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Abstract. In this study lake levels of Lake Tana are simu-
lated at daily time step by solving the water balance for all
inflow and outflow processes. Since nearly 62% of the Lake
Tana basin area is ungauged a regionalisation procedure is
applied to estimate lake inflows from ungauged catchments.
The procedure combines automated multi-objective calibra-
tion of a simple conceptual model and multiple regression
analyses to establish relations between model parameters and
catchment characteristics.

A relatively small number of studies are presented on Lake
Tana’s water balance. In most studies the water balance is
solved at monthly time step and the water balance is simply
closed by runoff contributions from ungauged catchments.
Studies partly relied on simplead-hocprocedures of area
comparison to estimate runoff from ungauged catchments.
In this study a regional model is developed that relies on
principles of similarity of catchments characteristics. For
runoff modelling the HBV-96 model is selected while multi-
objective model calibration is by a Monte Carlo procedure.
We aim to assess the closure term of Lake Tana’s water bal-
ance, to assess model parameter uncertainty and to evaluate
effectiveness of a multi-objective model calibration approach
to make hydrological modeling results more plausible.

For the gauged catchments, model performance is as-
sessed by the Nash-Sutcliffe coefficient and Relative Vol-
umetric Error and resulted in satisfactory to good perfor-
mance for six, large catchments. The regional model is vali-
dated and indicated satisfactory to good performance in most
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cases. Results show that runoff from ungauged catchments
is as large as 527 mm per year for the simulation period and
amounts to approximately 30% of Lake Tana stream inflow.
Results of daily lake level simulation over the simulation pe-
riod 1994–2003 show a water balance closure term of 85 mm
per year that accounts to 2.7% of the total lake inflow. Lake
level simulations are assessed by Nash Sutcliffe (0.91) and
Relative Volume Error (2.71%) performance measures.

1 Introduction

During the past decades few studies report on the water bal-
ance of Lake Tana. For early work reference is made to (Con-
way, 1997) who studied the hydrology of the Blue Nile at
large. For more recent work reference is made to Chebud
and Melesse (2009) and Kebede et al. (2006). In these studies
water balance assessments are on monthly time steps. For as-
sessments on daily time step l reference is made to Setegn et
al. (2008); SMEC (2008) and Wale et al. (2009) who specif-
ically focussed on the water balance of Lake Tana and the
hydrology of Lake Tana basin. Stream flow in the basin is
not recorded in all catchments that drain to the lake. A re-
view of the above studies shows that the estimates of inflows
differ significantly by the selected procedures. According
to (Setegn et al., 2008) 45% of the annual lake water bud-
get is from Gilgel, Gumera, Ribb and Megech rivers that are
the four major catchments. Chebud and Melesse (2009) and
Kebede et al. (2006) state that these catchments contribute
93% of the inflow and only 7% of the lake inflow is from
ungauged catchments. SMEC (2008) indicates that 29% of
the lake inflow is from ungauged catchments while Wale et
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al. (2009) indicate that 42% of the lake inflow is from un-
gauged systems. It is noted that closure of the lake water bal-
ance in most studies (e.g. Kebede et al., 2006; SMEC, 2008)
was by stream inflows from ungauged catchments. An actual
closure term, however, could not be estimated and any error
in one of the balance terms was compensated for by the esti-
mate of the ungauged inflows. For estimation of the closure
error of Lake Tana’s water balance, only in the work of (Wale
et al., 2009) observed lake levels are compared to simulated
lake levels by considering a detailed bathymetric survey.

Estimation of stream flow in ungauged basins commonly
is based on principles of regionalisation which is the process
of transferring information from gauged catchments to un-
gauged catchment (see Blöschl and Sivapalan, 1995). Merz
and Bl̈oschl (2004) describe that regionalisation approaches
may be based on similarity of spatial proximity or on simi-
larity of catchment characteristics. The rationale of the first
approach is that catchments of close proximity have a sim-
ilar flow regime and therefore model parameters (MPs) are
directly transferable. The rational for the second approach
is that optimised MPs are transferable to other catchments in
case the physical catchment characteristics (PCCs) are com-
parable. Transferability is based on the idea that PCCs and
(optimised) MPs values are related since, in their function-
ing, parameters reflect on catchment characteristics. There-
fore when establishing a relation between MPs and PCCs
the information that is carried by the relation can be used to
estimate parameter values from ungauged catchments when
catchment characteristics from the ungauged systems are
known. Regionalisation may serve to simply estimate stream
flow from ungauged catchments but also serves to improve
the predictive capability of the selected rainfall-runoff model
by assessing model uncertainty. The need to improve the
modeling of ungauged catchments is recognized by the In-
ternational Association of Hydrologic Sciences (IAHS) by
adopting the topic as one of the core components for their 10-
yr Prediction in Ungauged Basins (PUB) project (see Siva-
palan et al., 2003).

In Kebebe et al. (2006) and SMEC (2008) regionalisation
procedures applied are based on similarity of spatial prox-
imity principles and on simple comparisons of catchment
sizes in the Lake Tana basin area. We note that in (Wale
et al., 2009) both regionalisation procedures are applied but
the similarity of catchment characteristics approach yielded
best results where closure of Lake Tana balance was as ac-
curate as 5.0% of the annual stream flow. This result must
be considered the most accurate when compared to results
by Kebebe et al. (2006); SMEC (2008) and the other above
mentioned studies since the actual closure error of the water
balance in those studies is not estimated by assessing how ac-
curate observed lake levels are simulated. Therefore in those
studies it remains unclear how well the lake water balance is
represented.

The main objective of this study is to assess the closure
term of Lake Tana’s water balance. Other objectives are to

assess model parameter uncertainty and to evaluate effec-
tiveness of an automated multi-objective model calibration
approach to make hydrological modeling results more plau-
sible. For model calibration we selected a Monte Carlo sim-
ulation procedure while performance assessments are based
on the Nash Sutcliffe and Relative Volumetric Error objective
functions. Validation of the procedure is by a split sample
test. While the automated calibration procedure in this study
is fundamentally different from the manual calibration proce-
dure in Wale et al. (2009), different PCCs are tested and the
representation lake evaporation has changed since estimation
is now based on a more comprehensive satellite based proce-
dure.

This paper is organised as follows. Descriptions of the
study area and the availability data are given in Sects. 2 and
3 respectively. In Sect. 4 the hydrological model is presented.
Section 5 describes the methodology that covers the cali-
bration of the rainfall-runoff model, the configuration of the
regional model and the simulation of water levels of Lake
Tana. Section 6 presents and discusses the results of multi-
objective model calibration, regionalisation and lake level
simulation. In Sect. 7 conclusions are drawn.

2 Study area

Lake Tana (1786 m a.s.l.) is the source of the Blue Nile River
and has a total drainage area of approximately 15 000 km2, of
which the lake covers around 3000 km2. The lake is located
in the north-western highlands of Ethiopia at 12◦00′ N and
37◦15′ E and receives runoff from more than 40 rivers. Major
rivers feeding the lake are Gilgel Abay from the south, Ribb
and Gumara from the east and Megech River from the north.
From the western side of the lake only small river systems
drain to the lake (Fig. 1).

A Digital Elevation Model (DEM) of 90 m resolution from
Shuttle Radar Topography Mission (SRTM-version 4) (http:
//srtm.csi.cgiar.org/) has been used to delineate the gauged
and ungauged catchments. The hydro-processing tool in IL-
WIS software (http://52north.org/) has been used for this pur-
pose and eighteen catchments were extracted. Stream flow
records for nine catchments are made available by the Min-
istry of Water Resources (MoWR) in Ethiopia and thus nine
catchments are ungauged. Results from catchment delin-
eation, show that among the nine catchments seven catch-
ments are partially gauged while catchments in the north-
western part of the basin are ungauged. We presume that the
delineation does not differ much from catchment delineation
results in the recent studies mentioned above since the same
SRTM Model of 90 m. resolution is used and since similar
catchment delineation approaches are applied. Nine catch-
ments are selected for regionalisation based on the availabil-
ity of runoff data from 1994 to 2003. The distribution of
gauged and ungauged catchments is indicated in Fig. 1.
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Fig. 1. Gauged and ungauged catchments in the Lake Tana basin. Weather and gauge stations are indicated.

By its large size, Lake Tana has a large storage capacity
that only responds slowly to the various processes of the cli-
matic and hydrological cycles. Annual lake level fluctuations
are approximately 1.6 m where lake level fluctuations pri-
marily respond to seasonal influences by the rainy and the
dry season. Lake levels reach maxima around September
and minima around June with historic maximum and min-
imum water levels of 1788.02 m (21 September 1998) and
1784.46 m (30 June 2003). The only river that drains Lake
Tana is the Blue Nile River (Abay River) with a natural out-
flow that ranges from a minimum of 1075 mm3 (1984) to a
maximum of 6181 mm3 (1964). For the period 1976–2006
the average outflow is estimated to be 3732 mm3. For the se-
lected simulation period, observations indicate that outflow
of the lake was affected by operation of the Chara Chara weir
from the end of 2001 onwards. Visual inspection of stream
flow time series indicate that during the construction of the
wear (1996–2001) Lake Tana outflow was not affected.

3 Data availability

From the National Meteorological Agency (NMA) in
Ethiopia time series of daily rainfall from seventeen stations
in and close to the study area were collected for the period
of 1994–2003. Also from NMA, meteorological data was
collected from seven weather stations for estimation of po-
tential evapotranspiration. Data types are daily maximum
and minimum temperature, wind speed, relative humidity
and sunshine hours. From the database of the Hydrology
Department of MoWR daily water levels of Lake Tana and

Abay river gauging station near Bahir Dar were obtained.
Daily outflow discharges from Lake Tana were obtained by a
stage-discharge rating curve that also was made available by
the MoWR. We note that the curve was updated by Wale et
al. (2009) and is used in this study as well. Further, stream
flow data from seventeen stations was collected from the
MoWR in Ethiopia but only nine stations had continuous
records covering the period 1994–2003. Runoff time series
data were analysed and screened and analysis indicated that
records from the smaller (sub)catchments (Gumero, Garno
and Gelda) were unreliable while also outliers and errors
were observed for the larger catchments. Consistency of the
daily time series was analysed by use of double mass curve
analysis and by plotting the ratio of incremental differences
of rainfall and stream flow. Outliers serve to identify and to
correct for erroneous runoff or rainfall data. We note that
after screening and identifying catchments with unreliable
time series about 38.3% of the Lake Tana basin area is con-
sidered gauged. Catchments selected for regionalisation are
Ribb, Gilgel Abay, Gumara, Megech, Koga, Kelti. Satel-
lite data was collected for the Moderate Resolution Imaging
Spectro radiometer onboard the TERRA satellite (MODIS-
TERRA) and from the Landsat ETM+ satellite. For the pe-
riod 2000–2002, the MODIS-TERRA Images were collected
from the LAADS Web site (http://ladsweb.nascom.nasa.gov/
data/search.html) for estimation of lake evaporation. The
land cover map was prepared by use of the Landsat ETM+
satellite and evaluated based on field data (see Rientjes et al.,
2010). A soil map of the major soil groups in the basin was
collected from the GIS department of MoWR.
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Soil classification resulted in 6 dominant soil classes. With
regard to water storage capacity of Lake Tana, bathymetric
relations between area-volume and elevation-volume were
available through a bathymetric survey by the Faculty of
Geoinformation Science and Earth observation, University of
Twente, in 2005. The bathymetric relations were improved
by Wale et al. (2009) by a more accurate delineation of the
lake shore and are used in this study.

4 The HBV-96 model

For stream flow simulation the HBV-96 model has been se-
lected that has many applications in operational and strate-
gic water management. Applications are known for lumped
model domains (see Seibert, 1997) and semi distributed
model domains (see Booij, 2005) and commonly aim at sim-
ulating the rainfall-runoff relation. The model is classified as
a conceptual water balance based model and relies on simple
approximations to simulate mass exchange processes of the
hydrological cycle. Input requirements to the model are pre-
cipitation, temperature and potential evapotranspiration. In
this study the HBV-96 model version (Lindström et al., 1997)
is used with a simulation time step of one day. Four routines
which are a precipitation accounting routine, a soil moisture
routine, a quick runoff routine and a base flow routine are ac-
tive and transform excess water from the soil moisture zone
to local runoff (see Fig. 2).

The soil moisture routine controls the formation of direct
and indirect runoff. Direct runoff occurs if the simulated
soil moisture storage (SM), as conceptualised through a soil
moisture reservoir representing the unsaturated soil, exceeds
the maximum soil moisture storage denoted by parameter
FC. Otherwise, all precipitation infiltrates (IN) the soil mois-
ture reservoir, seeps through the soil layer or evapotranspires.
The seepage through the soil layer causes indirect runoff (R)

that is determined through a power relationship with param-
eter BETA as shown in Eq. (3) and the amount of infiltrating
water and the soil moisture storage:

R = IN

(
SM

FC

)BETA

. (1)

This indicates that indirect runoff increases with increas-
ing soil moisture storage but also that indirect runoff reduces
to zero in case infiltration becomes zero. Actual evapotran-
spiration (Ea) depends on the measured potential evapotran-
spiration (Ep), the soil moisture storage in the reservoir and
a parameter LP which is a limit above which evapotranspira-
tion reaches its potential value. This is shown in Eqs. (4) and
(5).

Ea =
SM

LP·FC
· Ep if SM < (LP·FC) (2)

Ea = Ep if SM ≥ (LP·FC) (3)

Fig. 2. A diagram of the HBV-96 approach (modified after Lind-
ström, 1997).

At the quick runoff routine three components are distin-
guished which are percolation to the base flow reservoir,
capillary transport to the soil moisture reservoir and quick
runoff. Percolation is denoted through parameter PERC
which is a constant percolation rate that occurs when water
is available in the quick runoff reservoir. Capillary trans-
port is a function of the maximum soil moisture storage, the
soil moisture storage and a maximum value for capillary flow
(CFLUX) as shown in Eq. (6).

Cf = CFLUX ·

(
FC−SM

FC

)
(4)

If the yield from the soil moisture routine is higher than
the percolation, then water becomes available for quick flow
which is shown by Eq. (7).

Qq = Kq ·UZ(1+ALFA) (5)

where UZ is the storage in the quick runoff reservoir, ALFA
a measure for the non-linearity of the flow in the quick runoff
reservoir andKq a recession coefficient.

The slow flow of the catchment is generated in the base
flow routine through Eq. (8).

Qs = Ks·LZ (6)
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where LZ is the storage in the base flow reservoir andKs a
recession coefficient.

5 Methodology

The regionalisation approach selected for this study encom-
passes the following steps. First the HBV-96 model is cali-
brated for gauged catchments against observed discharges to
establish good performing parameters sets to simulate catch-
ment runoff. Next, relationships are established between the
model parameters (MPs) and Physical Catchment Character-
istics (PCCs) to develop the so called “regional model”. This
model is used to establish model parameters for ungauged
catchments where MPs are defined based on the PCCs from
the ungauged catchments. Then the HBV-96 model is used to
simulate the runoff from the ungauged catchments. Finally,
the water balance of Lake Tana is solved by considering all
inflows and outflows and the closure term is calculated by
comparing observed to simulated water levels. In the follow-
ing subsections a description of the procedure is presented.
A split sample test is applied to differentiate for periods of
calibration (1994–2000) and validation (2001–2003) for the
gauged catchments.

5.1 Model calibration

In this study model calibration is by a Monte Carlo Simu-
lation (MCS) procedure. MCS is a technique where numer-
ous model simulations are executed by randomly generated
model parameter values with the objective to find the best
performing parameter sets. Such set yields a minimum or
maximum value for selected objective function(s). Good per-
forming parameter sets are selected for further use and unsat-
isfactory performing sets are denied for further use. Critical
in MCS is the selection of the prior parameter space, the de-
termination of the number of simulations to be executed and
the selection of the objective function(s). For details on MCS
simulation reference is made to Beven and Binley (1992);
Harlin and Kung (1992) and Seibert (1999).

5.2 Parameter space

For selection of calibration parameters for MCS, a manual
model sensitivity analysis is performed and literature on ap-
plications of HBV-96 is reviewed. Studies for instance by
Diermanse (2001), Lid́en and Harlin (2000), Seibert (1999)
Hundecha and B́ardossy (2004) indicate model sensitivity
to selected parameters. Selection of prior parameter space
for MCS is based on studies by (Seibert, 1997; Booij, 2005;
SMHI, 2006; de Vos and Rientjes, 2007; Wale et al., 2009).
In Table 1 parameter ranges for selected parameters are
given.

In MCS parameter values are randomly and independently
sampled from uniform distributions. Principle to the valid-
ity of MCS is that the entire parameter space is examined

to allow statistical evaluation of the results. Therefore, in
this study we tested the performance of the model when the
number of runs was systematically increased from 1000 to
100 000 and found that after 60 000 runs model performance
could not be further improved. In the procedure the 10% of
the best performing parameters sets are selected for further
analysis. From this subset minimum and maximum parame-
ter values for each parameter are defined and the MCS pro-
cedure of 60 000 runs is repeated for the newly defined pa-
rameter space. The optimally performing parameter set now
is defined by averaging the parameter values of the best per-
forming 25 parameter sets. The procedure is applied to all
gauged catchments and for each catchment an optimal pa-
rameter set is defined. For assessing reliability of the param-
eter estimates the entire MCS procedure is repeated 15 times
and optimised parameter values for each of the catchments
are compared. The comparison also is performed for single
best parameter sets and serves to evaluate robustness of the
procedure by comparing the averaged parameter values to the
single best values.

5.3 Objective functions

In runoff model calibration the objective commonly is to op-
timise parameter sets to match simulated stream flow to ob-
served stream flow. Goodness of fit commonly is evaluated
by visual inspection but also by use of objective functions
that highlight selected aspects of the hydrograph such as low
flows, high flows, the overall shape of a hydrograph or the
rising limp of a hydrograph (see de Vos and Rientjes, 2007,
2008). Also the volumetric error is often addressed and in-
dicates the mismatch between the volumes of runoff over the
entire simulation period. In this work we selected two objec-
tive functions that indicate the overall fit of the stream flow
hydrograph and the volumetric errors. For the first objec-
tive we selected the Nash-Sutcliffe (NS) efficiency criterion
(Nash and Sutcliffe, 1970) and for the second objective we
selected the Relative Volumetric Error (RVE). The NS ob-
jective function requires maximisation and reads:

NS = 1−

n∑
i=1

(Qsim,i −Qobs,i)
2

n∑
i=1

(Qobs,i −Qobs)2
(7)

whereQobs is mean of observed flow,Qsim is simulated flow,
Qobs is observed flow,i is time step,n is total number of time
steps used during the calibration. NS can range between−∞

and 1 where the value of 1 indicates a perfect fit. NS values
between 0.6 and 0.8 indicate fair to good performance. A
model is often said to perform very good when values are
in between 0.8 and 0.9. We note that interpreting NS values
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Table 1. Prior parameter ranges.

Parameter FC BETA CFLUX LP ALFA Kq Ks PERC
Unit (mm) (–) (mm) (–) (–) (day−1) (day−1) (mm day−1)

Minimum 100 1 0 0.1 0.1 0.0005 0.0005 0.1
Maximum 800 4 2 1 3 0.15 0.15 2.5

is not straightforward and reference is made to Schaefli and
Gupta (2007). The RVE requires minimisation and reads:

RVE =


n∑

i=1
Qsim,i −Qobs,i

n∑
i=1

Qobs,i

×100% (8)

RVE may range between−∞ to +∞ but indicates an excel-
lent performing model when a value of 0 is generated. An
error between +5% and−5% indicates a well performing
model while error values between +5% and +10% or between
−5% and−10% indicate reasonable performance.

5.4 Selection of optimum parameter set

In the procedure of parameter set selection both objective
functions are combined in a single objective function and
performance of the model is assessed for the objective func-
tion that suggest best model performance. The procedure is
after Deckers et al. (2010) where four objective functions are
combined. Comparatively, in this work we excluded NS ob-
jective functions for high flows and low flows since results in
Deckers et al. (2010) indicated that best performing parame-
ter sets mostly are found by the NS or RVE objective func-
tions. In the procedure for each parameter set both objective
functions are calculated and compared. To evaluate which
objective function indicates best performance, the value of
each criterion was scaled over the range of objective function
values by the 60 000 model runs. The NS value was scaled
based on its minimum and maximum value:

C′

NS,k,n =
CNS,k,n −min(CNS,k,ntot)

max(CNS,k,ntot)−min(CNS,k,ntot)
(9)

whereCNS is value for the NS criterion,k indicates a specific
catchment,n is calibration run number,ntot is run number.

Since RVE varies between−∞ and +∞ positive values as
well as negative values can occur. The RVE scaling equation
reads:

C′

RVE,k,n =

∣∣CRVE,k,n

∣∣−max
∣∣CRVE,k,ntot

∣∣
min

∣∣CRVE,k,ntot

∣∣−max
∣∣CRVE,k,ntot

∣∣ (10)

whereCRVE is value for the RVE criterion while other terms
are as defined above.

After scaling of NS and RVE, the lowest value of the two
was selected for each calibration run:

C′

k,n = min{C′

NS,k,n,C
′

RVE,k,n} (11)

whereC′ is scaled value of the criteria.
The optimum parameter set for each catchment is now de-

termined by selecting the highest values of all selected mini-
mum values as determined through Eq. (14):

Ck = max{min(C′

k,ntot
)} (12)

It is noted that the procedure does not aim at selecting a pa-
rameter set with a highest possible objective function value
but aims to select a well performing parameter set by aver-
aging over the 25 best performing sets. This procedure aims
to prevent that outliers in parameter space may cause very
high objective function values and refer to Beven and Bin-
ley (1992) and Harlin and Kung (1992). Such parameter val-
ues only have limited validity and must not be considered
representative. Parameter values therefore are not suitable
for establishing the regional model.

5.5 Establishing the regional model

For developing a regional model the aim is to establish hy-
drological relationships between MPs and PCCs. PCCs in
this respect are characteristics of the catchment that relate to
morphology, geometry, topography, climate, soils and land
use. Selected PCCs should directly or indirectly affect the
production of runoff in a catchment and as such selection is
a critical step. In this work some 22 PCCs are selected from
various sources. PCCs that relate to topography, geometry
and the morphology of the catchments are extracted from the
SRTM DEM. The PCCs under Land Use and Geology and
Soil are obtained from the land use and soil map as described
in Sect. 3. PCCs under Climate are from the meteorological
data as made available by NMA. Table 2 shows the list of
PCCs selected for this study.

Knowledge on the relations between HBV MPs and the
PCCs allows us to estimate MPs for ungauged catchment
systems when the PCCs from these catchments are known.
To set up a regional model for estimation of model param-
eters in ungauged catchments, often regression analysis are
applied (see Bastola et al., 2008; Heuvelmans et al., 2006;
Kim et al., 2008; Xu, 2003; Deckers et al., 2010). Such anal-
ysis is selected for this study as well. It is noted that not all

Hydrol. Earth Syst. Sci., 15, 1167–1183, 2011 www.hydrol-earth-syst-sci.net/15/1167/2011/



T. H. M. Rientjes et al.: Regionalisation for lake level simulation 1173

Table 2. Selected physical catchment characteristics (PCCs).

Group PCC Description and Unit

Morphology, AREA Catchment area (km2)
Topography LFP Longest flow path (km)

MDEM DEM mean (m)
HI Hypsometric integral (−)
AVGSLOPE Average slope of catchment (%)
SHAPE Catchment shape (−)
CI Circularity index (−)
EL Elongation ratio (−)
DD Drainage Density (m km−2)

Land use CROPD Cultivated Dominantly (%)
CROPM Cultivated Moderately (%)
GL Grassland (%)
URBAN Urban (%)
FOREST Forest (%)

Geology LEP Leptosol area (%)
and Soil NIT Nitosol area (%)

VER Vertisol area (%)
LUV Luvisol area (%)

Climate SAAR Standard annual average
rainfall (mm)

PWET Mean precipitation wet
season (Jun to Sep) (mm)

PDRY Mean precipitation dry
season (Oct to May) (mm)

PET Mean annual
evapotranspiration (mm)

relationships of regional models in these studies are hydro-
logically meaningful although relationships are statistically
significant.

5.6 Regression analysis

Multiple linear regression is performed for each model pa-
rameter. Statistical significance and strength are tested to
guarantee that regression equations can be used. Also the
correlation (r) is tested by the t-test (Eq. 15).

tcor=
|r|

√
n−2

√
1−r2

(13)

where,tcor is t value of the correlation,r is correlation coef-
ficient,n is sample size.

The following hypothesis is tested. The null hypothesis
H0 and the specific hypothesisH1 are:

H0: the correlation between the PCC and MPs is zero,
ρ = 0.

H1: the correlation between the PCC and MPs is not
zero,ρ 6= 0.

If tcor > tcr the null-hypothesis is rejected (MPs are associ-
ated with PCCs in the population).

To determine the critical valuetcr the number of degree of
freedom, df, andα, a number between 0 and 1 to specify the
confident level has to be determined. In this study a signifi-
cant level ofα = 0.1 is chosen that is applied to a two-tail test
with n-2 degree of freedom. Using this information, fortcr a
value of 2.132 is found (critical value fromt distribution ta-
ble). To determine at whatr value the hypothesis is rejected
the test statistic is solved. Anr of 0.72 was established and
thusr greater than 0.72 and smaller than−0.72 results in a
statistically significant relationship.

The second method applied is based on multiple regres-
sion analysis to optimize the relationship with the forward
selection and with the backward removal method. Multiple
linear regression is used to predict MPs from several inde-
pendent PCCs. In the forward entry approach the initially es-
tablished regression model that incorporates the most signifi-
cant PCC is extended by entering a second independent vari-
able in the regional model. This step is accepted if the entry
statistic (i.e. significance level,α) of both independent vari-
ables is not exceeded. The statistical tools are used to select
the independent variable that adds most significance to the
relation. Additional steps are executed until the last added
independent variable does not significantly contribute to the
regression model. In addition to the forward entry method
also the backward removal method is applied. In this method
all expected PCCs are entered into the model. Based on the
removal statistic (i.e. significance level,α) independent vari-
ables are stepwise removed from the model. The significance
of the multiple linear regression equations is tested by evalu-
ating the significance of individual coefficients and by a test
of overall significance. First a hypothesis test is applied to
determine if the regression equation is significant. For such
test it is assumed that the error term,ε, is not correlated and
normally distributed. Further the error term must have an
average of zero and a constant variance. In this study these
assumptions are made and two hypothesis tests are executed
to evaluate the significant of the regression equation. Those
are the null-hypothesis and the specific hypothesis. Further
the strength of the determined regression equation is evalu-
ated by the coefficient of determination,r2.

5.7 Validation of the regional model

Prior to its use a regional model must be tested where pre-
dicted and observed discharges are compared for a subset of
gauged catchments that were not used when establishing the
regional model. Such a proxy basin test (see Klemeš, 1986)
is commonly applied when a large number of catchments is
available (e.g. Merz and Blöschl, 2004; Young, 2006) but is
denied in this study by the small number of gauged catch-
ments available in the Lake Tana basin. Instead we applied
a split sample test where the regional model is tested for the
same catchments that were used for establishing the regional
model but for a different period in time (2001–2003).
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5.8 Lake level simulation

For simulation of daily lake level fluctuations the following
water balance equation is solved:

1S

1T
= P −Evap+Qgauged+Qungauged−QBNR (14)

where 1S/1T denotes the change in storage over time,
P is Lake areal rainfall,Evap is open water evaporation,
Qgaugedis Gauged river inflow,Qungaugedis Ungauged river
inflow andQBNR is the Blue Nile River outflow (all terms in
Mm3 day−1).

For estimating lake evaporation the Penman-combination
equation is selected where albedo was estimated us-
ing the Moderate Resolution Imaging Spectroradiometer
(MODIS) Level 1b product (http://ladsweb.nascom.nasa.
gov/data/search.html). Albedo is calculated from channels
1 to 7 by integrating band reflectance across the shortwave
spectrum. Images require geometric, radiometric and atmo-
spheric correction and the radiance at the top of the atmo-
sphere needs to be known. During integration, weighting co-
efficients are applied that represent the fraction of surface
solar radiation occurring within the spectral range as rep-
resented by a specific band. We refer to Liang (2001) and
Liang et al. (2002) for extensive descriptions.

For the years 2000 and 2002 only some 14 and 16 cloud
free images could be acquired, respectively. For days im-
ages are not available, albedo values are estimated by in-
terpolating albedo values between 2 subsequent acquisition
days. Daily averaged values are defined by averaging the
two albedo values and as such daily albedo maps are gen-
erated for Lake Tana. A lake averaged albedo is estimated
by averaging over all pixels that have spatial resolution of
1 km2. To estimate the lake evaporation, meteorological data
from Bahir Dar station is used since out of the available sta-
tions only this station is located close to Lake Tana. Daily
rainfall over Lake Tana is estimated on daily base by spatial
interpolation of gauge data from Bahir Dar, Chawhit, Zege,
Deke Estifanos and Delgi station (see Fig. 1). We selected
a weight power of 2 to allow representation of the relatively
high spatial variability of rainfall in the basin (see Haile et
al., 2009, 2010, 2011b).

For calculation of stream flow from gauged systems, ob-
served stream flow time series are directly used in the water
balance. Runoff time series are screened and corrected and
analysis indicated that not all time series are reliable (see
Sect. 3). For instance, results indicated that some gauges
were relocated over time while other gauges indicated inun-
dation during periods of extreme rainfall. For some gauges
erroneous observations are identified by double mass curve
analysis. Erroneous data is corrected by analyzing the ra-
tio of incremental differences for consecutive days for rain-
fall and runoff for the respective catchments. Outliers serve
to identify errors and difference between consecutive rain-
fall, or discharge observations serve to correct for erroneous

discharges or rainfall, respectively. The lake inflow from un-
gauged systems is estimated by the regionalization approach
as described in Sect. 5.2.

Time series for the Lake outflow by Abay River are di-
rectly entered in the water balance equation after time series
of outflow are corrected for consistency by use of a newly
established stage-discharge relation in Wale et al. (2009).

In this study it is assumed that the groundwater system
is decoupled from the lake and any lake leakage is ignored
in the balance. We note that in (Kebede et al., 2006) lake
leakage is estimated to be some 7% of the total annual lake
budget. However, in Chebud and Melesse (2009), numeric
groundwater modeling is applied and results indicate that
lake leakage is unlikely and therefore exchange of water be-
tween the lake and the groundwater system is ignored in the
water balance calculations in this study.

6 Results and discussion

6.1 Gauged systems

Results of MCS are shown in Table 3. For each of the
catchments optimal parameter sets are identified and objec-
tive function values for the optimized parameter set are cal-
culated. Results of NS for calibration and validation in-
dicate relatively high values for the 6 catchments with a
highest calibration value of 0.85 for the Gilgel Abay catch-
ment. The results of calibration are not satisfactory for
Gumero (163 km2), Garno (98 km2) and Gelda (26 km2). All
three catchments have low NS values (<0.41) while RVE
values are relatively high. Therefore the use of these catch-
ments is ignored when establishing the regional model. Wale
et al. (2009) suggested that the time of concentration, which
is defined as the time period for water to travel from the most
remote point in the catchment to the outlet, is small. There-
fore quick runoff responses often are not observed by the
daily observations and also difficult to represent by the daily
simulation time step. Further, some gauging stations are not
placed at the catchment outlet but at a location upstream of
the outlet that has easy road access. As such the runoff as
observed does not indicate the catchment runoff and rainfall-
runoff time series that are assumed to be representative for
the respective catchments cannot be considered reliable since
it is not clear which parts of the catchments are drained.

Table 3 indicates that some parameters have a relatively
large value range across the six catchments. This suggests
that the Lake Tana basin can be characterized by relatively
large variability with respect to climatic, topographic and
physiographic properties. We note that the number of gauged
catchments selected for regionalization only is small (i.e., 6).
Most regionalisation studies rely on a much larger number
of catchments as the basins are much larger than the Lake
Tana basin. For instance, in Merz and Blöschl (2004) some
308 catchments were used; Sefton and Howarth (1998) used
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Table 3. Optimized model parameters for gauged catchments (1994–2000).

Ribb Gilgel Abay Gumara Megech Koga Kelti Gumero Garno Gelda

FC 309 434 349 193 730 196 469 221.25 141.14
BETA 1.23 2.08 1.31 1.56 1.34 1.60 1.10 2.58 1.20
LP 0.73 0.63 0.87 0.71 0.42 0.62 0.26 0.23 0.86
ALFA 0.31 0.24 0.25 0.29 0.41 0.28 1.08 0.27 0.51
Kq 0.07 0.08 0.03 0.03 0.07 0.03 0.03 0.10 0.003
KS 0.10 0.09 0.07 0.09 0.05 0.10 0.13 0.11 0.15
PERC 1.09 1.02 1.44 1.47 1.63 1.53 2.32 1.61 1.41
CFLUX 0.60 1.09 0.72 0.79 0.74 0.83 0.39 1.35 1.00

Calibration

NS 0.78 0.85 0.72 0.61 0.67 0.66 0.16 0.33 0.41
RVE % −1.61 −0.35 −2.44 2.91 −0.06 −2.00 18.51 34.02 −23.16

Validation

NS 0.87 0.85 0.79 0.51 0.65 0.67 – – –
RVE % 3.55 −2.32 −9.87 2.87 −9.83 −5.30 – – –

60 catchments; Young (2006) used 260 catchments for the
entire UK; and Deckers et al. (2010) used 48 catchments also
for the UK. To evaluate to what extent the small number of
catchments in this study affected the regionalisation results is
difficult and touches on the issue if a relatively large or small
variability of catchment properties favours regionalisation.
Little variation implies little hydrologic diversity and the de-
velopment of robust regional model may be questioned while
too much variability may result in weak relationships as sug-
gested in (Young, 2006 and Deckers et al., 2010). Haber-
landt et al. (2001) favour the assumption of large variability
and a clear range of different conditions must be considered
as a basis for regionalisation. Seibert (1999) and Wagener
and Wheater (2006) on the other hand report on regionalisa-
tion studies where catchments are characterised by relatively
little variation. For the Lake Tana basin relatively high vari-
ability of catchment properties is suggested in (Haile et al.,
2009, 2011a), who indicated that large topographic variabil-
ity directly affected the rainfall patterns. To asses variability
we normalised PCC values for gauged and ungauged catch-
ments by their area averaged values. Analysis indicates that
normalised values of most PCCs for the gauged and the un-
gauged catchments only change by some 20 to 30%. For the
group of soils, normalised differences are large and range be-
tween 0.02 and 5.84 while differences for climate PCCs are
smallest with many values around 1.0 and a value range of
0.70–1.24. Larger differences are observed for the morpho-
logic and topographic PCCs where most values are in be-
tween 0.6 and 1.4 with value ranges 0.35–2.25. For land
use related PCCs normalised values show largest variabil-
ity but also values ranges are largest (i.e., between 0.01 and
6.41). Analysis of PCCs used in the regional model show a
similar pattern. Morphology, topography and climate related

PCCs indicate smallest variability while the soils and land
use PCCs indicate largest variability. To become more con-
clusive how Lake Tana basin variability affects the results
of regionalization is difficult. For this study inter catchment
variability by topographic, morphologic and climatic PCCs
is smallest but, particularly, these PCCs are mostly used in
the regional model. Critical remains if the use of only six
catchments is sufficient to represent catchment variability for
constructing the regional model. To further assess how vari-
ability is represented in relation to the number of catchments
used is left for further research. We presume that, in princi-
ple, for such analysis a much larger number of gauged catch-
ments are required. As described in Sect. 5.2, after finishing
the first MCS calibration run of 60 000 model simulations for
the posterior parameter ranges we tested the consistency of
the parameter estimates by additional MCS runs. Figure 3
shows results for 15 MCS calibration runs of 60 000 each.
The results indicate that in each MCS run the averaged val-
ues of the 25 best performing parameter sets differ and there-
fore different optimal parameter sets are identified. Results
suggest that the most optimal parameter set probably cannot
be defined uniquely but values somehow converge to an op-
timal value. Therefore the optimum parameter set is selected
by taking the average of the 15 parameter values. Results
suggest that for optimal parameter selection an extreme high
number of model runs is required. MCS studies often rely
on less than 50 000 runs but results of this study indicate the
weaknesses of such procedure. The procedure of 15 MCS
runs of 60 000 each is applied to all catchments and optimum
parameter sets are established. We note that for the Gilgel
Abay catchment different optimum parameter sets are ob-
tained as compared to Uhlenbrook et al. (2010) who applied
1 000 000 runs. Possible reasons for the differences is that we
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Fig. 3. Left hand side shows the average parameter values the 25 best performing parameter sets for ALFA and PERC for each MCS run of
60 000 runs each. The right hand side shows single best parameter values.

present average values of 25 best performing sets of 15 inde-
pendent MCS runs, that a slightly different model structure is
applied but also that slightly different prior parameter ranges
are different. We further note that again different optimum
values are found as compared to Abdo et al. (2009) and Wale
et al. (2009) who applied manual calibration.

Figure 4 shows the Box and Whisker plots of parameters
standardized by the prior range used for Monte Carlo Simu-
lations (Gilgel Abay catchment). The boxes depict the me-
dian and upper and lower quartiles. The whiskers indicate
the most extreme values. The interquartile value ranges for
ALFA are smallest and suggest that values are identified with
consistency resulting in a stable region of solutions in pa-
rameter space. We note that box values of the upper and
lower quartiles are relatively small and suggest that small
ALFA values favour a good performing model. The result
also suggests high model sensitivity to ALFA and thus opti-
mum values for the calibrations runs are well defined. FC
shows relatively narrow interquartile box ranges and sug-
gest that the model is quite sensitive to changes of FC. The
remaining parameters have comparatively, equally large in-
terquartile ranges and indicate lower sensitivity as compared
to ALFA and FC. The whiskers indicate that distributions are
not skewed and also suggest that the model is not highly sen-
sitive. We note that ALFA is a measure for the non-linearity
of the flow in the quick runoff reservoir while FC directly
affects seepage flow and thus the quick runoff processes.
Since both parameters affect the quick runoff behaviour of
the model this indicates relatively low predictive uncertainty.

Figure 5 shows the model calibration results of catch-
ments used for developing the regional model. Table 3 also
shows the model validation results for the period 2001–2003.

Fig. 4. Box and Whisker plots of parameters standardized by the
prior range used for Monte Carlo Simulations (Gilgel Abay catch-
ment). The boxes depict the median and upper and lower quartiles.
The whiskers show the most extreme values.

Results for NS values in general slightly deteriorate as com-
pared to the calibration results. RVE values in general are
somewhat higher indicating larger errors in the water bal-
ance. Errors for NS and RVE, however, are relatively small
and indicate a good to satisfactory model performance of the
regional model.

6.2 Regionalisation

Correlations between PCCs and MPs are established to deter-
mine the significance of each relationship. In the procedure
the correlation is statistically significant when the correlation
coefficient is outside the critical value range of−0.72 to 0.72
(see Sect. 5.2). In Table 4 the significant correlation coeffi-
cients are highlighted.
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Fig. 5. Model calibration results of Ribb, Gilgel Abay, Gumara, Megech, Koga (1994–2000) and Kelti (1997–2000) catchments.

It is assumed that by use of multiple PCCs a better relation
can be established than when only one PCC is used. There-
fore relations between PCCs and MPs are assessed through
multiple linear regression analysis. This is done by the for-
ward entry method and the backward removal method as de-
scribed in Sect. 5.2. The established regional model is shown
in Table 5 and is followed by a description of each parameter.

FC: in this study FC showed positive correlation with
CI and negative correlation with HI and DD. The high-
est correlation is with HI that is a measure of the distri-
bution of elevation in a catchment and is defined as the
average elevation a.m.s.l. minus the minimum divided
by the difference between the maximum and minimum
elevation a.m.s.l. The forward entry method was exe-
cuted with HI as initial variable and results indicated

that there was no other variable that could improve the
strength of the relation. Therefore the procedure was
terminated and the regression equation is determined
with only HI with R2 of 66.3%. The statistical char-
acteristics are shown in Table 5. We note that from a
hydrological perspective the relation between FC and
HI may be questioned since FC reflects on soil prop-
erties while HI reflects on catchment topography and
geometry.

BETA: in this study, BETA is negatively correlated to
SHAPE and positively correlated to CROPD. As the
highest correlation is with SHAPE, the forward entry
method is executed including SHAPE as the initial vari-
able. SHAPE is defined as the difference between the
maximum and minimum elevation a.m.s.l. divided by
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Table 4. Correlation matrix between model parameters and PCCs for 6 selected catchments; significant correlation coefficients are in bold.

FC BETA LP ALFA Kq KS PERC CFLUX
(mm) (−) (−) (−) (1 d−1) (1 d−1) (mm d−1) (mm d−1)

AREA −0.18 −0.01 0.49 −0.77 0.13 0.62 −0.82 0.07
LFP −0.17 −0.15 0.53 −0.51 0.25 0.52 −0.74 −0.16
MDEM 0.04 −0.58 0.33 −0.64 −0.11 0.66 −0.51 −0.51
HI −0.81 −0.03 0.77 −0.76 −0.44 0.77 −0.44 −0.07
AVGSLOPE −0.30 −0.48 0.39 −0.75 −0.31 0.92 −0.52 −0.45
SHAPE 0.65 −0.90 −0.42 0.12 −0.29 −0.04 0.43 −0.83
CI 0.78 −0.37 −0.55 0.58 0.37 −0.46 0.28 −0.37
EL 0.54 −0.59 −0.32 0.59 −0.01 −0.48 0.57 −0.66
DD −0.74 0.23 0.64 −0.35 0.30 0.77 −0.83 0.06
CROPD −0.39 0.77 −0.04 0.35 0.10 −0.36 0.20 0.69
CROPM 0.47 −0.71 0.03 −0.52 −0.22 0.27 −0.16 −0.55
GL −0.18 −0.54 0.36 −0.19 0.08 0.61 −0.42 −0.67
URBAN −0.53 −0.19 0.42 −0.71 −0.72 0.59 −0.05 −0.13
FOREST 0.67 −0.61 −0.60 0.47 0.20 −0.09 0.23 −0.63
LEP −0.50 −0.36 0.20 −0.23 −0.59 0.57 0.14 −0.44
NIT 0.26 −0.31 −0.56 0.26 −0.49 −0.16 0.69 −0.26
VER 0.65 0.07 −0.73 0.81 0.18 −0.88 0.71 0.09
LUV 0.04 0.40 0.30 0.15 0.37 −0.55 −0.08 0.38
SAAR 0.45 0.52 −0.31 0.12 0.75 −0.29 −0.42 0.62
PWET 0.45 0.39 −0.21 0.07 0.73 −0.24 −0.46 0.49
PDRY 0.41 0.69 −0.45 0.20 0.71 −0.36 −0.31 0.81
PET −0.13 −0.11 −0.23 −0.09 −0.59 0.13 0.43 −0.05

the square root of catchment size. Results of the for-
ward entry method showed that BETA is correlated with
SHAPE and HI withR2 of 96.02%. From a hydrologi-
cal point of view BETA can be related to both SHAPE
and HI since BETA affects the generation of indirect
runoff processes that relate to topographic characteris-
tics. The statistical characteristics are shown in Table 5.

LP: in this study the evapotranspiration parameter LP
has significant positive correlation with HI and nega-
tive correlation with VER that indicate poorly drained
clay soils. The forward entry method is executed with
highly correlated HI as the initial variable. This result
showed that LP is correlated to HI and to LUV withR2

of 91.1%. LUV is % area luvisols that are active clays
with medium to high water storage capacity. From a hy-
drologic view point the relation between LP and LUV is
much more plausible than the relation between LP and
HI. The statistical characteristics are shown in Table 5.

ALFA: in this study ALFA has positive correlation with
VER and negative correlation with AREA (i.e., catch-
ment area), HI and AVGSLOPE (i.e., average slope of
catchment area). For optimisation of the relation the
forward entry method is executed and yielded best re-
sults with variable AREA as initial variable. We note
that VER in all gauged catchments only is very small.

After adding the catchment characteristic URBAN (i.e.,
% urban area) theR2 increased up to 95.1% and this
regression equation is accepted. Since ALFA is a quick
runoff parameter this equation appears to be plausible.
Catchments are of relative small size suggesting that
runoff contributions by quick runoff are directly observ-
able in the runoff hydrograph (i.e. not smoothened by
long travel times) while a small % of urban area indi-
cates small runoff contributions from paved areas. The
statistical characteristics are shown in Table 5.

Kq: in this study the quick runoff recession coeffi-
cient Kq showed correlation with URBAN (−0.72),
SAAR (0.75) and PWET (0.73). The forward entry
method is executed by taking SAAR (i.e., standard av-
erage annual rainfall) as the initial variable. By adding
other variables the strength could not be improved and
the simple relation withR2 of 56.35% is accepted. It
is noted that the relation has no physical meaning since
SAAR is a climate indicator on annual base. The statis-
tical characteristics are shown in Table 5.

Ks : In this studyKs has correlation with HI (0.77),
AVGSLOPE (0.92) and VER (−0.88). The forward en-
try method was executed with AVGSLOPE as initial
variable. The strength of the equation could not be im-
proved by adding other variables and the simple linear
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Table 5. The regional model and its statistical characteristics.

Coefficient p-value tcal Std error R2

FC= β0+β1· HI

β0 3520.82 0.0351 3.1317 1124.26 66.3%
β1 −6651.21 0.0487 −2.8032 2372.70

BETA= β0+β1 ·SHAPE+β2· HI

β0 7.551 0.0100 5.85 1.2918 96.02%
β1 −8.544 0.0429 −3.39 2.5233
β2 −0.036 0.0034 −8.50 0.0043

LP= β0+β1 ·HI +β2· LUV

β0 −2.2435 0.0258 −4.13 0.5432 91.1%
β1 5.8697 0.0133 5.27 1.1141
β2 0.0027 0.0471 3.26 0.0008

ALFA= β0+β1 ·AREA+β2· URBAN

β0 0.45233 0.0003 18.63 0.02428 95.1%
β1 −0.00009 0.0251 −4.17 0.00002
β2 −0.73650 0.0341 −3.71 0.19865

Kq = β0+β1· SAAR

β0 −0.06555 0.3095 −1.16 0.05636 56.35%
β1 0.00009 0.0855 2.27 0.00004

KS= β0+β1· AVGSLOPE

β0 0.0187 0.2093 1.49 0.0125 85.25%
β1 0.0018 0.0086 4.81 0.0004

PERC= β0+β1 ·DD+β2· SAAR

β0 7.4926 0.0088 6.11 1.2266 89.9%
β1 −0.0128 0.0192 −4.61 0.0028
β2 −0.0005 0.0864 −2.52 0.0002

CFLUX= β0+β1 ·SHAPE+β2 ·PDRY+β3 ·PET

β0 −0.2184 0.2689 −1.52 0.1441 96.27%
β1 −0.0082 0.0021 −21.86 0.0004
β2 0.3867 0.0019 22.63 0.0171
β3 0.0007 0.0184 7.28 0.0001

relation is accepted withR2 of 85.25%. A recession co-
efficient commonly relates to the catchment runoff re-
sponse time where response times commonly decrease
when steepness increases. The statistical characteristics
are shown in Table 5.

PERC: in this study PERC has negative relation with
AREA (−0.82), LFP (−0.74) and DD (−0.83). The
forward entry method was executed by adding DD (i.e.,
drainage density) as the first variable and after including
SAAR, R2 increased up to 89.9%. From a hydrologi-
cal context the equation may be plausible. A low DD
commonly indicates that much rainfall in a catchment

is discharged by (delayed) groundwater flow where the
groundwater domain is recharged by the percolation of
rain water. PERC also may relate to SAAR where
higher SAAR values may result in higher percolation
values. The statistical characteristics are shown in Ta-
ble 5.

CFLUX: in this study CFLUX has negative correla-
tion with SHAPE (−0.83) and positive correlation with
PDRY (0.81). Therefore optimisation of the linear re-
lation with the forward entry method is executed with
SHAPE as the initial variable. The results of the step-
wise forward entry regression showed that CFLUX is
correlated with SHAPE, PDRY (mean precipitation dry
season) and PET (mean annual evapotranspiration) with
R2 of 99.8%. Since capillary transport is triggered by
atmospheric forcing the correlation of CFLUX to PDRY
and to PET may be plausible. The correlation to SHAPE
is not plausible. The statistical characteristics are shown
in Table 5.

Results of the regression analysis for establishing the re-
gional model indicate that statistically most significant re-
gression equations can be obtained despite the fact that MPs
can have low correlation to the selected PCCs (see Table 4).
Obviously for such relations it is difficult to reason for hydro-
logic plausibility. We note, however, that in litterateur (e.g.
Deckers et al., 2010) more cases are known but also the use
of PCCs with a high correlation not necessarily improve the
regional model.

6.3 Performance assessment of the regional model

In most regionalisation studies, the validity of the regional
model is assessed by its application to gauged catchments
that are not used for establishing the regional model (see
Sect. 5.7). Since in this work only a small number of gauged
catchments is available, we used the regional model in Ta-
ble 5 to estimate the model parameters for the gauged catch-
ments using their PCCs. Simulated stream flow from the
gauged catchments is compared to observed time series and
assessments are by use of NS and RVE for the period 2001–
2003. Table 6 shows NS and RVE values and the parameter
values as derived from the regional model. NS values range
between 0.54 and 0.85 whereas RVE values range between
−42 and 13.3%. For most catchments NS values are slightly
lower than the results by MCS. RVE values for three catch-
ments (i.e., Gumara, Megech, and Kelti) are much larger
whereas for the remaining three catchments RVE have sim-
ilar value. In general validation results suggest fair to good
performance of the regional model. We note, however, that
NS and RVE values that indicate the validity of the regional
model potentially indicate better performance as compared
when independent catchments are used.
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Table 6. Assessment of the regional model for gauged catchments (2001–2003).

FC BETA LP ALFA Kq KS PERC CFLUX NS (−) RVE (%)

Ribb 298 1.17 0.71 0.29 0.055 0.098 1.10 0.62 0.85 −1.3
Gilgel Abay 333 1.99 0.72 0.25 0.086 0.084 1.13 1.10 0.83 0.1
Gumara 307 1.48 0.83 0.28 0.057 0.079 1.40 0.71 0.75 −22.8
Megech 201 1.54 0.70 0.29 0.031 0.085 1.52 0.79 0.54 13.3
Koga 659 1.32 0.41 0.43 0.068 0.061 1.63 0.75 0.65 −1.1
Kelti 437 2.45 0.72 0.39 0.072 0.054 1.18 1.06 0.53 −42.0

6.4 Lake level simulations

For lake level simulation all mass balance terms in Eq. (16)
are solved on a daily time step and results of lake level
simulations are compared to observed lake levels. As de-
scribed in Sect. 5.3 for lake evaporation a procedure is ap-
plied that combines the Penman-combination equation and
a satellite based approach where albedo is estimated on a
daily base to make up an annual cycle. Albedo ranged from
0.08 to 0.16 by the gradually changing solar zenith angle
during the course of the year. Averaged daily evaporation
is estimated at 4.6 mm day−1 for the period 1992–2003 with
a long-term averaged annual evaporation of 1563 mm yr−1.
Minimum daily evapotranspiration is 2 mm day−1 and max-
imum is 6 mm day−1. Lake evaporation is lower than esti-
mated in Wale et al. (2009) (1690 mm yr−1) but higher than
in Kebebe et al. (2006) (1478 mm yr1). Daily rainfall over
Lake Tana is estimated by spatial interpolation of gauge data
from Bahir Dar, Chawhit, Zege, Deke Estifanos and Delgi
station (Fig. 1). Inverse distance with power 2 resulted in an
average lake precipitation of 1290 mm yr−1.

The results of lake level simulation are shown in Fig. 6
where simulated levels are compared to observed lake lev-
els. The results indicate a good match where climatic sea-
sonality with clear dry and wet periods is well presented.
Largest deviations are observed specifically during the first
few and last few years of the simulation period. Obvious rea-
sons that cause the deviations are difficult to identify and can
relate to any of the water balance terms. A quantitative as-
sessment indicates that the balance closure term is as large
as 85 mm yr−1 of the total lake inflow that comprised rain-
fall on the lake, and stream flow from gauged and ungauged
catchments. This error accounts for 2.7% of the total lake
inflow. In Wale et al. (2009) the closure error was−170 mm
and accounted for 5% of the total lake inflow. In this work
the smaller inflow error did not result in better lake level sim-
ulation results when compared to Wale et al. (2009). Results
of the lake level simulation are assessed by NS and RVE as
well and resulted in values of 0.91 and−2.17%, respectively,
whereas in Wale et al. (2009) NS was 0.90 and RVE was
1.6%.

Table 7. Lake Tana water balance components simulated for the
period 1994–2003.

Water balance components mm yr−1 MCM yr−1

Lake areal rainfall +1347 +4104
Gauged river inflow +1254 +3821
Ungauged river inflow +527 +1605
Lake evaporation −1563 −4762
River outflow −1480 −4508
Closure term +85 +260

Compared to the work in Wale et al. (2009) differences
in the annual lake balance are shown in Table 7. We note
that refined procedures are applied in this work. For instance
multi-objective model calibration by use of MCS is applied
in this work, the procedure to estimate lake evaporation re-
lies on daily varying albedo estimates and different PCCs are
tested for regionalisation.

We note that there are still many sources of uncertainty
and errors in the water balance but quantifying and reducing
the errors is far from trivial. For instance, we assumed that
lake-groundwater interaction is negligible; that for open wa-
ter evaporation spatially averaged values can be used as esti-
mated by the Penman-combination equation; that lake rain-
fall is sufficiently accurate represented by use of spatial inter-
polation methods that rely on rain gauge data observed on the
land. Also we assume that the regional model is reliable and
robust although we note that only six catchments were used
for establishing the regional model. This number is small
when compared to regionalisation studies in literature but in-
dicates the true problem of data scarcity as common in less
developed countries. Probably the only way to assess how
uncertainty and errors effect results in this work is to find
better approaches to describe and to represent the individ-
ual processes or to apply more advanced model calibration
procedures where diagnostic information serves to improve
modeling results (see Gupta et al, 2008; de Vos et al., 2011).
Both, however, presumably requires that better and (much)
more real world data in time and space dimensions becomes
available.
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Figure 6: Daily estimates of water balance terms of Lake Tana  
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7 Conclusions

By availability of bathymetric relations, lake levels are sim-
ulated on daily base over the simulation period. All water
balance terms of Lake Tana are estimated explicitly and re-
sults of lake level simulation showed NS of 0.91 and RVE of
−2.17%. Results of this study show that the Lake Tana wa-
ter balance can be closed with a closure error of 85 mm yr−1

that accounts for 2.7% of the total lake inflow. Compared to
previous studies on Lake Tana’s water balance by Setgen et
al. (2005); SMEC (2008); Kebede et al. (2006); Chebud and
Melesse (2009) and Wale et al. (2009) results of this study in-
dicate smallest closure error. In this work probably the most

complete hydro-meteorological data set that is available for
the basin is used. Runoff from gauged catchments is sim-
ulated by use of a simple conceptual rainfall-runoff model
and a Monte Carlo procedure. Model parameters for the un-
gauged catchments are estimated by use of a regionalization
procedure.

Regionalisation in this study is based on similarity prin-
ciples of catchment characteristics and indicated that some
29.5% of inflow of Lake Tana is from ungauged systems
while the area ungauged covers nearly 62%. The estimated
stream flow is lower than the results in Wale et al. (2009)
and presumably is due to a number of reasons that relate
to the use of the advanced model calibration procedure and
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the selection of a different set of physical catchment charac-
teristics as used for regionalisation. Multi-objective model
calibration by use of MCS indicated that a very large num-
ber of simulation runs must be executed. In this study a to-
tal of 900 000 runs (i.e., 15× 60 000 runs) is executed and
resulted in relatively high parameter variability when single
best parameter sets are defined for each of the 15 MCS runs
but indicated moderate variability when averaged parameter
values are compared for the 25 best performing parameter
sets. Optimized parameter values in this study differ from
Uhlenbrook et al. (2010) who used 1 000 000 runs for the
Gilgel Abay catchment. Reasons for the difference could be
that, instead of selecting the single best performing parame-
ter set, we averaged the parameter values over 15 MCS runs
were values over each run already represent averages over
the 25 best performing sets. Also the selected prior param-
eter ranges differ and a slightly different model structure is
used. We note that manually calibrated parameter values in
Wale et al. (2009) and Abdo et al. (2009) again differ.

Results of the regression analysis for establishing the re-
gional model indicate that for all MPs statistically significant
regression equations can be obtained. Relations, however,
are not always plausible from a hydrological point of view.
In this work it is shown that adding PCCs with high correla-
tion to a regression relation not always results in an improved
regional model. Out of the group of 22 PCCs only some 9
PCCs are used. PCCs most frequently used relate to topo-
graphic, morphologic and climatic catchment settings.

Critical to the results of the regionalisation procedure in
this work is the low number of gauged catchments. By the
relatively small size of the Lake Tana basin only nine gauged
catchments were available from which only six catchments
had stream flow time series that could be used. We note that
in most regionalisation studies a much larger set of gauged
catchments is available (see Merz and Blösch, 2004; Deckers
at al., 2010; Young, 2006). Whether, however, the small set
negatively affected our results is not entire clear. Validation
results of the regional model in general do not suggest that
the model should be rejected but also a normalization pro-
cedure of PCCs for both gauged and ungauged catchments
indicates that inter catchment variability does not constrain
regionalization.

The use of remote sensing approach for estimating lake
water albedo proved that albedo values over Lake Tana
changed over the year by changing solar zenith angles. The
use of satellite based albedo estimates resulted in lake evap-
oration of 1563 mm yr−1. This value is lower than estimated
in Wale et al. (2009) (1690 mm yr−1) but higher than in Ke-
bebe et al. (2006) (1478 mm yr−1). Further assessments on
the estimation of Lake Tana evaporation is required to better
assess accuracy of the lake water balance. Such however is
topic of ongoing research and a field campaign has been exe-
cuted in 2009 with the aim to estimate lake evaporation by an
energy balance method. For further assessments on the accu-
racy of the water balance of Lake Tana we recommend that

extensive uncertainty analysis are performed for all balance
terms. In this work we ignored such analysis and is left for
future work. A simple analysis is already shown in Wale et
al. (2009).
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