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Abstract. It is well known that output from climate mod-
els cannot be used to force hydrological simulations with-
out some form of preprocessing to remove the existing bi-
ases. In principle, statistical bias correction methodologies
act on model output so the statistical properties of the cor-
rected data match those of the observations. However, the
improvements to the statistical properties of the data are lim-
ited to the specific timescale of the fluctuations that are con-
sidered. For example, a statistical bias correction methodol-
ogy for mean daily temperature values might be detrimental
to monthly statistics. Also, in applying bias corrections de-
rived from present day to scenario simulations, an assump-
tion is made on the stationarity of the bias over the largest
timescales. First, we point out several conditions that have to
be fulfilled by model data to make the application of a statis-
tical bias correction meaningful. We then examine the effects
of mixing fluctuations on different timescales and suggest an
alternative statistical methodology, referred to here as acas-
cade bias correction method, that eliminates, or greatly re-
duces, the negative effects.

1 Introduction

One of the greatest challenges facing modern society in a
changing climate is the management of risk associated with
hydrological extremes, namely floods and droughts (Voros-
marty et al., 2000; Oki and Kanae, 2006). Risk is a concept
expressed in statistical terms, hence, proper management of
risk tied to future events must be informed by statistically
correct forecasts. Numerical simulations are the principal
tool in climate forecasting and hydrological models are used
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to obtain simulations of future components of the hydrolog-
ical cycle. Ordinarily, output fields from climate models, re-
gional or global, are used to force future hydrological simu-
lations. To varying extent, all numerical models suffer from
systematic error, i.e. the difference between the simulated
value and the observed. Bias is defined as the time indepen-
dent component of the error. It is well known that some form
of pre-processing is necessary to remove biases present in the
simulated climate output fields before they can be used for
this purpose (Sharma et al., 2007; Hansen et al., 2006; Chris-
tensen et al., 2008). However, bias correction cannot cor-
rect for incorrect representations of dynamical and/or phys-
ical processes and, as will be detailed in this article, model
data must provide an adequate representation of the physi-
cal system from the outset, to make statistical bias correction
applicable.

In the simplest formulations of bias correction only the
changes in a specific statistical aspect of the simulated fields
is used. The change is applied directly to present day ob-
servations to obtain a field which is then used to force the
hydrological models. Often the change in mean value or the
variance is employed. This is tantamount to correcting the
observations with an additive or multiplicative gridded con-
stant. More advanced bias correction methodologies correct
for more than one explicitly chosen statistical aspect (Le-
ander and Buishand, 2007and applied byHurkmans et al.,
2010; Widmann et al., 2003; Schmidli et al., 2006).

Hydrological processes depend on the entire distribution
function of precipitation intensity and temperature. For ex-
ample, extreme hydrological conditions are often caused by
unusual precipitation amounts or high temperatures. Persis-
tent heavy precipitation over several days can lead to floods
while the absence of precipitation along with high tempera-
tures is often the cause of drought. Hence, improvements on
simple bias correction methods can be made when adjusting
the entire probability density function (pdf) of the simulated
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fields to that of the observations. Consequently, adjusting
the likelihood of the occurrence of a given magnitude of
daily precipitation or temperature, allows a more adequate
representation of the risk of flood and drought by the cor-
rected data (Wood et al., 2002; Hay and Clark, 2003; Dobler
and Ahrens, 2008; Piani et al., 2010a,b). These methods are
also sometimes referred to as “quantile mapping” (Deque,
2007), “histogram equalization” and/or “rank matching”. A
recent review is given byMaraun et al.(2010). In Piani et al.
(2010a) daily precipitation and temperature fields were cor-
rected by fitting probability density functions to the mod-
eled and observed data. A mapping of the corresponding
fit-coefficients was then defined. The method was developed
and tested on distinct periods within the control period. InPi-
ani et al.(2010b) the method was refined by first sub-dividing
the climatological year into monthly segments and perform-
ing bias-corrections within each segment separately. Also,
the method was improved by employingtransfer functions
(TFs) to map modeled to observed quantities directly, which
reduces the number of required parameters.

While these existing approaches do offer a means of equal-
izing the statistical properties of modeled and observed cli-
mate data, they do not take into account that oscillations on
different timescales are caused by disparate physical mech-
anisms. When a bias correction is performed where all data
are grouped into one joint dataset, the fluctuations on differ-
ent timescales are mixed. This can blur the interpretation for
future scenario corrections. Therefore, in the current study
we propose a modification of the existing methodology to
separate different timescales by performing a cascade of bias
corrections.

In Sect.2 we present the general methodology of the sta-
tistical bias correction and outline some possible obstacles.
In Sect.3 actual model and observational data are used to
probe to what extent these obstacles are relevant. In Sect.4
we offer an improvement of the method by producing a cas-
cade of bias corrections. Section5 features a more general
discussion on bias correction methodologies and Sect.6 con-
cludes.

2 Statistical bias correction

Statistical bias correction (SBC) is a mathematical procedure
(a functional) that maps the probability density function (pdf)
of model data onto that of the observations:

TF (xmod) = F−1
obs (Fmod (xmod))

whereFobs (Fmod) is the cumulative distribution function of
the observed (modeled) dataxobs (xmod). Hence, in general
it is an operation that acts on all moments of the distribution.
In this sense, SBC is not a model of the physical world in
itself. It completely relies on information being contained in
the climate model data albeit with a systematic discrepancy
from the observational data. SBC can hence not make up
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Fig. 1. Two possible options for performing a statistical bias cor-
rection on the distribution of the variablex in arbitrary units; Heavy
(thin) lines are control (scenario) period data; Solid (dashed) lines
are observed (modeled) data; solid straight line represents the lin-
ear transfer function. Note that in(a) the climate change signal is
enhanced by applying the bias correction (1µcor> 1µ) while in
(b) it is not (1µcor=1µ).

for fundamental qualitative flaws of the climate model. To
conceptually illustrate the procedure, in the following sec-
tions we repeatedly make reference to a bias correction of a
given normally distributed climate variablex with meanµ

and standard deviationσ . In the case of normal distributions
of daily data, aperfectbias correction need only adjust the
first two moments of the distribution. To construct a map-
ping between the observed and the modeled data, atransfer
functionis derived (as described inPiani et al., 2010b).

2.1 Construction of transfer functions

In Fig. 1 the TF is shown for the simple Gaussian exam-
ple. In this case, the control period (heavy lines) means and
standard deviations areµmod,con= 1, µobs= 4, µmod,sc= 2,
σmod,con=σmod,sc= 1, σobs= 2 where the subscripts mod
(obs) indicate model (observations), and con (sc) refer to
the control (scenario) period. Hence, the slope of the TF is
the ratio of the standard deviations of observed and modeled
data, namelyσobs/σmod,con. This factor stretches the distri-
bution of modeled data to match the width of the observed.
In the case of normal distributions, the TF is always linear
and the corrected meanµcor

mod and varianceσ cor
mod are

µcor
mod,sc = µobs +

σobs

σmod,con

(
µmod,sc − µmod,con

)
(1)

σ cor
mod,sc =

σobs

σmod,con
σmod,sc. (2)

Such TFs are derived using observational and model data of
the samecontrol period, hence a period of known boundary
conditions, such as carbon dioxide concentrations. Once the
TF is computed, it can be used to produce bias corrected data
for the future (scenario) model run, where observational data
are not available. To apply the bias correction to a modeled
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time series, for each individual value of the model data, the
transfer function is used to map this value onto a modified
(bias corrected) value. A more detailed description of the
method is available fromPiani et al.(2010b).

As the observed data have a larger standard deviation than
the model data (Fig.1a), the slope of the TF becomes greater
than 1. The original model data are hence stretched, both
in the control and scenario period. We call the change in
the distribution mean1µ ≡ µsc−µcon between the control
and scenario period themean climate change signal. In this
case, the bias correction leads to an increase in the mean cli-
mate change signal from1µ = 1 to 1µcor = 2 after the bias
correction is applied. Hence, the bias correction has caused
a modification in the model produced mean climate change
signal.

Another option to correct the data would be to apply dif-
ferent types of corrections to the mean and to the standard
deviation. In Fig.1b we show the same case as in Fig.1a, but
the mean is corrected by simply adding the mean uncorrected
climate change signal produced by the model to the original
observed mean. The standard deviation is adjusted as be-
fore. The correction is still a two-parameter correction, with
one parameter multiplicatively adjusting the variance and the
other additively adjusting the mean.

To define the TF, one could equally well choose other fluc-
tuations instead of daily fluctuations, for example seasonal
fluctuations. In the case of temperature, seasonal fluctuation,
similar to diurnal fluctuations, are caused – directly or indi-
rectly – by the changes in the solar radiance and could be
seen as a response of the system to such changes in the en-
ergy budget. However, climate change is usually assumed
to be due to changes in boundary conditions, which bring
about the greenhouse effect. Greenhouse gases – such as car-
bon dioxide – capture long-wave radiative energy emitted by
Earth.

In the following, a simple example is given to demon-
strate the consequences of choosing a certain timescale at
which statistics are produced. Let us take model and observa-
tional data with matching pdfs of monthly mean data. How-
ever, take the day-to-day variability of the model to be larger
than that of the observations. We exemplify this situation in
Fig. 2 where we show synthetic data sampled randomly from
Gaussian distributions. Consequently, the histograms of the
daily data (right column of Fig.2) have significantly different
widths. If a TF were constructed from these data, the slope
of the line in Fig.1a would be greater than unity and exag-
gerate the variance in the monthly means for both the control
and scenario period. The choice of day-to-day fluctuations
in developing the bias-correction would consequently lead to
vastly different results than the alternative choice of monthly
mean statistics.

Hence, it is important to note that a bias correction mixing
statistics that occur at different timescales may lead to un-
wanted results. In Sect.3 we discuss how strong such effects
are in actual model and observational data.

effect. Greenhouse gases - such as carbon dioxide - capture long-wave radiative energy emitted by

Earth.115

In the following, a simple example is given to demonstrate the consequences of choosing a certain

timescale at which statistics are produced. Let us take model and observational data with matching

pdfs of monthly mean data. However, take the day-to-day variability of the model to be larger than

that of the observations. We exemplify this situation in Fig. 2 where we show synthetic data sampled

randomly from Gaussian distributions. Consequently, the histograms of the daily data (right column120

of Fig. 2) have significantly different widths. If a TF were constructed from these data, the slope of

the line in Fig. 1a would be greater than unity and exaggerate the variance in the monthly means for

both the control and scenario period. The choice of day-to-day fluctuations in developing the bias-

correction would consequently lead to vastly different results than the alternative choice of monthly

mean statistics.125

Hence, it is important to note that a bias correction mixing statistics that occur at different timescales

may lead to unwanted results. In section 3 we discuss how strong such effects are in actual model

and observational data.

Fig. 2. Example of modeled (a, gray) and observed (b, gray) time series of daily data, monthly means indicated

by heavy black lines; Panels on the right are normalized histograms of the daily time series.
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Fig. 2. Example of modeled –(a), gray – and observed –(b), gray
– time series of daily data, monthly means indicated by heavy black
lines; Panels on the right are normalized histograms of the daily
time series.

3 Bias correction with GCM data

An actual bias correction is now performed with daily data
from a GCM and global observational data. The GCM is
the Max Planck Institute for Meteorology ECHAM5/MPI-
OM model (Roeckner et al., 1999; Jungclaus et al., 2006).
We use the data generated for the fourth assessment report
of the Intergovernmental Panel on Climate Change (IPCC).
While this GCM is a state-of-the-art global climate model,
not all physical processes present in the real system can be
captured. In fact, in some regions of the globe fundamen-
tal misrepresentations are likely, especially when performing
one-to-one comparisons between model gridboxes and ob-
servational data. Such comparisons are especially misleading
when processes have small spatial extent – e.g. in the case of
storm track patterns. Also, the representation of the timing
and frequency associated with the El Nino Southern Oscil-
lation phenomenon may not be reproduced adequetely at a
fundamental level. Global observational data are taken from
the dataset synthesized within the EU-WATCH (WATer and
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shows, in all regions of the globe the value is not positive, meaning the standard deviation in the

corrected case is closer to that of the observations. This is not surprising as this feature is built into

the bias correction.165

The computation in Eq. 3 is now repeated for the monthly mean values of temperature, obtained

before and after applying the bias correction based on daily values. The result is shown in Fig. 3b.

While large regions of the globe still show a substantial improvement - meaning negative values -

there are also some areas, such as Greenland or Siberia, with a substantial increase of the deviation

from observations in the monthly mean standard deviation.170

Hence, while the bias correction has led to an improvement of the day-to-day variance, the vari-

ance of the monthly means has in fact become less realistic after performing the bias correction.
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Fig. 3. Temperature bias correction data for ECHAM5 corrected using EU-WATCH forcing data for the years

1960-1999 for December: Improvement in standard deviation between original and bias corrected model (neg-

ative values mean improvement); a, daily values; b, monthly mean values.

In Fig. 4a we show the daily and monthly mean standard deviations for the WFD. The first striking

feature of this plot is that fluctuations at the daily and monthly scales are not independent (similar175

patterns in the two panels of Fig. 4a). Regions where there are large day-to-day fluctuations generally

also have larger fluctuations of the monthly means from one year to the next. The high latitudes

show larger fluctuations than the tropics. In the low and mid latitudes, the difference between the

modeled temperature fluctuations and the observed (Fig. 4b) shows no systematic pattern, neither

for the daily nor the monthly mean standard deviation and there is no clear dominance of a positive180

or negative signal. However, the ECHAM5 model appears to generally underestimate day-to-day

variability in the high latitudes while the bias is more mixed in the case of interannual fluctuations.

7

Fig. 3. Temperature bias correction data for ECHAM5 corrected using EU-WATCH forcing data for the years 1960–1999 for Decem-
ber: Improvement in standard deviation between original and bias corrected model (negative values mean improvement);(a), daily values;
(b), monthly mean values.

global CHange,http://www.eu-watch.org) project, which is
sometimes referred to asWATCH forcing data(WFD, Wee-
don et al., 2010) in the following. This dataset is a combina-
tion of monthly observed data and daily reanalysis data and
is taken as thebest guessapproximation to actual observa-
tions that is available for the globe and for several decades.
Both datasets provide overlapping data for the 40-year period
from 1960 to 1999.

3.1 Temperature bias correction

For temperature, we have performed a bias correction for
this period using the linear transfer function method as de-
scribed in Sect.2 and in Fig.1a. In the following we will
refer to this as thestandard bias correction. Hence, within
each gridbox, for every month we group all available data
into one joint dataset (say, all Januaries from 1960 to 1999
yielding 1240 daily values) and perform a mapping of the
statistical properties of the model data to those of the ob-
servational data. The bias correction – by construction – will
make the mean and the variance of corrected daily model and

observational data equal. As taking the mean is a linear op-
eration, both the daily and monthly distribution means will
be equal when the corrected model and the observations are
compared. This does not apply to the variances as we have
exemplified in Sect.2.

To examine this aspect, we investigate whether the bias
correction has improved on the discrepancy between the
modeled and the observed standard deviation. In Fig.3a we
first present the change in discrepancy of standard deviation
of the daily values caused by the bias correction:

1 SD(T ) =
∣∣SD

(
Tmod,cor

)
− SD (Tobs)

∣∣ (3)

−
∣∣SD

(
Tmod,org

)
− SD (Tobs)

∣∣.
Here, SD denotes the standard deviation of the distribution,
Tmod,cor (Tmod,org) represent the corrected (original) model
temperature data andTobsare the observed temperature data.
As Fig.3a shows, in all regions of the globe the value is not
positive, meaning the standard deviation in the corrected case
is closer to that of the observations. This is not surprising as
this feature is built into the bias correction.
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The computation in Eq. (3) is now repeated for the
monthly mean values of temperature, obtained before and af-
ter applying the bias correction based on daily values. The
result is shown in Fig.3b. While large regions of the globe
still show a substantial improvement – meaning negative val-
ues – there are also some areas, such as Greenland or Siberia,
with a substantial increase of the deviation from observations
in the monthly mean standard deviation.

Hence, while the bias correction has led to an improve-
ment of the day-to-day variance, the variance of the monthly
means has in fact become less realistic after performing the
bias correction.

In Fig. 4a we show the daily and monthly mean standard
deviations for the WFD. The first striking feature of this plot
is that fluctuations at the daily and monthly scales are not
independent (similar patterns in the two panels of Fig.4a).
Regions where there are large day-to-day fluctuations gener-
ally also have larger fluctuations of the monthly means from
one year to the next. The high latitudes show larger fluc-
tuations than the tropics. In the low and mid latitudes, the
difference between the modeled temperature fluctuations and
the observed (Fig.4b) shows no systematic pattern, neither
for the daily nor the monthly mean standard deviation and
there is no clear dominance of a positive or negative signal.
However, the ECHAM5 model appears to generally underes-
timate day-to-day variability in the high latitudes while the
bias is more mixed in the case of interannual fluctuations.
Comparing the panels in Fig.4b, we find there are some re-
gions – such as South America, parts of Africa and Australia
– where the bias in the daily and interannual fluctuations is
rather similar. We now turn to the comparison of the bias
corrected data (Fig.4c) with the observations. Clearly, the
bias in the day-to-day fluctuations has been all but removed.
However, the improvement of the interannual fluctuations is
only obvious in regions of overlapping day-to-day and inter-
annual biases. Hence, only when short-term and long-term
fluctuations are aligned, the bias correction will lead to im-
provements on both timescales. In some regions, most no-
tably Greenland and parts of Siberia, the bias corrected sig-
nal has led to a worsening of the interannual fluctuations as
the day-to-day and interannual bias have opposite signs in
those regions (Fig.4b, blue and red colors). We return to the
remaining panels of this figure in Sect.4.2.

To better understand the effect of mixing timescales,
we now choose a single gridbox in Siberia (61.25◦ N,
112.25◦ E), where it is particularly pronounced. In Fig.5
we present the daily (Fig.5a) and monthly mean (Fig.5b)
time series for the observations as well as the original and
corrected ECHAM5 simulation data. The daily time series
shows that the observations produce rather strong oscillations
as compared to the original model data. Therefore, the cor-
rected model data become somewhatstretchedin the vertical
direction to equalize the variances. In the case of the monthly
mean time series the oscillations of the observations are not
very strong and perhaps even smaller than those produced by

the model. However, due to the adjustment of the day-to-day
variance, the corrected monthly time series acquires an even
larger amplitude of oscillation than before. Hence, the wors-
ening of the monthly mean statistics in this region is caused
by the underestimation of the day-to-day variability by the
model compared to the observations.

In Fig. 5a we also present the histograms of the original
and corrected model data in comparison with the observa-
tions. They show that there is a clear equalization of the
mean and variance. Conversely, the standard deviation of the
observed monthly means is 3.1 K, and for the original (cor-
rected) model, it is 3.5 K (4.7 K). Hence, while the original
model variance was rather close to that of observations, the
corrected value is nearly 50% too large.

3.2 Precipitation bias correction

In the case of daily precipitation, the discussion of Sect.3.1
is less relevant. On the one hand, the distribution of precip-
itation intensities is never of a symmetric or even Gaussian
shape as in the case of temperature and the precipitation dis-
tribution is bounded from below by zero. To approximate the
distribution function of daily precipitation intensity, Gamma
distributions or other rapidly decaying functions of intensity
have been used in the past (Piani et al., 2010a; Gutowski
et al., 2007; Wilson and Toumi, 2005; Haerter et al., 2010).
The common feature of such functions is that they have well-
defined means (as opposed to power-law distribution func-
tions on short timescales as reported inHaerter et al., 2010)
and the mean and variance are coupled.1

On the other hand, the monthly precipitation mean is not
the average of 30 values of the random variable as is the case
for temperature. For precipitation, non-zero measurements
are recorded only on a few days of the month. Hence, the
monthly mean value is often dominated by only a small num-
ber of daily precipitation records and hence is often rather
well approximated by one or two large events. Furthermore,
precipitation processes on the daily and monthly timescales
are often closely related, e.g. no rain events (short range
timescale) over northern Europe during strong Euro-Atlantic
blocking regimes (medium range timescale). Hence, com-
puting the variance of monthly means and that of daily data
consequently often leads to rather similar results. To check
this, we have computed the variance of monthly means in the
WFD, the original and the corrected model data (Fig.6). The
figure confirms that the corrected model data more closely
agree with the WFD than the original data, unlike the tem-
perature case shown in Fig.3.

1In the case of the Gamma distribution of a random variablex:
ρ(x) ≡ xk−1 exp(−x/θ)

0(k)θk with the shape parameterk and scale pa-

rameterθ the mean iskθ and the variancekθ2. Hence, the mean
and variance are not independent as in the case of a Gaussian distri-
bution.
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Fig. 4. Comparison of December standard deviation of monthly mean temperature (left) and standard deviation

of daily temperature (right) for observations (a) and the ECHAM5/MPI-OM model: b, difference plot of stan-

dard deviation of the original ECHAM5 minus standard deviation of observations; c, same as b but using bias

corrected data; d, same as b but using cascade bias correction. Note the change in scale between monthly and

daily data in a. Circle and arrow in a, right panel, mark a point used for time series in Fig. 5.
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Fig. 4. Comparison of December standard deviation of monthly mean temperature (left) and standard deviation of daily temperature (right)
for observations(a) and the ECHAM5/MPI-OM model:(b), difference plot of standard deviation of the original ECHAM5 minus standard
deviation of observations;(c), same as(b) but using bias corrected data;(d), same as(b) but using cascade bias correction. Note the change
in scale between monthly and daily data in(a). Circle and arrow in(a), right panel, mark a point used for time series in Fig.5.

Note also that the representation of precipitation extremes
and local precipitation patterns by GCMs is often not re-
alistic. Qualitative misrepresentation of precipitation fea-
tures can be caused by the lack of spatial resolution and

the inability to adequately model subgrid-scale processes in-
volved in precipitation formation. Strong topographic gradi-
ents cannot be considered appropriately by most GCMs and
the proper parameterization of convective precipitation is an
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Fig. 5. Time series of observational, original and corrected model data for daily (a) and monthly (b) values at

location (61.25◦ N, 112.25◦ E) marked in Fig. 4a; in a we also show the histograms of the observational (red),

the original (blue) and corrected (green) model data.

well-defined means (as opposed to power-law distribution functions on short timescales as reported

in Haerter et al. (2010)) and the mean and variance are coupled.1

On the other hand, the monthly precipitation mean is not the average of 30 values of the random220

variable as is the case for temperature. For precipitation, non-zero measurements are recorded only

on a few days of the month. Hence, the monthly mean value is often dominated by only a small num-

ber of daily precipitation records and hence is often rather well approximated by one or two large

events. Furthermore, precipitation processes on the daily and monthly timescales are often closely

related, e.g. no rain events (short range time scale) over northern Europe during strong Euro-Atlantic225

blocking regimes (medium range time scale). Hence, computing the variance of monthly means and

that of daily data consequently often leads to rather similar results. To check this, we have computed

the variance of monthly means in the WFD, the original and the corrected model data (Fig. 6). The

figure confirms that the corrected model data more closely agree with the WFD than the original

data, unlike the temperature case shown in Fig. 3.230

1In the case of the Gamma distribution of a random variable x: ρ(x)≡xk−1 exp(−x/θ)

Γ(k)θk
with the shape parameter k and

scale parameter θ the mean is kθ and the variance kθ2. Hence, the mean and variance are not independent as in the case of a

Gaussian distribution.
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Fig. 5. Time series of observational, original and corrected model
data for daily(a) and monthly(b) values at location (61.25◦ N,
112.25◦ E) marked in Fig.4a; in (a) we also show the histograms
of the observational (red), the original (blue) and corrected (green)
model data.

active field of research. These shortcomings of current-day
GCM model data make it difficult to apply grid-point by grid-
point statistical bias correction in all regions of the globe.

In summary, we have shown that the statistical bias correc-
tion as used inPiani et al.(2010b) does equalize the statistics
of the daily observations. However, this can lead to unwanted
results at longer timescales. In the following Sect.4 we pro-
pose an extension of the method.

4 Improved statistical bias correction

Before discussing a possible improvement of the statistical
bias correction we caution that application of the procedure
requires several conditions to be fulfilled: the model data at
hand must constitute a realistic simulation of the actual phys-
ical system. The model bias is a systematic quantitative time-
independent transformation of the probability distribution
function of modeled data. The bias correction can neither im-
prove on the representation of fundamentally misrepresented

physical processes nor can it account for misrepresentation
of the transient response to green house gas emissions. To
give an example, it is not to be expected that biases caused
by a misrepresentation of phenomena such as theEl Nino
Southern Oscillationcan be corrected by bias correction. If
the extent of the warm tongue or the timing of El Nino are
misrepresented, it is not possible to improve such behavior
in any way by employing bias correction. It is further not
proven that a biased response to the solar irradiation cycle
should be scale dependent. Investigating the cause of model
bias is a central question in the climate modeling commu-
nity and goes beyond the scope of this article. To make our
argument, we need to assume that the model data are repre-
senting the actual physical processes of the climate system –
albeit with a quantitative departure from the actual observa-
tional data. This is a strong assumption that may not apply
for all model data and should be kept in mind when perform-
ing similar corrections on other data.

We now address cases where these assumptions are ful-
filled, i.e. the model data do constitute a realistic description
of the actual physical phenomena, while the model proba-
bility density function may differ from that of the observa-
tions. To improve the statistical bias correction and remedy
the shortcomings mentioned in Sects.2 and 3 we propose
a cascade bias correctionmethodology. The problems dis-
cussed there may be caused by treating data originating from
mechanisms that act on different timescales on equal foot-
ing: day-to-day variability is caused by fluctuations of lo-
cal weather systems, the magnitude of the diurnal cycle and
evaporative processes.

4.1 Description of cascade bias correction method

The cascade bias correction breaks down the original process
into its different timescales thereby avoiding their mixing.
As an example, take a long time series (several decades) of
daily temperature data. We then break down the time series
into segments of months and combine all months of January
into a new time series. The motivation for doing so is that we
assume the temperature data in January to fluctuate little as
a result of the systematic seasonal dependence of statistical
expectation value within the month but rather due to the nat-
ural fluctuations from one day to the next. The choice of one
month is of course somewhat arbitrary, two months or two
weeks could be equally acceptable choices, depending per-
haps on the geographic region. A trade-off has to be made
between the statistical permutability of the values within the
segment and the required size of the sample of fluctuations
required to produce probability density functions of the nat-
ural fluctuations.

In the following we assume the segment to be one month
and the discussion focuses on several years of data for this
particular month (say January). After such a segmentation
has been completed, each daily value can be expressed rela-
tive to the mean within its segment, hence a daily temperature
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Note also that the representation of precipitation extremes and local precipitation patterns by

GCMs is often not realistic. Qualitative misrepresentation of precipitation features can be caused by

the lack of spatial resolution and the inability to adequately model subgrid-scale processes involved

in precipitation formation. Strong topographic gradients cannot be considered appropriately by most235

GCMs and the proper parameterization of convective precipitation is an active field of research.

These shortcomings of current-day GCM model data make it difficult to apply grid-point by grip-

point statistical bias correction in all regions of the globe.

In summary, we have shown that the statistical bias correction as used in Piani et al. (2010b) does

equalize the statistics of the daily observations. However, this can lead to unwanted results at longer240

timescales. In the following section 4 we propose an extension of the method.
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Fig. 6. Standard deviation of monthly mean precipitation from 1960-1999 for December for WFD (a), original

model data (b) and bias corrected model data (c).
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Fig. 6. Standard deviation of monthly mean precipitation from 1960–1999 for December for WFD(a), original model data(b) and bias
corrected model data(c).

value Ti,j corresponding to monthi and dayj will be
mapped onto theanomaly

T ′

i,j ≡ Ti,j − Ti (4)

whereTi is the monthly temperature mean within the given
monthi and primed variables are anomalies. More precisely,
at any given dayj of monthi the monthly mean should be
defined as the running monthly mean value involving the pre-
vious and subsequent 15 days to avoid jumps at the interfaces

between months. We skip this point to simplify the discus-
sion but we suggest that it could be included in the algorithm
to avoid jumps at the interfaces between calendar months.
Note that using running mean values can modify the monthly
means of calendar months which are conventionally defined
as temporal entities in the community. Hence, the benefits
of working with running means may be outweighed by the
difficulty of the interpretation of the resulting corrected time
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series. The set of anomaliesT ′

i,j of all monthsi can then be
used to compute the distribution of daily anomalies. To per-
form a bias correction, the same operation will be performed
on model and observational data and a TF (which we call
fdaily) will be derived for the daily anomalies, similar to the
method described in Sect.2. A bias corrected daily value is
then obtained asT ′cor

i,j =fdaily(T
′

i,j ).

In the following step the monthly meansT i are consid-
ered.2 Statistics of all available monthly meansT i will
be constructed for both model and observations. Trans-
fer functions can then be derived in the spirit of Sect.2
but for the monthly means (which we callfmonthly). A
bias corrected monthly mean of monthi is then obtained as
T

cor
i =fmonthly(T i). To obtain the bias-corrected daily model

data, one would simply combine the corrections on the two
levels of the cascade to yield

T cor
i,j = T

cor
i + T ′cor

i,j (5)

for the bias-corrected value ofTi,j . This procedure would
apply similarly for the other months of the year.

Furthermore, if a sub-daily – say hourly – bias correction
is intended (as in Sect.4.2.2), the cascade should be contin-
ued towards smaller time-intervals. The day would be di-
vided up into hourly segments and within each segment the
temperature would be re-defined relative to the daily mean
value. The procedure would then begin at the hourly level
but continue as stated above. The final bias corrected hourly
values would then become

T cor
i,j,k = Ti

cor
+ T ′cor

i,j + T ′′cor
i,j,k (6)

whereTi,j,k is the temperature value at monthi, dayj and
hour k. Note that all TFs except that for the longest time-
interval for the various cascade steps will have only a slope
parameter as the means are zero. Hence, the number of pa-
rameters required for a cascade ofn steps will ben + 1.

4.2 Application of cascade method

The method introduced in Sect.4.1 is now applied to actual
model and observational data. In the first case we intend to
improve on the bias correction of Sect.3.1. In the second,
we apply a three-tier cascade to hourly data.

4.2.1 GCM cascade bias correction

We return to the global data discussed in Sect.3.1. We em-
ploy a two-tier correction as described in Sect.4 and Eq. (5),

2If sufficiently long time series exist – such as in millenium sim-
ulations in some climate models – multi-year fluctuations may be
identified and it could be adequate to define multi-year oscillatory
intervals and continue in the same fashion as before, hence defin-
ing the means over these multi-year intervals and computing the
anomalies of theT i w. r. t. these means. However, for most practi-
cal purposes, the cascade will end at this level.

hence we first produce monthly meansT i of the observed
and simulated data for the 40-year period between 1960 and
1999. We then extract the day-to-day anomaliesT ′

i,j relative
to these monthly means and produce a two-parameter correc-
tion (slope and offset) for theT i and a one-parameter correc-
tion (slope) for the anomalies. The results are presented in
Fig. 4d. Clearly, both the monthly mean and the day-to-day
statistics now agree very well with those of the observed data.
A change of slope of the TF implies a change in the climate
change signal (Sect.2). Therefore, we want to assess the
changes in the climate change signal brought about by the
different correction methods. Using the IPCC B1 emission
scenario (Solomon et al., 2007) and the projected ECHAM5
data for the 30-year period 2070–2099 we compare the orig-
inal model data, the standard bias-correction model data, and
the cascade correction model data (Fig.7). In all three cases,
the general warming of the original model data is preserved,
with a positive gradient of warming with increasing latitude.
However, we note that the extreme northern latitudes gener-
ally acquire a stronger warming signal in the standard cor-
rection relative to the uncorrected model (Fig.8a) while the
cascade corrected climate signal is not as strongly enhanced
(Fig. 8b) in these regions. In some parts of these regions the
modification of the climate change signal is actually reversed
in the cascade method. In South and Central America there
is larger agreement between the two correction procedures
since interannual and interday fluctuations are aligned there
(compare Fig.4b).

4.2.2 Three tier cascade

We now intend to produce a three-tier cascade correction.
Therefore we employ data at an hourly resolution to allow
statistics for the hourly, daily and monthly periods. The
observational temperature data are provided by the German
Weather Service for a station in Aachen, Germany. The
model data are from the Max Planck Institute for Meteorol-
ogy regional climate model (REMO), which is available at a
10 km horizontal resolution (Jacob et al., 2008). We choose
the gridbox closest to the station to achieve an optimal com-
parison. The overlapping time-period for the two datasets are
the 20 years from 1960 to 1979. While the method described
in Sect.4 could also be applied to precipitation statistics,
we are here comparing station data to those of model grid-
boxes. For temperature, this is appropriate as spatial fluctua-
tions are small within a 10 km distance and the region studied
has small topographic gradients. For precipitation, the grid-
box value has to be interpreted as a spatial mean over its area
and the comparison with station rain gauge measurements is
cumbersome.

In the following we generally choose the month of January
as an example. In Fig.9 we present the hourly time series of
the observational and model data. Note the different char-
acteristics of the time series that immediately strike the eye:
The overall spread of the model data is smaller than that of
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Fig. 7. Temperature climate change signal for the B1 emission scenario projected by ECHAM5 for the period

2070-2099 relative to 1960-1999 for December; a, model without bias correction; b, standard bias correction;

c, cascade bias correction.

data are from the Max Planck Institute for Meteorology regional climate model (REMO), which is

available at a 10 km horizontal resolution (Jacob et al., 2008). We choose the gridbox closest to the

station to achieve an optimal comparison. The overlapping time-period for the two datasets are the345

20 years from 1960 to 1979. While the method described in section 4 could also be applied to precip-

itation statistics, we are here comparing station data to those of model gridboxes. For temperature,

this is appropriate as spatial fluctuations are small within a 10 km distance and the region studied has

small topographic gradients. For precipitation, the gridbox value has to be interpreted as a spatial

mean over its area and the comparison with station rain gauge measurements is cumbersome.350

In the following we generally choose the month of January as an example. In Fig. 9 we present the

hourly time series of the observational and model data. Note the different characteristics of the time

series that immediately strike the eye: The overall spread of the model data is smaller than that of the

observations and the interannual fluctuations (from one January to the next) are more pronounced in

the observations.355
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Fig. 7. Temperature climate change signal for the B1 emission scenario projected by ECHAM5 for the period 2070–2099 relative to 1960–
1999 for December;(a), model without bias correction;(b), standard bias correction;(c), cascade bias correction.

the observations and the interannual fluctuations (from one
January to the next) are more pronounced in the observations.

We proceed by computing the daily anomalies relative
to the monthly mean values (histograms in Fig.9) as de-
scribed by Eq. (4). We then iterate the same procedure for
the sub-daily scale by defining intra-day anomalies relative
to the daily mean. To illustrate the result, for the hourly
anomalies we display those between 16 and 17 h of each
day, hence 20× 31 values. The probability density function

of the daily mean model fluctuations is statistically signifi-
cantly narrower than that of the observations with standard
deviations of 2.6 K (3.9 K) respectively. The hourly anoma-
lies (relative to the interpolated daily mean) are small com-
pared to the daily fluctuations and there is no statistically
significant difference between the model and observational
pdf. Hence, there are different deviations between the model
and observed data for the two timescales. Consequently, an
algorithm utilizing a blend of fluctuations on all scales to
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Fig. 8. Modification of climate change signal: a, by using the standard correction method (panel b minus panel

a of Fig. 7); b, by using the cascade method (panel c minus panel a of Fig. 7); and c, the difference between the

correction procedures (panel c minus panel b of Fig. 7).

We proceed by computing the daily anomalies relative to the monthly mean values (histograms in

Fig. 9) as described by Eq. 4. We then iterate the same procedure for the sub-daily scale by defin-

ing intra-day anomalies relative to the daily mean. To illustrate the result, for the hourly anomalies

we display those between 16 and 17h of each day, hence 20×31 values. The probability density360
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tically significant difference between the model and observational pdf. Hence, there are different

deviations between the model and observed data for the two timescales. Consequently, an algorithm365

utilizing a blend of fluctuations on all scales to derive the correction factors is bound to mix these

two statistics and would alter distributions at scales where it should not. This finding underscores

16

Fig. 8. Modification of climate change signal:(a), by using the standard correction method – panel (b) minus panel (a) of Fig.7; (b), by
using the cascade method – panel (c) minus panel (a) of Fig.7; and(c), the difference between the correction procedures – panel (c) minus
panel (b) of Fig.7.

derive the correction factors is bound to mix these two statis-
tics and would alter distributions at scales where it should
not. This finding underscores the advantage of distinguish-
ing timescales when performing the bias correction.

Now we produce linear TFs for the data at all different
timescales, namely hourly fluctuations relative to the daily
mean, daily fluctuations relative to the monthly mean and

monthly fluctuations. Note that the monthly fluctuations con-
stitute the only case where the TF acquires an offset in ad-
dition to the slope. In all other cases, the TF corresponds
to a multiplicative correction factor as the means of fluctu-
ations are zero by definition. Hence, in our three-level ex-
ample, in total four correction parameters are required for
each hour of the day and month. After the correction factors
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Fig. 9. Hourly time series of 20 Januaries for observations (a, gray) and model (b, gray). Black horizontal lines

indicate monthly averages. Histograms of daily anomalies (relative to the monthly mean, central column) and

hourly anomalies (relative to the daily mean, right column).

the advantage of distinguishing timescales when performing the bias correction.

Now we produce linear TFs for the data at all different timescales, namely hourly fluctuations rela-370

tive to the daily mean, daily fluctuations relative to the monthly mean and monthly fluctuations. Note

that the monthly fluctuations constitute the only case where the TF acquires an offset in addition to

the slope. In all other cases, the TF corresponds to a multiplicative correction factor as the means

of fluctuations are zero by definition. Hence, in our three-level example, in total four correction

parameters are required for each hour of the day and month. After the correction factors are com-375

puted, the bias-corrected time series is re-composed by merging the individual components (Fig. 10)

as given by Eq. 6. In this figure we show data for both January and July. We also show the com-

parison with the standard bias correction. In the standard correction, fluctuations are not corrected

separately as in the cascade correction, however, a correction is performed for each hour of the day,

this means all first hours of all January days (31 days×20 years) would yield one correction. Note380

that in January the diurnal fluctuations are enhanced in both corrected series in comparison with

the original model data, while the day-to-day fluctuations remain rather unchanged. Furthermore,

an overall shift is applied to the data as the model appears to have a general cold bias during these

months. When comparing the standard and cascade corrections, we find that on days with extreme

fluctuations - such as at the beginning of the time series in panel (a) - the standard corrected (dashed385

gray) time-series is 2 K lower than the cascade corrected series. The reason is that the diurnal cycle

is enhanced in the corrected version, but in the standard correction the diurnal range is measured in

17

Fig. 9. Hourly time series of 20 Januaries for observations –(a),
gray – and model –(b), gray. Black horizontal lines indicate
monthly averages. Histograms of daily anomalies (relative to the
monthly mean, central column) and hourly anomalies (relative to
the daily mean, right column).

are computed, the bias-corrected time series is re-composed
by merging the individual components (Fig.10) as given by
Eq. (6). In this figure we show data for both January and
July. We also show the comparison with the standard bias
correction. In the standard correction, fluctuations are not
corrected separately as in the cascade correction, however, a
correction is performed for each hour of the day, this means
all first hours of all January days (31 days× 20 years) would
yield one correction. Note that in January the diurnal fluc-
tuations are enhanced in both corrected series in comparison
with the original model data, while the day-to-day fluctua-
tions remain rather unchanged. Furthermore, an overall shift
is applied to the data as the model appears to have a general
cold bias during these months. When comparing the standard
and cascade corrections, we find that on days with extreme
fluctuations – such as at the beginning of the time series in
panel a – the standard corrected (dashed gray) time-series is
2 K lower than the cascade corrected series. The reason is
that the diurnal cycle is enhanced in the corrected version,
but in the standard correction the diurnal range is measured
in absolute terms rather than relative to the diurnal mean as
in the cascade correction. This leads to an exaggeration of
the correction in the standard version.

The situation is somewhat different in July where the
model produces more realistic diurnal fluctuations by itself
(more similar to those in the observations), hence the cor-
rected data mirror the original data rather closely and only
an overall shift of roughly 2 K towards higher temperatures
is applied to correct the cold bias present in the model data.
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Fig. 10. Original and corrected hourly time series for one week in January (a) and July (b), long-dashed line

is original model data, solid line is cascade-corrected model data, short-dashed line is data corrected using

standard method; Inset: Diurnal cycle for January (c) and July (d) for model (dashed) and observations (solid),

respectively.

absolute terms rather than relative to the diurnal mean as in the cascade correction. This leads to an

exaggeration of the correction in the standard version.

The situation is somewhat different in July where the model produces more realistic diurnal fluc-390

tuations by itself (more similar to those in the observations), hence the corrected data mirror the

original data rather closely and only an overall shift of roughly 2 Kelvin towards higher tempera-

tures is applied to correct the cold bias present in the model data.

5 Discussion

In this paper, as in past articles on this topic, bias is intended as the time independent component of395

the error. The error is the difference between the simulated value and the observed. Bias correction is

done as part of the post processing of simulated data. Hence, it cannot add information or skill to the
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Fig. 10. Original and corrected hourly time series for one week
in January(a) and July (b), long-dashed line is original model
data, solid line is cascade-corrected model data, short-dashed line is
data corrected using standard method; Inset: Diurnal cycle for Jan-
uary (c) and July(d) for model (dashed) and observations (solid),
respectively.

5 Discussion

In this paper, as in past articles on this topic, bias is intended
as the time independent component of the error. The error is
the difference between the simulated value and the observed.
Bias correction is done as part of the post processing of sim-
ulated data. Hence, it cannot add information or skill to the
simulation and, furthermore, it cannot eliminate the error.
The sole purpose of bias correction is to eliminate the time
independent component of the error if it exists. Crucially, if
there is no bias, that is if there is no constant portion to the
error, the bias correction methodology leaves the simulation
unaltered.

A grid-based bias correction can only be expected to yield
meaningful results if there is sufficient correspondence be-
tween the modeled and observed behavior within the same
gridbox. By correspondencewe mean a qualitatively ad-
equate representation of the physical phenomenon at hand.
For example, if in the model northern and southern lati-
tudes were swapped, such correspondence would be lost and
the bias correction would become obsolete. Similarly, if
North Atlantic storm tracks were systematically shifted in the
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model relative to the observations, the grid-based bias cor-
rection would fail. Along with spatial offsets, a grid-based
bias correction cannot compensate for temporal offset. If the
Indian monsoon were appearing with one or two weeks de-
lay in the model compared to observations, this could not be
corrected by this method for similar reasons. Similarly, if
the timing or the frequency of the El Nino Southern Oscil-
lation phenomenon were misrepresented by the model, this
behavior could not be improved upon by SBC.

Apart from these limitations, one of the main obstacles
when applying a statistical bias correction to climate model
data is that fluctuations on different scales can mix and lead
to unexpected and unwanted behavior in the corrected time
series. To tackle this problem, we here propose to eliminate
this effect by performing a cascade of corrections that oper-
ate on the different timescales present in the system. We have
applied the method to both global and station data and shown
that it is capable of equalizing the statistics on timescales
ranging from hours to years. However, the consequence
of such a methodology is that statistical properties obtained
from thecontrol periodtime series can only be taken as prop-
erties relative to the mean value of that time-interval. For
example, the soil-moisture atmosphere interaction (Senevi-
ratne and Stoeckli, 2007; Seneviratne et al., 2006; Fischer
et al., 2007) acts on timescales from days to decades and can
profoundly impact both on surface temperature and precipi-
tation. As a result, too strong model day-to-day or even inter-
annual fluctuations could be reduced by the bias-correction.
However, mechanisms functioning on timescales longer than
the control period cannot be corrected. One such mechanism
that is of crucial importance in most climate change exper-
iments is global warming due to greenhouse gas emissions.
It is an open question in climate modeling whether the bias
present in current day simulations allows conclusions on the
bias in the simulation of future climate change. Such a rela-
tionship likely depends on the details of the physical causes
behind the bias and whether or not these are relevant to the
climate change signal.

To exemplify to what extent a current day temperature bias
may affect the climate change signal we resort to the simplest
textbook one-dimensional energy balance model incorporat-
ing carbon dioxide feedback (Fig.11). We assume the model
misrepresents the planetary albedoα which leads to a bias,
both during the current day and in the future. However, the
model is taken to represent the mechanism of greenhouse gas
induced warming adequately. The energy balance model of
the earth system is reduced to the earth surface and a sin-
gle atmospheric layer that is partially absorbent in the long-
wave spectrum – a fractionε is absorbed by the atmosphere
– but transparent in the short-wave. Introducing more green-
house gases will lead to an increased value of absorptivity
εsc> εcon, whereεsc (εcon) refer to the scenario and control
period value of absorptivity.

The reader can easily verify that under conditions whereε

can be changed arbitrarily, a bias correction with an additive

mechanism of greenhouse gas induced warming adequately. The energy balance model of the earth435

system is reduced to the earth surface and a single atmospheric layer that is partially absorbent in the

long-wave spectrum - a fraction ε is absorbed by the atmosphere - but transparent in the short-wave.

Introducing more greenhouse gases will lead to an increased value of absorptivity εsc >εcon, where

εsc (εcon) refer to the scenario and control period value of absorptivity.

The reader can easily verify that under conditions where ε can be changed arbitrarily, a bias440

correction with an additive correction Tmod,cor
s = Tmod

s +∆T is not compatible with this demand

while a multiplicative correction Tmod,cor
s = δ Tmod

s is, where δ is a multiplicative factor.

Hence, in the case of the simple energy balance model, applying a bias correction would clearly

be beneficial in producing a more realistic climate change signal. For other, more complex models

such as a GCM, the conclusion may be less obvious.445

The consequences of choosing a certain bias-correction method are much more dramatic in the

case of precipitation than in the case of temperature. The model mean often deviates by a factor

of two from that of the observations. Furthermore, a simple energy balance model cannot give an

indication of which type of correction should be used here (such as multiplicative or additive). As

mentioned in the introduction, the reaction of the hydrological cycle to greenhouse gas induced450

warming - both in observations and in models - would have to be known better, in order to give

a definite answer to the question of the adequate correction procedure (Allen and Ingram, 2002;

Held and Soden, 2006; Emori and Brown, 2005). However, the use of a multiplicative correction is

often triggered by practical considerations, namely the potential effect of an additive correction to

produce (unphysical) negative precipitation values which then requires the artificial introduction of455

dry periods, hence a change in the temporal structure of the time series.
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Fig. 11. Simple one-dimensional energy balance model of the earth system with solar constant S0 and globally

integrated incident solar radiation S0/4; planetary albedo α; absorptivity of the atmosphere ε. Su is long-wave

radiation emitted by the earth’s surface, Ta (Ts) are emission temperatures of the atmosphere (surface); Au

(Ad) are upward (downward) long-wave radiation emitted by the atmosphere.
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Fig. 11.Simple one-dimensional energy balance model of the earth
system with solar constantS0 and globally integrated incident so-
lar radiationS0/4; planetary albedoα; absorptivity of the atmo-
sphereε. Su is long-wave radiation emitted by the earth’s surface,
Ta (Ts) are emission temperatures of the atmosphere (surface);Au
(Ad) are upward (downward) long-wave radiation emitted by the
atmosphere.

correctionT
mod,cor
s =T mod

s +1T is not compatible with this
demand while a multiplicative correctionT mod,cor

s = δT mod
s

is, whereδ is a multiplicative factor.
Hence, in the case of the simple energy balance model,

applying a bias correction would clearly be beneficial in pro-
ducing a more realistic climate change signal. For other,
more complex models such as a GCM, the conclusion may
be less obvious.

The consequences of choosing a certain bias-correction
method are much more dramatic in the case of precipitation
than in the case of temperature. The model mean often devi-
ates by a factor of two from that of the observations. Further-
more, a simple energy balance model cannot give an indica-
tion of which type of correction should be used here (such as
multiplicative or additive). As mentioned in the introduction,
the reaction of the hydrological cycle to greenhouse gas in-
duced warming – both in observations and in models – would
have to be known better, in order to give a definite answer
to the question of the adequate correction procedure (Allen
and Ingram, 2002; Held and Soden, 2006; Emori and Brown,
2005). However, the use of a multiplicative correction is of-
ten triggered by practical considerations, namely the poten-
tial effect of an additive correction to produce (unphysical)
negative precipitation values which then requires the artifi-
cial introduction of dry periods, hence a change in the tem-
poral structure of the time series.
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6 Conclusions

Bias correction procedures are emerging as indispensable
tools to render output from climate models useful as input to
hydrological and impact assessment models. Statistical bias
correction schemes are able to transform the entire proba-
bility density function of a given modeled climate variable
to match that of the observations. Hence, once a choice of
timescale is made, for example daily values, the statistics are
equalized. The main point of this paper is that bias correc-
tions could potentially benefit from correcting data from dif-
ferent timescales separately, especially when disparate mech-
anisms act on the different timescales. For instance daily
data and monthly mean data can exhibit completely differ-
ent statistical behavior. To motivate this statement, we have
presented data from a bias correction of daily GCM data cor-
rected with observational data. In some regions, the mag-
nitude of interannual fluctuations of monthly means show
the opposite sign of discrepancy between model and ob-
servations than the day-to-day fluctuations. Therefore, we
have proposed an improved method, which we callcascade
bias correction, which generates a cascade of bias correction
functions, each operating on a different timescale. We have
used hourly observational and model data to perform a three-
tier cascade bias correction for a single gridbox and a two-tier
cascade for GCM data for daily and interannual corrections.
Our results show that considering timescales separately sub-
stantially improves the bias correction, as the actual statis-
tical behavior of the observed data is reproduced at various
timescales.

Statistical bias correction does not replace adequate model
representation of physical processes. We therefore reiterate
the conditions on climate model data to make the applica-
tion of statistical bias correction schemes reasonable: At ev-
ery gridbox where SBC is to be applied, it must be ensured
that the model provides a realistic representation of the phys-
ical processes involved. Quantitative discrepancies between
the modeled and observed probability density function of the
quantity at hand must be constant in time.

Furthermore, this study emphasizes that every statistical
bias correction makes assumptions on the applicability of sta-
tistical TFs from today’s climate to the future climate. We
caution that it is an open question whether a bias correction
should impact on the climate change signal produced by a
climate model. The climate change mechanism operates on
very long timescales and short-term fluctuations should not
be used as a means of assessing shortcomings in the model’s
climate change projection. A bias correction is inherently as-
suming specific model characteristics that cause the discrep-
ancy between simulated and observational data. A reliable
bias correction should hence adequately involve the conse-
quences of greenhouse gas concentration changes and how
these impact on the system. We have sketched such an anal-
ysis in the case of temperature for a very simple energy bal-
ance model. In the case of a full-scale GCM an analogous

operation would involve detailed queries into the climate
model’s representation of the climate change mechanism.
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