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Abstract. Extreme weather related to heavy or more fre-
quent precipitation events seem to be a likely possibility for
the future of our planet. While precipitation measurements
can be done by means of rain gauges, the obvious disad-
vantages of point measurements are driving meteorologists
towards remotely sensed precipitation methods. In South
Africa more sophisticated and expensive nowcasting technol-
ogy such as radar and lightning networks are available, sup-
ported by a fairly dense rain gauge network of about 1500
daily gauges. In the rest of southern Africa rainfall mea-
surements are more difficult to obtain. The local version
of the Unified Model and the Meteosat Second Generation
satellite data are ideal components of precipitation estima-
tion in data sparse regions such as Africa. In South Africa
hourly accumulations of the Hydroestimator (originally from
NOAA/NESDIS) are currently used as a satellite based pre-
cipitation estimator for the South African Flash Flood Guid-
ance system, especially in regions which are not covered by
radar. In this study the Hydroestimator and the stratiform
rainfall field from the Unified Model are both bias corrected
and then combined into a new precipitation field. The new
product was tested over a two year period and provides a
more accurate and comprehensive input to the Flash Flood
Guidance systems in the data sparse southern Africa. Future
work will include updating the period over which bias cor-
rections were calculated.

1 Introduction

There is mounting evidence that changes in the earth’s cli-
mate system will result in more frequent extreme weather
events and an increased likelihood of temperature extremes,
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heat waves, and heavy precipitation events (IPCC, 2007).
The importance of early warning systems to warn the pub-
lic of these types of weather events therefore becomes more
and more critical.

When forecasters have to issue forecasts and warnings
for the first 12 hours of a forecast, they use the latest data
from remote sensing tools such as radar and satellite, as
well as observational data, to analyze and forecast smaller
scale weather features. The World Meteorological Organisa-
tion (WMO) organized a series of sub-regional demonstra-
tion projects to improve severe weather forecast services in
countries where sophisticated remote sensing forecast sys-
tems are not currently used (mostly developing countries).
Such a project is currently running from South Africa and
is called the Severe Weather Forecast Demonstration Project
(SWFDP). The goals of this project include: improvement
of the lead time of warnings, improved communication be-
tween global, regional and National Meteorological Centres
(NMC), improved interaction of NMC with disaster man-
agement authorities before and during severe weather events
(Poolman et al., 2008). One of the gaps identified in the
project was that whereas the SWFDP succeeded in improv-
ing forecasting systems in the developing countries, there is
a serious lack of nowcasting systems, particularly for severe
convective storms.

The need to improve very short range and nowcasting
services thus applies to the whole southern African region,
specifically with regard to convective storm development and
evolution. However, there are marked differences between
the technologies available to support such services in the var-
ious countries of southern Africa. Most southern African
countries are heavily reliant on satellite technology due to
the limited number of surface and upper-air observations and
the limited availability of numerical model output. These
countries do not have access to weather radar or lightning in-
formation, nor the systems to integrate the data and products
from various sources. South Africa, on the other hand, has
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Fig. 1. Normal summer rainfall for South Africa (after Kruger,
2007).

a radar network and a lightning detection network, as well
as the means to integrate, display and manipulate these vari-
ous data sets. Although the approach to be followed for the
southern African region outside of South Africa has to be dis-
tinctly different from the possibilities for South Africa itself,
some of the techniques developed for South Africa might
also be useful within the region.

The first aim of the study is to show how the satellite
based Quantitative Precipitation Estimation (QPE) provided
by the Hydroestimator (HE) can be bias corrected to provide
more realistic values over South Africa. Secondly, it will be
shown how the HE can be combined in a novel way with the
stratiform rainfall field from the local version of the Unified
Model, to have a more comprehensive rainfall field. This can
be of use in the nowcasting of floods and flash floods.

In this article the enabling technologies for satellite based
precipitation estimation will be discussed in Sect. 2. Sec-
tion 3 provides information on the rainfall patterns and their
seasonal variability in South Africa. In Sect. 4 the strengths
and weaknesses of the HE will be given, using an example
over South Africa. Section 5 will describe the methodology
which was used to enhance the satellite based QPE and how
this can play a role in the South African Flash Flood Guid-
ance (SAFFG) system. Section 6 describes the first results
and a summary and conclusion will be provided in Sect. 7.

2 Enabling technology for precipitation measurement
in South Africa

2.1 Meteosat Second Generation (MSG) satellite data

Both South Africa and Africa as a whole have had access
to the European Geostationary Meteosat Second Genera-
tion (MSG) satellite image data and derived products since
2005. The first satellite of the series, then known as MSG,

Fig. 2. Normal winter rainfall for South Africa (after Kruger, 2007).

Fig. 3. Percentages of the total rainfall on a monthly basis for 2008
and 2009.

was launched on 28 August 2002 by the European Space
Agency on behalf of EUMETSAT (European Organization
for the Exploitation of Meteorological Satellites). MSG-2
(Meteosat Second Generation-2) is the follow-on to MSG-
1 and was launched on 21 December 2005. The two ton,
spin stabilized craft carries the same instruments as MSG-
1 (Spinning Enhanced Visible and InfraRed Imager or SE-
VIRI and Geostationary Earth Radiation Budget or GERB)
and provides the same products. The satellite was renamed
Meteosat-9 when it became operational in June 2006 (MSG-
2 successfully launched, 2005).

This satellite offers a choice of twelve channels to use in-
dividually or in combination for various purposes, including
nowcasting of convection. For eleven of the twelve channels,
image pixels are sampled every 15 min at intervals of 3 km
over the entire area. The High Resolution Visible (HRV)
channel has a sampling distance of just 1 km, with the east-
west scan limited to half of the full earth disc.

2.2 Radar

Up until the end of 2009 the South African weather radar net-
work consisted of ten C-band and two S-band radar systems
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(a) (b)

Fig. 4. Rainfall totals over 24 h from rain gauges(a) and HE(b) for 12 November 2008.

(a) (b)

Fig. 5. HE winter rainfall for 2008 and 2009(a) and rainfall measured by the gauges in the winters of 2008 and 2009(b).

that provide coverage over about two-thirds of the country.
This network has been used extensively in support of weather
predictions, storm identification and aviation applications
(De Coning et al., 2010). The spacing of these radars is not
ideal for observing stratiform rain because such systems are
relatively shallow, resulting in the radar beam overshooting
the echo tops at long ranges. Convective storms, however,
have relatively deep vertical dimensions allowing them to be
observed, at least partially, at longer ranges. Despite the ob-
vious advantages of this system, it still lacked Doppler ca-
pabilities and suffered from attenuation. The South African
Weather Service (SAWS) is currently in the process of mi-
grating to S-band (2.8 GHz) radar systems. The S-band radar
signals undergo far less attenuation than that of the C-band
signals. These new radars have sensitive Doppler capabilities
with which it is possible to detect the internal wind structure
of storms, which will make for better nowcasting of severe
storms possible. The enhanced capabilities of the new radar

systems will be used for improved radar based precipitation
estimates. Although the coverage of the new radar network is
improved, complete coverage of South Africa is still not pos-
sible, while the rest of southern Africa have very few radar
systems available.

2.3 Unified model

The Unified Model is the suite of atmospheric and oceanic
numerical modelling software, developed and used at the UK
Met Office since 1991. The Met Office maintains a suite of
versions at particular resolutions that it encourages collabo-
rating partner institutions to use. At the SAWS, the Unified
Model runs operationally at a horizontal resolution of 12 km
and is scheduled to run twice daily to provide hourly numer-
ical forecasts of atmospheric conditions for up to 48 h ahead.
The domain of the Unified Model run on South African com-
puters is between 0.48◦ N and 44◦ S, and 10◦ W and 56◦ E,
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(a) (b)

Fig. 6. HE summer rainfall for 2008 and 2009(a) and rainfall measured by the gauges in the summer of 2008 and 2009(b).

(a) (b)

Fig. 7. Ratio of UM stratiform rainfall over UM Total rainfall for winter months(a) and summer months(b) for 2008 and 2009.

with an East/West resolution of 0.11◦ and a North/South res-
olution of 0.1112◦.

2.4 South African rain gauge network

The SAWS rain gauge network consists of about 1500 rain
gauges for 24 h periods from 06:00 to 06:00 UTC. In 2009
an additional eighty Automatic Rainfall Systems (ARS) have
been installed providing rainfall information in real-time.
Despite the obvious advantage of being able to measure rain-
fall in 5 min intervals, this type of precipitation measure-
ment is still too sparse to provide a comprehensive picture
of hourly rainfall over the country.

2.5 Satellite precipitation estimations – the
Hydroestimator

Area-wide precipitation estimation is one of the most diffi-
cult observational challenges of meteorology as a result of

the high spatial and temporal variability which is especially
pronounced during convective rainfall events. Although rain
gauges provide a direct measurement of rainfall, rain gauge
networks are far too coarse to capture the smaller scale fea-
tures of rain fields. Rain gauges are unevenly distributed
and, most importantly, they provide point source data and not
a representation of a spatial domain (Kondragunta, 2007).
Radars can be used to provide an indirect measurement of
rainfall, but then the radars need to cover the entire area of
interest, be well correlated and have a good radar rainfall re-
lationship. Due to the expensiveness of procuring and main-
taining radar systems they are a scare commodity in Africa
and thus not a feasible option for this purpose. Although
satellite based estimates of rainfall are not as accurate as
gauges or radar, its major advantage is the high temporal
resolution and spatial coverage, even over oceans, in moun-
tainous regions and sparsely populated areas where rainfall
is not measured. Thunderstorms and flash floods often occur
in areas between gauges and other surface based networks
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(a) (b)

Fig. 8. Pseudo stratiform rainfall from gauges for winter months(a) and summer months(b) for 2008 and 2009.

(a) (b)

Fig. 9. UM stratiform rainfall for winter months(a) and summer months(b) for 2008 and 2009.

and thus cannot be detected properly. In such cases satellite-
derived rainfall can be a “critical tool for identifying hazards
from smaller-scale rainfall and flood events.” (STAR Satel-
lite Rainfall estimates, 2010).

Satellite precipitation estimates (SPE) offer an excellent
way to compensate for some of the limitations of other
sources of quantitative precipitation estimations. However,
the relationship between satellite-measured radiances and
rainfall rates is less robust than that between radar reflectivi-
ties and rainfall rates. SPE should thus not be considered as
a replacement for radar estimates and gauges but as a com-
plement (Scofield and Kuligowski, 2003).

Scofield (2001) described the status and outlook of op-
erational satellite precipitation algorithms for extreme pre-
cipitation events. Since 1978, SPE for flash flood identifi-
cation has been produced using data from the Geostation-
ary Operational Environmental Satellite (GOES). The Na-
tional Environmental Satellite, Data and Information Service
(NESDIS) developed an automated SPE algorithm for high-
intensity rainfall called the Autoestimator (AE). The original

AE, developed by Vicente et al. (1998), computes rain rates
from 10.7 µm brightness temperatures based on a curve that
was derived from more than 6000 collocated radar and satel-
lite pixels. The dependence of the initial AE on radar was a
significant problem, because one of the advertised strengths
of satellite QPE is its usefulness in regions for which radar
and/or rain gauge coverage is unavailable. Another version
of the AE, called the Hydroestimator (HE) has been devel-
oped which can be used outside of regions of radar coverage
without compromising too much accuracy. The HE is mainly
dependent on temperature (the higher the cloud, the colder
the temperature and the greater the rain rate). More infor-
mation on the HE and its performance can be obtained from
Kuligowski et al. (2005). In general, experience and valida-
tion studies (Kuligowski et al., 2001) have shown that SPE
tend to overestimate rainfall intensity and spatial coverage of
the storm when it is slow moving and has a cold top and SPE
tend to underestimate rainfall from warm topped mesoscale
convective systems.
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(a) (b)

Fig. 10. Mean Absolute Error for 2008(a) and 2009(b) on a monthly basis for HE (blue line) and COMB (red line).

Input files for the local HE consist of the IR10.8 chan-
nel brightness temperatures of the MSG satellite and model
output fields of the SAWS local version of the Unified
Model, including: Profiles of the temperature and humidity
on 19 levels, from 1000 to 100 hPa, every 50 hPa, surface
pressure and 700 hPa wind field. Before the actual HE code
is run, parallax and zenith angle corrections are made. The
parallax correction helps to position the rainfall cores more
accurately, which plays an important role in smaller scale
storms (Vicente et al., 2002). The HE is available in the same
domain as the local version of the Unified model (i.e. be-
tween 0.48◦ N and 44◦ S and between 10◦ W and 56◦ E).

Despite the simplicity of this precipitation estimation al-
gorithm, it is still used in many countries around the world.
There are, of course, more accurate and also more involved
precipitation algorithms available, but the requirements for
these algorithms are currently beyond the capabilities in
South and southern Africa. In southern Africa a precipita-
tion estimator, independent of radars is required to provide
data in real time and thus the HE suits the need.

The International Precipitation Working Group (IPWG)
is one of the working groups of the Coordination Group
for Meteorological Satellites (CGMS). The work done in
this group concentrates on “operational and research satel-
lite based quantitative precipitation measurement issues and
challenges” (http://www.isac.cnr.it/∼ipwg). Statistical evalu-
ation performed on the HE in the United States show that the
HE is performing very well; with a correlation between the
HE and the rain gauges on an hourly basis of more than 0.7
in some examples.

2.6 Accumulation products for the HE

An important part of the warning process for flooding and/or
flash flooding is knowledge of the amount of rain which
fell in previous time periods, from one hour to several

hours. In regions where rain gauges are sparse a satel-
lite based accumulation of precipitation can go a long way
to help a forecaster to know that a significant amount of
rain has fallen recently. Accumulation products of the HE
have been developed for 1 h, 3 h, 6 h, 24 h, 10 days and
1 month. These products are updated operationally on a
rolling time average basis on the Regional Specialized Mete-
orological Centre (RSMC) webpage (http://old.weathersa.co.
za/RSMCLoginServlet). This website was developed to aid
National Meteorological Centres (NMC) of southern African
countries with guidance products in the SWFDP project,
model output as well as warnings for possible floods, strong
wind are provided.

2.7 The South African Flash Flood Guidance
system (SAFFG)

Flooding events in recent years in South Africa, and par-
ticularly in the southwestern and southeastern coastal re-
gions, dramatically demonstrated the devastating impact of
flash floods on the country. In response to this the SAWS
and the National Disaster Management Centre (NDMC) em-
barked on a collaborative project for the development and
implementation of a flash flood warning system in flash flood
prone regions, called the South African Flash Flood Guid-
ance (Poolman, 2010). The development of the SAFFG sys-
tem was in a testing phase during the first half of 2010 and
became operational in October 2010.

The SAFFG system is a hydro-meteorological modelling
system combining real-time meteorological information,
such as quantitative rainfall estimation from weather radar,
satellite and rain gauges, with hydrological modelling of the
soil moisture conditions and resultant flash flood potential
in 1633 small river basins (on average 50 km2) in five flash
flood prone regions over South Africa. One of the flash flood
prone areas is located along the southern coastal regions
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(a) (b)

(c) (d)

Fig. 11. UMS precipitation total for 24 h(a), HE precipitation total for 24 h(b), COMB precipitation total for 24 h(c) and the total rainfall
as measured by the rain gauges(d) for 28 January 2008.

where radar coverage is not available. In this region the
SAFFG system is configured for 200 km2 catchments and
dependant only on the satellite rainfall estimates and gauges
data.

The SAFFG uses the quantitative rainfall estimates of the
previous 24 hours from radar, satellite and rain gauges to
pre-calculate every hour the necessary hydrological informa-
tion of each relevant small river basin (soil moisture, sub-
sequent run-off) to determine the amount of rain needed
over the basin that will lead to bank full at the outlet of the
river, i.e. start of flooding. When this value is compared
in real time to the amount of rain falling over each basin
(as estimated from real-time monitoring rain gauges, radar
and satellite) river basins in danger of flash flooding can be
quickly identified. The SAFFG depends heavily on the qual-
ity of QPE products from radar and satellite as input to the
hydrologic models. It is therefore very important to improve
the rainfall estimation from radar and satellite information as
a primary input into the hydrological modelling.

Fig. 12.Statistical evaluation of 28 January 2008 for HE (blue) and
COMB (red).
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(a) (b)

(c) (d)

Fig. 13. Unified Model stratiform precipitation total for 24 h(a), Hydroestimator precipitation total for 24 h(b), the combined product from
HE and UM for 24 h(c) and the total rainfall as measured by the rain gauges(d) for 17 June 2008.

The WMO is developing a similar flash flood guidance
system (called the SADC SARFFG) aiming for implemen-
tation over seven southern African countries in 2011. The
SADC SARFFG system will cover the rest of South Africa
and six other countries where there are no radar coverage at
the coarser 200 km2 resolution. This system will therefore
depend primarily on satellite QPE as precipitation input for
modelling soil moisture and flash flood guidance over large
parts of southern Africa. A thorough evaluation of the newly
implemented SAFFG system will be done in due course.
Such an evaluation falls outside the scope of this paper.

3 South Africa climate and rainfall patterns

Kruger (2007) did a thorough analysis of the rainfall patterns
of South Africa. The highest rainfall occurs along the eastern
escarpment, in particular, along the mountain ranges in the
southeast. Rainfall generally decreases from east to west; the
highest amounts in the east have an average of 800 mm per
year, while amounts of less than 200 mm per year occur in the

west. Although there is a distinct relationship between rain-
fall and elevation, other factors such as whether the rainfall
is convective or stratiform in nature, also plays a role. Sum-
mer rainfall occurs mainly over the northern interior of the
country (Fig. 1), mostly in the form of convective thunder-
storms. A tropical influence is felt when moisture from the
tropics enters the country in January to March and tropical
rain showers are common with less heat generated convec-
tion. In the winter months the southwestern parts and coastal
regions receive its rainfall mainly as a result of cold fronts
and high pressure systems ridging along the coast (Fig. 2).
The influence of orography contributes to the higher rainfall
over the eastern escarpment when combined with the inflow
of moist air from the Indian Ocean (Kruger, 2007). The per-
centage of the total rainfall on a monthly basis for 2008 and
2009 is shown in Fig. 3; it is evident that the summer months
contribute most of the country’s annual rainfall.
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(a) (b)

(c) (d)

Fig. 14. Unified Model stratiform precipitation total for 24 h(a), Hydroestimator precipitation total for 24 h(b), the combined product from
HE and UM for 24 h(c) and the total rainfall as measured by the rain gauges(d) for 18 June 2008.

4 Strengths and weaknesses of the HE

An example (Fig. 4) is shown comparing the 24 h rain gauge
totals to the 24 h totals from the HE on 12 November 2008.
Only rain gauges from South Africa are available and there-
fore the domain for comparison is confined to the areas
within the borders of South Africa. The rain gauge totals
(Fig. 4a) show widespread rain, except in the western inte-
rior. The highest totals were recorded in the southwestern
parts as well as on the southeastern coast. Spatially, the HE
looks similar (Fig. 4b), but the rainfall over the central in-
terior was not detected by the HE. The HE put the highest
emphasis in the northern interior, with rainfall totals close to
100 mm which is too high in comparison with the gauges.
The rainfall along the coasts was detected by the HE, but the
amount of rain was underestimated by the HE.

This example confirms that the HE differs substantially in
intensity from the measurements by the rain gauges when
using a 24 h accumulation. The aerial extent of where pre-
cipitation occurs is reasonable. The HE performs best for

convective events, but overestimates the convection intensity.
As expected, rainfall from stratiform weather systems along
the coasts is underestimated by this algorithm.

5 Methodology

The first step to improve on the hourly satellite based QPE
is to determine the bias of the HE. The other disadvantage
of the HE (underestimation of stratiform rain events) will be
addressed by combining the HE with rainfall fields from the
Unified Model in a new field. Experience has shown that
the Unified Model usually handles synoptic scale weather
features such as frontal systems well. These systems are
accompanied by stratiform rainfall. Stratiform rainfall usu-
ally affects the coastal areas of South Africa and is predicted
more accurately than the convective precipitation accompa-
nying thunderstorms. The stratiform precipitation field from
the Unified Model will be compared to gauge measurements
in a novel way allowing this field to also be bias-corrected.
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Fig. 15. Statistical evaluation of 17 June 2008 for HE (blue) and
COMB (red).

Subsequently the bias corrected stratiform rainfall field will
be used in combination with the bias corrected HE field to
supply a more comprehensive precipitation estimation to in-
clude not only the convective events, but also the stratiform
events more accurately.

5.1 Bias correction of the HE

Data from the HE are available since January 2008. The
HE from January 2008 until December 2009 was used to de-
termine the average area ratio between the HE and the rain
gauges in 0.5× 0.5◦ grid boxes. Due to the fact that this is
a very short “climate” to base findings on, it was decided to
divide the data into six month periods instead of individual
months for all bias correction calculations. It was clear that
the months from November to April and May to October, re-
spectively, had similar ratios and thus November to April will
be termed the “summer” months and May to October will be
termed the “winter” months.

In Fig. 5 the two year rainfall total over the country for
the winter months are shown in panel a and the two year rain
gauge total in panel b. Figure 6 is similar for the summer
months. The area average of the ratio for the summer months
(November to April) is 1.3 and the area average for the winter
months (May to October) is 2.1. The HE is thus overestimat-
ing by a factor 1.3 in summer and a factor of 2.1 in winter.
Using these two years’ data it seems that if 75% (∼1/1.3) of
the HE is used in summer months and 50% (∼1/2.1) in win-
ter months, the HE totals and rain gauge totals might be more
aligned.

5.2 Bias correction of the stratiform rainfall field from
the UM

The bias correction of the stratiform rainfall field provided
by the Unified Model can be done using the rain rate of the
automatic rain gauges and attempting to identify those peri-
ods in which the rain rate approximates that expected from

Fig. 16. Statistical evaluation of 18 June 2008 for HE (blue) and
COMB (red).

stratiform rainfall. Unfortunately, there are not enough of
these gauges operational over the country yet.

An alternative solution is to use the ratio of the UM strat-
iform field to the UM total rainfall field to estimate the per-
centage of the observed rainfall that can be attributed to strat-
iform rainfall. Figure 7 show this ratio for the months from
May to October and November to April. This was calcu-
lated using the hourly UM derived rainfall fields from Jan-
uary 2008 to December 2009. It is evident that the frontal
systems contribute more to stratiform rainfall during the win-
ter months in the southwestern parts of the country. During
the summer months stratiform rainfall also occur along the
eastern and northeastern escarpment of the country. If these
winter and summer ratios are applied to the rain gauge totals
for the winters and summers of the same two year period,
a pseudo stratiform observation can be calculated for winter
(Fig. 8a) and summer (Fig. 8b). In Fig. 9 the UM stratiform
fields for winter (panel a) and summer (panel b) are shown.
Comparing Figs. 8 and 9 it is evident that the precipitation
field provided by the model also over estimates the rainfall
measured by gauges, but less so than the HE. Calculating
the ratio of the UM stratiform field over this pseudo strat-
iform observation in areas where more than 150 mm were
recorded in this two years period (i.e. in regions where strat-
iform rainfall makes a significant contribution), provides a
bias-correction for the UM stratiform field of 1.25 (∼80%)
for winter months and 1.4 (∼70%) for summer months.

5.3 Combining the bias corrected HE and UM
stratiform fields into a new precipitation field

The maximum value of either the bias-corrected HE (as men-
tioned in Sect. 5.1) or the bias-corrected UM stratiform rain-
fall field (as mentioned in Sect. 5.2) is used to compute a new
rainfall field for each grid box. The maximum of the two
values are used to ensure that the extreme values captured
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(a) (b)

(c) (d)

Fig. 17. Unified Model stratiform precipitation total for 24 h(a), Hydroestimator precipitation total for 24 h(b), the combined product from
HE and UM for 24 h(c) and the total rainfall as measured by the rain gauges(d) for 12 July 2009.

by either rainfall mechanism are not missed in areas where
both rainfall types occur during a given period. It should
be remembered that the HE is primarily designed for cold
cloud top convective rainfall although it sometimes captures
a small fraction of the stratiform rainfall that are associated
with cold cloud tops. This combined product represents a
rainfall field which reflects both bias corrected convective
as well as bias corrected stratiform rainfall. This calcula-
tion can be done every 15 minutes (when a new HE field be-
comes available) and it can be accumulated into hourly files,
to make it useful for flood and/or flash flood forecasting. This
product will be referred to as COMB in the rest of the text.

This procedure was followed for all the days of 2008, to
create hourly fields. The IPWG uses 0.25× 0.25◦ grid boxes
for evaluation purposes and also evaluates on an hourly ba-
sis. Due to the relative shortage of rain gauges in South
Africa compared to the USA, it was decided to accumulate
the hourly fields into 24 h totals for each day using 0.5× 0.5◦

grid boxes. Daily rainfall totals of the HE and the COMB
could then be compared to the daily rainfall totals from the

Fig. 18. Statistical evaluation of 12 July 2009 for HE (blue) and
COMB (red).
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rain gauges. The 24 h totals were calculated from 06:00 UTC
to 06:00 UTC each day. Rain gauges are only available inside
the borders of South Africa. A mask was thus created to out-
line the country to ensure that only values of HE or the com-
bined precipitation product were taken into account where it
could be evaluated against rain gauge measurements.

Similar to the approach followed by the IPWG (http://
www.isac.cnr.it/∼ipwg/) the daily rainfall fields were evalu-
ated using the contingency table approach, calculating the
traditional scores such as probability of detection, false
alarm ratio, Hanssen-Kuipers score (also known as True Skill
Statistic, or Pierces’ skill score), Equitable threat score and
Heidke Skill Score (Wilks, 2005). The correlation coeffi-
cient, mean absolute error and number of points with and
without rain were also calculated. All the statistical calcula-
tions were done with rainfall of less than 1 mm implying no
rain and anything more than 1 mm implying rainfall.

6 Results

The expectation is that the COMB should be slightly better in
summer months, due to the bias correction applied to the HE.
The COMB should be a bigger improvement on the HE in the
winter months where the stratiform events will be captured
better.

6.1 Monthly values

The amount of data points with rain and with no rain for each
month of 2008 and 2009 are listed in Table 1. In the last
column a Rain/No Rain ratio is given. This ratio confirms
that seasonal rainfall patterns discussed before.

In Tables 2 and 3, respectively, the average monthly statis-
tics for 2008 and 2009 are given comparing the HE and the
Combination rainfall product.

6.1.1 Correlation coefficient

Looking at the second and third columns of Tables 2 and 3,
is it clear that the correlation coefficient of the COMB was
better than the HE in all months. In summer months there are
more grid boxes with rainfall and the statistical significance
of the correlation coefficients are better than in the winter
months. Relative to the HE the COMB is notably better in
the winter months, when the HE alone missed the stratiform
events which was only evident in combination with the strat-
iform rainfall field from the UM.

6.1.2 Probability of detection

If the average of the entire year is used, there is a 10% in-
crease of the POD in both years using the COMB. As ex-
pected the POD of the HE is worse during the winter months,
while the COMB is adding the most value by incorporating
the stratiform rainfall field. The POD of HE is best (around

Table 1. Number of grid boxes with and without rainfall for 2008
and 2009.

Average number of Average number of Rain points/
points with rain points without rain No rain ratio

2008 2009 2008 2009 2008 2009

Jan 161 153 70 71 2.3 2.2
Feb 159 2.8 85 84 1.9 2.5
Mar 153 101 84 70 1.8 1.4
Apr 84 83 67 74 1.3 1.1
May 74 55 63 53 1.2 1.0
Jun 72 97 54 75 1.3 0.9
Jul 25 43 31 42 0.8 1.0
Aug 38 42 44 41 0.9 1.0
Sep 38 57 39 47 0.9 1.2
Oct 88 141 68 73 1.3 1.9
Nov 135 108 73 64 1.8 1.7
Dec 103 109 62 56 1.7 1.9

38%) during the summer months, while the COMB exceeds
40% in more than one summer month.

6.1.3 False alarm ratio

In some months the FAR of the COMB is slightly higher
(worse) than the FAR of the HE, but on average for 2008 and
2009, the FAR of COMB (∼31%) is still less than the FAR
of the HE (∼34%).

6.1.4 Hanssen Kuiper score and Heidke skill score

For all of these scores the COMB is better than HE for the
individual months as well as on average for all 12 months
(±5%).

6.1.5 Mean absolute error

The MAE of the COMB is smaller than the MAE of the HE
in all months of 2008 and 2009, respectively (Fig. 10a and b).
This is contributed to the BIAS correction applied to the HE
before combining it with the stratiform fields. This is specif-
ically evident in January 2008.

6.2 Daily values

Some case days were used to demonstrate the specific
weather situations as well as the effect of the HE, UM strat-
iform field and the COMB. All of these products are 24 h
rainfall totals on a 0.5◦ × 0.5◦ resolution.

6.2.1 Example 1: 28 January 2008

In the summer case (Fig. 11) it is clear that stratiform pre-
cipitation (top left) didn’t play a significant role. The HE
(top right) captured the convective rainfall and after the bias
correction was applied (bottom left), it is closer to rainfall
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Table 2. Statistical evaluation of HE and COMB in 2008.

Correlation POD FAR Heidke Skill Hanssen Kuiper Mean Abs
Coefficient Score Discriminant Error

HE Comb HE Comb HE Comb HE Comb HE Comb HE Comb

Jan 0.22 0.23 0.34 0.41 0.17 0.19 0.14 0.19 0.18 0.21 12.28 9.87
Feb 0.22 0.22 0.26 0.29 0.14 0.21 0.15 0.15 0.19 0.19 4.05 3.82
Mar 0.22 0.25 0.3 0.36 0.21 0.2 0.15 0.17 0.19 0.21 4.27 3.85
Apr 0.09 0.09 0.22 0.23 0.4 0.45 0.1 0.1 0.12 0.12 3.4 3.14
May 0.08 0.21 0.19 0.28 0.41 0.36 0.05 0.11 0.06 0.12 4.09 2.8
Jun 0.04 0.14 0.18 0.27 0.33 0.25 0.08 0.15 0.08 0.15 4.32 3.42
Jul −0.02 0.24 0.04 0.21 0.69 0.37 −0.03 0.08 −0.03 0.08 2.01 1.4
Aug −0.01 0.05 0.01 0.14 0.54 0.45 0 0.06 0 0.07 1.94 1.74
Sep 0 0.14 0 0.2 0.3 0.34 0 0.12 0 0.13 2.66 2.22
Oct 0.01 0.1 0.14 0.34 0.49 0.44 −0.01 0.09 0 0.1 3.73 2.96
Nov 0.2 0.25 0.38 0.46 0.27 0.27 0.18 0.23 0.21 0.26 4.61 3.97
Dec 0.14 0.16 0.19 0.23 0.22 0.21 0.09 0.12 0.11 0.13 4.26 3.8

Table 3. Statistical evaluation of HE and COMB in 2009.

Correlation POD FAR Heidke Skill Hanssen Kuiper Mean Abs
Coefficient Score Discriminant Error

HE Comb HE Comb HE Comb HE Comb HE Comb HE Comb

Jan 0.25 0.28 0.36 0.44 0.14 0.19 0.18 0.2 0.23 0.26 5.82 4.97
Feb 0.34 0.35 0.43 0.48 0.14 0.13 0.19 0.22 0.25 0.28 5.87 5.16
Mar 0.04 0.06 0.16 0.19 0.39 0.37 0.05 0.06 0.06 0.07 3.08 2.91
Apr 0.02 0.09 0.07 0.17 0.41 0.33 0.01 0.06 0.01 0.07 2.57 2.36
May 0.04 0.11 0.19 0.26 0.42 0.3 0.06 0.12 0.07 0.13 2.46 1.95
Jun 0.09 0.19 0.28 0.36 0.52 0.37 0.06 0.13 0.07 0.14 4.4 3
Jul 0.01 0.09 0.07 0.16 0.61 0.41 0.01 0.06 0.01 0.06 2.77 2.16
Aug 0.07 0.13 0.08 0.17 0.38 0.42 0.03 0.06 0.04 0.07 2 1.6
Sep −0.02 0.18 0.09 0.35 0.46 0.31 0 0.18 0.01 0.18 2.79 2.15
Oct 0.06 0.11 0.38 0.47 0.3 0.29 0.12 0.19 0.14 0.21 6.01 4.04
Nov 0.05 0.14 0.27 0.4 0.41 0.36 0.05 0.13 0.06 0.15 4.83 4.17
Dec 0.05 0.09 0.3 0.41 0.32 0.29 0.06 0.12 0.08 0.15 5.89 4.95

measured by the gauges (bottom right). The statistics for this
day (Fig. 12) shows that the COMB is performing better than
the HE in all accounts. The MAE of the COMB is lower, and
the rain rate of the COMB (3.3 mm day−1) is closer to the
rain rate of the gauges (3.7 mm day−1).

6.2.2 Example 2: 17–18 June 2008

From the winter time example (Figs. 13 and 14) it is clear that
the stratiform rainfall produced by the Unified Model (top
left) captures the rainfall on the east coast and also the pre-
cipitation associated with the frontal passage over the central
parts of the country. The HE (top right) missed the rainfall on
the east coast of South Africa and over estimated the convec-
tion over the northern interior. In the COMB (bottom left),
the stratiform precipitation along the east coast is evident as

well as the convection captured by the HE, but bias-corrected
to be more realistic. The combined field correlates well with
the rain gauges (bottom right) in aerial extent as well as in-
tensity.

Figures 15 and 16 show the statistics for these two days.
The correlation coefficients for both days were negative us-
ing the HE on its own, but increase significantly using the
COMB. The rain rate of the COMB is closer to the rain rate
of the gauges on the 17th and matches the rain rate of the
gauges perfectly on the 18th. In both cases the MAE is less
when using the COMB.
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6.2.3 Example 3: 12 July 2009

Figure 17 shows that the UM stratiform field (top left) cap-
tured the rainfall along the southwestern coast well, the HE
(top right) only captured some convective activity outside the
rain gauge network, while the COMB (bottom left) was much
closer to the rain gauge measurements (bottom right). In
Fig. 18 the statistical evaluation of this day is shown. The
correlation coefficient is negative for the HE along and more
than 0.69 for COMB. The p-score for a correlation of 0.68
using 118 grid boxes with rain, is more than 99% significant.
All the other scores are also better using the COMB.

From these examples it is clear that the improvement in
the precipitation field not only eliminates the over estimation
of the HE, but the stratiform events are also captured better.
Advantages of the COMB rainfall field therefore include a
better aerial coverage as well as more realistic rainfall totals.
Providing such a hourly satellite based rainfall field as input
to the SAFFG or in any other application for flash flooding
would certainly be beneficial.

7 Summary and conclusion

In this article the applications of the satellite based precip-
itation measurement, namely the Hydroestimator (HE) for
southern Africa were described. The HE is based on a single
channel (IR10.8) from MSG and mainly uses the temperature
of cloud tops to estimate precipitation rate every 15 minutes.
Although improvements have been incorporated into the HE
to avoid the possibility of getting rain from high level Cirrus
clouds, but to include lower clouds which can cause precipi-
tation, it is still considered to be mainly useful for convective
precipitation. The HE has been available in southern Africa
since the end of 2007. Shortcomings of the HE include the
over estimation of precipitation amounts and the underesti-
mation or missing of some stratiform events.

For any flood of flash flood warning system such as the
SAFFG hourly accumulations of both radar rainfall and satel-
lite based rainfall should be used. Unfortunately radars do
not cover the entire South Africa and are also very scarce in
the rest of Africa. The quality of satellite based precipita-
tion estimations for South and southern Africa are crucial to
ensure the accuracy of flood and/or flash flood warnings. In
order to provide a more accurate and more comprehensive
satellite precipitation based input field, a new combination
product was developed. The new product aims to combine
the strengths of the HE and the stratiform precipitation field
from the Unified Model. The respective bias corrections of
the HE as well as the UM stratiform field were determined
over a two year period and these bias corrected products were
combined into a new precipitation estimation field. The com-
bined product was closer to the rain gauge measurements for
daily accumulations of rainfall fields in 2008 and 2009. A
few daily cases were shown to highlight the advantages of the

new product. Future work will include adding all new avail-
able data to the data set in order to update the bias correc-
tions. It is envisaged that this product will add value to flood
and flash flood warnings in South Africa (using the SAFFG)
and southern Africa (SARFFG).
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