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Abstract. The objective is to assess the suitability of
commonly used high-resolution satellite rainfall products
(CMORPH, TMPA 3B42RT, TMPA 3B42 and PERSIANN)
as input to the semi-distributed hydrological model SWAT
for daily streamflow simulation in two watersheds (Koga at
299 km2 and Gilgel Abay at 1656 km2) of the Ethiopian high-
lands. First, the model is calibrated for each watershed with
respect to each rainfall product input for the period 2003–
2004. Then daily streamflow simulations for the validation
period 2006–2007 are made from SWAT using rainfall in-
put from each source and corresponding model parameters;
comparison of the simulations to the observed streamflow at
the outlet of each watershed forms the basis for the conclu-
sions of this study. Results reveal that the utility of satellite
rainfall products as input to SWAT for daily streamflow sim-
ulation strongly depends on the product type. The 3B42RT
and CMORPH simulations show consistent and modest skills
in their simulations but underestimate the large flood peaks,
while the 3B42 and PERSIANN simulations have incon-
sistent performance with poor or no skills. Not only are
the microwave-based algorithms (3B42RT, CMORPH) bet-
ter than the infrared-based algorithm (PERSIANN), but the
infrared-based algorithm PERSIANN also has poor or no
skills for streamflow simulations. The satellite-only prod-
uct (3B42RT) performs much better than the satellite-gauge
product (3B42), indicating that the algorithm used to in-
corporate rain gauge information with the goal of improv-
ing the accuracy of the satellite rainfall products is actu-
ally making the products worse, pointing to problems in the
algorithm. The effect of watershed area on the suitability
of satellite rainfall products for streamflow simulation also
depends on the rainfall product. Increasing the watershed
area from 299 km2 to 1656 km2 improves the simulations
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obtained from the 3B42RT and CMORPH (i.e. products that
are more reliable and consistent) rainfall inputs while it de-
teriorates the simulations obtained from the 3B42 and PER-
SIANN (i.e. products that are unstable and inconsistent) rain-
fall inputs.

1 Introduction

Prediction of streamflow simulation in ungauged basins of
the East African highlands is a challenging task due to the
absence of reliable ground-based rainfall information. The
region has no any ground-based radar for rainfall measure-
ment, the rain gauge network is very sparse, and countries in
the downstream of transboundary river basins have no access
to the existing upstream rain gauge information. Can high-
resolution satellite-based rainfall estimates provide reliable
rainfall information for streamflow simulation application in
this region?

During the last two decades, satellite-based instruments
have been designed to collect observations mainly at ther-
mal infrared (IR) and microwave (MW) wavelengths that
can be used to estimate rainfall rates. Observations in the
IR band are available in passive modes from (near) polar-
orbiting (revisit times of 1–2 days) and geostationary orbits
(revisit times of 15–30 min), while observations in the pas-
sive and active MW band are only available from the (near)
polar-orbiting satellites. A number of algorithms have been
developed to estimate rainfall rates by combining informa-
tion from the more accurate (but infrequent) MW with the
more frequent (but less accurate) IR to take advantage of
the complementary strengths. The TMPA method (Huffman
et al., 2007) uses MW data to calibrate the IR-derived esti-
mates and creates estimates that contain MW-derived rain-
fall estimates when and where MW data are available and
the calibrated IR estimates where MW data are not avail-
able. The TMPA products are available in two versions:
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real-time version (3B42RT) and post-real-time research ver-
sion (3B42). The main difference between the two ver-
sions is the use of monthly rain gauge data for bias adjust-
ment in the post-real-time research product. The 3B42 prod-
ucts are released 10–15 days after the end of each month,
while the 3B42RT are released about 9 h after overpass. The
CMORPH method (Joyce et al., 2004) obtains the rainfall
estimates from MW data but uses a tracking approach in
which IR data are used only to derive a cloud motion field
that is subsequently used to propagate raining pixels. The
PERSIANN method (Sorooshian et al., 2000) uses a neu-
ral network approach to derive relationships between IR and
MW data which are applied to the IR data to generate rain-
fall estimates. The resolutions of these (often dubbed as
‘high-resolution’) products are 0.25◦ and 3 hourly, although
finer resolutions are also available for CMORPH and PER-
SIANN. Besides these widely known products, there are
also other high-resolution products, such as, Hydro-estimator
(Scofield and Kuligowski, 2003), NRL-blended (Turk and
Miller, 2005), PMIR (Kidd and Muller, 2009), and GSMaP
(Ushio and Kachi, 2009).

It is well known that the satellite rainfall values are just
estimates that are subject to a variety of error sources (gaps
in revisit times, poor direct relationship between remotely
sensed signals and rainfall rate, atmospheric effects that
modify the radiation field) and require a thorough validation.
The validation efforts can be grouped into two categories.
The first is the direct comparison of the satellite rainfall es-
timates to the rain gauge networks and ground-based radar
estimates (Dinku et al., 2007, 2008; Hirpa et al., 2010; Bitew
and Gebremichael, 2010). The second is the evaluation of
satellite rainfall estimates based on their predictive ability of
streamflow rate in a hydrological modeling framework. This
has two advantages. One, since the evaluation is performed at
the watershed scale, it is not subject to the scale discrepancy
problem that arises when using rain gauge data for valida-
tion. Two, the satellite rainfall estimates are evaluated with
respect to a specific application, as a driving input variable in
a hydrologic model.

The purpose of this study is to assess the capability and
limitation of satellite rainfall products as input into a hydro-
logical model for streamflow simulation in a mountainous
and medium-size watershed in Ethiopia, for four different
satellite rainfall products and two different watershed sizes.
This study is limited to the following specific cases: the Soil
and Water Assessment Tool (SWAT) hydrological model,
two watersheds (299 km2, and 1656 km2), and four satel-
lite precipitation products (TMPA 3B42, TMPA 3B42RT,
CMORPH, and PERSIANN). SWAT is a semi-distributed
hydrological model widely used for research and applica-
tion according to Gassman et al. (2007) over 250 peer-
reviewed journal articles existed by 2007 on SWAT-related
work. SWAT was also successfully used to model Ethiopian
Highland watersheds in previous studies (e.g., Easton et al.,
2010).
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Fig. 1. The study region in Ethiopian highlands consisting of
two adjoining watersheds: Koga (299 km2) and Gilgel Abay
(1656 km2). Also shown are satellite rainfall grids (0.25◦

× 0.25◦)
and locations of four rain gauge stations in the study region, and
two stream gauge stations at the outlets of the watersheds.

2 Data and method

2.1 Study region

The study region consists of two gauged adjoining water-
sheds (Koga and Gilgel Abay) in the Ethiopian part of the
East African highlands (Fig. 1). Koga watershed has a
drainage area of 299 km2 and is located within 37◦2′ E–
37◦20′ E and 11◦8′ N–11◦25′ N, and Gilgel Abay has a
drainage area of 1656 km2 and is located within 36◦48′ E–
37◦24′ E and 10◦56′ N–11◦23′ N. The climate is semi-humid
with a mean annual rainfall of 1300 mm, more than 70% of
which falls in the summer monsoon season. The watersheds
have similar landscape characteristics: complex topography
with elevations ranging from 1890 m to 3130 m (for Koga),
and 1880 m to 3530 m (for Gilgel Abay); land use character-
ized by cropland, pasture and forest shrubs (55%, 20%, and
25%, respectively for Koga, and 74%, 15%, and 11%, re-
spectively, for Gilgel Abay), and soils characterized by clay,
clay loam and silt loam (42%, 39%, and 19%, respectively
for Koga, and 33%, 34%, and 33%, respectively, for Gilgel
Abay). There are four rain gauges in the study region, and
a stream gauge at the outlet of each watershed. These rain
gauges were not used in the derivation of the TMPA 3B42
products.
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Fig. 2. Comparison of SWAT simulated (based on CMORPH, 3B42RT, 3B42, PERSIANN, and rain gauge network rainfall inputs, sepa-
rately) and observed daily streamflow hydrographs during the calibration period of 2003 through 2004, for(a, b) Koga and(c, d) Gilgel
Abay watersheds. In the legend, “Observed” indicates the observed streamflow, while the others (Rain Gauge, CMORPH, 3B42RT, 3B42,
PERSIANN) indicate the source of rainfall data used in SWAT simulation.

2.2 Hydrological model and calibration

2.2.1 SWAT hydrological model

SWAT, developed by the United States Department of Agri-
culture (USDA) – Agricultural Research Service (ARS)
(Arnold et al., 1998), is a continuous, semi-distributed hy-
drologic model that runs on a daily time step. Hydrologic re-
sponse units (HRUs), defined by combinations of land cover
and soil combinations, are the computational elements of
SWAT. The daily water budget in each HRU is computed
based on daily precipitation, runoff, evapotranspiration, per-
colation, and return flow from the subsurface and ground-
water flow. Runoff volume in each HRU is computed using
the Soil Conservation Service (SCS) curve number method
(SCS, 1986). A complete description of the SWAT model can
be found in Arnold et al. (1998). We obtained the following
SWAT inputs: elevation data from the 30-m USGS NED dig-
ital elevation model dataset (http://hydrosheds.cr.usgs.gov),
soil texture from the FAO Soil and terrain data map of East
Africa (SEA) dataset, land use from the Ethiopian Woody
Biomass Inventory Strategic Planning Project, meteorologi-
cal data from the nearby meteorological stations of the Na-
tional Meteorological Agency of Ethiopia, and rainfall data
from satellite rainfall estimates and rain gauge measure-
ments.

2.2.2 Parameter specification and calibration

Automatic calibration of all the SWAT model parameters
could be time consuming and less practical (Eckhardt and
Arnold, 2001). In order to reduce the number of calibration
parameters, we performed sensitivity analysis using the LH-
OAT method available within SWAT, which combines the
Latin Hypercube (LH) sampling method with the One-factor-
At-a-Time (OAT) method (Van Griensven et al., 2006). We
found nine most sensitive parameters, and focused our auto-
matic and manual calibration exercise on these parameters.
Our objective function was maximizing the Nash-Sutcliffe
efficiency between simulated and measured daily streamflow.

We calibrated the model parameters for each watershed
and rainfall input source, separately, over a two-year period
(2003–2004) by comparing the simulated and observed daily
streamflow hydrographs. The resulting model parameter es-
timates are shown in Table 1. There are large differences in
the parameter estimates obtained from the different rainfall
inputs. Comparison between simulated and observed stream-
flow hydrographs is shown in Fig. 2. In general, the simu-
lation results are satisfactory for Koga. For Gilgel Abay, the
calibration results for the 3B42RT, CMORPH and rain gauge
simulations show satisfactory calibration results, whereas the
results for 3B42 and PERSIANN are not satisfactory. As
can be seen from Fig. 3b, the 3B42 and PERSIANN prod-
ucts give annual rainfall estimates that are lower than the an-
nual streamflow estimates, while the other rainfall products
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Table 1. SWAT model parameter estimates for each watershed and rainfall input source.

Parameter Model Parameter Variable Unit Parameter Values for Koga (Gilgel Abay)

Type Rain CMORPH 3B42RT PERSIANN 3B42
gauge

Routing Hydraulic conductivity of CHK2 mm 1.1 23.6 29.3 143.7 0.01
main channel alluvium h−1 (60) (60) (60) (60) (60)

Groundwater Base flow alpha factor AlphaBF day−1 0.97 0.97 0.97 0.97 0.97
(0.75) (0.75) (0.75) (0.75) (0.75)

HRU Curve number CN2* – 62 69 69 73 72
(50) (57) (57) (72) (67)

Basin Surface runoff lag Surlag – 0.001 0.001 0.001 8.94 0.001
coefficient (8) (8) (8) (8) (0.1)

Routing Manning’s “n” value for CH N2 – 0.04 0.02 0.01 0.06 0.116
main channel (0.04) (0.04) (0.04) (0.04) (0.04)

HRU Soil hydraulic conductivity SolK* mm 0.02 0.02 0.02 0.02 0.02
hr−1 (0.0175) (0.0175) (0.0175) (0.0175) (0.0175)

HRU soil evaporation ESCO 0.92 1 0.99 1 1
compensation factor (0) (0) (0) (0) (0)

HRU Maximum canopy storage canmx – 2.34 2.34 1.44 0 0.39
(2.5) (0) (0) (0) (0)

Groundwater Deep aquifer percolation Rchrgdp – 0.01 0.01 0.01 0.01 0.01
fraction (0.25) (0) (0) (0) (0)

Groundwater Groundwater delay Gwdelay day 31 31 31 31 31
(25) (25) (25) (25) (25)

Groundwater Threshold depth of water Gwqmn mm 0 0 0 0 0
in the shallow aquifer for (1500) (0) (0) (0) (0)
return flow to occur

* Values represent average values of spatial distribution.

CMORPH Rainfall
3B42RT Rainfall
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PERSIANN Rainfall
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Fig. 3. Comparison of annual rainfall depth derived from each rainfall source (CMORPH, 3B42, 3B42RT, PERSIANN, and rain gauges) to
annual observed streamflow at the outlet of each watershed, for(a) Koga and(b) Gilgel Abay watershed.

give rainfall estimates substantially higher than the stream-
flow depth. This indicates that the lack of satisfactory cali-
bration results for 3B42 and PERSIANN over Gilgel Abay is
reflective of the substantial underestimation bias in the 3B42
and PERSIANN rainfall estimates.

Let us now compare the model parameter values result-
ing from the different rainfall inputs. For illustration, we
focus on two parameters, CN2 (the Soil Conservation Ser-
vice Curve Number) and Surlag (surface runoff lag coeffi-
cient), that control the overland flow, and two satellite rainfall
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inputs, CMORPH and PERSIANN. Increasing the CN2 val-
ues result in increasing runoff. The calibrated average CN2
value for Koga is 69 with CMORPH input and 73 with PER-
SIANN input. This sequence of increasing CN2 is in agree-
ment with the sequence of increasing the degree of rainfall
underestimation by the products (see Fig. 3). The product
that has the larger negative bias in rainfall (i.e. PERSIANN)
results in higher CN2 values. Surlag is a lag factor for wa-
tersheds that control surface runoff storage by lagging a por-
tion of the runoff that would have otherwise been released to
the main channel. Higher Surlag value corresponds to more
runoff release to the channel. Again, as expected, we find a
higher Surlag value for PERSIANN compared to CMORPH.
These differences in model parameters are compensating in
one way or another for the difference in the input rainfall
estimates for generating runoff. In other words, readjust-
ing the model calibration parameter values to increase the
streamflow simulation accuracy compensates for the under-
estimation error in satellite rainfall estimates by decreasing
the performance of the simulation of other water balance
components. Therefore, caution must be exercised when us-
ing satellite simulations of other water balance components
when the model is calibrated only on the basis of streamflow.

2.3 Approach and performance statistics

We used rainfall data from each source (3B42RT, 3B42,
CMORPH, PERSIANN, and rain gauges) for the validation
period 2006 to 2007 as input into SWAT with model pa-
rameter estimates corresponding to each rainfall source (e.g.,
CMORPH rainfall for 2006–2007 would be used as input
into SWAT model calibrated using the 2003–2004 CMORPH
rainfall input) and watershed to simulate daily streamflow.
We assess the performance accuracy of each simulation by
comparison with observed streamflow. The comparison is
made based on visual inspection of hydrographs and ex-
ceedance probabilities, and through the following perfor-
mance statistics: coefficient of determination (R2), relative
bias (Rbias), and Nash-Sutcliffe efficiency (NSE):
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where SIM is the simulated daily streamflow, OBS is the ob-
served daily streamflow,n is the total number of pairs of sim-
ulated and observed data, and the bar indicates average value
over n. NSE indicates how well the plot of the observed
value versus the simulated value fits the 1:1 line, and ranges
from −∞ to 1, with higher values indicating better agree-
ment (Legates and McCabe, 1999).R2 measures the vari-
ance of observed values explained by the simulated values.
Rbias measures the relative error in total streamflow volume.

3 Results and discussion

We simulated daily streamflow for the validation period
2006–2007 from SWAT using rainfall input from each source
and corresponding model parameters. In this section, we dis-
cuss the simulation results.

3.1 Koga watershed

Comparisons of simulated and observed streamflow for Koga
watershed are given in Fig. 4. Let us first discuss the results
for 2006. According to Fig. 4a, all simulations capture the
overall shape of observed streamflow hydrographs, but un-
derestimate the large flood peaks, with the rain gauge sim-
ulations showing better performance than the satellite simu-
lations. The 3B42RT and CMORPH simulations are iden-
tical. Figure 4c shows that all simulations underestimate
the frequency of the extreme events with probabilities of ex-
ceedance lower than 5%; the underestimations are severe for
satellite rainfall simulations compared to the rain gauge sim-
ulations. According to Fig. 4e, theR2 values for the time
series of daily streamflow between simulated and observed
values vary in the range 0.4 to 0.6; the satellite rainfall sim-
ulations underestimate the total streamflow volume by 10%
to 20%, while the rain gauge simulations give almost accu-
rate results; the NSE values, ranging from 0.4 to 0.5, indicate
that all the simulations exhibit moderate skills in reproducing
daily streamflow.

Do the performance accuracy results hold in 2007? Ac-
cording to Fig. 4b, the 3B42RT, CMORPH and PERSIANN
simulations capture the monsoonal pattern but underestimate
all floods. The 3B42 simulations fail to see any of the flood
events, while the rain gauge simulations show superior per-
formance, better than any of the satellite simulations. Ac-
cording to Fig. 4d, the 3B42RT, CMORPH and PERSIANN
simulations underestimate the frequency of all extremes
events with probabilities of exceedance lower than 25%,
while the 3B42 simulations do not even see any of the ex-
tremes. The rain gauge simulations reproduce the frequency
of extreme events very well. According to Fig. 4f, theR2

values for the time series of daily streamflow between sim-
ulated and observed values are moderate (about 0.75) for all
simulations except for the 3B42 simulation (0.05). All simu-
lations underestimate the total streamflow volume; the degree
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Fig. 4. Comparisons of SWAT simulated (based on CMORPH, 3B42RT, 3B42, PERSIANN, and rain gauge network rainfall inputs, sepa-
rately) and observed daily streamflow for Koga watershed, in terms of(a, b) time series,(c, d) exceedance probabilities, and(e, f) perfor-
mance statistics, for year(a, c, e)2006, and(b, d, f) 2007.

of underestimation is very high for 3B42 (Rbias =−0.73),
moderate for the other satellite rainfall products (Rbias rang-
ing from −0.34 to−0.52) and very low (Rbias =−0.05) for
the rain gauge simulations. Except for the 3B42, all simu-
lations have positive NSE values, ranging from 0.4 to 0.8,
indicating moderate skills of the simulations in reproduc-
ing the observed hydrographs. The 3B42 simulation has a
negative NSE value indicating no skill in the simulations
compared to simply using the mean as a predictor. Com-
parison of the performance statistics for 2006 and 2007 re-
veals that the 3B42RT, CMORPH and PERSIANN simula-
tions show relatively stable performance over time (although
with some variations in statistics) while the 3B42 simula-
tions show large performance fluctuations from modest skill
in 2006 to no skill in 2007.

3.2 Gilgel Abay watershed

Comparisons of simulated and observed streamflow for the
larger watershed, Gilgel Abay, are given in Fig. 5. Let us
start with the 2006 results. Figure 5a shows that the 3B42RT,
CMORPH and rain gauge simulations capture remarkably
the observed streamflow hydrographs, while the 3B42 and
PERSIANN simulations fail to capture satisfactorily the ob-
served hydrographs resulting in substantial underestimation.
Figure 5c shows that all the satellite simulations underesti-
mate the frequency of extreme events; the underestimation
is moderate in the case of 3B42RT and CMORPH but se-
vere in the case of 3B42 and PERSIANN simulations; the
rain gauge simulation performs very well. Figure 5e shows
that theR2 values for the time series of daily streamflow be-
tween simulated and observed values are higher (0.75) for
the 3B42RT, CMORPH and rain gauge simulations com-
pared to the 3B42 (0.50) and PERSIANN (0.37) values. All

Hydrol. Earth Syst. Sci., 15, 1147–1155, 2011 www.hydrol-earth-syst-sci.net/15/1147/2011/



M. M. Bitew and M. Gebremichael: Assessment of satellite rainfall products for streamflow simulation 1153

2006 2007

J A J O J A J O J

1.00.80.60.40.2 1.00.80.60.40.2
Exceedance Probability

2006 2007

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Rbias NSER2 Rbias NSER2

2006 2007

St
re

am
flo

w
, m

3 s
-1

St
re

am
flo

w
, m

3 s
-1

0

100

200

300

400

0

100

200

300

400
a)

d)

e)

c)

b)

3B42RT
3B42 

Observed 
Rain Gauge 
CMORPH 

PERSIANN 

f)

Gilgel Abay Validation (2006-2007)

Fig. 5. Same as in Fig. 4 but for Gilgel Abay.

simulations underestimate the total streamflow volume; the
underestimation is negligible for the rain gauges, moder-
ate (Rbias =−0.08,−0.18) for the 3B42RT and CMORPH,
and severe (Rbias =−0.58, −0.62) for the 3B42 and PER-
SIANN simulations. The NSE values are high (about 0.75)
for the 3B42RT, CMORPH and rain gauge simulations, low
(0.16) for the 3B42, and negative for PERSIANN. The per-
formance accuracy of all satellite simulation is lower in 2007
than it is in 2006; however, the 3B42RT, CMORPH and
rain gauge simulations still have modest skills in reproducing
daily streamflow, while both 3B42 and PERSIANN show no
skills.

3.3 Koga vs. Gilgel Abay

Koga and Gilgel Abay are adjoining watersheds with sig-
nificant differences in the watershed area, Koga at 299 km2

and Gilgel Abay at 1656 km2. Figure 6 presents compari-
son of the performance statistics (Rbias and NSE) between
the two watersheds, for each rainfall input simulation. In-
creasing watershed area increases slightly the performance

accuracy of the 3B42RT, CMORPH and rain gauge simula-
tions, but decreases substantially the performance accuracy
of the 3B42 and PERSIANN simulations. The increased per-
formance accuracy of the 3B42RT, CMORPH and rain gauge
simulations for larger watersheds is as expected due to the
additional averaging process in larger watersheds that tends
to dampen the random error in rainfall input and hydrologi-
cal process approximation. The decreasing performance ac-
curacy of the 3B42 and PERSIANN in larger watersheds is
counter-intuitive and indicates that larger watersheds intro-
duce much more errors from the unreliable rainfall estimates
of 3B42 and PERSIANN than the reduction in random er-
ror gained due to more averaging. We acknowledge that the
differences between the two watersheds may not be exclu-
sively due to the watershed size, as Uhlenbrook et al. (2010)
reported significant differences in the hydrological character-
istics between the two watersheds.
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4 Conclusions

The main purpose of this study is to assess the utility of satel-
lite rainfall estimates as input into a hydrological model for
daily streamflow simulation in the East African highlands.
We limited our analyses to the following specifics: the semi-
distributed hydrologic model SWAT; adjoining two water-
sheds, Koga at 299 km2 and Gilgel Abay at 1656 km2; and
four types of satellite precipitation products (3B42RT, 3B42,
CMORPH, and PERSIANN). Our results reveal that the util-
ity of satellite rainfall products as input to SWAT for daily
streamflow simulation strongly depends on the product type.
The 3B42RT and CMORPH simulations show consistent and
modest skills in their simulations but underestimate the large
flood peaks. On the other hand, the 3B42 and PERSIANN
simulations have inconsistent performance with poor or no
skills. Let us put these results in perspective.

4.1 Microwave vs. infrared algorithm products

Depending on the main input, satellite rainfall algorithms
can be grouped into two categories: those that use primar-
ily microwave data (e.g., CMORPH, 3B42RT) and those that
use primarily infrared data (e.g., PERSIANN). The conven-
tional notion is that the microwave-based algorithms fare
better than the infrared-based algorithms. Our results indi-
cate that not only are the microwave-based algorithms bet-
ter than the infrared-based algorithm, but the infrared-based

algorithm also has poor or no skills for streamflow simula-
tions. We conclude that the infrared-based algorithm PER-
SIANN is not a reliable source of rainfall data in the East
African highlands.

4.2 Satellite-gauge vs. satellite-only products

The conventional notion that the satellite rainfall estimates
that incorporate rain gauge information perform better than
the satellite-only estimates has led to the incorporation of
rain gauge data into global satellite rainfall products. Our
results turn this conventional notion on its head. The
satellite-only product (3B42RT) performs much better than
the satellite-gauge product (3B42). Apparently incorporating
rain gauge data in satellite rainfall products has the undesir-
able consequence of deteriorating the quality of the satellite
rainfall products in this region. This suggests that the algo-
rithm used to incorporate rain gauge information in the satel-
lite rainfall algorithms needs to be modified to account for
the effects of mountainous topography and sparse rain gauge
network.

4.3 Effect of watershed area

One would expect the performance accuracy of the satellite
streamflow simulations to increase as the watershed area be-
comes larger. Our results indicate that this actually depends
on the satellite rainfall product used as input. For satellite
rainfall products that have relatively reliable and consistent
performance (3B42RT and CMORPH), the resulting stream-
flow simulations will indeed have higher performance for
larger watersheds. However, for satellite rainfall products
that have unreliable and inconsistent performance (3B42 and
PERSIANN), the resulting streamflow simulations’ perfor-
mance accuracy decreases as the watershed area increases
from 299 km2 to 1656 km2, indicating that larger watersheds
introduce more errors from the unreliable rainfall estimates
of 3B42 and PERSIANN than the reduction in random error
gained due to more averaging.

We have repeated the above analyses using different hy-
drologic models (HBV and MIKE SHE), and the results indi-
cate that our conclusions are fairly insensitive to the choice of
the model type (results not shown). Finally, we acknowledge
the limitations of this study. As suggested by Uhlenbrook et
al. (2010), there could be a large uncertainty in the observed
streamflow data. The impact of watershed area was also in-
vestigated using only two watersheds. We recommend fur-
ther investigation based on the analysis of a reasonably large
number of watersheds with high-quality streamflow data.
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