction of
network that did not require an assessment of the input data,
we decided not to approach to any correction of these ar-
tifacts, but to enforce local concavity detection by joining
two indexes: a direct surface derivative (Minimum Curva-
ture, Evans, 1979), and an image of shaded relief and slope
angle (Openness, Yokoyama et al., 2002; Prima et al., 2006).
The choice of curvature has been done considering that nu-
merous works proved its effectiveness for feature extraction
(e.g. Molloy and Stepinski, 2007; Lashermes et al., 2007;
Tarolli and Dalla Fontana, 2009; Thommeret et al., 2010;
Pirotti and Tarolli, 2010; Passalacqua et al., 2010a,b). The
choice of openness is based on the fact that its measure of
convergences relies on an averaging procedure: openness
values are calculated as averaging angles along azimuths
(Yokoyama et al., 2002; Prima et al., 2006). We assumed
that this averaging procedure might be less affected by ar-
tifacts in the input data due to interpolation techniques. As

Fig. 3. Flow chart of the proposed methodology. Local morphol-
ogy is enlightened through Topographic Attributes (Minimum Cur-
vatureCmin, Positive OpennessφL , Negative OpennessψL ). The
choice of the optimum kernel size (n∗) is done through the analy-
sis of the relationship between skewness and kernel width (n). To-
pographic attributes computed considering the optimum kernel are
analyzed through QQ-Plot to identify thresholds to normalize each
map. Flow convergence is done through multiple flow upslope area
(AMDF) weighted according to a matrix depending on the normal-
ized topographic attributes. Network is then identified as positive
values of the weighted area standard score.

suggested by Yokoyama et al. (2002), values of both positive
and negative openness have been compiled.

3.1.1 Minimum curvature

Curvature is defined as the second spatial derivative of the
terrain (Evans, 1972). The local surface is approximated
by a quadratic function with reference to a coordinate sys-
tem (x, y, z) and six parameters (a to e) (Evans, 1979;
Wood, 1996), and curvature is found by differentiating the
surface equation. Various differential approaches to calculate
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land surface curvature(s) have been referenced (Evans, 1972;
Horn, 1981; Zevenbergen and Thorne, 1987; Mitasova and
Hofierka, 1993; Shary et al., 2002). Evans’ (1979) method,
however, is one of the most suitable at least for first-order
derivatives (Shary et al., 2002), and it performs well in the
presence of elevation errors (Albani et al., 2004; Florinsky,
1998). The two most frequently calculated forms are profile
and plan curvature (Gallant and Wilson, 2000). These two
measures involve the calculation of the slope vector. There-
fore, they remain undefined for quadratic patches with zero
gradients (i.e. the planar componentsd ande are both zero).
In such cases, alternative measures independent of slope need
to be substituted. Evans (1979) suggests two measures of
minimum and maximum curvature:

Cmax = −a − b +

√
(a − b)2 + c2 (1)

Cmin = −a − b −

√
(a − b)2 + c2 (2)

wherea, b andc derive from the quadratic function for sur-
face approximation (Evans, 1979; Wood, 1996).

To perform terrain analysis across a variety of spatial
scales different authors (Yokoya and Levine, 1989; Wood,
1996) solved the bi-quadratic equation using an× n win-
dow with a local coordinate system (x, y, z) defined with the
origin at the pixel of interest (central pixel). Equations (1)
and (2) can be therefore, modified by generalizing the calcu-
lation for different window width (Wood, 1996):

Cmax = n · g
(
−a − b +

√
(a − b)2 + c2

)
(3)

Cmin = n · g
(
−a − b −

√
(a − b)2 + c2

)
(4)

whereg is the grid resolution of the DTM, andn is the size
of the moving window.

These two formulae have been widely used in literature
for multi-scale terrain analysis (Wilson et al., 2007) and for
morphometric feature parameterization (Eshani and Quiel,
2008) since they are directly related to geomorphologic form,
where surface concavities and convexities are detected. Max-
imum curvature has been applied successfully by Tarolli et
al. (2010) for the extraction of geomorphic features, such
as landslides crowns and debris flow banks. A mean curva-
ture (Cmean) derived from these two formulae has been used
by Pirotti and Tarolli (2010) for channel network extraction.
Cavalli and Marchi (2008) applied the same generalization
procedure to plan curvature formulation, for the characteri-
zation of surface morphology.

Channelized landform elements are formed around de-
pressions in curvature and are thus referred to as concave
elements. Therefore, we decided to useCmin (Eq. 4) as opti-
mal for feature recognition (Figs. 8c and 9c). A progressively
increasing moving window size (from 3× 3 to 33× 33 cells)
has been considered for the calculation of curvature, in order
to reduce the effect of noise and small scale variation in the

DTM (Fig. 4a). The choice of the kernel range is based on
a computational constraint to set the minimum value and a
literature review to set the maximum. The minimum width
value (3 cells) relies on the fact that sampling window needs
to be centered on the cell of interest, thus the smallest area
must comprise this cell and its eight nearest neighbors. Lit-
erature review (Pirotti and Tarolli, 2010; Tarolli et al., 2010)
demonstrated that considering a window width range of 3–
33 cells, quality of extracted features tends to a progressive
worsening when windows are greater than∼25 cells. We de-
cided to apply the same kernel size range (3–33) to account
also for a margin of uncertainty considering the different in-
terpolation techniques of the study DTMs and different mor-
phological characterization of the study cases.

3.1.2 Openness

Openness is a morphometric parameter developed by
Yokoyama et al. (2002), expressing the degree of dominance
or enclosure of a location on an irregular surface. It is an
angular measure of the relation between surface relief and
horizontal distance (Prima et al., 2006).

Topographic openness is calculated as the average of either
zenith (φ) or nadir (ψ) angles along eight azimuthsD (0, 45,
90, 135, 180, 225, 270 and 315) within a radial distanceL

(Yokoyama et al., 2002). Openness always assumes a posi-
tive sign, and its values range from 0 to 180◦. The parameter
is designated “positive” and “negative” in the same sense as
has been used to express terrain-slope curvature (Pike et al.,
1988). Positive opennessφL is convex-upward and refers to
the calculation with zenith angles; negative opennessDψL is
concave-upward and refers to evaluation with nadir angles
(Yokoyama et al., 2002).

Along the AzimuthD, the zenith angleDφL at a grid
within radial distanceL is

DφL = 90 − DβL (5)

and the nadir angleDψL is

DψL = 90 − DδL (6)

Positive opennessφL of a location on the surface within a
distanceL on DTMs is

φL = (0φL + 45φL + ... 315φL)
/

8 (7)

and negative opennessψL within theL distance is

ψL = (0ψL + 45ψL + ... 315ψL)
/

8 (8)

Representation of positive openness is designed to highlight
topographic convexities, showing higher openness values for
ridges and lower values for concavities. Maps of negative
openness emphasize drainage (higher values) at the expense
of convex-overall features. (Yokoyama et al., 2002) (Figs. 8a
and b and 9a and b).
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Fig. 4. Example of kernel size effect on minimum curvature(A) and negative openness(B) for the Cordon area according to an increasing
window size (n) of 3, 15 and 33 cells.

To perform terrain analyses maintaining homogeneity with
curvature, openness maps have been evaluated considering
n× n moving window (Wood, 2009) (Fig. 4b). Instead of
a radial distanceL, we considered the distance between the
centre of the inner pixel and the centre of surrounding ones
considered within the window size (n).

3.1.3 Optimum kernel size evaluation

For this work, the channel pattern recognition and classifica-
tion are based on the assumption that a deviation of values
from their normal distribution can delineate a threshold be-
tween well organized valley axes and occurrence of localized
convergent topography (Lashermes et al., 2007).

The degree of divergence of the distribution from normal-
ity is related to the shape of the distribution itself and to its
skewness. Values of the height of a smoothed surface tend to
have a symmetric distribution in a well selected window with
slow-changing terrain (Bartels et al., 2005), but in a com-
plex and hilly region, imbalanced terrain elevation affects
the histogram distribution, increasing or decreasing its skew-
ness (Yuan et al., 2008). Values of concavities connected to
channels, furthermore, have low frequencies, and are usu-
ally located in the tails of the distribution. The shape of the

distribution, therefore, is influenced both by the morphology
but also by the kernel size used to evaluate the topographic
parameters, since the aim of the kernel size approach is to
provide a filter to mask noises and bring out the meaningful
concavities related to channels.

The shape of a distribution can be measured through skew-
ness, defined as:

Sk =
E (X − µ)3

σ 3
(9)

whereµ andσ are respectively the mean and the standard
deviation of the distribution andE() represents the expected
value of the quantity.

Considering minimum curvature on the Cordon area
(Fig. 5a) the increasing of widths of the moving window
causes a progressive and slight decreasing of the skewness
of the distributions. This is related to the presence of small
artifacts in the original DTM that are magnified by the use of
a direct surface derivative (minimum curvature).

Analyzing positive and negative openness in both study
cases, instead, and observing minimum curvature for the
Miozza basin, it is clear that the increasing the window size
causes a skewing of the distributions of these parameters up
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Fig. 5. Skewness for each parameters according to window size (n)
for the Cordon study site(A) and the Miozza basin(B).

to a certain point: skewness values become higher in the neg-
ative or positive domain until a maximum value is reached.
After that, the increasing of the window size is related to a
decreasing of skewness: the distributions slightly and slowly
move toward less skewed shapes (Fig. 5a and b). This behav-
ior is related to the fact that up to a certain scale (the optimal
one), the kernel size approach succeeds on enhancing chan-
nelized features in spite of noises, but when the kernel size
becomes too wide, the resulting maps are too smooth, mask-
ing all noises but at the same time, losing important feature
details (Pirotti and Tarolli, 2010; Tarolli et al., 2010), there-
fore the distributions move toward less skewed shapes (skew-
ness slightly decreases in the negative domain).

Based on this consideration, the optimum kernel width is
the one identified at the first point where the change in the
window size loses its meaningful effect: it refers to the min-
imum kernel size that determines a break in the feature en-
hancing and noises decreasing effects. By considering skew-
ness as related to the window size in a function, in a math-
ematical context, this point can be defined as a “stationary
point”, a point where a function changes its pattern, stop-
ping increasing or decreasing. On a short note, the term

“stationary point” is used here in its mathematical definition,
it does not imply a characterization of the value constancy.

To correctly represent the effect of kernel sizes on the
skewness, for each of our datasets (minimum curvature, pos-
itive and negative openness’), we apply a procedure that can
be defined as “polynomial fitting/enforcing” defining skew-
ness as a function of window widths in a least square sense
(Skewn). The identification of stationary points is then math-
ematical and objective, and it is based on a differentiation
approach: the stationary point is the point where the deriva-
tive of Skewn is equal to zero.

The description of this approach as polynomial “fit-
ting/enforcing” refers to the fact that the polynomial orders
is automatically and iteratively chosen in order to provide a
curve having at least a derivative equal to zero at one point
n included within the adopted kernel size range (3–33). It is
a fitting procedure that is enforced, when it is necessary, to
obtain a stationary point within the kernel size range. The
polynomial “fitting/enforcing” is totally automatic and does
not require the user to observe the data or to assess them: it
is a recursive fitting/differentiating procedure automatically
executed in a loop, that continues until the condition (sta-
tionary point is a real number within the window size range)
is verified. The accomplishment of the condition forces an
immediate exit of the loop code, providing the equation of
the polynomial and the value of the optimum kernel size to
apply.

The polynomial “fitting/enforcing” approach has two
meanings for future practical application of the method. The
first aim is to avoid some evaluation of topographic parame-
ters: it is necessary to compute fewer maps, considering less
windows, the only constraint is to have the minimum (n= 3),
some average sizes (n= 15;n= 17) and the maximum width
(n= 33), to evaluate the Skewn behavior. The second aim
refers to the objectivity of the method. In our study cases,
while for all parameters in the Miozza basin and for positive
and negative openness in the Cordon one, each Skewn has
an actual stationary point, the actual values of skewness for
minimum curvature in the Cordon basin are represented by
an increasing function, with no stationary points (Fig. 5a).
In this case, the “fitting/enforcing” approach allows to define
the stationary point even in this case, by forcing the repre-
sentative Skewn.

The optimum kernel size referring to the minimumn value
where the derivative of each Skewn is zero, are shown in
Fig. 6, paneli and ii . For minimum curvature, this value
refers ton= 11.56 for the Cordon area (Fig. 6, paneli) and
n= 10.54 for the Miozza one (Fig. 6, panelii ). On the Cor-
don area, considering positive and negative openness, skew-
ness derivative vanishes atn= 15.54 for both cases (Fig. 6,
paneli). On the Miozza basin, positive and negative open-
ness derivatives vanish forn= 15.16 for both cases (Fig. 6,
panelii ).

For topographic parameters elaboration, the kernel size
has to be an integer odd number. Therefore, stationary point
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Fig. 6. Derivative computed by the polynomial “fitting/enforcing” approach for curvature and openness evaluation, both for the Cordon study
site(A) and the Miozza basin(B). Detailed vision of points where the derivatives equal zero are shown on the right side of the figure, ini for
the Cordon evaluation andii for the Miozza one.

values have been rounded to the closest odd integer. Accord-
ing to the proposed procedure, a kernel ofn= 11 has been
chosen for minimum curvature on both areas. To give homo-
geneity to the evaluation of the parameter among zenith and
nadir angles, the mean value between the values of positive
and negative openness’ stationary points coordinates (15.54
and 15.16 for the Cordon and the Miozza site, respectively)
have been rounded ton= 15.

One should note that for both the study areas, according
to this methodology, the same windows sizes have been cho-
sen, without any subjective decision. These values are sta-
tistically derived, but they do not imply a similarity on the
areas morphology. The optimum values (15 and 11 cells,
corresponding to 15 and 11 m) identified with the proposed
procedure coincide with kernel widths that have been proven
to be the best for feature extractions in the works by Pirotti
and Tarolli (2010) and Tarolli et al. (2010), respectively.

3.2 Flow convergence recognition

Flow convergence has been evaluated through a multiple flow
direction algorithm (Quinn et al., 1991), slightly modified in
order to incorporate local morphological conditions depend-
ing on local concavity (evaluated according to the two pro-
posed indexes).

3.2.1 Multiple flow upslope area

Literature reviews suggest to involve suitable algorithms
for handling multiple-flow directions to compute properly
contributing area when dealing with divergent topography
(Tucker et al., 2001). Multiple-flow methods, as the one
proposed e.g. by Quinn et al. (1991), Costa Cabral and
Burges (1994), Tarboton (1997), appear to produce gener-
ally better results, avoiding the concentration of flow in dis-
tinct, often artificially straight lines, as in the single-flow di-
rection algorithms (e.g., Erskine et al., 2006). Multiple flow
algorithms allow to identify parts of channels likely to be ac-
tive also under conditions of low or moderate flow, highlight-
ing minor channel features, which are involved in hydrolog-
ical processes during floods. Furthermore, previous studies
demonstrated that multiple-flow algorithms should be pre-
ferred for applications of upslope contributing area derived
from high-resolution DTMs (Erskine et al., 2006). Consider-
ing the available algorithms (Quinn et al., 1991; Costa Cabral
and Burges, 1994; Tarboton, 1997) the ones such as digi-
tal elevation model networks (DEMON) (Costa-Cabral and
Burges, 1994) are too complex and case specific to be imple-
mented for most applications, even if they might have theo-
retical advantages (Tarboton, 1997).

The choice of the Quinn et al. (1991) multiple-flow algo-
rithm was based on two further considerations: (a) previous
studies (Endreny and Wood, 2001, 2003) demonstrated that,
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compared to other flow algorithms, MDF (Quinn et al., 1991)
was the least sensitive to terrain uncertainties; (b) the main
disadvantage of Quinn’s MDF (large degree of dispersion
even for a convergent hillslope), was supplied by incorpo-
rating a weight depending on local topographic conditions.

By literature review, the Quinn’s MDF algorithm is more
robust than others to apply on a method that is not con-
strained by an a priori knowledge of the dataset. We con-
sidered this algorithm in order to observe all the possible
downslope directions, to have a better highlight of topogra-
phy, while the high dispersion of the algorithm itself is re-
duced by incorporating local morphological conditions (see
Sect. 3.2.2).

3.2.2 Weighting procedure

For the present work, the Quinn’ (1991) flow accumulation
algorithm was modified using a weight factorW dependent
on local morphology:

Aw = f (W, r) (10)

whereAw is the weighted upslope contribution area for a
given pixel andr is the pixel location on the DTM. The main
difference from a conventional MDF flow accumulation is
to provide a map ofW , directly related to geomorphologic
form, where surface concavities and convexities are detected.
Similar procedures can be found in Tarboton (2003) and Liu
et al. (2007).

The weighted upslope area is an implicit description of
how much water can be accumulated according to the de-
gree of convergence of the surface. Given a defined upslope
value, the weighted amount depends on upslope contributing
area and local convergence of morphology, represented by
the weight matrixW (Eq. 15, Figs. 8d and 9d). This weight is
identified through normalized values of openness and curva-
ture. If a pixel relies on a convergent morphology, the value
of the upslope area will be increased proportionally to its de-
gree of convergence, while if it lies on divergent morphology,
its value will be diminished.

For maps normalization, we evaluated for each attribute
map a Quantile-Quantile plot (QQ-Plot) (Fig. 7a). This
graphical operator compares ordered values of a variable
with quantiles of a specific theoretical distribution (here
Gaussian). This distribution represents the relative likelihood
of the random variable to occur at a given point in the obser-
vation space. The divergence from a straight line indicates a
deviation of the probability density function from the Gaus-
sian and therefore, a deviation of the values from the overall
pattern of points. In the work of Lashermes et al. (2007) and
Passalacqua et al. (2010a,b) QQ-Plots of landform curvature
were used to define objectively curvature thresholds for net-
work extraction. In this study, we suggested that the devia-
tion from the normal distribution recorded both for openness
(ψL andφL), andCmin QQ-Plots represents the likely thresh-
old for channel identification. ForψL , we consider the break

Fig. 7. Cordon study area: topographic attribute map normalization.
Example of QQ-Plot(A) for minimum curvature and identification
of threshold (i) to apply in order to normalize the map (QQ-Plotthr).
Minimum curvature forn= 11 (B) and derived normalized map(C)
are shown.

on higher values (right tail of distribution), while forφL , we
considered the break for lower values – left tail – (Eqs. 11
and 12). ForCmin, we evaluate the break on the negative side
(El. i Fig. 7a) that, following Evans’ approach, corresponds
to convergent topography (Evans, 1979; Wood, 1996). Re-
suming these formulations, channels are identified where

ψL > QQ plotthr (11)

φL < QQ plotthr (12)

Cmin < QQ plotthr (13)

where the term “thr” (threshold) represents, for each map,
the value corresponding to the break in the QQ-Plot (El.i,
Fig. 7a).

Maps normalization has been evaluated according to QQ-
Plotth using the procedure

NTA = f

(
1

QQ plotthr
, TA(x,y)

)
(14)
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Fig. 8. Cordon study area: positive(A) and negative(B) openness,
minimum curvature(C) and weight matrix(D) derived through nor-
malization and overlapping.

whereNTA stands for the normalized parameter (openness
or curvature) considered for a given pixel, and TA(x,y) is the
topographic attribute at the pixel of interest (Fig. 7c).

The obtained weight gridW (Figs. 8d and 9d) refers to:

W =

(
NCmin

)
·

(
NψL

)(
NφL

) (15)

whereN stands for normalization procedure according to
Eq. (14). To assign higher values to convergent topography,
the positive openness normalized map appears as 1/NφL .

3.3 Network detection

Field surveyed channel heads for the study area show that ob-
served contributing areas vary significantly and this suggests
that a constant value for network extraction might not be a
good assumption (Passalacqua et al., 2010b). Average con-
tributing area can be used, but the resulting drainage densities
are too high (Passalacqua et al., 2010b). Accurate and objec-
tive location of channel network remains therefore, a chal-
lenge. For the present work, we proposed a sound method

Fig. 9. Miozza basin: positive(A) and negative(B) openness, mini-
mum curvature(C) and weight matrix(D) derived through normal-
ization and overlapping.

to identify these features using an objective threshold depen-
dent on the weighted upslope area distribution. Consider-
ing that our datasets derived from different distributions, we
standardized both maps in order to allow comparison. To
identify the threshold, the weighted upslope area has been
normalized according to a standard score approach, indicat-
ing how many standard deviations each observation is above
or below the mean.

The standard score (zi) is a dimensionless quantity and for
the i-th observation of a random variableXat a pointi, and
it is given by:

zi =
Xi − µ

σ
(16)

whereµ andσ are respectively the mean and the standard
deviation of the distribution.

The z-score for any observation can be interpreted as a
measure of the relative location of the observation in a data
set. Thus, observations in two different datasets with the
samez-score can be said to have the same relative location in
terms of being the same number of standard devations from
the mean. Values that are larger than the mean have positive
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standard scores and values that are smaller than the mean
have negative scores. When a value equals the mean, it has a
standard score of 0. This standardization changes the central
location and the average variability of the distribution, but it
does not change its shape.

We chose to define the threshold for channel head and
network identification atzi equal to 0, a position in the ex-
act middle of the distribution. Channel network is identified
therefore, by those pixels that satisfy the relation

zAw > 0 (17)

wherezAw is the standard score (Eq. 16) of the weighted up-
slope area at each pixel.

3.4 Noise filtering

Direct application of openness and curvature independently
produce typically segmentation of the resulting raster, be-
cause of the numerous local convergences that exist in real
surfaces due to inherent noise. The use of the weighted up-
slope area, allows a better connection of the network, but
noises are still relevant. Filtering the input data regulariz-
ing the map before computing attributes refers to a different
approach for topographic attribute evaluation for feature ex-
traction (Lashermes et al., 2007; Passalacqua et al., 2010a,b)
and whose uncertainties have been already underlined (Pas-
salacqua et al., 2010b). In our study cases, for areas with
a low degree of morphological complexity (Miozza), noises
can be easily discarded on the produced map through sim-
ple filtering based on the majority of contiguous neighboring
cells. When the procedure is applied to areas with complex
morphology (Cordon, Fig. 2), noise detection becomes more
challenging. It is generally difficult to obtain relevant indica-
tors automatically without any interaction by the user. There-
fore, we suggest an approach that is not fully automatic, but
it can be used to assist on the task of identifying the network
and of discarding objectively meaningless extractions.

To discard false positives (noises), it is useful to analyze
regions that show high fragmentation. For these areas, it is
possible to evaluate disruption magnitude to mark a morpho-
logical disorder. We suggest that noises can be related to
higher randomness of values of the original elevation data,
while concavities related to channels refer to patterns with
a better structure. A good representation of the elevation
organization can be identified through the analysis of water
movement for each cell. Flow is defined by any cell within a
neighborhood that has a higher value than the processing cell.
The output map that results from the function represents the
pattern of the flow into each cell, measured by integer num-
ber in a range from 0 to 255. In order to test the degree of
organization of this map, we evaluate a statistical measure of
randomness, referenced as Entropy (Gonzales et al., 2003),
measuring the distribution of values among classes within a
neighborhood. We considered 256 classes, so that the pixel

values directly correspondent to a bin value on the range 1–
255 (Gonzales et al., 2003). To maintain homogeneity with
the full procedure, cell neighborhood has been defined ac-
cording to an average window size (n= 13) between the cho-
sen ones for curvature and openness.

We produce a raster map where each output pixel contains
the entropy value of the nearest neighborhood, evaluated as

Entropy = −

∑
pi · log pi (18)

wherepi is the proportion of pixels that are assigned to each
class.

Minimum entropy occurs when the cell values are all lo-
cated in the same class, while maximum entropy occurs when
each cell value is located in a different class interval. The
most homogeneous areas have therefore a low spatial en-
tropy; this is the case for channel patterns. The most irregular
regions have a high entropy.

We suggest to observe the entropy degree on areas where
extraction produces not clear results. Extractions obtained in
areas with values of entropy higher than the average should
be discarded (Fig. 10b). Some noises can be withdrawn ac-
cording to this analysis (El.i, ii in Fig. 10). Elementiii
in Fig. 10 refers to a channel referenced on maps but actu-
ally not active on the area. Therefore, consistently with other
works (Passalacqua et al., 2010b), it has not been considered
for quality evaluation.

Once we applied the two filtering approaches (majority fil-
ter for the Miozza basin and entropy analysis for the Cordon
area) the remaining network needs a connection procedure.
Considering a pour point (maximum value of flow conver-
gences) we identified the most suitable (shortest) flow path
from each channel head to the pour point. This path has been
identified as the least accumulative cost distance to the pour
point over a cost surface set as the Euclidean distance of each
pixel from the correct extraction. A fuller discussion of ac-
cumulated cost surface methods, and representational accu-
racy can be found in Douglas (1994) and Eastman (1989).
Other approaches to network connection have been success-
fully tested in the work of Passalacqua et al. (2010a,b) where
channel networks were detected using non linear diffusion
and geodesic path.

4 Results and discussion

The final product is a map representing the channel network.
For accuracy assessment, the extracted networks (Figs. 11b
and 12b) have been compared with a DGPS surveyed net-
work (Tarolli and Dalla Fontana, 2009; Pirotti and Tarolli,
2010) (Figs. 11a and 12a). The overall quality has been
evaluated considering Cohen’sk index of agreement (Cohen,
1960).

The quality measure used for this accuracy assessment was
defined as

k =
Pa − Pe

1 − Pe
(19)
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Fig. 10. Cordon study area: local entropy according to flow convergences(A) and identification of meaningful (blue) and doubtful (red)
pixels(B).

Fig. 11. Cordon study area: reference network(A) and network extracted through the proposed methodology(B).

wherePa is the total agreement probability evaluated accord-
ing to Eq. (20), andPe is the agreement probability due to
chance, according to the formulation in Eq. (21) (Cohen,
1960).

Pa =

l∑
i=1

P (xii) (20)

Pe =

l∑
i=1

P (x.i) P (xi.) (21)

wherei is the number of class values,P(x.i), P(xi.) are the
columns and rows marginal probabilities, respectively and
P(xii) are the agreeing extracted values.

Perfect agreement results in a Cohen’sk value of 1.0,
while a value of 0 indicates a level of agreement due to
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Fig. 12. Miozza basin: reference network(A) and network extracted through the proposed methodology(B).

chance alone. A reference scale does not exist for Cohen’s
k for hydrological applications, but some reports about the
application of this index in other fields exist. These studies
suggested a scale for Cohen’sk and its level of agreement
between datasets: values ofk lower than 0.20 indicate slight
agreement, 0.20–0.40 represent a fair agreement, 0.40–0.60
moderate agreement, 0.60–0.80 substantial agreement, and
0.80–1.00 indicates almost perfect agreement (Landis and
Koch, 1977).

To evaluate the index, buffer zones were generated around
the extracted network as well as the reference one. The cho-
sen buffer width was set to 5 m according to a previous work
carried out on the Cordon area using the same dataset, where
analysis of results had been performed using the same quality
measure (Pirotti and Tarolli, 2010). To maintain homogene-
ity, the same buffer width has been considered for both the
Cordon and the Miozza case study.

The extraction procedure generates a network character-
ized by a substantial agreement between extracted features
and reference ones for both applications: Cohen’sk are 0.78
and 0.63 for the Cordon area and the Miozza basin respec-
tively.

5 Final remarks

This work analyzed a mathematical and statistical approach
to a combination of topographic attributes for an unsuper-
vised channel network identification in a complex moun-
tainous terrain. Our primary focus has been to develop and
present a method that could describe accurately the drainage
network considering objective thresholds without an a priori

knowledge of the study area or of the input dataset. The
methodology includes two main aspect: (a) normalization of
openness and minimum curvature maps according to their
QQ-Plotthr and their combination with upslope area to high-
light potential surface convergences, and (b) a thresholding
procedure based on standardized values of the weighted ups-
lope area. The methodology has been applied to a rectangular
area on a study site and to a fully-organized basin used as a
test site. Both extracted features have been compared with
the field surveyed networks.

The joined use of curvature and openness allows an in-
dependence of the method from artifacts in the input data.
The skewness/kernel evaluation through the polynomial “fit-
ting/enforcing” approach allows to select optimum kernel
size without assessing the quality of the input maps and it
is able to identify kernels that have already been proven as
optimal for other works in one of the two study areas. The
approach based on distribution analysis also, allows indepen-
dency from assessing the morphology of the areas: skewness
is statistically identified and does not implies morphological
similarities of the basins, because it does not consider the
spatial location and organization of concavities and convexi-
ties, but, more in general, their location among distributions.
The use of statistical operators as objective indexes, results
on a network correctly delineated and strongly consistent
with surface morphology, without assessing the study areas.
Automatic detection of network based on thresholding op-
erations was demonstrated as efficient in terms of time con-
sumption and valid to associate shapes and pattern with ac-
tual topographic signature of flow processes. Finally, shortest
cost path procedure applied to the filtered maps, allows the
definition of a meaningfully connected network.
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The proposed approach, anyway, present so far one limit.
In areas with highly complex morphology, other surface fea-
tures not related to channel networks are detected. Network
extraction carried out using openness and curvature inde-
pendently shows some flaws detecting localized patterns and
misleading noisy cells, which do not actually represent the
features. The method, yet, can provide a quantitative and
qualitative description of the network and can give an overall
information about position and orientation of local conver-
gences. The analysis of surface entropy has been proven in
this case to be a useful and objective tool to assist the user on
discarding doubtful extractions. The only flaw is showed by
the fact that entropy has to be applied interactively to assist
on the task of automatic network mapping, but noises can be
objectively discarded (Entropy higher than the mean). In area
with lower morphological complexity, the procedure is in-
stead fully automatic in all its steps. The results obtained by
the method on two areas with different complexity, consid-
ering morphology, network shape and also structural shape,
shows promising effectiveness for practical applications.
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