A steady-state saturation model to determine the subsurface travel time (STT) in complex hillslopes
Abstract. The travel time of subsurface flow in complex hillslopes (hillslopes with different plan shape and profile curvature) is an important parameter in predicting the subsurface flow in catchments. This time depends on the hillslopes geometry (plan shape and profile curvature), soil properties and climate conditions. The saturation capacity of hillslopes affect the travel time of subsurface flow. The saturation capacity, and subsurface travel time of compound hillslopes depend on parameters such as soil depth, porosity, soil hydraulic conductivity, plan shape (convergent, parallel or divergent), hillslope length, profile curvature (concave, straight or convex) and recharge rate to the groundwater table. An equation for calculating subsurface travel time for all complex hillslopes was presented. This equation is a function of the saturation zone length (SZL) on the surface. Saturation zone length of the complex hillslopes was calculated numerically by using the hillslope-storage kinematic wave equation for subsurface flow, so an analytical equation was presented for calculating the saturation zone length of the straight hillslopes and all plan shapes geometries. Based on our results, the convergent hillslopes become saturated very soon and they showed longer SZL with shorter travel time compared to the parallel and divergent ones. The subsurface average flow rate in convergent hillslopes is much less than the divergent ones in the steady state conditions. Concerning to subsurface travel time, convex hillslopes have more travel time in comparison to straight and concave hillslopes. The convex hillslopes exhibit more average flow rate than concave hillslopes and their saturation capacity is very low. Finally, the effects of recharge rate variations, average bedrock slope and soil depth on saturation zone extension were investigated.