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Abstract. Soil moisture is one of the fundamental variables
in hydrology, meteorology and agriculture. Nevertheless,
its spatio-temporal patterns in agriculturally used landscapes
that are affected by multiple natural (rainfall, soil, topog-
raphy etc.) and agronomic (fertilisation, soil management
etc.) factors are often not well known. The aim of this study
is to determine the dominant factors governing the spatio-
temporal patterns of surface soil moisture in a grassland and
an arable test site that are located within the Rur catchment in
Western Germany. Surface soil moisture (0–6 cm) was mea-
sured in an approx. 50×50 m grid during 14 and 17 measure-
ment campaigns (May 2007 to November 2008) in both test
sites. To analyse the spatio-temporal patterns of surface soil
moisture, an Empirical Orthogonal Function (EOF) analysis
was applied and the results were correlated with parameters
derived from topography, soil, vegetation and land manage-
ment to link the patterns to related factors and processes.
For the grassland test site, the analysis resulted in one sig-
nificant spatial structure (first EOF), which explained 57.5%
of the spatial variability connected to soil properties and to-
pography. The statistical weight of the first spatial EOF is
stronger on wet days. The highest temporal variability can
be found in locations with a high percentage of soil organic
carbon (SOC). For the arable test site, the analysis resulted
in two significant spatial structures, the first EOF, which ex-
plained 38.4% of the spatial variability, and showed a highly
significant correlation to soil properties, namely soil texture
and soil stone content. The second EOF, which explained
28.3% of the spatial variability, is linked to differences in
land management. The soil moisture in the arable test site
varied more strongly during dry and wet periods at locations
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with low porosity. The method applied is capable of iden-
tifying the dominant parameters controlling spatio-temporal
patterns of surface soil moisture without being affected by
single random processes, even in intensively managed agri-
cultural areas.

1 Introduction

Soil moisture is one of the fundamental variables in hydrol-
ogy, meteorology and agriculture as it plays a major role in
partitioning energy, water and matter fluxes at the bound-
ary between the atmosphere and the pedosphere. Its spatio-
temporal distribution influences the partitioning of precipita-
tion into infiltration and runoff (Western et al., 1999a) and it
partitions the incoming radiation into latent and sensible heat
due to the control of evaporation and transpiration. It has a
strong impact on the response of stream discharge to rainfall
events, it plays a significant role in producing floods (Kitani-
dis and Bras, 1980) and affects erosion from overland flow
and the generation of gullies (Moore et al., 1988). More dis-
charge and erosion have been observed in areas with high
soil moisture that are well connected to channels (Ntelekos
et al., 2006). The spatio-temporal variation of soil moisture
is also reflected in spatial patterns of plant growth and crop
yield (Jaynes et al., 2003). For example, crop yield is highly
sensitive to early season soil moisture conditions, especially
during seed germination (Green and Erskine, 2004).

Due to difficulties in measuring spatio-temporal patterns
of soil moisture at larger scales and owing to the impor-
tance of these patterns for many environmental processes,
great efforts were undertaken to derive spatially distributed
soil moisture maps from remote sensing and modelling (Op-
pelt et al., 1998; Owe and Van de Griend, 1998; Schneider,
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2003). Since surface soil moisture data is potentially avail-
able for large areas using remote sensing products (Koyama
et al., 2010), it is of great interest to analyse the driving pa-
rameters which explain these patterns. To build an adequate
model, all relevant processes that affect spatial and temporal
soil moisture variability must be identified and addressed. In
case of strong spatial variations in soil properties or a dom-
inance of vertical fluxes, such as evapotranspiration or infil-
tration, soil moisture patterns are controlled by local prop-
erties and processes (Grayson et al., 1997; Vachaud et al.,
1985). If soil moisture is horizontally redistributed by lat-
eral fluxes, non-local dependencies can play a decisive role
(Herbst and Diekkr̈uger, 2003). Both, locally and non-locally
controlled processes and their varying importance in time
are essential for the determination of soil moisture patterns.
Hawley (1983) determined that topography (relative eleva-
tion) is the most important driver of soil moisture in small
agricultural watersheds. Even in watersheds with little slope,
soil moisture values are consistently higher at the bottom of
the slope. Vegetation tends to override this topographic influ-
ence. The effect of soil texture on surface soil moisture ap-
pears to be larger under wet conditions; minor variations in
soil type seem to be insignificant. For all soil texture classes
(except sands), soil moisture variability is typically high in
a mid range between 18 and 23 Vol.-% (Vereecken et al.,
2007). On a 1.4 ha hillslope, Burt and Butcher (1985) de-
tected the development of saturated areas in downhill, low
slope and convergent locations, indicating lateral redistri-
bution of soil water via saturated flow above impermeable
bedrock. The correlation between Wetness Index (WI; Beven
and Kirkby, 1979) and soil moisture was generally better
during wet conditions (Burt and Butcher, 1985). However,
lateral water movement in unsaturated soils can also be ob-
served and may reach the same order of magnitude as the
vertical movement. This is caused by anisotropic permeabil-
ity due to different soil layers (Zaslavsky and Sinai, 1981;
Herbst et al., 2006). For the Tarrawarra grassland catchment
in south eastern Australia (Western et al., 1999a), the high-
est correlation between soil moisture and topographic char-
acteristics occurred for moderately wet conditions. This re-
lationship deteriorates for dry and very wet (near saturation)
conditions. The soil moisture autocorrelation calculated for
different dates generally showed longer correlation length on
dry dates, related to the larger spatial scale of evapotranspi-
ration as the dominant driver. The shorter correlation length
on wet days seems to be connected to the smaller spatial
scale of lateral redistribution (Western et al., 1998). Green
and Erskine (2004) found no clear correlation length of soil
moisture at the field scale for a semi-arid climate. Western
et al. (2004) compared soil moisture correlation lengths with
the spatial correlation of terrain attributes indicating the im-
portant role of topography at one site and the variation of
soil properties at other sites. Empirical Orthogonal Func-
tion (EOF) analysis can be used to identify the dominant
processes and essential parameters controlling soil moisture

patterns. Since introduced to the analysis of geophysical
fields by Lorenz (1956), EOF analysis has been widely ap-
plied for the analysis of the spatial and temporal variability
of large multidimensional datasets and has been commonly
used in meteorological studies. More recently it has also
been used to analyse soil moisture patterns at a large vari-
ety of scales, from the field scale for agricultural sites (Yoo
and Kim, 2004), to catchment scales (Perry and Niemann,
2007), and to regional scales (Jawson and Niemann, 2007;
Kim and Barros, 2002). The result of this analysis is a small
number of spatial structures (EOFs) that explain a high per-
centage of variation of the dataset and temporal varying co-
efficients (ECs), which modulate the influence of these spa-
tial structures in time. Utilizing correlation analyses, these
underlying (stable) patterns of soil moisture variations can
be connected to parameters derived from topography, soil,
vegetation, land management and meteorology. Our dataset
contains “snapshots” in time and the intention of our analysis
is not to analyse continuous soil moisture seasonality. The
main objectives of this study are to identify the dominant
parameters and underlying processes controlling the stable
spatial and temporal patterns of surface soil moisture under
different soil moisture states and to examine whether the ap-
plication of this method in agriculturally used areas, which
are affected by heterogeneous, land-use dependent manage-
ment procedures, also provides reasonable results.

2 Test sites

Field measurements were carried out in a grassland test
site in Rollesbroich and an arable test site in Selhausen,
both located west of Cologne, Germany. The grassland site
(50◦37′25′′ N/6◦18′16′′ E) covers an area of approximately
20 ha with nine fields of extensively used grassland (Fig. 1).
This test site is typical for the low mountain ranges of the
Eifel. Slopes range from 0 to 10◦, while altitude ranges from
474 to 518 m a.s.l. Mean annual air temperature and aver-
age annual precipitation measured at a meteorological sta-
tion 9 km west (altitude 505 m) of the test site are 7.7◦C
and 1033 mm, respectively. No pronounced seasonality in
precipitation can be found. The dominant soils are (gleyic)
Cambisol, Stagnosol and Cambisol-Stagnosol. The grass-
land vegetation is dominated by a ryegrass society, par-
ticularly perennial ryegrass (Lolium perenne) and smooth
meadow grass (Poa pratensis).

The arable site (50◦52′10′′ N/6◦27′4′′ E) covers an area
of approximately 34.3 ha and represents an intensively used
agricultural area, where crops are grown on gentle slopes (0–
4◦). The altitude ranges from 102 to 110 m a.s.l. A mean
annual air temperature of 9.8◦C and an average precipitation
of 690 mm with slightly higher values occurring in June and
July were measured at a meteorological station 4.5 km to the
north-west (altitude 90 m). Main soils are (gleyic) Cambisol
and (gleyic) Luvisol with a high amount of coarse alluvial
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Figure 1. Topography, field layout and measuring grid of the grassland (Rollesbroich) and 
the arable test site (Selhausen). 
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Fig. 1. Topography, field layout and measuring grid of the grassland (Rollesbroich) and the arable test site (Selhausen).

deposits on a former river terrace in the eastern part. The
land cover types during the measurement period were sugar
beet (beta vulgaris), wheat (triticum aestivum), rye (secale
cereale), oilseed radish (raphanus sativus oleiformes) and
fallow.

3 Field measurements

3.1 Grassland test site

Surface soil moisture measurements for the topsoil layer (0–
6 cm) were performed on an approx. 50×50 m grid (Fig. 1).
The measurement locations were slightly adjusted according
to local conditions such as field boundaries. While the aver-
age distance to the next measurement location was 50 m, the
minimum distance was 20 m and ranged up to 60 m. Mea-
surements were taken during 14 campaigns from May 2007
to November 2008 at 41 to 96 locations. To provide represen-
tative values, each measurement location is represented by
the average of six measurements carried out within a radius
of 10 cm. Soil moisture was measured with handheld FDR
probes (Delta-T Devices Ltd., Cambridge, UK). The probes
were calibrated individually in the laboratory using a mix-
ture of water and glass beads to provide well defined water

content and tested on soil samples from the test sites. Based
on these lab procedures, the FDR probes yield an absolute
accuracy of±3 Vol.-% and a relative accuracy of±1 Vol.-%
(Delta-T Devices Ltd., Cambridge, UK). To investigate the
influence of soil texture and soil organic carbon (SOC) on the
surface soil moisture, soil samples in three depths (0–10 cm,
10–30 cm and 30–60 cm) were taken at every sampling lo-
cation. Carbon content and soil texture were determined
using mid-infrared-spectroscopy (Bornemann et al., 2008).
The results from spectroscopy analysis were calibrated to
carbon content using samples analysed with a CN Elemen-
tar Analysator (Elementar, Germany). In addition, topsoil
(0–5 cm) porosity and soil organic matter (SOM) were mea-
sured at four locations in the northern part of the test site,
where very high surface soil moisture values (up to 75 Vol.-
%) were determined (especially field F2).

3.2 Arable test site

Similarly to the grassland test site, surface soil moisture
(<6 cm) was measured in the arable test site on a grid of ap-
prox. 50×50 m (Fig. 1). Again the locations were adjusted
according to local conditions and field boundaries. Measure-
ments were taken during 17 campaigns between May 2007
and November 2008 at 44 to 118 locations. Soil information
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was taken from a high resolution soil map (Bodenkarte
1:50 000, Geologischer Dienst, North-Rhine-Westphalia). A
terrace slope with an elevation difference of about 2–3 m cuts
through the test site. Soil translocation by tillage operations
at the edge of the terrace result in a high percentage of stones
at the surface in the vicinity of the terrace slope. The up-
per terrace plain has a high stone content, while the lower
plain generally shows a lower stone content. The stone cover
on the surface within a sample area of 0.4×0.4 m was vi-
sually estimated at each measuring location using a wooden
frame. On every location, three replicate measurements were
taken. Using previously measured data of the course fraction
of soil material, a relationship between the stone cover and
the coarse fraction of the top soil layer (0–30 cm) was estab-
lished by correlation analysis for two parallel transects with
8 measurement points. This analysis resulted in a Pearson
correlation coefficient ofr=0.89. The stone cover analysis is
subsequently used in the pattern analysis. The ground based
data set was complemented by data on the tillage practice for
each field.

4 Methods

4.1 Empirical Orthogonal Functions analysis

Empirical Orthogonal Functions (EOF) analysis is one of the
best known data analysis techniques and a well established
method of multivariate data analysis (Jolliffe, 2002). The
EOF analysis, also known as principal component analysis,
decomposes the observed variability of a dataset into a set
of orthogonal spatial patterns (EOFs) and a set of time series
called expansion coefficients (ECs). While single soil mois-
ture patterns might be affected by random processes (e.g.
rainfall shortly before measuring), significant EOFs repre-
sent stable patterns of a dataset and are by definition not ran-
dom (definition of statistical significance in Sect. 4.2). The
existing degree of randomness of a single soil moisture pat-
tern is reflected by the associated EC, since the EC value
represents the proportion of the significant EOF pattern in
the soil moisture pattern of each date. In consequence, we
did not use single soil moisture patterns (which might be
random) but the EOF patterns for the subsequent correlation
analysis.

Measurements, taken at locationxi(i = 1,...p) and at time
tj (j=1,. . .n), are arranged into a matrixD (n by p:n sam-
pling times andp sampling locations), in a so called S-mode.
Each row of the matrix represents the measurements at one
point in time at all locations and each column represents a
time series of measurements for a given location. To anal-
yse the spatial variability of the data, a matrixF is computed
from the matrixD by subtracting the average of each row of
the data matrixD (average soil moisture for a given observa-
tion time over all measurements locations). Analogously, to
analyse the temporal variability, the average of each column

is subtracted from matrixD (average soil moisture for a given
location for all measurements conducted at that location). In
the next step, the covariance matrixR (p by p) of the data
matrixF is calculated:

R =
1

N −1
FtF (1)

where the superscriptt indicates a transposed matrix andN

is the number of observations.
R is diagonalized to find the eigenvectors and eigenvalues:

RC = C3 (2)

where3 (p by p) is a diagonal matrix containing the eigen-
valuesλi of R, andC (p by p) contains the eigenvectorsci

of R in the column vectors, corresponding to the eigenval-
uesλi . For more details on the procedure see Jolliffe (2002);
Hannachi (2007) or Preisendorfer (1988).

This procedure rotates the original coordinate axes in a
multidimensional space to align the data along a new set of
orthogonal axes in the direction of the largest variance. Thus,
the first axis or eigenvector is oriented in the direction that
explains the largest variance. The subsequent axes are con-
strained to be orthogonal to the axes computed before and
consecutively explain the largest part due to the remaining
covariance. The eigenvectorsci in the columns of the matrix
C are the EOFs. The EOFs represent patterns or standing
oscillations that are invariant in time. To analyse how the
EOFs evolve in time, the expansion coefficients (ECs) asso-
ciated with each EOF are calculated by projecting the matrix
F onto the matrixC:

A = FC (3)

where the matrixA contains the expansion coefficientsai in
the column vectors.

The EOF analysis producesp (p=sampling locations)
EOF/EC pairs, but only min (n,p) eigenvalues (n=sampling
times) are greater than zero and only a subset (usually a much
smaller set) of these positive eigenvalues are meaningful. In
general, the EOFs and ECs are rearranged in descending or-
der due to their eigenvalues, so that the first EOF (EOF1) is
associated with the largest eigenvalue. The fraction of vari-
ance explained (EV) by each EOF can be found by dividing
the associatedλi by the sum of all eigenvalues (the trace of
3):

EVi =
λi

p∑
i=1

λi

(4)

Following Björnsson and Venegas (1997) and Hannachi et
al. (2007), the EOFs and the ECs can be determined very
efficiently by singular value decomposition (SVD) without
computing the covariance matrix and solving the eigenvalue
problem. This decomposition by SVD provides a compact
representation, because it drops unnecessary zero singular
values (equivalent to zero eigenvalues).
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4.2 Selection of significant EOFs

After decomposition, the EOFs and ECs can be used to re-
construct the full variability of the dataset by selecting all
EOF/EC pairs. However, to approximate and compress a
dataset, only the first few EOF and EC pairs that explain the
largest fraction of variance are usually selected. This results
in a reduction of dimensionality. By truncating the system,
a “cleaner” version of the dataset is constructed, because
random noise contained in the higher order EOFs is elimi-
nated (Bj̈ornsson and Venegas, 1997; Preisendorfer, 1988).
In practice, this truncation is often achieved by selecting a
threshold for the overall explained variance (e.g. 80%) and
choosing the set of leading EOFs that cumulatively explain
at least this amount of variance. A prerequisite for the phys-
ical interpretation of single EOFs is that the EOFs are signif-
icantly different from each other. The linear combination of
two EOFs, which are not significantly different and therefore
degraded, may be based upon the same underlying physical
processes. Thus, any linear combination of patterns based on
degraded EOFs is as significant as each one of them (Han-
nachi et al., 2007).

To estimate the correct number of significant patterns
(EOFs) for the subsequent physical interpretation, two se-
lection rules are applied. One rule utilizes a measure of un-
certainty for the eigenvalues and is summarized by the rule
of thumb (North et al., 1982) defining the typical error (1)
of eigenvalues:

1(λi) ≈ λi

√
2

s
(5)

wheres is the number of independent samples (or the number
of degrees of freedom).

The 95% confidence interval (CI95) for each eigenvalue is
then given by:

CI95 (λi) ≈ λi(1±

√
2

s
) (6)

The EOFs are considered to be significantly non degenerate
if the 95% confidence intervals of the neighbouring eigenval-
ues do not overlap.

An additional rule is to use Monte Carlo simulations
to estimate the uncertainties of the eigenvalues (Rule N;
Preisendorfer, 1988). The eigenvalues of the measured data
set have to be significantly higher than the eigenvalues of a
random dataset. To test this, one thousand realisations of nor-
mally distributed surrogate data sets with a zero mean and
a standard deviation of one in the dimension of the matrix
of the original dataset (n by p) are calculated and analysed
by the EOF analysis. From the results of these one thou-
sand realisations, the upper 95% confidence interval of the
eigenvalues is calculated and taken as the limit for the signif-
icance of the eigenvalues of the measured dataset. Another
calculation with randomized measured values instead of nor-
mally distributed surrogate data resulted in the same number

of significant EOFs and is not additionally presented here. In
this calculation, the positions of the elements of the real mea-
surement data matrix were randomized along one dimension.
For the spatial Monte Carlo-analysis, the positions of the el-
ements in every row (all measurements on every single date),
for the temporal Monte Carlo-analysis, the positions of the
elements in every column (all measurements at every single
point) were randomized.

Both selection rules were used in our data analysis to de-
termine the number of significant EOF/EC pairs. Both re-
quire knowledge of the number of independent samples (s).
In Eq. (6), the number of independent samples was used di-
rectly to estimate the errors of the eigenvalues and in the
Monte Carlo analysis, the dimensions of the surrogate data
matrix were changed from (n by p: n sampling times andp
sampling locations) to (n by s) for the spatial and to (s by p)
for the temporal analysis, resulting in a higher limit for the
first few EOFs to be considered significant. This number of
independent samples (or degrees of freedom) is calculated in
Sect. 5.2.

4.3 Secondary parameters and correlation analysis

The aim of the EOF analysis is to identify stable spatial and
temporal patterns in a set of surface soil moisture measure-
ments. To identify the dominant drivers governing the sur-
face soil moisture patterns, the EOFs were correlated with
secondary parameters derived from topographical, soil, vege-
tation, land management and meteorological data. The EOFs
may only be correlated with parameters that are invariant in
time. The temporal development of biomass may explain, to
some degree, the soil moisture patterns at a given day due to
growth, cutting or grazing for instance, but it does not pro-
vide a temporally invariant signal and is therefore not suit-
able to explain the EOF patterns. Accordingly, it is only use-
ful to correlate the EC time series with parameters which are
invariant in space. This condition can be assumed to be valid
for the parameter precipitation, because of the small size of
our test sites.

The parameters used in our correlation analysis are associ-
ated with parameters determining vertical/local (e.g. field ca-
pacity, soil texture, SOC etc.) and horizontal/non-local (e.g.
elevation, flow accumulation, curvature etc.) water flow. El-
evation, multiple flow accumulation (e.g. specific drainage
area), natural log of the multiple flow accumulation, slope,
slope−1, horizontal curvature, vertical curvature and Wetness
Index are computed from a 10 m DEM (Sci Lands, 2008)
with ArcGis 9.2 (ESRI, USA). Soil type data in the grass-
land test site was derived from the 1:5000 soil map (Geol-
ogischer Dienst, North-Rhine-Westphalia) and was particu-
larly used to delineate an gleyic area (Stagnosol; imperme-
able soil layer). Field capacity in the arable test site was
derived from the 1:50 000 soil map (Geologischer Dienst,
North-Rhine-Westphalia). The percent of surface stone cover
in the arable test site and the percent clay, silt, sand and SOC
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in the grassland test site were measured. Topographic param-
eters such as Wetness Index, Flow Accumulation, Slope and
Curvature were not computed for the arable test site, since
in this predominantly flat area, the flow path is affected by
features such as field boundaries and tillage tracks within the
field rather than the slope given in the DEM.

5 Results

5.1 Analysis of field measurements

Both test sites show a large range of different soil mois-
ture conditions (Figs. 2, 3), ranging from very dry condi-
tions (22.2 Vol.-% in the grassland test site, and 19.5 Vol.-
% in the arable test site) to very wet conditions (54.3 Vol.-
%, 32.5 Vol.-%, respectively). The soil moisture over
all measurements generally indicates higher average values
(46.5 Vol.-%) for the grassland site as compared to the arable
test site (26.6 Vol.-%) and a lower spatial variability (coeffi-
cient of variance (CV): 9.6% for grassland, 14.2% for arable
land). The average standard deviation of the soil moisture
over all days of measurement in the grassland test site was
4.5 Vol.-% (Min.: 3.2 Vol.-%, Max.: 5.8 Vol.-%,) and in the
arable test site, it was 3.8 Vol.-% (Min.: 2.3 Vol.-%, Max.:
6.3 Vol.-%). Due to the higher soil moisture status in the
grassland test site, the range of the average soil moisture in
the grassland test site (32.1 Vol.-%) exceeded the respective
range in the arable test site (13.1 Vol.-%). These differences
are due to the higher precipitation, the higher soil porosity
and the higher amount of soil organic carbon content (SOC)
in the topsoil of the grassland test site. Extremely high sur-
face soil moisture values were particularly measured in field
F2 in the grassland test site, which is located in the lowest
part of the test site. Due to the dense root network of the grass
cover, the amount of soil organic matter (SOM) in the top-
soil is higher than 8 Vol.-%. Hence low bulk densities (0.57
to 0.83 g cm−3) prevail, with smallest values measured in the
lower northern part of the test site with dominating gleyic
soils. Due to the high organic content in this area, the max-
imum porosity reached values of up to 70% in the topsoil.
In the arable test site, the maximum measured soil moisture
reached 40%. The length of the whiskers in Fig. 2 indicates
a large spatial variability of the surface soil moisture in the
grassland test site. The average range of the soil moisture val-
ues measured in the grassland test site is 25.3 Vol.-% (Min.:
14.3 Vol.-%, Max.: 36.1 Vol.-%) and 18.4 Vol.-% (Min.: 9.1
Vol.-%, Max.: 25.9 Vol.-%) in the arable test site. The mea-
surements of the 14 measurement campaigns in the grassland
test site and the 17 in the arable test site accumulate to a total
number of 17124 FDR-measurements. To avoid the imputa-
tion of missing values and to keep the results interpretable,
the EOF analysis was computed with a continuous data set
without missing data. Thus only 8 of the 14 measurement

days from the grassland test site and 10 of the 17 measuring
days from the arable test site were used for the subsequent
analysis.

5.2 Degrees of freedom

For the evaluation of spatial interdependencies between the
measurement locations, a spatial autocorrelation analysis
was performed, calculating Moran’s I statistic (Moran, 1950)
for a number of distance classes. This statistic calculates val-
ues between 1 (indicating perfect correlation) and−1 (per-
fect dispersion) between the different distant classes, a value
of 0 indicates a completely random pattern. A number of
25 distance classes, each containing 183 data pairs for each
day of measurement, were calculated for the grassland. For
the arable test site, 30 classes were computed. Over all mea-
surement campaigns, we determined an average autocorrela-
tion length of 117 m for the grassland test site and 123 m for
the arable test site. Hence, 16% (grassland) and 9% (arable
land) of all distance pairs are assumed to be autocorrelated.
The number of significant EOFs is sensitive to the number
of independent samples (degrees of freedom). Thus, to ac-
count for the influence of spatial autocorrelation on the eval-
uation of significant EOFs, the number of sampling locations
was reduced by these percentages of autocorrelated distance
pairs, resulting in 81 and 107 independent spatial sampling
locations for the grassland test site and the arable test site,
respectively. For the temporal analysis, dates of each mea-
surement campaign were considered to be independent, if
the time span between two measurement dates added up to
at least 20 days. This resulted in 6 and 8 degrees of freedom
for the calculation of significance in the time domain.

5.3 EOF-Analysis

The analysis of the spatial patterns in the grassland test
site yields a set of 8 EOF/EC pairs. EOFs calculated for
analysing spatial patterns are referred to as spatial EOFs.
Analogously, EOFs calculated to investigate temporal pat-
terns are referred to as temporal EOFs. The spatial EOF1 of
the grassland test site explains 57.5% of the spatial variance
of the dataset, while EOF2 explains only 10.2% (Fig. 4a).
The 95% confidence limit of the Monte Carlo simulation ex-
ceeds the explained variance of EOF2 to EOF8. Also, the
95% confidence interval of EOF1 does not overlap with the
neighbouring EOFs. As a result, the first EOF is significant.
The pattern of the spatial EOF1 (Fig. 5a) shows high posi-
tive values. This indicates higher than average soil moisture
values in the northern part (fields F1, F2 an F3), which is in
the valley section of the test site. Highest positive values can
be found in field F2. Minimum values with negative signs
are located in the central part of the test site (field F6). The
EOF values increase slightly towards the southern part. The
associated expansion coefficient (spatial EC1, Fig. 5b) shows
a maximum value on 29 April 2008 and a minimum value on
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Figure 2. Box-Whisker-Plot for the grassland site of all days of surface soil moisture 
measurements; the bottom and top of the box show the lower and upper quartiles, the band 
near the middle of the box is the median, the ends of the whiskers represent the measured 
minimum and maximum surface soil moisture; the number to the right of each box indicates 
the number of sampling locations for each date; data sets without gaps (n = 96) were used for 
the EOF analysis.  
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Fig. 2. Box-Whisker-Plot for the grassland site of all days of surface
soil moisture measurements; the bottom and top of the box show the
lower and upper quartiles, the band near the middle of the box is the
median, the ends of the whiskers represent the measured minimum
and maximum surface soil moisture; the number to the right of each
box indicates the number of sampling locations for each date; data
sets without gaps (n=96) were used for the EOF analysis.

3 June 2008. This maximum EC1 values coincides with the
high average soil moisture values on these measuring dates,
while the low EC values indicate dry conditions.

The analysis of the spatial patterns in the arable test site
yields a set of 10 EOF/EC pairs. The spatial EOF1 ex-
plains 38.4% and EOF2 28.3% of the spatial variability of the
dataset (Fig. 6a). Only these first two EOFs satisfy the signif-
icance requirements, because the 95% confidence intervals
of their eigenvalues neither overlap with neighbouring confi-
dence intervals nor are their eigenvalues within the 95% con-
fidence interval of the eigenvalues of the Monte Carlo sim-
ulation. All eigenvalues and confidence limits can be con-
verted intoEV-values (see Figs. 4a, b, and 6a, b) according
to Eq. (4). The spatial EOF1 (Fig. 7a) shows the lowest neg-
ative values in the eastern part of the test site and an irregular
and patchy pattern with higher values in the rest of the test
site. The EOF2 (Fig. 7b) shows a two peaked distribution
with high positive values on some fields contrasted by low
negative values on other fields with an abrupt change of the
EOF values typically at the field boundaries. The values of
the EC1 (Fig. 7c), which express the weight of the EOF1 on
the different dates, are positive on all dates and reach a max-
imum value on 27 July 2007 and a minimum value on 24
April 2008. The values of the EC2 (Fig. 7d) show a mini-
mum value with a negative sign on 19 September 2008 and
a maximum and positive value on 27 July 2007. Thus, the
influence of the EOF1 varies only gradually during the dates
of measurements, while the EOF2 reverses its influence in an
annual cycle.
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Figure 3. Box-Whisker-Plot for the arable test site of all dates of measurements; the bottom 
and top of the box show the lower and upper quartiles, the band near the middle of the box is 
the median, the ends of the whiskers represent the measured minimum and maximum surface 
soil moisture; the number to the right of each box indicates the number of sampling locations 
for each date; data sets without gaps (n = 118) were used for the EOF analysis. 
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Fig. 3. Box-Whisker-Plot for the arable test site of all dates of mea-
surements; the bottom and top of the box show the lower and upper
quartiles, the band near the middle of the box is the median, the
ends of the whiskers represent the measured minimum and max-
imum surface soil moisture; the number to the right of each box
indicates the number of sampling locations for each date; data sets
without gaps (n=118) were used for the EOF analysis.

Both analyses, for the grassland and the arable test site, re-
sulted in only one significant temporal EOF/EC pair (Figs. 4b
and 6b). The temporal EOF1 of the grassland test site ex-
plains 92% of the temporal variance and all values are posi-
tive. It shows a pattern similar to the spatial EOF1. Smaller
and negative values occur in the northern part of the test site.
However, the pattern is more irregular and patchy (Fig. 8a) as
compared to the spatial EOF. The temporal EC1 has a max-
imum value on 27 May 2008 and a minimum value on 29
April 2008 (Fig. 8b). The temporal EOF1 of the arable test
site explains about 72.5% of the temporal anomalies of the
data set (Fig. 6b) and has all positive values with maximum
values in field F3 in the eastern part of the test site (Fig. 9a).
The associated EC1 has the highest positive value on 2 Oc-
tober 2007 and the lowest negative value on 10 September
2008 (Fig. 9b).

The interpretation of the results from spatial and temporal
EOF analyses requires the consideration of the sign of the
EOF values and the sign of the associated EC values, because
the soil moisture variability explained by this EOF/EC pair
(anomalies) is computed by multiplying EOF and EC.

5.4 Correlation analysis

The spatial patterns computed from the EOF analysis were
correlated with different parameters for the grassland (Ta-
ble 1) and the arable test sites (Table 2). These parame-
ters were derived from topography, soil, vegetation and land
management data and allow relating the patterns found in the
EOF analysis to the driving processes. Only significant cor-
relations of the EOF patterns with the parameters are pre-
sented here. The spatial patterns determined for the grassland
test site show the highest Pearson correlation coefficient with
elevation and the soil property gleyic/non gleyic. By distin-
guishing between gleyic and non gleyic soils, an ordinal scale
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Figure 4. Variance spectrum of the spatial (a) and temporal (b) analysis in the grassland test 
site. Error bars indicate the 95% confidence interval according to Eq. (6); the solid line 
represents the significance limit calculated by Monte Carlo simulation. 
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Fig. 4. Variance spectrum of the spatial(a) and temporal(b) analysis in the grassland test site. Error bars indicate the 95% confidence
interval according to Eq. (6); the solid line represents the significance limit calculated by Monte Carlo simulation.

was defined for use in the correlation analysis. The highest
correlation for the temporal pattern was with SOC, percent-
age of sand in the topsoil (0–10 cm) and soil type. In the
arable test site, the first spatial pattern was highly correlated
with elevation and soil parameters, particularly the percent-
age of stone cover and field capacity (Table 2). The correla-
tions of the parameters with the temporal EOF1 pattern were
smaller but also highly significant. The second spatial pattern
(EOF2) cannot be correlated with any of the tested parame-
ters. The temporal course of the EC1 values of the spatial
analysis in both test sites shows a high correlation coeffi-
cient with the average soil moisture (r=0.73 for grassland,
r=−0.71 for arable land). The temporal course of the EC1
patterns for the temporal analysis shows a perfect correlation
to the mean soil moisture for both test sites (Table 3). The
different signs of the Pearson correlation coefficients are due
to the different signs of the EOF values. Several parameters
used to explain the EOFs are correlated (e.g. field capacity, %
sand, % silt and % clay) and point to the same hydrological
process.

6 Discussion

6.1 Spatial analysis

The analysis performed on the spatial variability in the grass-
land test site shows that the main soil moisture pattern (spa-
tial EOF1) is strongly related to soil properties and explains
about 57.5% of the spatial soil moisture variation. The highly
significant correlations with the soil property gleyic / non
gleyic (r=0.7), soil texture (e.g. % sand 0–10 cm:r=−0.42),
and SOC (r=0.47 for 0–10 cm andr=0.37 for 10–30 cm)
indicate a clear link to infiltration (locally controlled verti-
cal process). The impermeable Stagnosol layer resulted in
a higher amount of organic matter and also in a very high
porosity in the topsoil at these points. The pattern is also
linked to catchment topography. The correlations to pa-

Table 1. Pearson correlation coefficients between EOFs and topo-
graphic and soil parameters for the grassland test site; Curvature
H/V, % Clay 0–10 cm, 10–30 cm and % SOC 30–60 cm were addi-
tionally tested but not significant;EV is the variance explained by
the EOF.

Grassland spatial EOF1 temporal EOF1
(57.5%EV) (92%EV)

Elevation [m] −0.57(**) 0.27(**)
Flow Accumulation 0.32(**) −0.24(*)
ln (Flow Accumulation) 0.45(**) −0.23(*)
Slope [◦] 0.46(**) not significant
1/Slope [◦] −0.32(**) not significant
Wetness Index 0.34(**) not significant
Soil Parameter gleyic/ 0.70(**) −0.34(**)
non gleyic
Sand [%]
0–10 cm −0.42(**) 0.33(**)
10–30 cm −0.4(**) 0.27(**)
30–60 cm −0.4(**) 0.26(*)
Silt [%]
0–10 cm 0.41(**) −0.30(**)
10–30 cm 0.35(**) −0.22(*)
30–60 cm 0.41(**) −0.24(*)
Clay [%]
30–60 cm not significant 0.21(*)
SOC{%]
0–10 cm 0.47(**) −0.44(**)
10-30 cm 0.37(**) −0.25(*)

* Correlation is significant at the 0.05 level (2-tailed test).
** Correlation is significant at the 0.01 level (2-tailed test).

rameters such as elevation (r=−0.57), natural logarithm of
flow accumulation (r=0.45), slope (r=0.46) and Wetness In-
dex (r=0.34) indicate that the spatial pattern is related to
landscape position, which is affected by two processes: the
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Table 2. Pearson correlation coefficients between EOFs and topographic and soil parameters for the arable test site;EV is the variance
explained by the EOF.

Arable land spatial EOF1 spatial EOF2 temporal EOF1
(38.4%EV) (28.2%EV) (72%EV)

Elevation [m] −0.73(**) not significant 0.47(**)
Surface stone cover [%] −0.79(**) not significant 0.48(**)
Field capacity [%] 0.75(**) not significant −0.41(**)

** Correlation is significant at the 0.01 level (2-tailed test)

position within the landscape determines (i) the redistribu-
tion of water through surface runoff and subsurface drainage
and (ii) the amount of solar radiation received at this position,
which affects the amount of evapotranspiration.

Perry and Niemann (2007) applied an EOF analysis to the
widely studied soil moisture dataset of 459 locations at 13
campaigns from the 10.5 ha Tarrawarra grassland catchment
(Western and Grayson, 1998; Western et al., 1998, 2001,
1999a, b). The first EOF in their study explained 55% of
the spatial variability of soil moisture. Similar to our results,
a clear dependence on hillslope and valley topography was
determined which was most prominent during wet periods.
Our EOF analysis yielded one significant spatial EOF ex-
plaining 57.5% of the variance. Due to the smaller size of our
dataset, the spatial EOF2 (10% explained variance) is statisti-
cally degenerated, whereas the second EOF in the study done
by Perry and Niemann (2007) explained 9% of the spatial
variability and could be related to the exposition (or PSRI;
Potential Solar Radiation Index). Yoo and Kim (2004) inves-
tigated the characteristics of spatial and temporal variability
of soil moisture and the relative roles of various affecting
factors with the data of the SGP97 Little Washita field site
(Famiglietti et al., 1999). Their first EOF accounted for more
than 70% of the variability for interstorm periods and more
than 60% for the whole dataset. The most important factors
are topography related to a decreasing role after rainfall stops
and an increasing role of soil- and land-use-related factors.
Jawson and Niemann (2007) decomposed remotely sensed
soil moisture data from the SGP97 field campaign with an
EOF analysis and found a single pattern explaining 61% of
the observed spatial variability. The physical characteristic
most related to the EOF pattern seemed to be soil texture
(percent sand and percent clay). In contrast to the findings of
Yoo and Kim (2004), topographic characteristics were rela-
tively unimportant and even less relevant for dry conditions.
Jawson and Niemann (2007) attributed this to the fact that
topographic characteristics may influence soil moisture pat-
terns mainly through lateral flow. However, lateral flow was
not observed at the scale of this study.

In summary it can be stated that our findings are in agree-
ment with the previously mentioned studies that about 55%
to 70% of surface soil moisture variability can be explained

Table 3. Pearson correlation coefficients between ECs and the soil
moisture average from each measuring campaign.

Soil Moisture
Average [%]

Grassland spatial EC1 0.73(**)
Grassland temporal EC1 −1.00(**)

Arable land spatial EC1 −0.71(**)
Arable land spatial EC2 not significant
Arable land temporal EC1 1.00(**)

**Correlation is significant at the 0.01 level (2-tailed test).

by stable patterns and is correlated to soil parameters and to-
pography. On the other hand, our result for the grassland test
site indicates that 42.5% of the spatial variability changes in
time and can therefore not be explained by a stable spatial
pattern. This portion of the overall variance is mainly due
to differences in management (grazing, cutting and fertiliz-
ing) of the different fields. Also random noise due to mea-
surement errors contributed to the unexplained variance. In
the EOF analysis of spatial patterns, the impact of tempo-
rally variable factors, which do not affect the whole area uni-
formly, results in noise, decreases the amount of the variance
explained by the significant EOFs or decreases the number
of significant EOFs. In addition, a difficulty in interpret-
ing the results for the grassland test site is the not exactly
known location and functionality of old drainage pipes in
field F6. While the low values of field F6 might indicate that
the drainage tiles are still functioning, a clear relationship
with this effect cannot be established. The existence of func-
tioning drainage tiles should yield a stable spatial pattern.

The spatial EC1 is positively correlated with the average
soil moisture of the measuring days, meaning that EOF1 re-
flects more the structure of soil moisture during wet days
than during dry days. As expected, during wet periods, lat-
eral redistribution of water over longer distances is possible
and the effect of the impermeable soil layer of the soil type
(Stagnosol) on surface soil moisture is more pronounced.
This leads, in combination with the higher amount of organic
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matter and higher porosity in the topsoil of the Stagnosol area
of the test site, to very high topsoil moisture values (up to
75 Vol.-%). The impact of the Stagnosols decreases as the
soil dries with increasing evapotranspiration. Prior findings
of Perry and Niemann (2007), indicating a pronounced de-
crease of the weight of the spatial EOF1 pattern on very dry
and very wet conditions, cannot be confirmed by our dataset.
Potential causes of this discrepancy might be stronger sea-
sonality in the Tarrawarra catchment and the lack of dry con-
ditions during the measurements in our grassland test site.
Also, the first EOF in the Tarrawarra test site is primarily re-
lated to landscape position and the associated lateral redis-
tribution of water and subordinately to evapotranspiration,
while our first EOF is rather related to soil properties than
landscape position.

Most of the previous studies at a comparable spatial scale
to our study focussed on test sites with little management
impacts. Our study also investigated spatial anomalies in an
arable test site. Our results show, that the first spatial EOF
in the arable test site is still related to soil properties, namely
surface stone cover (r=−0.79) and field capacity (r=0.75)
and explains 38.4% of the variance. However, the second
EOF indicates effects originating from different seasonality
in tillage operations of the different fields. The spatial pat-
terns of the first EOF can be explained from the effects of an
old river terrace which crops out in the eastern part of the test
site approximately at an elevation of 107 m (see Fig. 1) and
causes a high amount of coarse alluvial deposits in the adja-
cent fields (F1/3/4), especially on field F3. Both parameters,
stone cover and field capacity, point at the importance of spa-
tial differences of soil properties in relation to soil moisture
dynamics. The highly significant correlation with elevation
(r=−0.73) must be seen as an artefact from the cross cor-
relation of the presence of outcrop of the old river terrace
and its position in the elevation gradient. The correlation be-
tween the spatial EC1 and the average soil moisture (r=0.71)
shows that the influence of the EOF1 pattern associated with
soil properties is more pronounced on dry dates. Due to the
lower porosity in the eastern part of the test site, soil moisture
decreases more rapidly after precipitation.

The spatial EOF2 shows no significant correlation with
any of the tested parameters. However, the variation of
the spatial EOF2 values is quite small within the individ-
ual fields (coefficient of variation (CV) between−5.2 and
0.6%) while it is pronounced between different fields (CV:
−43.5%), which indicates that the EOF2 pattern is domi-
nated by a different seasonality in tillage operations in dif-
ferent fields. The importance of tillage operations on soil
moisture can be shown for soil moisture dates with similar
patterns to the spatial EOF2 values (27 July 2007 between
the adjacent fields F5 and F6; 19 September 2008 between
the adjacent fields F1 and F2). On both dates, the wetter
field of the two was harvested while the drier field was also
ploughed the week before the measurements. Because of the
higher porosity after ploughing, soil moisture decreased in-
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Figure 5. EOF1 (a) and EC1 (b) patterns of the 
spatial analysis in the grassland test site; the 
triangles in (b) represent the average soil 
moisture on the different days. 
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Fig. 5. EOF1 (a) and EC1(b) patterns of the spatial analysis in
the grassland test site; the triangles in (b) represent the average soil
moisture on the different days.

ducing a steep gradient at the field boundaries. The highest
positive and negative values of the spatial EC2 can be found
on days with low average soil moisture, when some field
were ploughed just before the measurements (27 July 2007,
16 September 2008 and 19 September 2008). Due to mul-
tiple vegetation periods being covered in our multi-annual
dataset, there is no spatial stability with regards to land man-
agement effects. This is reflected in the negative and positive
values of the spatial EC2 in our measurements, indicating a
reversing management pattern. Thus, we can identify the in-
fluence of the land management by tillage (i.e. the increase of
pore volume after ploughing and differences in evaporation)
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 32

 

Figure 6. Variance spectrum of the spatial (a) and temporal (b) analysis in the arable test site. 
Error bars indicate the 95% confidence interval according to Eq. (6); the solid line represents 
the significance limit calculated by Monte Carlo simulation. 
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Fig. 6. Variance spectrum of the spatial(a) and temporal(b) analysis in the arable test site. Error bars indicate the 95% confidence interval
according to Eq. (6); the solid line represents the significance limit calculated by Monte Carlo simulation.
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Figure 7. EOF1 (a), EOF2 (b), EC1 (c) and EC2 (d) patterns of the spatial analysis in the 
arable test site; the triangles in (c) and (d) represent the average soil moisture on the 
different days. 
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Fig. 7. EOF1(a), EOF2(b), EC1(c) and EC2(d) patterns of the spatial analysis in the arable test site; the triangles in (c) and (d) represent
the average soil moisture on the different days.
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and different crop rotation or vegetation heights, resulting in
differences of transpiration. These results from the spatial
analysis show that it is possible to apply EOF analyses on
managed agricultural fields or regions. The structure of our
dataset with alternating management patterns in the two con-
secutive years of measurements allows to detect not only the
stable pattern (connected with soil parameters), but also the
non stable pattern of different land management options on
the different fields.

6.2 Temporal analysis

The temporal analysis identifies locations with large tempo-
ral variability. These locations are identified by high abso-
lute numbers in Fig. 8a. Both temporal EC1s have a perfect
correlation with the average soil moisture on the days of the
measurements, substantiating the control of these patterns by
wet and dry periods. The existence of only one dominant
mode of temporal variability in each test site, with all nega-
tive EOF1 values in the grassland test site and all positive
EOF1 values in the arable test site, indicates a consistent
reaction of the soil moisture values on dry and wet periods
in the same direction on each test site. Both test sites are
small enough to assume homogeneous precipitation across
the fields over the time of measurements. The comparatively
high value of explained variance (13.1%) of the temporal
EOF2 in the arable test site might indicate the influence of
land management. The temporal EOF1 in the grassland test
site explains 92% of the temporal variance. This is related to
soil properties (e.g. % SOC:r=−0.44; Soil Type:r=−0.34;
% Sand:r=0.33) and catchment topography (e.g. Elevation:
r=0.27). Therefore, the highest soil moisture variability dur-
ing dry and wet periods in the grassland test site is located in
its low-lying parts. Here also high SOC contents in the top-
soil can be found. These high topsoil SOC contents are asso-
ciated with areas where higher soil moisture content prevails
over longer time periods resulting from and indicated by the
Stagnosols. In the arable test site, the points with the high-
est temporal EOF1 values are correlated with surface stone
cover (r=0.48) and field capacity (r=−0.41), implying that
soil moisture varies more on locations with low porosity. At
these locations higher thermal conductivity and lower wa-
ter holding capacity, caused by higher content of the coarse
fraction in the soil, lead to a higher temporal variance of soil
moisture.

7 Conclusions

Empirical Orthogonal Function analysis was used to detect
the stable spatial and temporal patterns of surface soil mois-
ture. A subsequent correlation analysis was used to identify
the dominant parameters and underlying processes control-
ling the stable (significant) spatial and temporal patterns of
surface soil moisture under different soil moisture states. In
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Figure 8. EOF1 (a) and EC1 (b) patterns of the 
temporal analysis in the grassland test site; the 
triangles in (b) represent the average soil 
moisture on the different days. 
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Fig. 8. EOF1(a) and EC1(b) patterns of the temporal analysis in
the grassland test site; the triangles in (b) represent the average soil
moisture on the different days.

the grassland test site (Rollesbroich), one significant spatial
pattern, explaining 57.5% of the spatial soil moisture vari-
ability, was determined. This pattern is related to soil prop-
erties (soil type) and topography. Its dominance is largest
during or shortly after wet periods, because under wet condi-
tions, the lateral redistribution of water and the varying infil-
tration by different soil types becomes more important. An-
other significant spatial pattern accounting for the differences
in land management (grazing, cutting, fertilizing) could not
be identified for the grassland site. The highest soil moisture
variability was in the lower parts of the test site at locations
with a high percentage of SOC and influenced by the soil
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Figure 9. EOF1 (a) and EC1 (b) patterns of the 
temporal analysis in the arable test site; the 
triangles in (b) represent the average soil 
moisture on the different days. 
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Fig. 9. EOF1(a) and EC1(b) patterns of the temporal analysis in
the arable test site; the triangles in (b) represent the average soil
moisture on the different days.

type in that area. In the arable test site (Selhausen), two sig-
nificant patterns controlling the major part of the spatial vari-
ability were determined. The first pattern (spatial EOF1), ac-
counting for 38.4% of the variance, is strongly related to soil
properties (surface stone cover and field capacity). The im-
pact of this pattern is more pronounced during dry periods,
indicating a compensating effect of precipitation. The sec-
ond pattern (spatial EOF2) explains 28.3% of the variance
and can be assigned to different land management patterns,
influencing soil properties and increased evaporation due to
tillage as well as transpiration, due to different crops and dif-
ferent dates of sowing and fertilization. More than 66% of
the spatial variability of surface soil moisture in the arable
test site can be explained by these two patterns associated
with soil properties and land management. The highest tem-
poral variability of soil moisture during the dry and wet peri-
ods can be found on locations with low porosity. The struc-

ture of our dataset with alternating management patterns in
the arable test site in two consecutive years of measurements
allows detecting not only the stable pattern (connected with
soil parameters), but also the non stable pattern of different
land management options on different fields.

In general, a combination of EOF and correlation analysis
provides an objective method to identify the dominant pa-
rameters controlling spatio-temporal patterns of surface soil
moisture, without being affected by single random processes.
This is even possible in intensively managed agricultural ar-
eas. Moreover, this combination has the capability to quan-
tify the proportion of influence of different parameters on soil
moisture patterns under different soil moisture states.
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