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Abstract. Hydraulic models for flood propagation descrip-
tion are an essential tool in many fields and are used, for ex-
ample, for flood hazard and risk assessments, evaluation of
flood control measures, etc. Nowadays there are many mod-
els of different complexity regarding the mathematical foun-
dation and spatial dimensions available, and most of them are
comparatively easy to operate due to sophisticated tools for
model setup and control. However, the calibration of these
models is still underdeveloped in contrast to other models
like e.g. hydrological models or models used in ecosystem
analysis. This has two primary reasons: first, lack of rel-
evant data against which the models can be calibrated, be-
cause flood events are very rarely monitored due to the dis-
turbances inflicted by them and the lack of appropriate mea-
suring equipment in place. Second, 2-D models are compu-
tationally very demanding and therefore the use of available
sophisticated automatic calibration procedures is restricted in
many cases. This study takes a well documented flood event
in August 2002 at the Mulde River in Germany as an example
and investigates the most appropriate calibration strategy for
a simplified 2-D hyperbolic finite element model. The model
independent optimiser PEST, that enables automatic calibra-
tions without changing model code, is used and the model
is calibrated against over 380 surveyed maximum water lev-
els. The application of the parallel version of the optimiser
showed that (a) it is possible to use automatic calibration in
combination of 2-D hydraulic model, and (b) equifinality of
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model parameterisation can also be caused by a too large
number of degrees of freedom in the calibration data in con-
trast to a too simple model setup. In order to improve model
calibration and reduce equifinality, a method was developed
to identify calibration data, resp. model setup with likely er-
rors that obstruct model calibration.

1 Introduction

Floods are serious events and may have severe socioeco-
nomic impacts on vulnerable areas. Thus a reliable evalu-
ation of the inundation extent and depths of a given flood
scenario is a very important support for strategic food risk
management. Different models which simulate the hydraulic
behaviour of a river system are available and they should be
calibrated and tested with care before exploitation.

Model calibration is the process whereby model param-
eters are adjusted until a satisfactory match between model
response and historical data is achieved. The geometry and
the roughness parameters are considered to be the most im-
portant elements affecting predicted inundation extent and
flow characteristics, as elaborated with wide bibliography by
Pappenberger et al. (2005). The roughness parameter will,
in part, compensate the sources of errors related to these el-
ements (Romanowicz and Beven, 2003; Marks and Bates,
2000), thus the calibration becomes a crucial issue.

One should be cautious in the selection of roughness coef-
ficients based on the nature of the channel and floodplain sur-
face only even if literature offers many sources of guidance.
In fact, roughness coefficients in models do not represent
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surface roughness only, but also turbulent momentum losses
not explicitly modelled (Werner et al., 2005a). In addition,
roughness coefficients often have to compensate for insuffi-
cient model assumption, e.g. depth averaged flow, and model
setup, thus becoming what is kown as effective roughness
parameters. In general practice, calibration and estimation
are performed manually, mostly in a “trial-and-error” fash-
ion. This is difficult, complex, subjective, time-consuming
and depends much on the expertise of the modellers. How-
ever, parameter estimation algorithms can significantly im-
prove and facilitate this task, as shown in many other areas
of environmental modelling. Here, an objective function that
measures the discrepancy between observations and model
outputs is defined, and the algorithm adjusts the parameter
values to minimise the objective function until a convergence
criterion is reached.

In general, automatic calibration procedures can be di-
vided in two main families: Global optimisers like the popu-
lar population-evolution-based algorithms, such as the Shuf-
fled Complex Evolution model developed by the University
of Arizona (SCEUA) (Duan et al., 1992, 1993; Sorooshian et
al., 1993), and the classical gradient-based approaches, like
the Gauss-Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963). These optimisation families have pre-
viously been mostly been applied to hydrological models,
where parameters can be less well defined (i.e. less physi-
cally based). Global methods are more robust in finding the
global minimum in the parameter space of the objective func-
tion but they are computationally very demanding. In fact, in
order to explore the whole parameter space they require a
much higher number of model runs to converge compared
to gradient-based methods. Gradient-based methods on the
other hand are computational very efficient but the solution
can be dependent on the initial parameter values and they
might get trapped in a local minimum, if the response space
of the objective function is highly complex. However, these
methods may be the only possibility to automatically cali-
brate CPU time demanding models, like the one presented
here. In this case the selection of the initial parameter values
has to be taken with care and should be checked by multiple
optimisation runs with different starting points, if model run
time allows.

In the present study the Gauss-Levenberg-Marquardt
method implemented in the parameter estimation tool PEST
(acronym for Parameter ESTimation) is used (Doherty, 2004,
2008). PEST is considered the most efficient method com-
pared to other gradient based methods (Doherty, 2004, 2008)
and it is successfully applied in many scientific fields such
as groundwater, hydrological and water quality modelling.
While PEST also offers global optimisation routines, this
study explores the gradient-based method in a first step for
the reasons given above.

Using the gradient-based approach this study focuses on
different calibration strategies for a 2-D hydraulic model. It
is calibrated against a serious flood event that occurred in

August 2002 on the river Mulde in the city of Eilenburg in
Saxony, Germany. In the different calibration strategies four
aggregation levels of the spatially distributed surface rough-
ness were considered: (a) a single roughness value for the
channel and the whole floodplain; (b) two roughness values
attributed to the channel and the whole floodplain; (c) four
roughness values attributed to the channel and three land use
classes in the floodplain; (d) five roughness values related to
the channel and four land use classes in the floodplain.

Being certain that a computer-based model is an imperfect
representation of a physical system, a perfect match is not
expected from a calibration to the available field measure-
ments. This inability may be due to the presence of errors in
both data and in the model (Gupta et al., 1998). We assume
that the mathematical structure of the model is predetermined
and fixed and that the upper and lower bounds of parameter
ranges can be specified a priori.

In most cases the calibration of flood inundation models is
constraint by insufficient data against which the model can be
calibrated. This is especially the case for distributed flood-
plain data, causing the often observed dilemma that a spa-
tially distributed model is calibrated against bulk flow data
in the channel allowing for a high degree of equifinality in
model realisations (e.g. Aronica et al., 2002; Bates, 2004;
Pappenberger et al., 2005). However, in this study area the
flood event occurred in August 2002 was well documented:
flood depths were recorded from a large number of water
marks, the maximum inundation extent was surveyed from
satellite imaging and water marks, and the flood hydrograph
was recorded at the upstream flowgauge. This data set en-
abled not only the automatic calibration, it will also show
that a large amount of data or information do not assure an
improvement in the identification of the parameters. It is not
only the number, but also the quality of the information con-
tained in the data that is important. Increasing the amount of
data does not necessarily improve the parameter estimation
(Sorooshian et al., 1993). A wide literature analyses simu-
lation errors of inundation model discussing of the possible
sources in order to obtain acceptable models even at local
scale (Bates and De Roo, 2000; Horritt, 2006; Mignot et al.,
2006; Schumann et al., 2007; Neal et al., 2009 are just a few
examples). In this paper a procedure to remove potentially
erroneous data is presented.

2 Methodology

2.1 2-D hydrodynamic model

In order to model the flow regime in an urban area, a simpli-
fied 2-D model, which is able to consider the hydraulically
important features like streets, buildings, channels, etc., is
the favoured option. In this study, the model of Aronica
et al. (1998a) was applied. It is a hyperbolic model based
on de Saint-Venant equations for 2-D shallow-water flow
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(DSV), where convective inertial terms are neglected in order
to eliminate the related numerical instabilities. The conser-
vative mass and momentum equations for 2-D shallow-water
flow can be written as
∂H

∂t
+

∂p

∂x
+

∂q

∂y
= 0 (1)

∂p

∂t
+ gh

∂H

∂x
+ gh Jx = 0;
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∂H

∂y
+ gh Jy = 0 (2)

whereH(t, x, y) = free surface elevation;p(t, x, y)andq(t,
x, y) = x- andy-components of the unit discharge (per unit
width); h = water depth;g = gravitational acceleration; and
Jx andJy = hydraulic resistances in thex- andy-directions.
The hydraulic resistance is parameterised by the Manning-
Strickler formulation, the Strickler roughness coefficientk

(m1/3
·s−1) is related to Manning coefficientn (m1/3

·s−1)
through

k =
1

n
, (3)

Equations (1) and (2) were solved by using a finite element
technique with triangular elements. The free surface eleva-
tion is assumed to be continuous and piece-wise linear inside
each element, where the unit discharges in thex andy direc-
tions are assumed to be piece-wise constant.

The finite element approach allows a more detailed de-
scription of hydraulic behaviour of flow in the flooded ar-
eas, in fact unstructured meshes are able to reproduce the
complex topography of built-up and urban areas. High hill-
top, building blocks, houses and other obstacles are treated
as internal islands within the triangular mesh covering the
entire flow domain. Being explicitly 2-D the model also al-
lows for spatially varying roughness coefficients in the whole
model domain. For proper model setup detailed topographic
information are required: topographical map preferably with
a scale of 1:10 000 and lower, a high spatial resolution DEM
and data set about the river topography (a number of cross
sections with bed elevations, channel widths and roughness
coefficients are useful to improve the mesh descriptive capa-
bility in those parts of floodplains; Horritt and Bates, 2001).

2.2 Model calibration

The 2-D model was calibrated using the model independent
optimiser PEST (Doherty, 2004, 2008). It gives the possi-
bility of an automatic calibration without the necessity to
change the model at all, but only the values of the param-
eters in one or more model input files. Applying this concept
to hydraulic modelling is a step towards a more objective
and encompassing model calibration compared to the gen-
eral manual practice.

PEST adjusts model parameters to obtain the best match
between model generated values and the correspondent mea-
surements in a weighted least squared sense. Given the num-
ber of degrees of freedom present in the calibration proce-
dure of 2-D models, where individual friction parameters

can theoretically be assigned at each computational node and
at each time-step (Marks and Bates, 2000) some difficul-
ties may arise because of the equifinality problem encoun-
tered during the calibration procedure (cf. e.g. Beven, 1993,
1996, 2006; Beven and Binley 1992; see also bibliography in
Beven and Freer, 2001).

The parameter estimation software PEST implements
the Gauss-Levenberg-Marquardt method (Levenberg, 1944;
Marquardt, 1963) for parameter estimation and uncertainty
analysis. The method is a combination of gradient descent
and Newton’s method. Parameter estimation is an iterative
process linearizing the relationship between model parame-
ters and model outputs. The linearization is conducted by
formulating a Taylor expansion of the actual parameter set.
At every iteration the partial derivatives of each model out-
put with respect to every parameter are calculated using fi-
nite differences. The technique follows the steepest gradient
of the objective function until the gradient becomes small
with respect to a certain tolerance limit. In the steepest re-
gion of the objective function the search for the minimum is
performed slowly (with small step size), in shallow regions
the movement is quicker (with large steps). Moreover, Mar-
quardt improved the method considering each component of
the gradient according to the curvature, i.e. the search moves
further in the directions in which the gradient is smaller in
order to speed up the convergence (this is very important for
example when the solution space of the objective function
presents a long and narrow valley). The parameter upgrade
vector given by the Levenberg-Marquardt method is written
as

p − p0 = (Jt
· Q · J + λ diag[Jt

· Q · J])−1
· Jt

· Q · ε (4)

wherep = subsequent parameter vector,p0 = current param-
eter values,J = the Jacobian matrix,Q = a diagonal matrix
such that the inverse is proportional to the covariance matrix
of the observations,λ = the Marquardt lambda.

The data used in the calibration of flood inundation models
are chiefly observed flood extends and depths. The inunda-
tion extends are derived during the flood from geo-referenced
aerial photographs of the flood event or from remote sensing
in combination with a detailed DEM, or derived from ground
surveys of inundation marks in the aftermath of the flood.
Observed depths (usually maximum inundation depths) are
less common, because they require ground surveys of inun-
dation marks in the inundated area after the flood. Instrumen-
tal records are very rare for inundation depths on floodplains.
The recorded depths are compared to the simulated to calcu-
late the residuals. Some examples of application of such data
are given in a few studies (Apel et al., 2009; Aronica et al.,
1998b; Werner et al., 2005b; Pappenberger et al., 2005). Also
Hunter et al. (2005) show that predictions of stage offer con-
siderable potential for reducing uncertainty over effective pa-
rameter specification. The errors between the observed and
predicted outputs, i.e. the residuals, are formulated as

εi = hi,obs− hi,sim(θ) (i = 1,...,m) (5)
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wherem = number of observations;θ = vector of model pa-
rameters (i.e. roughness coefficients);hi,obs = observed wa-
ter depth ati-th site;hisim(θ ) = simulated water depth at the
same site generated using the parameter valuesθ .

The aim of PEST is to minimize the Sum of Squares SQ
objective functionF(θ) given by

SQ = F(θ) =

m∑
i=1

wi · (εi)
2 (6)

wherewi are weights that can be assigned to individual ob-
servations, resp. errors. The weights in the objective func-
tion allow to focus on some observations in the optimisation,
thus, trustworthy observations can have a greater weight than
those which cannot be trusted as much. In the present study
the unit value has been assigned to all residual weights and
the measurements errors have been assumed to be indepen-
dent. In fact, it is very difficult to deal with correlations in
observed data, especially when there is no a priori informa-
tion about them. Under the assumption of independence of
the observations, the matrixQ defined in Eq. (4) has diago-
nal elements only and the elements ofQ are the observation
weights.

As already pointed out, the Gauss-Levenberg-Marquardt
method is gradient based and uses a local search method
to find the minimum of the objective function. It can be
criticized because it can be trapped in local objective func-
tion minima, so that the solution is dependent on the starting
point. Global search methods could be used but they require
a much greater number of model runs and depending on the
particular case of study the cost in terms of time could be-
come prohibitive. However, even the number of model eval-
uations in gradient based methods in combination with long
model run times may also prohibit the application of gradi-
ent based methods in many hydraulic model calibrations. For
this reason PEST offers a parallel version of the optimiser
that considerably decreases the time required for the calibra-
tion, if multicore computing facilities are available. Also, the
search for the minimum of the objective function using PEST
is achieved using fewer model runs than any other parame-
ter estimation method (Doherty, 2004, 2008), which favours
the usage of PEST additionally. Computational clusters or
office grid solution can be used with PEST. However, at
present PEST is restricted to Windows-based operation sys-
tems, thus the usual Linux-based large computational clus-
ters cannot be used unless Windows emulating software is
installed. The parallel automatic calibration has been tested
in this case study, where a single model runtime was approx-
imately 4 h. On a workstation with 8 Intel Xeon X5355 pro-
cessors at 2.66 GHz CPU speed, the algorithm converged af-
ter 4–9 optimisation iterations, which took 4–5 days for each
optimisation run.

After the parameter estimation process PEST calculates
the 95% confidence limits of the adjustable parameters if the
covariance matrix has been calculated. It should be noted

that parameter confidence limits are calculated on the basis
of the same linearity assumption which was used to derive the
equations for parameter improvement underlying each PEST
optimisation iteration. Moreover no account is taken of pa-
rameter upper and lower bounds in the calculation of 95%
confidence intervals. For example they are not truncated at
the parameter domain boundaries so as not to provide a mis-
leading impression of parameter certainty. Thus confidence
limits provide only an indication of uncertainty but they are
useful to compare different calibration strategies.

2.3 Model performance evaluation

Traditionally, hydraulic models have been calibrated using
water levels of discharges recorded at the downstream out-
flow of the model. However, calibration using these data is
not the most desirable approach because distributed model
performance cannot be tested and stream gauge data can be
affected by an error even more than 20% during extreme
floods (Bales and Wagner, 2009). Recently a number of au-
thors have therefore used spatial information about the ex-
tent of the inundation area derived form post-event flood line
surveys, aerial photos, satellite or airborne radar imagery
(SAR) data, or LIDAR survey (Hunter et al., 2007) for cal-
ibration. Using spatially explicit information of the inunda-
tion extent (and in very few cases also inundation depths) the
2-D models can be better constraint, i.e. parameter equifinal-
ity reduced. Only a single satellite image of the inundation
extent is usually available and this does not allow adequate
checking of the inundation dynamics simulated by the model
(Woodhead, 2009). An ideal data set would include spatially
detailed data like gauged bulk flow data internal to model
reach or point maximum water depths or elevations observed
e.g. as high-water marks on surviving structures. Internal
gauging stations produce data highly resolved in time but
they are very uncommon and maximum water depths or ele-
vations cannot be used to test the ability of a model to sim-
ulate dynamic flooding (Hunter et al., 2007). Any single
data type will only test some aspects of model performance
and moreover can be potentially erroneous. However, by
combining more than one type of observational data in the
calibration process all these limitations should hopefully be
overcame, but to date limited applications still exist chiefly
because data sets for historical events are quite rare. In
this study we used the observed maximum inundation depths
only. Other useful calibration criteria like the observed max-
imum inundation extend were not used, despite having the
potential to assess the quality of the spatial inundation pre-
diction of the model (e.g. Bates, 2004). The reason is that
due to the specific morphology of the flood plain, which is
a rather flat valley confined with steep hill slopes on both
sides, the valley wide inundation during this event, and the
resolution of the DEM, the information content of the inun-
dation map comes close to zero. The simulated inundation
depth at the valley sides could differ several meters without
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Figure 1 Investigation area overview and topographical map of Eilenburg. 
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Fig. 1. Investigation area overview and topographical map of Eilen-
burg.

greatly changing the inundation extent and thus the flood area
index comparing the simulated and mapped inundation ex-
tend. The inappropriateness of the inundation extend for the
present case study was already shown in a previous study us-
ing different hydraulic models and manual calibration on the
event, the model results of estimating the inundation extend
were published in Apel et al. (2009). Therefore, in this case
more meaningful indexes for the comparison of the differ-
ent calibrations are, besides the objective function used in
PEST: the mean absolute error (MAE), the root mean square
error (RMSE) and the average error (BIAS) of the simula-
tion results from the measured maximum inundation depths
calculated as follows

MAE =
1

m

m∑
i=1

|εi |; RMSE=

√√√√ 1

m

m∑
i=1

(εi)2; (7)

BIAS =
1

m

m∑
i=1

εi

wherem = number of data points.

3 Case study

The urban area of Eilenburg, located in the federal state of
Saxony, Germany, was used in this study. The city is crossed
by the Mulde River, a tributary of Elbe, and the Mühlgraben
bypass, diverted from the main stream approx. 10 km up-
stream of Eilenburg (cf. Fig. 1).

In August 2002 a severe flood event hit many European
countries along the Elbe and the Danube rivers and many
of their tributaries. Germany was affected, and Saxony was
German federal state that suffered the most damage. In par-
ticular, the city of Eilenburg and the surroundings were com-
pletely flooded; inundation depths up to 5 m in the vicinity
of the river and 3 m in the town were reached. Because of
the severity of the event, the flooding was well documented:

 

 

 

 

Figure 2. Layout of the mesh of the simplified 2D-finite element model. 
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Fig. 2. Layout of the mesh of the simplified 2-D-finite element
model.

flood depths were surveyed by laser reflectometry of water
marks on buildings above ground at 390 points (data pro-
vided by Schwarz et al., 2005), thus yielding detailed point
information of inundation depths in the town. The accuracy
of the laser measurements is in the mm-order. Some higher
errors are introduced when the ground reference level was
hard to determine, e.g. by bushes growing in front of the
building or unclear water marks. No detailed information is
available about this, but the errors of the surveyed maximum
inundation depths can be assumed at below 0.2 m. The loca-
tion of the survey points was determined by handheld GPS.
Thus the errors in the location of the survey points are below
6 m. This extensive data set has been used for the calibration
of the inundation model.

For the hydraulic model, boundary conditions are always
given by the incoming unit flux along the upstream boundary
and the water surface elevation at the downstream bound-
ary (Aronica et al., 1998b). Upstream boundary conditions
were given by the measured hydrograph at the gauge Golz-
ern, which is the closest gauging station and is located on
the Mulde approximately 20 km upstream of Eilenburg. The
data recorded by the next downstream gauging station of the
Mulde River in Bad D̈uben could not be used for model cali-
brations, because the water levels largely exceeded the rating
curve. Moreover the gauge was also considerably influenced
by the floods of the Elbe River, both from overland flow and
the nearby junction of the rivers, and it is located at a consid-
erable distance to the model domain (about 25 flow km). In
the model version used in the calibration normal water depth
for the channel and zero water depths for the downstream
nodes located in the floodplain have been assumed as lower
boundary condition.

The 2-D-model operated on an unstructured mesh of
46 417 nodes and 87 945 triangular elements shown in Fig. 2.
Floodplain and river topography were derived from a DEM
with 25 m spatial resolution, that was generated and is-
sued from the German Federal Authority of Geodesy and
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Figure 3. Layout of the spatial roughness distribution in the computational domain considered 

for the case of study (Woodland 1: deciduous forest, woodland 2: low forest interspersed with 

agriculture). 
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Fig. 3. Layout of the spatial roughness distribution in the computa-
tional domain considered for the case of study (woodland 1: decid-
uous forest, woodland 2: low forest interspersed with agriculture).

Cartography (BKG) and is based on topographical maps with
a scale of 1:25 000. These maps, especially the elevation in-
formation are mainly based on terrestrial surveys supported
by remote sensing information in some parts. The errors of
the 25 m resolution DEM are estimated by BKG to be below
1m in the flood plains and up to several meters on steep hill-
slopes and mountainous areas. Additionally some channel
and bank node elevations were taken from channel bathy-
metric surveys and linearly interpolated between 18 cross
sections available for the model domain. The large railway
dam and bridge directly upstream of the town (cf. Fig. 1) are
represented in the model, whereas the smaller downstream
bridge is not. Channel, floodplain and the extent of the do-
main were digitised from the 1:25 000 maps of the area, the
length of the modelled reach is about 8.5 km. The reach was
restricted to this stretch in order to keep model runtimes at
a tolerable level, which are about 4 h for a single model run
simulating five days in rhe version used for the calibration
study.

The Strickler roughness coefficient is the unique parame-
ter involved in the calibration, which is spatially distributed.
The model structure allows one coefficient for each triangu-
lar element to be used, but based on land use, the domain was
divided into five principal regions (Fig. 3). Using the official
CORINE land use classification, which is a European stan-
dard, four areas were distinguished in the floodplain: the ur-
ban area of Eilenburg, two woodlands and the leftover flood-
plain. The roughness parameterization was consequently
performed on the land use classification.

3.1 Calibration outline

The model calibration was performed against the water
depths, not water elevations. It is often argued that

inundation models perform better when calibrated against
water elevations than depths. In case of independently de-
rived water elevations this may be the cause, because the
models can compensate for DEM errors through the rough-
ness parameterization. However, we generally argue that cal-
ibration against the actual observed variable, the water depth,
gives insights into model behaviour and should thus be pre-
ferred. Also, in the presented case where no independent ob-
servation of water or ground observations are available, the
use of water elevations do not improve model performance
and calibration. Here the water elevation have to be calcu-
lated from the simulated, resp. observed inundation depths
and the elevation of the underlying DEM. Since PEST opti-
mises the model based on the sum of squares that in this case
evaluates to the same value (cf. Eq. 5):

εi = hi,obs−hi,sim(θ)=(hi,obs+DEM)−(hi,sim(θ)+DEM)

Different calibration strategies were adopted according to
different aggregation levels of the roughness regions. In each
region one roughness coefficient has been defined uniformly
distributed. In the first level, a single and uniform rough-
ness coefficient was adopted for the whole floodplain and the
river. In the second level, the river and the floodplain were
considered separately. For the third, four roughness areas
were considered: the channel and the city areas aggregated in
a single region (on the assumption that flow through a mostly
paved urban environment, especially with high flow depths as
in this case, is similar to open channel flow), the two wood-
lands and the leftover floodplain. Finally, the last level con-
siders five separate regions according to the CORINE land
use distribution shown in Fig. 3.

To overcome the problem of how to choose the range
of parameter space, a large range including physical re-
alistic values was considered, thus giving space for the
estimation of effective parameters. For both main chan-
nel and floodplain the lower value for the Strickler rough-
ness coefficient was set equal to 5 m1/3

·s−1 (equivalent
Manning coefficientn is 0.2 m-1/3

·s), corresponding to
dense wood, and the upper one to 90 m1/3

·s−1 (equiva-
lent Manning coefficientn is 0.011 m-1/3

·s), correspond-
ing to concrete. In other studies similar ranges were de-
fined: prior ranges used by Werner et al. (2005b) were
loosely based on those given by Chow (1959): the range
between 0.02 m−1/3

·s and 0.1 m−1/3
·s for the main chan-

nel, and between 0.02 m−1/3
·s and 0.3 m−1/3

·s for the flood-
plain. Pappenberger et al. (2007) adopted a sampling range
0.01–0.2 m−1/3

·s for the channel and 0.05–0.3 m−1/3
·s for

the floodplain, imposing channel friction always lower than
floodplain friction. Bates and Townley (1988) used 0.01–
0.05 m−1/3

·s as main channel Manning values, and the con-
dition nfl=3nch+0.01 for the floodplain. Through the utility
PAR2PAR, PEST gives the opportunity to manipulate the pa-
rameters before providing them to the model by defining re-
lations between different parameters through mathematical
formulations. Thus, in some calibrations, we constraint the
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Table 1. Different calibration strategies and parameter aggregation used in the study (k = Strickler roughness coefficients).

Calibration Number ofk Aggregated areas Constrains description
parameters

A 1 All unconditioned

B 2 Urban area, woodlands roughness of the river always lower
and leftover floodplain than roughness of the floodplain
as a uniform floodplain

C 2 Urban area, woodlands unconditioned
and leftover floodplain
as a uniform floodplain

D 4 Urban area and channel roughness of the river always lower
as a single land than roughness of the floodplain
use class/roughness area

E 5 All CORINE land use roughness of the river always lower
classes than roughness of the floodplain

F 5 All CORINE land use unconditioned
classes

roughness of the river to be always lower than the rough-
ness of the floodplain. In the context of PAR2PAR this is
achieved by defining e.g. for the floodplain a “new” Strickler
roughness parameterkfp ratio that is defined by the ratio of the
Strickler roughness coefficient in the channel to the Strickler
roughness coefficient roughness in the floodplain, and im-
posing as lower bound of this parameter the unit value:

kfp ratio =
kch

kfp
> 1 (8)

However, the way PAR2PAR is implemented limits in the
definition of parameter bounds, because only bounds for
kfp ratio can be defined, not for the actual parameters rough-
ness parameterskch andkfp. In Table 1 the calibration outline
adopted in the study is summarised.

4 Results and discussion

4.1 Comparison among calibrations

All automatic calibrations performed with PEST converged
and successfully improved the objective function. The results
in terms of final estimated roughness parameters and confi-
dence bounds are collected in Table 2. Initial values were set
following criteria suggested by previous experience gained in
manual model calibration (Apel et al., 2009). Except for the
roughness coefficient related to the channel, each calibration
gave quite low Strickler roughness values, i.e. high hydraulic
resistance, for the floodplain compared to literature values.
Some remarks on this finding can be made. First, roughness
values present in literature are usually referred to results of

Table 2. Final roughness estimations and confidence bounds for the
calibration scenarios given by PEST. Note: in case of conditioned
parameters no confidence bounds can be derived.

k parameter Initial Estimated PEST 95% percent confidence limits
value value lower limit upper limit

A
all 10 12.00 11.04 12.95

B
floodplain 20 7.68 – –
channel 30 35.78 23.69 47.86

C
floodplain 8 5.59 4.10 7.09
channel 36 50.54 38.44 62.64

D
floodplain 20 6.46 – –
channel-urban 30 20.35 15.10 25.60
woodland 1 20 4.07 – –
woodland 2 20 4.07 – –

E
floodplain 20 6.33 – –
channel 30 31.64 1.40 61.88
woodland 1 20 6.33 – –
woodland 2 20 6.33 – –
urban area 15 12.94 – –

F
floodplain 8 5.06 1.85 8.27
channel 30 46.60 20.14 73.05
woodland 1 8 5.00 −20.31 30.31
woodland 2 8 9.81 −30.13 49.74
urban area 13 8.62 −2.34 19.59
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Table 3. Goodness of fit indexes of the different calibration runs using all data points.

Number of Constrains Calibration SQ BIAS (m) MAE (m) RMSE (m)
parameters description (m2)

1 unconditioned A 282.1 0.145 0.669 0.851
2 conditioned B 268.3 0.109 0.622 0.829
2 unconditioned C 264.9 0.083 0.594 0.824
4 conditioned D 268.4 0.111 0.614 0.830
5 conditioned E 265.7 0.106 0.609 0.825
5 unconditioned F 263.4 0.089 0.589 0.822

one-dimensional model applications, while in this case study
a 2-D model code is applied. Second, usual tabular data are
referred to micro-roughness condition that is unrealistic for
the floodplain surface. Third, the high roughness may have
to compensate for errors introduced by the short reach under
study and the lower boundary condition imposed (cf. Sect. 3)
in absence of surveyed discharges for the lower boundary,
as illustrated in Horritt et al. (2007). Further exploring Ta-
ble 2 it is worth noting that the roughness in the river is in
some cases very high. This has to attributed to the inten-
sity of flood event with large discharge and flow depth over
the whole floodplain compared to channel width and depth.
In this case the influence of the channel flow on maximum
floodplain inundation becomes marginal, because the bulk of
the flow is overbank.

When parameters are not conditioned, PEST gives 95%-
confidence limits associated to the estimated parameter val-
ues. These are statistically derived from the distribution of
the parameters during the optimisation. As we can see, the
larger the number of involved parameters, the larger become
the confidence intervals. Moreover, when the calibration
considers five parameters the lower limits are even negative.
This does not mean that negative roughness parameters were
actually used in the calibration. This is rather the result of the
statistical derivation of the confidence limits in case of low
mean and high variance, where the lower 95%-confidence
bounds can eventually evaluate to negative values. Negative
roughness values do not make any sense physically, however,
the width of the confidence limits indicate how uncertain the
estimation of the parameter is: narrow bands imply higher
confidence and thus higher importance of the parameter on
the results and vice versa. It also indicates the equifinality of
model parameterisations that arise by the increasing number
of possible parameter combinations able to match the obser-
vation data satisfyingly. Following this rational the inunda-
tion depths are dominated by the floodplain area, respectively
the floodplain roughness showing the narrowest confidence
limits, especially in scenarios C and F. This means that the
floodplain surrounding the urban area influence significantly
the flow propagation in the urban area. The sensitivity of
the model to floodplain roughness is explainable through the

comparatively large extension of that land use class and the
fact that it provides the internal boundary conditions for the
flow in the urban area.

In case of four conditioned parameters (D), the estimated
roughness values for the woodlands fall slightly outside the
settled range of parameter space as a result of the condition-
ing of the parameters. The utility PAR2PAR required the
manipulation of the parameters, so that transformed parame-
ters and related bounds are included in the PEST input files,
but unfortunately it is very difficult to incorporate and/or con-
trol parameter-dependent bounds. Also, the confidence limits
are provided for the transformed parameters and not for the
roughness parameters of interest.

4.1.1 Model performance

As illustrated in Sect. 2.3 we assessed the model performance
additionally to the objective function of PEST by the MAE,
RMSE and BIAS. The values of these indexes and of the
objective function are reported in Table 3. All the models
seem to perform equally well with all indexes, with only a
slight preference of the non-conditioned parameter sets (cali-
brations C and F).In general the performance is already satis-
fying for all scenarios, with little BIAS and RMSE and MAE
in the range of the expected DEM error of<1 m in the flood-
plain. However, this performance assessment additionally
emphasizes the equifinality in model parameterisations as al-
ready discussed in the previous section. The causes of the
equifinality are the distribution and spatial coverage of the
and use classes in the simulation domain, but also the distri-
bution of the calibration data. Most of the calibration data
points are located in the urban area thus putting an additional
emphasis on the roughness of the floodplain and the urban
area. However, also erroneous data points or DEM errors at
the data points can have a considerable influence on parame-
ter equifinality and thus the automatic calibrating process. If
they are not identified and removed or weighed accordingly,
as presented up to this point, they can obstruct the search
for an optimal solution, because they may dominate the ob-
jective function. Another possible reason is the mismatch
between model complexity and information content of the
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Table 4. BIAS calculated with removed data points for the different calibrations.

|CV| No. Calibrations CV(BIAS)
threshold points A B C D E F

0 390 0.145 0.109 0.083 0.111 0.106 0.089 0.200
0.05 343 0.059 0.018 −0.011 0.020 0.014 −0.006 1.578
0.10 278 0.157 0.112 0.080 0.110 0.105 0.083 0.259
0.15 231 0.128 0.076 0.040 0.079 0.072 0.046 0.425
0.20 192 0.111 0.064 0.031 0.062 0.056 0.034 0.483
0.25 162 0.086 0.041 0.012 0.037 0.033 0.013 0.728
0.30 143 0.066 0.021 −0.011 0.016 0.011 −0.009 1.783

 

 

 

 

Figure 4. Histograms of absolute coefficient variation and mean of the errors of different 

calibration runs for every calibration point. 
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Fig. 4. Histograms of absolute coefficient variation and mean of the errors of different calibration runs for every calibration point.

calibration data, the usual cause of equifinality. However,
the mismatch in this case is just opposite of the normal case:
usually a complex model is calibrated with just a few data
points, which are often bulk measurements, e.g. a two di-
mensional hydraulic model and a downstream discharge hy-
drograph. In the present case we deal with many data points,
whereas the roughness in the respective land use class is not
further distinguished, as well as a fairly coarse DEM. This
means we use a comparatively simple model setup which is
not sufficient to explain the information content of the cali-
bration data properly.

In order to explore the reasons for the equifinality and to
possibly reduce it, we take the advantage of the different
calibration strategies applied and search for erroneous data
points utilizing the different simulation results. We also test
whether the calibration is sensitive to a reduced number of
calibration points, i.e. an adjustment of data complexity to
model complexity. To this end the variance of the residuals
of the different calibration results was examined. The idea
was to identify and remove calibration points with likely er-
rors (DEM, survey, etc.) and then check for sensitivity of the
goodness of fit criteria for the calibration runs without run-
ning the calibration again in first place. The criterion adopted
was the coefficient of variation (CV) of different calibration

runs for every calibration point. The coefficient of variation
(CV) is defined as the ratio of the standard deviation to the
mean and is a normalized measure of dispersion of a prob-
ability distribution, Fig. 4 shows the histograms for the ab-
solute value|CV(ε)| and the mean, µ(ε), of the errors for all
calibration points of all calibration runs. Based on the CV
we defined points as erroneous based on the following ra-
tional: points with high mean absolute difference of all cal-
ibration runs and low variation (standard deviation) caused
by different model parameterization were removed as erro-
neous, because they cannot be explained by model param-
eterization (or with the current model setup). In terms of
CV, these are the points with low CV’s (low standard devi-
ation/high mean). Thus points in the calculation with ab-
solute coefficients of variation lower than a threshold were
removed. For the selection of the threshold, however, no ob-
jective measure can be defined. Therefore several thresholds
values were selected:|CV|=0, 0.05, 0.1, 0.15, 0.2, 0.25 and
0.3. After simply removing points with|CV| less than each
threshold the BIAS for every calibration was computed again
with the current calibrated model results (Table 4). Inspect-
ing Table 4 it is possible to identify two particular thresholds
(0.05 and 0.30, corresponding a 343 and 143 remaining data
points) where the BIAS of all calibrations is very low and
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Figure 5. Spatial distribution of absolute coefficient variation of different calibration runs for 

every calibration point. 
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Fig. 5. Spatial distribution of absolute coefficient variation of dif-
ferent calibration runs for every calibration point.

the coefficient of variation of BIAS (CV(BIAS)) between the
different calibrations is very high. This means that in these
cases we see a clear response in the goodness of fit criteria to
the different calibration strategies.

In order to find explanations for the possible errors or jus-
tifications for the removal of these points, we plotted the
spatial distribution of the absolute coefficient of variation
grouped according to these two thresholds in Fig. 5. From
the spatial distribution of points with|CV| in the range 0–
0.05 we can argue that the quality of the DEM has to be
questioned, rather than the quality of the simulation results.
Many of these points are situated along the transition of the
flat floodplain to the steep valley slopes, where the errors in
the DEM are typically the largest, especially with this reso-
lution. For the remaining points in the urban area, especially
the old city centre where some small hillocks exist, it is also
quite likely that the DEM does not contain the required infor-
mation about the micro-topography. This qualitative finding
is further corroborated by the scatter plot in Fig. 6, where the
slope of the DEM is plotted against|CV|. It can be seen that
with high DEM slopes only low absolute coefficients of vari-
ance are associated. While high slope values may already
hint to possible DEM errors, the lacking sensitivity to differ-
ent calibration strategies gives a more definite hint.

For the exclusion of points with|CV| in the range 0.5–0.3
it is hard to find a plausible justification. In general we are
now at the point where DEM errors are still likely, but errors
in model setup and structure exist at the same time. How-
ever, with the available current data we can not distinguish
between DEM and model errors any further. On an abstract
level it can be argued that with this number of points we reach
a match between model and data complexity, but this is hard
to prove.

In a next step we ran the so far most successful calibra-
tions C and F (2 and 5 unconditioned roughness classes) in
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Fig. 6. Scatter plot of DEM slope against absolute coefficient of variance |CV| between the 

different calibrations for each calibration data point. 
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Fig. 6. Scatter plot of DEM slope against absolute coefficient of
variance|CV| between the different calibrations for each calibration
data point.

PEST again using 343 and 143 data points only, i.e. points
with |CV| larger than 0.05 and 0.3 respectively. Table 5
shows results in terms of objective function SQ, BIAS, MAE
and RMSE. After the second cycle of calibrations (with
343 data points) BIAS is significantly lower as in the cali-
brations using all data points, but not as low as expected by
just calculating the BIAS after removing points, especially
for calibration strategy F (cf. Table 4). RMSE and MAE also
decreased, but not as significantly as the BIAS.

After the third cycle of calibrations (with 143 data points)
all indexes decreased significantly. The BIAS is negligible,
but also the MAE and RSME reduced drastically, as well as
the objective function. But as mentioned before, at this level
it is hard to explain or justify the removal of the points with
the available data sets. A thorough inspection and ground
survey of the elevation of the points in question could help,
but at this point we cannot tell if there are errors in the data
points itself, the underlying DEM, the model setup or if we
indeed reach a match in data and model complexity.

Further investigations of the effects of removing insensi-
tive calibrations points are made by comparing dotty plots
shown in Figs. 7, 8 and 9. Due to the high visual similar-
ity between couples of figures, they confirm how the two
model setups (with 2 or 5 roughness regions) perform equally
well for each calibration procedure (390, 343 and 143 data
points), underlining the equifinality theory. These graphs of-
fer the opportunity to explore the reasons for the high RMSE
values in Table 5. The high RMSE (especially for 390 data
points) is due to the dominance of the outliers, where the
simulated water depths drastically under- and overestimate
the surveyed. These failures cannot be explained or rectified
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Figure 7. Dotty plots related to the calibrations with 390 data points and calibration strategies 

C (left) and F (right). 
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Fig. 7. Dotty plots related to the calibrations with 390 data points and calibration strategies C (left) and F (right).

 

 

 

Figure 8. Dotty plots related to the calibrations with 343 data points and calibration strategies 

C (left) and F (right). 
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Fig. 8. Dotty plots related to the calibrations with 343 data points and calibration strategies C (left) and F (right).

 

 

 

Figure 9. Dotty plots related to the calibrations with 143 data points and calibration strategies 

C (left) and F (right). 
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Fig. 9. Dotty plots related to the calibrations with 143 data points and calibration strategies C (left) and F (right).

by roughness parameterization, this is rather a model error,
i.e. the DEM. The most severe errors are removed when us-
ing 343 data points, as illustrated in Fig. 8, where especially
all severe underpredictions are removed thus causing the im-
proved BIAS. Also, MAE and RMSE improve in the same
rate as the BIAS. Using only 143 calibration points the BIAS
is removed almost completely, as shown in Fig. 9. Corre-
sponding to the reduced scatter also the MAE and RMSE
drop significantly.

Comparing the actual estimated roughness values and the
associated confidence intervals for the different number of
data sets used in the calibrations given in Tables 6 and 7, it
can be observed that the actual roughness estimates do not
differ much between the different data sets, except for class
woodland 2. However, it has to be noted that this area is lo-
cated directly upstream of the cities railway station and track,
which crosses the valley orthogonally and has the highest el-
evation in the floodplain. Therefore it can be reasoned that
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Table 5. Goodness fit criteria of calibrated model results after removing points with low|CV|.

Number of Calibration No. points SQ (m2) BIAS (m) MAE (m) RMSE (m)
parameters

Calibrations with 390 observed depths
2 C 390 264.9 0.083 0.594 0.824
5 F 390 263.4 0.089 0.589 0.822

Calibrations with 343 observed depths
2 C 343 189.4 0.019 0.530 0.743
5 F 343 187 0.018 0.522 0.738

Calibrations with 143 observed depths
2 C 143 7.2 0.003 0.177 0.224
5 F 143 5.2 0.005 0.058 0.202

Table 6. Calibration results as given by PEST considering 343 data
points.

k parameter Initial Estimated PEST 95% percent confidence limits
value value lower limit upper limit

C
floodplain 8 5.74 4.08 7.39
channel 36 51.42 39.92 62.92

F
floodplain 8 5.00 2.41 7.59
channel 30 45.36 18.70 72.58
woodland 1 8 5.00 −20.41 30.41
woodland 2 8 31.17 −65.05 127.38
city 13 9.83 −2.12 21.77

the influence of this particular area on the inundation process
is largely overruled by the barrier imposed by the railways
tracks directly downstream of it. This means in consequence
that the simulation results are insensitive to the roughness
parameterization in this land use class.

In contrast to the actual estimated roughness values the
confidence intervals associated to the values differ consid-
erably between the two calibrations with reduced data sets.
Whereas with 343 remaining data points the confidence in-
tervals hardly change compared to the original data set, they
are significantly reduced using only 143 data points. Follow-
ing the rational applied above, that the confidence intervals
can serve as an indicator of the equifinality of the model pa-
rameterisation, it can be reasoned that equifinality is reduced
in this calibration approach. This, in turn, would also point
into the direction of a match in model and data complexity.

5 Conclusions

In the present study an automatic calibration procedure
has been applied to a 2-D hydraulic model utilising a

Table 7. Calibration results as given by PEST considering 143 data
points.

k parameter Initial Estimated PEST 95% percent confidence limits
value value lower limit upper limit

C
floodplain 8 5.52 4.79 6.25
channel 36 52.17 47.03 57.31

F
floodplain 8 5.00 3.93 6.07
channel 30 47.41 37.96 56.85
woodland 1 8 8.63 −6.60 23.85
woodland 2 8 5.00 −7.75 17.75
city 13 8.81 5.12 12.50

comprehensively data set of maximum inundation depths for
a flood event occurred in August 2002 in Eilenburg, Ger-
many. The optimiser used was the Parameter ESTimation
tool PEST implementing a gradient based minimum search
method of the objective function. The method proved to be
effective in calibrating the model for different parameterisa-
tion strategies. However, by applying different parameteri-
sations and the confidence intervals computed for the esti-
mated roughness values equifinality of model parameterisa-
tions could be detected. In particular, with the proposed cal-
ibration layout two model setups that perform equally well
could be identified. Contrary to the usual case of complex
models with large degrees of freedom in the parameter space,
which are calibrated against just a few or bulk data, we could
illustrate that the opposite situation may also cause equifi-
nality: large degrees of freedom in the data in contrast to a
comparatively simple model setup/parameterisation.

A large amount of data or information does not assure
an improvement in the identification of the parameters, also
the quality of data is very important. This lead to the ques-
tion whether and how the equifinality can be explained and
reduced: is the mismatch in data and model complexity
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responsible alone or can we detect errors in data or model
setup. To find answers to this question a method for the
identification of possible erroneous data points was devel-
oped based on the coefficient of variance between the dif-
ferent calibration strategies for every calibration point. This
method proved to be successful in improving the model cali-
bration by removing data points with low coefficient of vari-
ations from the calibration data set. Dotty plots of observed
and simulated water depths confirmed the effectiveness of
this approach. Moreover, the removal of the points could
partly be explained and justified by DEM errors and reso-
lution. In line with the findings that improving accuracy of
DEM data could improve the reliability of flood inundation
models (Werner et al., 2005b), that a model that gives a good
overall fit to the available data may not give locally good re-
sults (Pappenberger et al., 2007), and that the quality of the
calibration data is essential for results, the proposed meth-
ods helps in identifying erroneous calibration data points that
otherwise obstruct proper model calibration. Also, the selec-
tion of an appropriate model parameterisation can be sup-
ported by the presented method.

However, it has to be noted that above a certain number of
removed points, i.e. a certain level of coefficient of variance,
no unique or plausible explanation for the removal can be
given. However, there are indications that by the removal of
about half of the data points a match in model and data com-
plexity is reached, thus enabling a significantly better model
calibration and a reduction of equifinality.

While this study gives first insights in the possibilities
of automatic calibration of 2-D hydraulic models and the
detection of equifinality and erroneous calibration data
points, a number of questions remain open: Is the gradient
based method efficient in finding the global maximum? How
to implement multi-objective optimisations considering
e.g. maps of flood inundation extends and time series of
discharge and stage at various points in the simulation
domain? How to determine the optimal match between data
and model complexity? How to consider the uncertainty
in calibration data in the automatic calibration? These
questions will be the challenges in research for the scientific
community in the coming years.

Edited by: J. Freer
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