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Abstract. The objective of this study is to get a better un-
derstanding of radar signal over irrigated wheat fields and to
assess the potentialities of radar observations for the moni-
toring of soil moisture. Emphasis is put on the use of high
spatial and temporal resolution satellite data (Envisat/ASAR
and Formosat-2). Time series of images were collected over
the Yaqui irrigated area (Mexico) throughout one agricultural
season from December 2007 to May 2008, together with
measurements of soil and vegetation characteristics and agri-
cultural practices. The comprehensive analysis of these data
indicates that the sensitivity of the radar signal to vegetation
is masked by the variability of soil conditions. On-going ir-
rigated areas can be detected all over the wheat growing sea-
son. The empirical algorithm developed for the retrieval of
topsoil moisture from Envisat/ASAR images takes advantage
of the Formosat-2 instrument capabilities to monitor the sea-
sonality of wheat canopies. This monitoring is performed
using dense time series of images acquired by Formosat-2 to
set up the SAFY vegetation model. Topsoil moisture esti-
mates are not reliable at the timing of plant emergence and
during plant senescence. Estimates are accurate from tiller-
ing to grain filling stages with an absolute error about 9%
(0.09 m3 m−3, 35% in relative value). This result is attractive
since topsoil moisture is estimated at a high spatial resolution
(i.e. over subfields of about 5 ha) for a large range of biomass
water content (from 5 and 65 t ha−1) independently from the
viewing angle of ASAR acquisition (incidence angles IS1 to
IS6).

Correspondence to:R. Fieuzal
(remy.fieuzal@cesbio.cnes.fr)

1 Introduction

Effective management and monitoring of environmental re-
sources require integrating hydro-ecologic parameters into
biophysical models. However, although models perfor-
mances have continuously been improved over the past years,
regional applications for the management of agricultural wa-
ter are still limited because of the shortage of key input mod-
elling data over large areas (Boote et al., 1996; Moulin et
al., 1998; Faivre et al., 2004). The monitoring of farming
practices and soil-vegetation biophysical variables combin-
ing modeling and remote sensing data offers both advan-
tages. On one hand, punctual parameters derived from satel-
lite acquisition can be used as input to constrain models. On
other hand, the continuous and spatialized modeled variables
can be used to improve the knowledge on the information
derived from remote sensing data.

Recently designed earth observing systems offer both high
spatial resolution and frequent revisit time. This is particu-
larly promising for the seasonal monitoring of croplands at
a field scale. At the present time, the Formosat-2 satellite
provides 8 m resolution images (in the multispectral mode
at nadir viewing) for 4 narrow spectral bands ranging from
0.45 µm to 0.90 µm (blue, green, red and near-infrared). It
is a unique tool to monitor the seasonality of biophysical
variables such as leaf area index (Duchemin et al., 2008a;
Bsaibes et al., 2009; Hadria et al., 2009a). In the microwave
spectral domain, the ASAR radar onboard the Envisat mis-
sion is an active instrument operating at C-band with a 30
m spatial resolution in the Alternating Polarisation mode.
The orbit cycle is 35 days, but the combination of acquisi-
tions at different incidence angles allows revisiting of a few
days (Torres et al., 1999). The continuity of combined high
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resolution and repetitivity data sets in the microwave and the
optical spectral domains is insured in the near future by the
planned launch of Sentinel-1 and Sentinel-2 satellite mis-
sions (ESA, 2007, cited in Hagolle et al., 2008).

Optical satellite data were intensively used in the context
of crop monitoring to provide space and time regular obser-
vations of plant biophysical variables (Asrar et al., 1984;
Baret and Guyot, 1991; Carlson and Ripley, 1997; Basti-
aanssen et al., 2000; Duchemin et al., 2006). In contrast,
there is still a poor understanding of the radar response over
annual crops (Moran et al., 2002). For wheat canopies,
the sensitivity of the radar backscattering co-polarization ra-
tio is caused by the differential attenuation of horizontally
and vertically polarized electromagnetic waves that propa-
gate through a medium with vertical structure (Bracaglia et
al., 1995; Picard et al., 2003). Some attempts at using empir-
ical relationships between Envisat/ASAR backscattering co-
efficient and wheat leaf area index characteristics have been
performed (Dente et al., 2008). The limitation of these meth-
ods lies in the saturation of the signal with the density of
canopies and its sensitivity to surface roughness and topsoil
moisture (Moran et al., 2002; Mattia et al., 2003; Ulaby
et al., 1986; Beaudoin et al., 1990; Satalino et al., 2003;
Zribi et al., 2003). The general trends of the radar response
as a function of soil conditions and the sensor characteris-
tics (frequency, incidence, polarisation) are well captured by
backscatter models (e.g. Jarlan et al., 2002), but the opera-
tional applicability of inversion schemes is still challenging
since the parameters required for modelling are difficult to
estimate over large areas and since the relative contribution
of these parameters on the signal is difficult to decouple.

In this context, the objective of this study is twofold: (i) to
get a better understanding of radar signal over irrigated wheat
fields and, (ii) to show the potentialities of radar observa-
tions for the monitoring of irrigation and soil moisture. The
study is carried out over an irrigated area located in North-
West of Mexico (arid climate with 200 mm of rain per year).
Emphasis is put on time series of high spatial resolution im-
ages (30 m) provided by Envisat/ASAR. The potentialities of
these data for the monitoring of soil conditions is analysed
based on spatial estimates of Biomass Water Content (BWC).
These estimates are obtained over a large number of fields us-
ing a simple wheat growth model controlled by Formosat-2
data. The analysis of the covariations of backscattering co-
efficients and BWC shows the high sensitivity of the radar
response to the irrigation status. It allowed developing an
original method for the retrieval of topsoil moisture based
on the spatial variation of backscattering coefficients under a
large range of vegetation growing stage.

 

 

Figure 1. The 8×8 km² study area delineated on a Formosat-2 image, with its 4×4 km² central part 

highlighted. Wheat fields are hatched in black. Agricultural practices were collected on 12 wheat 

fields (beige fields). The bottom zoomed yellow area shows the largest fields where grain yield 

(green subfields) and irrigation (black segments) were collected. 
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Fig. 1. The 8×8 km2 study area delineated on a Formosat-2 image,
with its 4×4 km2 central part highlighted. Wheat fields are hatched
in black. Agricultural practices were collected on 12 wheat fields
(beige fields). The bottom zoomed yellow area shows the largest
fields where grain yield (green subfields) and irrigation (black seg-
ments) were collected.

2 Overview of the experiment

2.1 Study area

The experiment was conducted throughout one agricultural
season from November 2007 to June 2008 in the Yaqui Val-
ley, North-West of Mexico (27.25◦ N, 109.88◦ W). The ob-
jective of the experiment was to characterize the spatial vari-
ability of surface fluxes from the field to regional (few km)
scale. Field measurements were collected on an 8×8 km2

irrigated cropping area where land use was exhaustively col-
lected (Fig. 1). Wheat was the dominant crop covering 60%
of the study area.

The study area is adequate to get a better understanding of
the radar signal over wheat fields since: (i) it is flat, thus radar
backscattering is not influenced by topography, (ii) fields are
large (up to 100 ha), with only two different North-South and
East-West row orientations, (iii) agricultural practices are al-
most identical for all the wheat fields: mechanized tillage,
irrigation and fertilization operations applied in the course of
programmed schedules.
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Figure 2. Picture taken on the largest field at the irrigation limit (before sowing). 
Fig. 2. Picture taken on the largest field at the irrigation limit
(before sowing).

2.2 Experimental data

Wheat fields located in the 4× 4 km2 central part of the
8×8 km2 area were intensively monitored during the exper-
iment. Climatic data, agricultural practices, vegetation and
soil biophysical variables were collected regularly during all
the agricultural season.

Climatic data were collected by a meteorological station
installed at the center of the study area between 27 Decem-
ber 2007 and 17 May 2008. Air temperature and solar radi-
ation were collected at a semi-hourly time step, from which
daily mean air temperature average and daily accumulated
global incoming radiation were computed.

Agricultural practices were collected on 12 wheat fields
located within the 4×4 km2 centre (see Fig. 1). Sowing and
irrigation dates are used in this study. Sowing period was
from 25 November 2007 and 8 January 2008, with a pre-
irrigation performed to prepare the seedling. After sowing,
wheat crops were irrigated 3 to 4 times. Furrow irrigation
was used (Fig. 2), with a water quantity of 150 mm each time.
Harvesting was performed from April end to May.

Vegetation measurements consist in Green Leaf Area in-
dex (GLA) and Grain Yield (GY) estimates. GLA data were
derived from hemispherical photography taken on 20×20 m2

plot following the VALERI protocol (Garrigues et al., 2006)
based on the analysis of canopy directional gap fraction. At
the end of the season, grain yield was estimated on 11 fields
by surveying harvesting machine with GPS system on track
mode (see the zoomed part in Fig. 1).

Topsoil moisture was measured using TDR sensors in-
stalled within 2 pits, at 5 cm depth. During the agricultural
season, data were collected on 2 wheat fields at a semi-
hourly time step. These measurements were calibrated and
transformed in volumetric soil moisture by comparison with
gravimetric measurements. The values the closest to ASAR
acquisition dates are used in this study; the time gap between
satellite acquisitions and in situ measurements never exceeds
15 min.

 

 

Figure 3. Satellite acquisition dates (× Formosat-2, + Envisat/ASAR) together with the main 

phenological stages of wheat crops. The ASAR acquisition mode is indicated (top number: 

ascending overpass; bottom number: descending overpass; the number indicates the 

illumination/viewing angle from IS1 to IS6). 

Fig. 3. Satellite acquisition dates (× Formosat-2, + Envisat/ASAR)
together with the main phenological stages of wheat crops. The
ASAR acquisition mode is indicated (top number: ascending over-
pass; bottom number: descending overpass; the number indicates
the illumination/viewing angle from IS1 to IS6).

2.3 Remote sensing data

Two series of satellite acquisitions were specifically pro-
grammed during the experiment. The acquisition dates are
shown in Fig. 3, together with the phenological main phases
and agricultural operations for wheat crops. 37 optical im-
ages were acquired by the Formosat-2/RSI sensor, from
15 November 2007 to 6 June 2008. 43 radar images were
acquired by the Envisat/ASAR sensor, from 1 January 2008
to 2 June 2008. The main characteristics of these images and
their preprocessing are detailed below.

2.3.1 Formosat-2 data

The Formosat-2 Taiwanese satellite was launched in
May 2004. The remote sensing instrument onboard
Formosat-2 provides high spatial resolution images (8 m in
the multispectral mode at nadir viewing) in four narrow spec-
tral bands ranging from 0.45 µm to 0.90 µm (blue, green, red
and near-infrared). Unlike other systems operating at high
spatial resolution, Formosat-2 may observe a particular area
every day with the same viewing angle. However, only a
part – about the half – of the Earth may be observed. More
details about the specific orbital cycle and other characteris-
tics of the Formosat-2 mission could be found in Chern et
al. (2008) as well as on the internet (http://www.nspo.org.tw,
http://www.spot-image.com).

The images were acquired at around 10:30 GMT with a
nominal time step of 5 days and a constant view zenith angle
of about 12◦. The area was practically could free during the
experiment and the maximal lag between two acquisitions
was 10 days. The images were geometrically corrected by
applying cross-correlation to a reference image which was
geo-registered in the UTM-12N projection system based on
a set of GPS ground control points. Accuracy in geolocali-
sation was estimated to about half-pixel (4 m). Atmospheric
correction was performed using the SMAC code (Rahman
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and Dedieu, 1994) with an original method developed by
Hagolle et al. (2008) for the retrieval of aerosol optical thick-
ness. Finally, top-of-canopy NDVI is computed as the ratio
of the difference between near infrared and red reflectances
to their sum.

2.3.2 Envisat-ASAR data

The Advanced Synthetic Aperture Radar (ASAR), on-
board the Envisat mission (http://envisat.esa.int/) launched in
March 2002, operates at C-band (frequency 5.33 GHz, wave-
length 5.6 cm) with 7 different incidence angles between 15◦

and 45◦. The orbital cycle of Envisat/ASAR is 35 days, but
the combination of different illumination/viewing configura-
tions allows to increase the repetitivity of observations (e.g.
10 passes during the 35-day orbital cycle at 45◦ latitude).

The images were acquired for all possible ascending and
descending overpasses and incidence angles in the Alternat-
ing Polarisation mode at 30 m spatial resolution. The data set
includes images acquired at five different swaths IS1, IS2,
IS3, IS4 and IS6, characterized by their incidence angle of
about 19◦, 23◦, 28.7◦, 33.7◦ and 41◦ respectively. Radiomet-
ric calibration was performed following the procedure spec-
ified by the European Space Agency. Geometric reprojec-
tion was performed using the BEST software tools available
at the ESA web site (http://earth.esa.int/best/). Visual cross-
examination of ASAR and Formosat-2 images shows that the
accuracy of ASAR image geolocation was about 50 m, which
is much lower than the size of fields. The backscattering
coefficients in HH polarization (σ 0

HH) and VV polarization
(σ 0

VV ) were averaged over large geographical units. These
geographic units are automatically generated in the wheat
fields, taking advantage of their rectangular shape. In detail,
each field may be subdivided into one or several smaller en-
tities covering at least 320 pixels (about 5 hectares) using the
following rules: (i) all small areas are located within a single
field to avoid disturbance that may be caused by irrigation
ditches, roads and buildings, (ii) each small area is about
500 m along the direction of irrigation channels and 100 m
across the direction of irrigation channels. Since 100 m cor-
responds to the distance that can be irrigated during one day,
this second rule ensures to have a maximum homogeneity in
the moisture status of each small area.

In order to evaluate Envisat performances over the con-
sidered spatial units, confidence intervals for each viewing
angles were estimated accounting for: (i) the radiometric res-
olution, (ii) the radiometric accuracy and (iii) the radiomet-
ric stability. The radiometric resolution was derived from
Eqs. (1) and (2). The values of the radiometric stability
(0.50 dB) and the radiometric accuracy (0.57 dB) are listed
in Torres et al. (1999). Assuming all errors are independent
and can be summed, we estimated that the confidence inter-
val at 1 standard deviation of ASAR measurements over 5 ha
areas ranges from±0.86 dB for images acquired at IS1 to

±0.82 dB for images acquired at IS6.

Rrad= 10× log(1±1
/√

NLeff) with (1)

NLeff = Np az×Np ra×NLaz×NLra
/
R

Where :
NLeff, Np az, Np ra, NLaz, and NLra denote the effective

look number, the number of azimuthal pixels (8), the number
of range pixels (40), the number of azimuthal looks (Eq. 2)
and the number of range looks (1 to 1.8), respectively.

R is the number of pixels per independent pixel in the data
product and can be calculated as follows:

R = (ρaz
/
1spa az)×(ρground ra

/
1spa ra) (2)

Where :
ρaz, ρgroud ra, 1spa az, 1spa ra, denote the azimuthal spatial

resolution (30 m), the ground range spatial resolution (30 m)
and the azimuth and ground range pixel spacing (12.5 m).

3 Biomass water content

3.1 Overview of the SAFY model

The Simple Algorithm For Yield estimates (SAFY) is a daily
time step vegetation model. It simulates the time courses of
Green Leaf Area index (GLA), and Dry Above-ground Mass
(DAM) from incoming global radiation and mean air temper-
ature. These two variables are simulated from the plant emer-
gence to total senescence. The DAM production depends on
the photosynthetically active portion of solar radiation ab-
sorbed by plants, balanced by the light-use-efficiency (Mon-
teith and Moss, 1977). The main phenological stages are
controlled by a degree-day approach: during the leaf grow-
ing period, a fraction of the daily DAM production is ded-
icated to the daily leaf production following the empirical
parametrization proposed by Maas (1993); the senescence
occurs at a prescribed rate when the air temperature accu-
mulated from emergence reaches the senescence tempera-
ture. The biomass water content is estimated from the dry
aerial mass assuming that the plant water content is 85%
from emergence to the day when the senescence starts, then
decreasing linearly to reach 20% at the end of the senescence
phase. A detailed description of the SAFY model can be
found in Duchemin et al. (2008b).

3.2 Model set up and evaluation

The methodological key-points and the main results are
summarized here. A detailed presentation is described in
Duchemin et al. (2010).

The key variable to control the SAFY model is GLA,
which was mapped from each Formosat-2 data using an
empirical relationship between in-situ GLA data derived
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Figure 4. Relationship between Normalized Difference Vegetation Index (NDVI, derived from 

Formosat-2 images) and Green Leaf Area (GLA, derived from field measurements). The 

determination coefficient and the root mean square error associated to the retrieval of GLA using a 

logarithmic relationship (full line) are displayed with label ‘R²’ and ‘RMSE’, respectively. 
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Fig. 4. Relationship between Normalized Difference Vegetation In-
dex (NDVI, derived from Formosat-2 images) and Green Leaf Area
(GLA, derived from field measurements). The determination coef-
ficient and the root mean square error associated to the retrieval of
GLA using a logarithmic relationship (full line) are displayed with
label “R2” and “RMSE”, respectively.

from hemispherical photography and NDVI derived from
Formosat-2 images. The NDVI shows a logarithmic response
to GLA (Fig. 4), in agreement with the results obtained in
previous studies (Asrar et al., 1984; Baret and Guyot, 1991;
Duchemin et al., 2006). There is a close correlation between
the two variables, with a determination coefficientR2 of 0.79
and an RMSE of 0.27 m2 m−2 (25% in relative value, com-
puted as RMSE divided by the mean of observed values).

The model was calibrated following the method discussed
in Duchemin et al. (2008b). Time series of GLA derived
from Formosat-2 images were built by simple averaging on
each elementary spatial unit (i.e. subfield of about 5 ha) of
interest. Four parameters were optimized: the day of emer-
gence, the effective light-use efficiency, the thermal threshold
corresponding to the beginning of the senescence of leaves,
and one parameter of the leaf partitioning function. The op-
timisation step was based on minimization of the root mean
square error between simulated GLA (SAFY model) and ob-
served GLA (derived from NDVI time series).

The simulations were evaluated using three different cri-
teria. Firstly, for the 528 wheat sub-fields of the study area,
the relative difference between GLA simulated by SAFY and
derived from Formosat-2 was on average 12% and 26.5%
at maximum. This limited range of error appears satisfac-
tory with regards to the accuracy of in-situ GLA measure-
ments (Weiss et al., 2004). Secondly, for the fields where the
agricultural practices were collected, we checked the consis-
tency between emergence dates retrieved by optimisation and
sowing dates collected at field: a high agreement was found
(R2

∼0.86, slope of 1.02) and the lag between sowing and
emergence (on average 10 days) was coherent. Thirdly, for
the 11 fields where harvesting was monitored, we found that

the dry aerial mass simulated at the end of the season varies
between 9.5 and 13.5 t ha−1, while the grain yield observed at
field ranges between 4 and 8 t ha−1. The two variables were
found well correlated (R2

∼0.91). The difference between
grain yield and total crop production (5 t ha−1) appears con-
sistent with values of harvest index for wheat crops. These
values appear also in agreement with what have been ob-
served by Rodriguez et al. (2004); Lobell et al. (2005); Ortiz-
Monasterio and Lobell (2007) over the same region. These
performances appear comparable to those of previous mod-
elling experiment based on the SAFY model on wheat crops
in Morocco as well as on maize and sunflower on south-
west of France (Duchemin et al., 2008b; Hadria et al., 2009;
Claverie et al. 2009).

4 Sensitivity of radar backscatter to irrigation and
topsoil drying

In order to bring to light the sensitivity of radar data to the
soil water status, we selected the largest field (0.5×1.9 km2)

located in the North of the central area (see the Fig. 1 –
zoomed area and the picture in Fig. 2). This field experi-
enced three irrigations during the season, each time the du-
ration being about 17 days. It was thus separated in 17 seg-
ments covering about 5.5 ha; each irrigated in one day. On
each segment, the mean backscattering coefficient (σ 0

HH)

derived from Envisat/ASAR images and the mean Biomass
Water Content (BWC) simulated by SAFY were extracted.
Then we analyzed discontinuities and trends inσ 0

HH from
one segment to the next and/or from one side of the field to
the other. The analysis was carried out during and out of
irrigation periods.

Figure 5 shows the result of this analysis at two differ-
ent dates with same orbit (ascending) and incidence angle
(IS4): 11/02/2008, during the first irrigation time in case
of a moderate biomass water content (BWC between 5 and
15 t ha−1), and 17/03/2009, during the second irrigation time
in case of a high biomass water content (BWC between
20 and 45 t ha−1). The spatial variation of the backscatter-
ing coefficient appeared in agreement with both the vegeta-
tion development stage and the irrigation status: for the first
date,σ 0

HH is about−7.5 dB over recently irrigated segments
(numbers 4 and 5 in Fig. 5a), while it is around−11 dB over
the driest part (segments 7 to 17 in Fig. 5a); for the second
date,σ 0

HH is about−9 dB over recently irrigated segments
(numbers 13 to 15 in Fig. 5b), while it is around−12 dB
over the driest area (segments 16 and 17 in Fig. 5b). Despite
the attenuation of the radar backscattering due to increasing
biomass water content in the canopy, the irrigation limit is
still clearly visible in both cases. Furthermore, we can clearly
observe the decrease inσ 0

HH from the segments recently ir-
rigated to the segments previously irrigated (from segments
1 to 4 in Fig. 5a, and from segments 1 to 15 in Fig. 5b).
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Figure 5. Spatial variations of backscattering coefficient and biomass water content over the 

different segments of the largest wheat field on two dates: a) 11/02/08, first irrigation time, 

b) 17/03/08, second irrigation time. The irrigation status is indicated (grey: irrigated, black: non 

irrigated), the arrow indicates the direction of the irrigation-watercourse. 
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Fig. 5. Spatial variations of backscattering coefficient and biomass
water content over the different segments of the largest wheat field
on two dates:(a) 11/02/08, first irrigation time,(b) 17/03/08, sec-
ond irrigation time. The irrigation status is indicated (grey: irri-
gated, black: non irrigated), the arrow indicates the direction of the
irrigation-watercourse.

Figure 6 displays the same as Fig. 5 for the three images
successively acquired after the first irrigation time on the
24/02/2008, the 27/02/2008 and the 05/03/2008. As the en-
tire field has been irrigated at these times, no discontinuity is
observed between the segments, but a rather smooth increase
of backscattering coefficients from one side of the field (seg-
ment 1 in Fig. 6) to the other (segment 17 in Fig. 6): the seg-
ments that have been irrigated the earliest (latest) show the
lowest (highest) value ofσ 0

HH. The slope of the decrease
is on average 0.4, 0.3 and 0.1 dB from one segment to the
next for the images acquired 1, 4 and 11 days after irrigation
ends, respectively. The difference between the two opposite
sides of the field (between segments numbered 1 and 17 in
Fig. 6) is about 7 dB just after the irrigation date and only
2 dB 11 days after the same event. This reduction appears
consistent with the dynamics of topsoil moisture, soil drying
resulting in lower and more homogeneous topsoil moisture
with time.

 

 

 

 

Figure 6. Spatial behaviour of backscattering coefficient and biomass water content for three images 

acquired after the first irrigation time: a) 24/02/2008, b) 27/02/2008, c) 05/03/2008. 

a) 

c) 

b) 

Fig. 6. Spatial behaviour of backscattering coefficient and biomass
water content for three images acquired after the first irrigation
time: (a) 24/02/2008,(b) 27/02/2008,(c) 05/03/2008.

In order to extend this analysis to all the data set, we used
two quantitative indices that describeσ 0

HH variations along
the various segments of the largest field: amplitude and trend.
The amplitude (1σ ) is the difference between the maximum
and the minimum value ofσ 0

HH for all the possible combi-
nation of three successive segments.1σ is supposed to be
maximal for the area centered on the segment under irriga-
tion. The Trend (Tσ ) is calculated as the slope of theσ 0

HH
per segment number for the images acquired out of irrigation
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Table 1. Characteristics of Envisat/ASAR images andσ0
HH statistics (minimal, mean, maximal values, amplitude1σ and the trend Tσ )

derived from the 17 segments of the largest wheat field, together with the average value of biomass water content BWC during the irrigation
period.

Date Irrigation Status Incidence Orbit pass
σ0

HH (dB) BWC (t ha−1)
1σ Tσ

min Mean max Mean

02/02/2008 3 D −10.5 −9.7 −8.9 4.5 1.2 0.0
05/02/2008 1 A −8.9 −8.1 −6.4 5.4 1.7 0.0
08/02/2008 under irrigation 2 A −10.8 −9.4 −5.0 6.5 4.7
11/02/2008 under irrigation 4 A −12.4 −10.3 −7.1 7.9 3.3
14/02/2008 under irrigation 6 A −12.1 −9.9 −8.0 9.3 2.7
15/02/2008 under irrigation 6 D −12.9 −10.5 −8.7 9.8 3.3
21/02/2008 under irrigation 2 D −10.8 −6.7 −4.8 12.9 5.9
24/02/2008 2 A −10.6 −6.4 −3.6 14.7 0.0 0.4
27/02/2008 3 A −11.5 −9.2 −6.8 16.5 0.2 0.3
05/03/2008 4 D −12.4 −11.6 −9.9 20.7 0.4 0.1
08/03/2008 under irrigation 3 D −11.8 −10.6 −8.3 22.5 2.8
11/03/2008 under irrigation 1 A −10.2 −8.4 −5.4 24.5 4.1
11/03/2008 under irrigation 1 D −9.9 −8.1 −5.6 24.5 3.6
17/03/2008 under irrigation 4 A −12.7 −11.2 −9.5 28.1 3.1
20/03/2008 6 A −12.5 −11.4 −9.7 30.2 0.3 0.1
27/03/2008 2 D −11.6 −9.6 −7.5 34.1 0.8 0.2
09/04/2008 under irrigation 4 D −13.0 −11.3 −9.1 16.6 3.5
12/04/2008 under irrigation 3 D −11.1 −9.1 −7.1 14.2 0.8
15/04/2008 1 A −10.6 −7.7 −4.2 12.3 0.4 0.4
15/04/2008 1 D −9.4 −7.2 −4.9 12.3 1.4 0.3
21/04/2008 4 A −12.6 −11.6 −10.4 9.1 1.0 0.0

period to precludeσ 0
HH spatial discontinuity. Tσ is sup-

posed to be maximal just after irrigation, then to decrease
with time as the topsoil dries.

Amplitudes and trends values are displayed in Table 1 to-
gether withσ 0

HH average and extreme values. Firstly, it ap-
pears that the mean level ofσ 0

HH logically decreases with
incidence angle: its minimun value across the segments is on
average−9.8,−10.9,−11.3,−12.6,−12.5 dB for IS1, IS2,
IS3, IS4 and IS6, respectively. More interestingly,1σ is
much larger during irrigation times (3.4 dB on average, grey
lines in Table 1) than out of irrigation times (0.7 dB on av-
erage, white lines in Table 1). The magnitude of the differ-
ence between wet and dry status highlighted by the1σ index
is consistent with the variation of backscattering coefficients
reported by Brown et al. (2003) and Mattia et al. (2003) for
wheat fields observed before and after rain events. This is
consistent with previous findings of Ulaby et al. (1979) that
showed that the difference in the radar signal between wet
and dry soil conditions is several dB at 4.25 Ghz, and that this
difference was observed for viewing angles between 0◦ and
60◦ for a 1 m height wheat crop. Furthermore, the irrigation
limits are detected without ambiguity, whatever the range of
biomass water content and the incidence angle:1σ is on av-
erage 4 dB for the six images acquired during the first irriga-
tion time, with a mean BWC of 9.3 t ha−1; it is 3.4 dB for the

four images acquired during the second irrigation time, with
a BWC of 24.9 t ha−1. These values are much higher than the
acquisition error estimated around 0.85 dB (see Sect. 2.3.2).
Finally, the effect of topsoil drying is clearly visible looking
at the trend ofσ 0

HH along the various segments out of irri-
gation times (Tσ in Table 1. Tσ is almost null just before ir-
rigations because the topsoil is homogenously dry (02/02/08,
05/02/2008 and 21/04/2008 in Table 1). In contrast, Tσ is
maximal at the middle of irrigation times when the topsoil
moisture is the most different between the non-irrigated dry
segments and the irrigated wet one. Tσ tends to decrease
from date to date after irrigation as the topsoil becomes ho-
mogeneously dry (24/02/2008 to 05/03/2008 after the first
irrigation time in Table 1).

In order to compare the sensitivity of backscattering co-
efficients between HH and VV polarizations, we also com-
puted the amplitude variation for VV observations (1σVV ).
Not shown here,1σVV was found on average 2.9 dB, 2.0 dB
and 1.2 dB during the first, the second and the third irriga-
tion times, respectively.1σVV is thus lower than the ampli-
tude variation for HH observations (around 4.0 dB, 3.4 dB,
and 2.1 dB, see Table 1), by on average 1.1 dB for the im-
ages acquired during irrigation times. As stated in Brown
et al. (2003) and Mattia et al. (2003), backscattering in VV
polarization is much more attenuated by vegetation than
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backscattering in HH polarization. As a consequence, dif-
ferences between wet and dry conditions are higher for HH
polarization compared to VV polarization. We thus have
considered HH polarization for the retrieval of the topsoil
moisture in all what follows.

5 Retrieval of surface soil moisture

The empirical method for topsoil moisture retrieval is based
on the following assumptions: (i) over a large agricultural
area, extreme (dry and wet) soil moisture conditions are al-
ways observed, (ii) agricultural practices are standardized,
thus there is a nearly constant surface roughness for all the
crops at a particular stage. In these conditions, it is be-
lieved that surface roughness is constant on wheat fields with
a given biomass water constant and, consequently, that the
dynamic of backscattering coefficient can be related to top-
soil moisture.

To meet these requirements, the method is applied on
numerous wheat crops (192 fields) with row only oriented
North-South. The method is set up through the analysis of
the overall range ofσ 0

HH ×BWC values obtained on these
fields all over the growing season for each ASAR illumina-
tion/viewing condition. This also allows to understand and
to account for the variation of backscattering coefficients be-
tween the ASAR viewing conditions. On the example dis-
played in Fig. 7, we can observe a regular decrease of both
theσ 0

HH level and theσ 0
HH dynamic range as a function of

BWC, which is due to the attenuation of backscattering by
the vegetation. Theσ 0

HH × BWC scatterplot thus displays a
trapezoid shape with upper and lower edges well identified
by simple lines. Given the above-mentioned assumptions,
minimal and maximal values of backscattering coefficient
along these lines correspond to dry (bottom line) and wet
(top line) conditions, thus to extrema of topsoil moistures.
After the derivation of these extrema from in-situ measure-
ments, the topsoil moisture can be computed for each field
and each acquisition date using a linear relationship (Ulaby
et al., 1979; Dobson and Ulaby, 1986; Champion and Faivre,
1997; Le Hegarat et al., 2002; Holah et al., 2005) as:

H = Hmin+(Hmax−Hmin)×(σ ◦HH−σ ◦HHmin)
/
(σ ◦HHmax−σ ◦HHmin) (3)

Where :
Hmin and Hmax are the minimal (6.6%) and maximal

(55.5%) topsoil moisture values observed at field;
σ 0

HHmin and σ 0
HHmax are the minimal and maximal

backscattering coefficient values computed for a given BWC
using the dry and wet lines. These lines were derived us-
ing an automatic algorithm for selectingσ 0

HH/BWC cou-
ples using the following rule. The selection might not over-
represent areas where the density of points is high and vice
versa (see in Fig. 7, the density of points with low water con-
tent is much higher than that the high water content). To
meet this requirement, the selection of points is performed

 

 

Figure 7. Backscattering coefficients (
0

HH) versus biomass water content (BWC) for ASAR images 

acquired in ascending orbit and incidence angle IS1. Each symbol corresponds to one satellite 

overpass. The wet (top) and dry (bottom) lines are displayed. 

Fig. 7. Backscattering coefficients (σ0
HH) versus biomass water

content (BWC) for ASAR images acquired in ascending orbit and
incidence angle IS1. Each symbol corresponds to one satellite over-
pass. The wet (top) and dry (bottom) lines are displayed.

successively on regular BWC intervals of 10 t ha−1. On each
of these intervals, at least 3 couples are selected. Then the
lines are fitted on all the selected couples.

The Table 2 displays the number of images available in
each geometric configuration, together with the values of two
indicators that allows to study the shape ofσ 0

HH × BWC
trapezoids: D0 is theσ 0

HH distance between wet and dry
conditions for bare soils, i.e. the distance between the up-
per and the lower edge of the trapezoid at BWC equal to
0 t ha−1; D45 is the range ofσ 0

HH variation between wet
and dry conditions for fully developed canopies, i.e. the dis-
tance between the upper and the lower edge of the trapezoid
at BWC equal to 45 t ha−1. The analysis of these indicators
shows that:

– There is a high sensitivity of backscattering coefficients
to moisture conditions. D0 is always larger than 7 dB,
D45 is almost all the time larger than 2.4 except for two
cases (IS3-Ascending and IS6-Descending in Table 2).
For these two cases, there is no image acquired at the
middle of the growing season when the biomass water
content is the highest (end of February for IS3A, end of
April for IS6, see Fig. 1). This limits the data used in
the delineation of dry and wet lines and, consequently,
the accuracy in their definition.

– There is a consistency in the indicators between the im-
ages acquired in ascending and descending modes with
the same incidence angle. D0 regularly decreases from
low (IS1) to high (IS6) incidence angle, by about 4.5 dB.
D45 also decreases with the incidence angle, though in
a less extent, from about 4 dB at IS1 to 2 dB at IS6.
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Table 2. Number of images available for each ASAR viewing con-
figuration, andσ0

HH distance between wet and dry conditions for
bare soils (D0) and for fully developed canopies (D45).

Incidence Orbit pass Images used D0 D45

1 A 5 11.2 4.7
1 D 3 11.7 4.6
2 A 4 10.1 2.9
2 D 3 9.3 4.2
3 A 2 9.0 1.6
3 D 4 9.6 3.9
4 A 4 7.7 3.1
4 D 5 7.2 2.8
6 A 4 7.0 2.4
6 D 3 7.0 0.6

 

 

Figure 8. Estimated versus measured topsoil moisture. The different symbols correspond to three 

successive wheat vegetative periods: (i) the beginning (‘+’) with biomass water content (BWC) 

between 0 to 5 t ha
-1

, (ii) the middle (‘o’) before senescence starts with BWC between 5 and 65 t.ha
-

1
, and the end (‘×’) associated to leaf senescence. 

Fig. 8. Estimated versus measured topsoil moisture. The differ-
ent symbols correspond to three successive wheat vegetative peri-
ods: (i) the beginning (“+”) with biomass water content (BWC) be-
tween 0 to 5 t ha−1, (ii) the middle (“o”) before senescence starts
with BWC between 5 and 65 t ha−1, and the end (“×”) associated
to leaf senescence.

The retrieval of top soil moisture (Eq. 3) is independently
applied for each image using the dry and wet lines associated
with a given acquisition geometry. The whole processing re-
sults in estimates of topsoil moisture for 192 fields with row
oriented North-South all over the study area at each satellite
overpass.

 

 

Figure 9.
0

HH to biomass water content scatterplot at the agricultural season beginning for fields 

with North-South row orientations (ASAR image acquired the 01/01/2008, in ascending orbit, and 

incidence angle 1). 

 

Fig. 9. σ0
HH to biomass water content scatterplot at the agricul-

tural season beginning for fields with North-South row orientations
(ASAR image acquired the 01/01/2008, in ascending orbit, and in-
cidence angle 1).

The retrieved values are compared to the topsoil moisture
measured using TDR sensors. It should be kept in mind that
these measurements are very local, whereas the values de-
rived fromσ 0

HH correspond to 5 ha area. The result of this
comparison is displayed in Fig. 8. The agreement between
estimated and measured topsoil moisture is globally rather
poor (R2 = 0.48, RMSE = 9.8%, 47% in relative value), but
a deep analysis shows that it depends on the wheat growing
phase:

– at the beginning of the agricultural season (“+” sym-
bols in Fig. 8, BWC between 0 to 5 t ha−1), there is
no relationship at all between estimates and measure-
ments. In order to get a better understanding of this
scattering, we analysed the variation ofσ 0

HH as a func-
tion of the biomass water content for the first acquisition
date. At this time of year, BWC ranges between 0 and
7 t ha−1, whereas the topsoil is rather dry since the first
irrigation is not operated. Topsoil moisture was around
19% for the two fields equipped with TDR probes. In
this case,σ 0

HH appears mainly sensitive to the biomass
water content, displaying a peak when BWC reaches
3 t ha−1 (Fig. 9).

– at the end of the agricultural season (“×” symbols in
Fig. 8), the method also provides with poor results. A
probable explanation is that estimates are attempted for
fields in very different conditions: mature and senescent
canopies or dry plant litter after harvest.

– for the intermediate case, i.e. BWC between 5 and
65 t ha−1 before senescence starts, (“o” symbols in
Fig. 8), the estimated topsoil moisture appears well cor-
related with observation:R2 is around 0.64 and the
RMSE is 8.8% (0.088 m3 m−3, 34% in relative value).
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Figure 10.Time course of topsoil moisture (average and standard deviation) retrieved on field 5 

together with the irrigation periods (vertical dotted gray lines) and precipitation (black line at the 

bottom of the y-axis). The days are numbered from January 1
st
, 2007. 

Fig. 10. Time course of topsoil moisture (average and standard de-
viation) retrieved on field 5 together with the irrigation periods (ver-
tical dotted gray lines) and precipitation (black line at the bottom of
the y-axis). The days are numbered from 1 January 2007.

A deeper examination of these data did not allow to
make a distinction neither between the different acquisi-
tion geometry nor between the different stages of vege-
tation growing. This means that the inversion procedure
works even for high incidence angles and when the veg-
etation is fully developed.

In order to evaluate the spatial and temporal variations
of topsoil moisture, the inversion procedure was applied on
the twelve fields where irrigation practices were recorded
(see Fig. 1). According to the previous finding, the inver-
sion algorithm was set up only when the biomass water con-
tent exceeds 5 t ha−1 and in absence of plant senescence, i.e.
when the air temperature accumulated from emergence is be-
low the threshold defining the senescence temperature in the
SAFY model.

The Table 3 shows the topsoil moisture derived from
ASAR averaged on a 5-day period before and after the first
and the second irrigation times. In most of cases, the val-
ues of topsoil moisture appear consistent with the irrigation
schedules: topsoil moisture ranges from about 9 to 31% be-
fore the irrigation times and from 20% to 50% after irrigation
times; their averaged values are much lower before irrigation
times (24% and 21% for the first and the second irrigation,
respectively) than after (40% and 33% for the first and the
second irrigation, respectively). This general trend is pre-
served for 10 of the 12 fields analysed, except on : (i) field
1, where the topsoil moisture is higher before than after the
first irrigation time and the value before the second irriga-
tion appear unrealistically low; (ii) field 3, where the top-
soil appear dry both before and after the second irrigation
time. Additional data would be necessary to explain why
the method fails in these two cases, still the main possible
causes are miss-collection of irrigation data (periods and/or
amounts) and local variations of the soil properties (texture,
roughness).

 

 

Figure 11.Topsoil moisture (TSM) mapped over the different geographical units (about 5 ha) of the 

field 5 (see Table 3 and Fig.1). The 12 first dates, corresponding to those shown on Fig. 10, are 

presented together with the incidence angle of the based Envisat acquisition. 

 

 

 TSM [%] 

Fig. 11. Topsoil moisture (TSM) mapped over the different geo-
graphical units (about 5 ha) of the field 5 (see Table 3 and Fig. 1).
The 12 first dates, corresponding to those shown on Fig. 10, are
presented together with the incidence angle of the based Envisat
acquisition.

Finally, a detailed analysis of the temporal and spatial vari-
ations of topsoil moisture is presented for field 5 as a rep-
resentative case (Figs. 10 and 11). On this field, the time
course of the mean topsoil moisture appears coherent with
the irrigation schedules all over the season: the topsoil mois-
ture sharply rises during irrigation times then continuously
decreases after irrigation times (Fig. 10). Figure 11 displays
the spatial variations of the topsoil moisture derived over the
8 segments within the field 5 from the 12 ASAR images suc-
cessively acquired around the first irrigation time. Before
irrigation, the topsoil moisture appears homogeneous with a
slight decrease from the first image (30/01/2008) to the third
(05/02/2008). The watercourse can be easily identified from
the images acquired at the time of irrigation (08/02/2008
to 21/02/2008): the topsoil moisture suddenly increases on
several segments (blue to red colors in Fig. 11), firstly on
the eastern part of the field (08/02/2008 and 11/02/2008),
then on the middle (14/02/2008) and on the western parts
(15/02/2008 and 21/02/2008). After irrigation (21/02/2008
to 08/03/2008), the topsoil moisture continuously decreases
and the impact of irrigation on its spatial distribution is
smoothed with time. All this is also visible when looking
at the standard deviation of the mean topsoil moisture cal-
culated over the 8 segments included in field 5 (Fig. 10).
The standard deviation is minimal before and a long time
after the first irrigation time when the soil is homogeneously
dry; it is maximal at the middle of irrigation times when seg-
ments may not been irrigated yet, under irrigation or already
irrigated.
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Table 3. Topsoil moisture derived from ASAR image before and after the first and the second irrigations on the twelve fields where irrigation
schedules were collected during the experiment.

Fields Area (ha)
Before Irrigation 1 After Irrigation 1 Before Irrigation 2 After Irrigation 2

Nb Image Mean Nb Image Mean Nb Image Mean Nb Image Mean

1 32.8 2 29.1 3 27.7 2 8.6 2 23.7
2 45.1 0 x 2 46.2 2 29.1 0 x
3 22.8 0 x 1 33.2 3 16.5 2 19.8
4 47.8 2 31.5 2 44.7 2 19.2 2 39.1
5 48.1 2 21.9 1 39.7 3 23.7 1 35.5
6 47.1 0 x 3 44.5 2 28.6 2 35.2
7 19.7 1 29.1 2 42.3 1 18.9 1 35.9
8 19.1 2 20.9 1 46.6 3 12.6 2 21.0
9 19.0 0 x 0 x 1 21.4 2 45.7
10 19.2 2 16.6 1 49.3 2 12.9 1 40.0
11 76.3 1 20.0 2 31.6 2 28.0 1 36.5
12 94.0 2 24.1 2 38.6 1 27.9 0 x

6 Conclusion

The potentialities of ASAR data for the monitoring of soil
moisture conditions in agricultural lands were investigated
for wheat crops monitored through the SAFY vegetation
functioning model and time series of Formosat-2 images.
The normalized difference vegetation index derived from
Formosat-2 data was linked to the green leaf area index
(GLA) with an accuracy of about 25%. GLA is a key variable
for the parametrization of photosynthesis, which was incor-
porated into the SAFY model to provide spatial estimates of
biomass water content (BWC) over up to 200 wheat fields.
The value of Formosat-2 data acquired with both a high spa-
tial resolution and a frequent revisit for the monitoring of
crop growth should be firstly underlined. It allows increas-
ing the number of data available to get a better understanding
of radar signal over irrigated wheat fields.

Despite the homogeneity of agricultural practices and of
wheat canopies in the Yaqui area, the joint analysis of radar
backscattering (σ 0

HH) and BWC shows the complexity of
the radar response for agricultural lands, due to a high
variability of both surface roughness and topsoil moisture.
The sensitivity of the backscattering coefficient to topsoil
moisture is highlighted for a large field for which spatial
trends and discontinuities ofσ 0

HH were observed in con-
sistency with soil watering during irrigation times and soil
drying out of irrigation times. This sensitivity was observed
whatever the acquisition angle and whatever the recovering
of soil by vegetation, even when BWC was very high. This
approach appears suitable to detect on-going irrigated areas
all over the wheat growing season.

This previous findings allow to set up an empirical method
for the retrieval of topsoil moisture from the combination of
ASAR images and spatial estimates of BWC. The method is

original since it is based on the spatial variation ofσ 0
HH over

a large area rather than on its temporal variation over a par-
ticular area. The method allows the retrieval of topsoil mois-
ture from its minimal to its maximal value (6%–56%) with
an error about 9% (0.09 m3 m−3, 35% in relative value) for a
long period between wheat tillering and senescence phases.
These performances appear significant since estimates are
performed at the key time of crop growth and under a large
range of biomass water content (from 5 to 65 t ha−1) with all
ASAR images available (whatever the incidence angles from
15 to 40◦).

The method provides estimates of topsoil moisture at a
field resolution (∼5 ha) without an exact knowledge on sur-
face roughness. An additional advantage is that it not re-
quired to normalise satellite observations at a same incidence
angle, which is not trivial on surfaces that experiences quick
variations such as wheat fields. All these points make the
method very attractive for operational application over large
areas. However, the method requires the availability of nu-
merous images both in the solar and the micro-wave domain
of the electromagnetic spectrum. Furthermore, it was as-
sumed that the surface roughness is stable at a given growing
phase (same biomass water content). This assumption is ver-
ified in the case of the Yaqui area where large fields are flat-
tened and cropped with modern and mechanized agricultural
practices. Application to other areas where these conditions
are not met would require adaptation, especially if the region
is not rather homogeneous in terms of agricultural practices.
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