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Abstract. In many climate impact studies hydrological mod-
els are forced with meteorological data without an attempt to
assess the quality of these data. The objective of this study
was to compare downscaled ERA15 (ECMWF-reanalysis
data) precipitation and temperature with observed precipi-
tation and temperature and apply a bias correction to these
forcing variables. Precipitation is corrected by fitting it to
the mean and coefficient of variation (CV) of the observa-
tions. Temperature is corrected by fitting it to the mean and
standard deviation of the observations. It appears that the
uncorrected ERA15 is too warm and too wet for most of the
Rhine basin. The bias correction leads to satisfactory results,
precipitation and temperature differences decreased signif-
icantly, although there are a few years for which the cor-
rection of precipitation is less satisfying. Corrections were
largest during summer for both precipitation and tempera-
ture. For precipitation alone large corrections were applied
during September and October as well. Besides the statistics
the correction method was intended to correct for, it is also
found to improve the correlations for the fraction of wet days
and lag-1 autocorrelations between ERA15 and the observa-
tions. For the validation period temperature is corrected very
well, but for precipitation the RMSE of the daily difference
between modeled and observed precipitation has increased
for the corrected situation. When taking random years for
calibration, and the remaining years for validation, the spread
in the mean bias error (MBE) becomes larger for the cor-
rected precipitation during validation, but the overal average
MBE has decreased.
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1 Introduction

Regional Climate Models (RCMs) are an important source of
climate input for hydrological models. RCMs are often em-
ployed for downscaling General Circulation Model (GCM)
output and reanalysis data. Hydrological models are sub-
sequently forced with RCM data to address the impact of
climate change on the hydrological response of river basins.
For examplede Wit et al.(2007) investigated the impact of
climate change by applying the HBV model (Bergstr̈om and
Forsman, 1973; Lindström et al., 1997) to the Meuse basin,
Kleinn et al.(2005) investigated the impact of climate change
to the Rhine basin by forcing the WaSiM-ETH model with
regional climate model (RCM) output, andHurkmans et al.
(2010) investigated the impact of climate change on stream-
flow dynamics of the Rhine basin by forcing the Variable In-
filtration Capacity (VIC) model (Liang et al., 1994) with dif-
ferent climate scenarios. Another example of the use of RCM
output as input for hydrological applications is given byKay
et al. (2006), who used the output of HadRM3H (RCM) as
input for a hydrological model to provide estimates of change
in flood frequency between the 1970s and 2080s, for 15
catchments across Great Britain. In addition,Steele-Dunne
et al.(2008) evaluated the impact of climate change on nine
Irish catchments by forcing the HBV-light model with RCA3
(RCM) output to simulate streamflow in a reference period
(1961–2000) and a future period (2021–2060) under the Spe-
cial Report on Emissions Scenarios (SRES) A1B scenario.

Nowadays, modelers are aware of the uncertainty involved
in modeling, and the necessity to quantify the model output
reliability (Beven, 1989). Spatially distributed models are
often forced with RCM output (e.g., REMO,Jacob, 2001),
because observations are scarce on the spatial and tempo-
ral resolution at which these spatially distributed models are
employed. However, in many of these climate impact stud-
ies (e.g.,Middelkoop et al., 2001), the hydrological model is
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forced with RCM data, without an attempt to assess the qual-
ity of the RCM data. Obviously, the reliability of the spa-
tially distributed model output is strongly dependent on the
quality of the climate forcing data.Christensen et al.(2008)
state that one inherent source of uncertainty comes from the
RCM’s inability to simulate present-day climate conditions
accurately. Therefore it is of major importance that RCM
output is validated with historical observations, before cali-
brating the hydrological model with the RCM data. Applying
a bias correction to the RCM data often seems necessary to
match the RCM data with the observations (Shabalova et al.,
2003; Kleinn et al., 2005; Leander and Buishand, 2007). It
is hoped that the model skill under present day conditions is
carried over to future climate conditions.

The major objective of this study was to compare ob-
served precipitation and temperature data with downscaled
ERA15 data (downscaled with the RCM REMO), refered to
as ERA15/REMO hereafter, investigate if there exists a cer-
tain bias between the latter two, and finally apply a bias cor-
rection to correct for this bias. Our second objective was to
test how well the correction parameters determined for a cer-
tain calibration period correct for the bias during a validation
period.

Several studies have been performed in which a bias cor-
rection method was applied to RCM data. For example,Hay
et al.(2002) applied a gamma transform to correct RegCM2
precipitation data andLeander and Buishand(2007) applied
a power law transform, which corrects for the coefficient of
variation (CV) and mean of the precipitation values.Hay
et al. (2002) found that the corrected precipitation data did
not contain the day-to-day variability which was present in
the observed data set. For this reason we have chosen to ap-
ply the method developed byLeander and Buishand(2007)
in this study, because for hydrological purposes we think it
is important that the day-to-day variability of precipitation
remains preserved.

This research is part of a larger research project in which
the bias-corrected ERA15/REMO precipitation and temper-
ature fields are used to calibrate the VIC model. The cali-
brated VIC model has been used for a climate impact study
for the Rhine basin and is described in more detail byHurk-
mans et al.(2010). We hope the results of this bias correction
study will facilitate other hydrologists in their search for a
suitable bias correction method. The bias correction method
employed in this study can easily be applied to other river
basins if there is enough forcing and observational data avail-
able.

Section2 describes the area of interest for this study. This
study uses data from a meteorological model. The meteo-
rological forcing data and observed data are also subject of
Sect.2. Section3 explains the methodology used to cor-
rect for the bias. The results of the analyses are described
in Sect.4. Finally, Sect.5 presents the conclusions and per-
spectives.

2 Models and data

The Rhine basin is one of the largest river basins in West-
ern Europe. The river Rhine originates in the canton of
Graub̈unden in the Swiss Alps and it drains portions of
Switzerland, Germany, France, Austria and the Nether-
lands before draining into the North Sea. Approaching the
Dutch border, the Rhine has an annual mean discharge of
2395 m3 s−1 and an average width of 400 m. Because of
the various bifurcations in the lower Rhine, only the part
upstream of Lobith (the point where the river crosses the
German-Dutch border) is considered in this study. The area
of the Rhine upstream of Lobith is about 185 000 km2 (Hurk-
mans et al., 2008). Figure1 represents the Rhine basin up-
stream of Lobith.

The bias correction is determined for ERA15/REMO re-
analysis data for the period 1979–1995. ERA15/REMO data
consists of downscaled ERA15 extended with operational re-
analysis data to have a total period of 17 years (ECMWF
re-analysis1, 1979–1995). It contains reanalyses of multi-
decadal series of past observations, and it has become an
important and widely utilized resource for the study of at-
mospheric and oceanic processes and predictability. It is
known that ERA15 has problems with precipitation estimates
(Zolina et al., 2004). These problems involve the parame-
terizations for the convective and stratiform parts, spin-up
effects (Kallberg, 2002; Hagemann et al., 2002), and assim-
ilation of different inputs which affect the model solution,
including precipitation. Many of these problems are partly
accounted for in ERA40, which shows better consistency
in many precipitation characteristics (Zolina et al., 2004).
ERA40, however, was not downscaled by the REMO model
to the resolution needed for our hydrological applications.
Therefore we were restricted to use ERA15 in our study.
ERA15 was downscaled in two steps at the Max Plack Insti-
tute for Meteorology in Hamburg, Germany, to a resolution
of 0.088◦, using their RCM REMO (Jacob, 2001). In the first
step REMO was nested within ERA15 (global) at a resolu-
tion of 0.44◦. In the second step a REMO domain was nested
in the first one. This resulted in a high resolution data set
(0.088◦) for the Rhine and Elbe basins (Jacob et al., 2008).
To run the VIC model, several forcing parameters are neces-
sary (i.e., precipitation, temperature, wind speed, incoming
short- and longwave radiation, vapour pressure and specific
humidity). The bias correction is determined for precipita-
tion and temperature only, because unfortunately no obser-
vations were available for the remaining parameters. There-
fore, these parameters are left uncorrected.

Observations of precipitation and temperature were made
available by the International Commission for the Hydrol-
ogy of the Rhine basin (CHR) (Sprokkereef, 2001). They
provide daily values of precipitation and temperature for 134
sub-basins (Fig.1) throughout the Rhine basin for the period

1http://www.ecmwf.int
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Fig. 1. Left: location of the Rhine basin in Europe. Right: location of the 134 sub-basins for which observations are available at a temporal
resolution of 1 day.

1961–1995. The sub-division into 134 sub-basins has been
employed for several previous studies in which the HBV
model has been applied to the Rhine basin (Eberle et al.,
2002, 2005; Mülders et al., 1999). Daily sub-basin values are
obtained using meteorological stations in Germany (DWD),
Switzerland and France. For the German part of the basin the
DWD uses data from ca. 4000 stations. The DWD has inter-
polated the observations to their REGNIE (Regionaliserung
räumlicher Niederschlagsverteilung) grids with a resolution
of 60′′ longitude and 30′′ latitude using the following steps
(de Wit and Buishand, 2007; Weerts et al., 2008):

1. The available stations were assigned to the nearest grid-
point of the REGNIE-grid and the relative value to the
monthly average rainfall (based on the period 1961–
1995) was calculated. At that grid-point, this relative
value was directly used;

2. For all other grid-points, the relative values of all sta-
tions in a box of 20 grids around that grid-point were
used. These relative values were divided by the square
of the distance to the central grid-point (i.e. weighted
with the inverse square of the distance). The number of
employed stations varies with the density of the stations
in that region. The average is about three to four;

3. The sub-basin averages are then calculated as arithmetic
averages of the grid cell values.

The idea behind this approach is that corrections for oro-
graphy as well as the orientation of the terrain are taken
into account through the background grid. For Switzerland
(Dällenbach, 2000) and France (White, 2001) a similar pro-
cedure was followed, but they used the inverse distance inter-
polation technique instead of the inverse squared distance in-
terpolation technique. In addition,Brandsma and Buishand
(1999) also used these observations provided by the CHR
in the first report on multi-site generation of daily precipita-
tion and temperature. Combining the period 1979–1995 of
ERA15/REMO with the period 1961–1995 of the observa-
tions results in the overlapping period 1979–1995 (17 years)
for assessing the bias.

3 Methodology

3.1 Introduction

The first part of the analysis is based on the determination
of the correction parameters for the entire period, while the
focus of the second part is on a separate calibration and val-
idation period. With the bias correction we try to match the
most important statistics (temporal coefficient of variation
(CV), mean and standard deviation) of the ERA15/REMO
data with those of the CHR observations. The bias correc-
tion applied in this study is based on that proposed byLe-
ander and Buishand(2007) for a Meuse basin study. They
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found that a relatively simple non-linear correction, adjust-
ing both the biases in the mean and variability, leads to a
better reproduction of observed extreme daily and multi-day
precipitation amounts than the commonly used linear scaling
correction. This method of bias correction does not correct
for the fraction of wet and dry days and lag-1 autocorrela-
tion. As was mentioned in Sect.2, we only have observations
available per sub-basin at a temporal resolution of one day.
We intend to use the bias-corrected data for calibration of the
VIC model (Hurkmans et al., 2010). However, we would like
to run VIC at a spatial resolution of 0.05 degrees and a tem-
poral resolution of 3 h. For this reason we cannot simply use
the observations for calibrating the VIC model, because then
all grid cells within a sub-basin would have the same values
for precipitation and temperature, implying that there is no
spatial variation in the precipitation and temperature fields
within a sub-basin. Therefore, the correction parameters for
precipitation are determined for each sub-basin to ensure that
the temporal CV and mean for ERA15/REMO match those
of the observations for that specific sub-basin. Thus, when
averaging all the grid cell values within that sub-basin, and
applying the correction parameters to the average of these
grid cell values, the temporal CV and mean should match
those of the observations. Therefore we first calculate the
average daily precipitation for each sub-basink as:

P k,d =
1

N

N∑
i=1

8∑
h=1

Pk,d,i,h (1)

whereP is the average precipitation for sub-basink on day
d, P the precipitation for celli and 3-hourly time steph, and
N the total number of grid-cells within sub-basink. With
P k,d and the observed daily precipitation values for each
sub-basin we are able to determine the correction parame-
tersa andb (for details, see Sect. 3.2). Witha andb we
subsequently calculate the corrected daily sub-basin precipi-
tation valueP

∗

k,d . Thus we now have a corrected and uncor-
rected daily precipitation value for each sub-basin. The ratio
between the corrected and uncorrected precipitation value is
defined as:

Rk,d =
P

∗

k,d

P k,d

(2)

whereRk,d is the correction factor to be applied to the each
of the uncorrected precipitation cellsi within sub-basink,
and 3-hourly time stepsh during dayd, according to:

P ∗

k,d,i,h = Pk,d,i,h ·Rk,d (3)

The derived correction parametersa andb cannot directly be
applied to the 3-hourly grid cell values because the correc-
tion function (see Sect. 3.2) is a power law function. If this is
done, then the temporal CV and mean of the spatial average
of grid cell values in the sub-basin would not match the CV

and mean of the observations. The bias correction of temper-
ature was found to be more straightforward than that of pre-
cipitation, involving shifting and scaling to adjust the mean
and variance, respectively. In the following sub-sections, the
method used to calculate the bias correction for precipitation
and temperature will be described in detail.

3.2 Precipitation

Because the bias in precipitation and temperature was found
to vary spatially, bias corrections were carried out for each
of the 134 sub-basins individually.Leander and Buishand
(2007) used a power transformation, which corrects the CV
as well as the mean. In this nonlinear correction each daily
precipitation amountP is transformed to a correctedP ∗ us-
ing:

P ∗
= aP b (4)

The sampling variability of the 17-year means may introduce
a systematic effect in the precipitation related results. In this
study we employed a length of 65 days to calculate the statis-
tics for. This length is chosen for several reasons:

1. Leander and Buishand(2007) selected 65 days to reduce
the sampling variability based on a study byShabalova
et al. (2003), in which HadRM2 precipitation was cor-
rected for a hydrological application to the Rhine basin.
Shabalova et al.(2003) state that the sampling variabil-
ity is reduced using a 70-day window;

2. The block length cannot be chosen to be too small,
because then one would be correcting for differences
which are caused by natural variability instead of cor-
recting for systematic model errors;

3. A sensitivity analysis for block lengths of 25, 35, 45,
65, 85 and 105 days revealed that block lengths of 25,
35 and 45 days improved corrections during Septem-
ber/October, but lead to worse results for July/August.
Block lengths of 85 and 105 days resulted in worse per-
formance for nearly all months (Fig.2);

4. RMSE for daily precipitation differences were smaller
for 65-day block lengths than for lengths of 25, 35 and
45 days (Fig.2);

Thus, in this study we determined the parametersa andb

for every five-day period of the year, including data from all
years available, in a window including 30 days before and
after the considered five-day period. The determination of
the b parameter is done iteratively. It was determined such
that the CV of the corrected daily precipitation matches the
CV of the observed daily precipitation. In this way, the CV
is only a function of parameterb according to:

CV(P ) = f (b) (5)
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Fig. 2. Left: Average monthly precipitation sums for various block
lengths. “obs” denotes the observed precipitation, while “era” de-
notes the uncorrected ERA15/REMO precipitation. The sensitivi-
ties are shown for block lengths of 25, 35, 45, 65, 85 and 105 days.
Right: RMSEs of daily precipitation differences for various block
lengths.

in which P is the precipitation in a block of 65 days times
17 years. With the determined parameterb, the transformed
daily precipitation values are calculated using:

P ∗
= P b (6)

The parametera is then determined such that the mean of
the transformed daily values corresponds with the observed
mean. The resulting parametera depends onb. At the end,
each block of 5 days has its owna andb parameter, which
are assumed to be the same for each year. The bias correc-
tion for the ERA15/REMO data set needs to be calculated for
the period 1979–1995, which has a total length of 17 years.
Figure3 illustrates the division of a year into 73 blocks of 5
days. For every 5-day block, a different set ofa andb param-
eters is determined using the method described above. The
top panel of Fig.3 represents the daily precipitation through-
out the year. The bottom panel zooms in to the first 65 days
of the year resulting in 13 blocks of 5 days each. Parameters
of block 7 are calculated using 30 days before and 30 days
after the considered block, and taking into account all years
for which the bias correction is applied. This results in 1105
(=17×65) values for the calculation of the CV and the mean.

3.3 Temperature

Temperature cannot be corrected using a similar power law
as was used for correcting precipitation, because temperature
is known to be approximately normally distributed. Correct-
ing a normally distributed data set with a power law function
results in a data set which is not normally distributed. There-
fore we used a different technique for correcting tempera-
ture. The correction of temperature only involves shifting
and scaling to adjust the mean and variance (Leander and
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Fig. 3. Schematisation of the division of a year into 73 blocks
of 5 days each for which thea andb parameters are determined.
Top: daily precipitation throughout the year; Bottom: first 65 days
of the year resulting in 13 blocks of 5 days each.

Buishand, 2007). For each sub-basin, the corrected daily
temperatureT ∗ was obtained as:

T ∗
= T obs+

σ(Tobs)

σ (Tera)
(Tera−T obs)+(T obs−T era) (7)

where Tera is the uncorrected daily temperature from
ERA15/REMO andTobs is the observed daily temperature
from the CHR data set. In this equation an overbar denotes
the average over the considered period andσ the standard
deviation. This method was not appropriate for precipitation
because it may cause negative values. Again both statistics
were determined for each 5-day block of the year separately,
using the same 65-day windows as for the bias correction of
daily precipitation.

4 Results

4.1 Introduction

In the following sub-sections the data are analyzed spa-
tially and temporally. We analyse how well the relevant
statistics (CV, standard deviation and mean) of the corrected
ERA15/REMO data match those of the observations after the
bias correction has been applied. Extended analyses are done
on the behaviour of extremes, fraction of wet days and lag-1
autocorrelations. This is done for precipitation and temper-
ature separately. The sensitivity of the determineda andb

parameters is investigated by using bootstrapping (Efron and
Tibshirani, 1994). The last sub-section focuses on how well
the determined parameters for a calibration period (10 years)
correct for the bias in a validation period (7 years).
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Fig. 4. Top: MBE for the uncorrected and corrected ERA15/REMO
precipitation [mm] per sub-basin for the period 1979–1995; Bot-
tom: RMSE for the uncorrected and corrected ERA15/REMO pre-
cipitation [mm] per sub-basin for the period 1979–1995.

4.2 Precipitation

4.2.1 Spatial precipitation difference

The average precipitation is corrected to match the average
precipitation for each window of 65 days times 17 years. It
would also be of interest to know if the daily average pre-
cipitation over the entire period has improved. Therefore the
average daily precipitation over the period 1979–1995 has
been calculated for each sub-basin separately. The average
daily precipitation difference between the observations and
ERA15/REMO is given by:

MBE =
1

N

N∑
i=1

(
Pera,i −Pobs,i

)
(8)

where MBE is the Mean Bias Error,N the number of days,
Pera,i the precipitation for ERA15/REMO at dayi andPobs,i
the precipitation for the observations at dayi. The MBE
for the uncorrected and corrected situation is shown in the
top panel of Fig.4 for each sub-basin separately. A pos-
itive difference means that ERA15/REMO is wetter than
the observed precipitation value for that specific sub-basin.
As can be seen, the difference between the uncorrected
ERA15/REMO and the observations varies between−2 and

Fig. 5. Top: average monthly precipitation sums [mm] for the ob-
servations and the uncorrected and corrected ERA15/REMO data
(solid lines). Average monthly precipitation sums +/− one stan-
dard deviation are shown as well (thin lines); Bottom: scatter densi-
ties for the uncorrected and corrected ERA15/REMO and observed
monthly precipitation sums for each year per sub-basin.R2 coeffi-
cients for the uncorrected and corrected situation are shown as well.

+2 mm d−1. The uncorrected ERA15/REMO precipitation
is too wet for most of the Rhine basin, especially in the
Alps and in areas close to where the river Rhine is located.
From the top right panel of Fig.4, it can be concluded that
the bias correction leads to satisfactory results. Differences
between the corrected ERA15/REMO and the observations
have decreased notably. The spatial variation in the spread
of daily precipitation differences per sub-basin is quantified
by the root-mean-square-error (RMSE) of the daily precipita-
tion difference between ERA15/REMO and the observations
(bottom panel, Fig.4) and is given by:

RMSE=

√√√√ 1

N

N∑
i=1

(
Pera,i −Pobs,i

)2 (9)

There is hardly any difference in the RMSE of the uncor-
rected and corrected situation for most of the Rhine basin.
The RMSE appears to have increased in some sub-basins and
decreased in others. Based on these results it looks like the
correction method is less capable of correcting the daily pre-
cipitation amount for these particular sub-basins.
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4.2.2 Temporal precipitation difference

The Rhine basin is subject to a strong seasonal pattern in
which wet winters and dry summers are quite common. This
aspect is important for the correct timing of flood peaks.
Therefore, we are interested to evaluate how well the bias-
corrected ERA15/REMO precipitation performs temporally.
We already noticed that the daily average over the entire pe-
riod has improved considerably (top panel Fig.4). However,
it is certainly possible that the average monthly precipitation
sums of the corrected ERA15/REMO data differ from those
of the observations, although the average ERA15/REMO
precipitation over the entire period is unbiased. Average
monthly precipitation sums for the observations and the un-
corrected and corrected ERA15/REMO data are shown in
the top plot of Fig.5. Averages are calculated as weighted
(based on sub-basin size) averages over the period 1979–
1995. Large differences between the observations and the un-
corrected ERA15/REMO can be seen during May, June, July,
September and October. However, the bias correction seems
to correct for this bias reasonably well. It seems that the cor-
rection method is less capable of correcting the monthly pre-
cipitation sums during February, April and November. How-
ever, the method was developed to correct for the mean and
CV for blocks of 65 days, in which the determined 5-daya

andb parameters will have an effect on the statistics of the
neighbouring and partly overlapping 65-day blocks. There-
fore, it may happen that average monthly precipitation sums
of the uncorrected ERA15/REMO data match those of the
observations better than the corrected ERA15/REMO data
does.

It can be noticed that precipitation is corrected from a
wet to a drier situation for almost the entire year. Consid-
ering Fig. 5, the wet bias is especially large during sum-
mer. According toFrei et al.(2003), who studied precipi-
tation statistics for the European Alps, wind field deforma-
tion and deflection of hydrometeors over the gauge orifice
results in a systematic measurement bias. Estimates of this
error for the Alpine region are largest in winter (high wind
speed, high fraction of snowfall), when the undercatch is
about 8% for gauges below 600 m above sea level. For sum-
mer the undercatch varies between 4% at low and 12% at
high-altitude stations. Therefore the large wet bias during
summer could partly be a result of a systematic undercatch in
the rain gauges. However, the undercatch is relatively small
(only 4%) for the largest part of the Rhine basin during sum-
mer. Instead of individual rain gauges, we used sub-basin
averaged precipitation values, which are calculated using ad-
vanced interpolation techniques in which orography and ori-
entation of the terrain are taken into account (see Sect.2).
Based on this we assume that the effect of overcorrecting for
undercatch is minimal.

In September and October the correction is the other way
around, and according to the top plot of Fig.5 the described
method has some difficulties in correcting for this shift. This

suggests that the employed method is less capable of correct-
ing the precipitation sum if the observed precipitation and
ERA15/REMO precipitation show an opposite signal. This
minimum for ERA15/REMO precipitation in September and
October was also found byKotlarski et al.(2005). They com-
pared 3 reference data sets with downscaled ERA15, using 4
different RCMs. Kotlarski et al.(2005) found an overesti-
mation of precipitation in REMO in June and subsequently a
strong decrease of mean monthly rainfall until September.
This is probably connected to the annual cycle of vegeta-
tion characteristics implemented in this model, which causes
strong evaporation in early summer and consequently a rapid
decline of soil water storage. In late summer, the dry soil pre-
vents evaporation and therefore local water supply for the at-
mosphere, resulting in a decrease of precipitation. This late-
summer drying problem was also found byHagemann and
Jacob(2007), who used an ensemble of 10 RCMs to conduct
climate simulations for current and future climate conditions.
A late-summer drying problem was found for all RCMs over
Central Europe and is a common feature in several RCMs.

The correction method applied in this study uses the same
a andb parameters for each year. We noticed that the correc-
tion method performs quite well when considering the aver-
age monthly precipitation sums. It remains to be seen how
well the method performs when considering individual years.
To answer this question, the average monthly precipitation
sum plus and minus one standard deviation has been plot-
ted as well (thin lines). Considering these results it seems
that the correction method works quite well for the months
May until October, but for November until April there are
three years in which the uncorrected data matches the ob-
servations better than the corrected data does. To consider
both the monthly performance for each year and the per-
formance per sub-basin, the bottom plots of Fig.5 repre-
sent the relation between the observed and ERA15/REMO
monthly precipitation sums for each year per sub-basin, both
for the uncorrected (left plot) and corrected (right plot) sit-
uation in a scatter density plot. It can be noticed that the
monthly precipitation sums for the corrected situation match
those of the observations better than those of the uncorrected
situation. Based on these results we conclude that the over-
all performance of the ERA15/REMO precipitation has im-
proved, although there are a few years for which the uncor-
rected ERA15/REMO precipitation performs better.

4.2.3 Variation and sensitivity of parameters

The determineda andb parameters affect the corrected daily
precipitation value. It is of major importance how sensitive
these parameters are to the period for which they were deter-
mined. What would happen with the parameters if we had
selected a different time period for determing the parame-
ters? The two left panels of Fig.6 show boxplots for thea
andb parameters throughout the year. These boxplots are
calculated for each block of 5 days, taking into account the
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Fig. 6. Top left: boxplot for parametera for each block of 5 days. The boxplot is calculated taking into account the values from all sub-
basins. Median values are represented with the horizontal red lines. Area-weighted average parameter values are shown with the black solid
line. Outliers (red crosses) are calculated as values larger than 1.5 times the interquartile range. Top right: histogram of bootstrap values
for parametera for 1000 random samples of 65 days from 17 years of data. Samples are taken from each of the sub-basins and from block
55, including 30 days before and after this block. Bottom left: boxplot for parameterb. Bottom right: histogram of bootstrap values for
parameterb for block 55.

values from all sub-basins. Outliers are defined as values
larger than 1.5 times the interquartile range and are indicated
with red crosses. It is clear that parametera is smaller than
one during almost the entire year. Parametera was deter-
mined to fit the mean of ERA15/REMO with that of the ob-
servations. It can be concluded that the average precipitation
has to be corrected from a wet to a drier situation for almost
the entire year. This correction is especially large during
summer, as was already noticed from Fig.5. However, the
spread in thea-parameter is smallest during summer. This
spread is large during winter, which implies a large variation
in the a-parameter for the various sub-basins. It could be
that the uncertainty of thea-parameter is large during winter.
Outliers indicate sub-basins, especially during the first 280
days of the year, for which thea-parameter is substantially

larger or smaller than for most of the sub-basins. Sub-basin 1
(see Fig.1) is an outlier during almost the entire year. Sub-
basin 119 (eastern part of Switzerland) has ana-parameter
which is smaller than 1.5 times its interquartile range for the
26th and 27th block. The spread in theb-parameter (Fig.6
bottom left panel) is smaller than was the case for parameter
a. Outliers can be found throughout the entire year, except
for the first 55 days of the year. Large outliers forb occur
mainly in sub-basin 107. Small outliers forb occur mainly
for sub-basin 1. Parameterb is larger than one during almost
the entire year. The CV has to be corrected most during the
summer months.

To address the uncertainty concerning the determineda

and b parameters, we applied bootstrapping for block 55
and all sub-basins. This is done because for this block the
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spread in botha andb is quite large. We took 1000 random
samples of 65 days from the 17 years of data available for
block 55, and determined for each sample a newa andb pa-
rameter. The bootstrapping procedure is performed for each
of the sub-basins individually. The results of this analysis are
shown in the two histograms of Fig.6. It can be concluded
that the uncertainty range for parametera is larger than for
parameterb. In other words, the largest uncertainty is asso-
ciated with correcting the mean of the precipitation values.

4.2.4 Statistics

In Sect.3 we described the method of the bias correction, that
is employed to fit the mean and CV for the precipitation data.
Figure7 shows several scatter plots for the fitting statistics
as well as for the fraction of wet days (fwet) and the lag-
1 autocorrelations. These statistics are calculated for each
of the sub-basins separately, resulting in 134 data points for
each graph. The observed statistics are plotted versus those
of the uncorrected and corrected ERA15/REMO data.

Of course the mean, standard deviation and CV of the ob-
servations match those of the corrected ERA15/REMO al-
most perfectly, because those were the fitting criteria. In-
terestingly, also the correlation between the fraction of wet
days in the observations and in ERA15/REMO has improved
significantly for the corrected ERA15/REMO data. Also the
lag-1 autocorrelations of the corrected ERA15/REMO data
match those of the observations better than those of the un-
corrected ERA15/REMO data. These results can be consid-
ered as good, because the method of bias correction applied
in this study was only intended to correct for the CV and
mean, not for the fraction of wet days or the lag-1 autocorre-
lation.

For climate impact studies it is important that the hydro-
logical model is capable of simulating the runoff generated
by large multi-day precipitation events well enough. These
large multi-day precipitation events often result in floods.
Therefore, we have selected all 10-day precipitation sums
during winter. The non-exceedance probabilities for these
10-day precipitation sums have been investigated in Fig.8.
According toFurrer and Katz(2008) a Generalized Pareto
distribution is capable of fitting high intensity precipitation
data. Therefore we have fitted a Generalized Pareto distri-
bution through the data. The Generalized Pareto distribution
function is given by:

y = f (x|k,σ,θ) =
1

σ

(
1+k

x −θ

σ

)−1−
1
k

(10)

wherek is the shape parameter,σ is the scale parameter and
θ is the threshold parameter. Only the fit to the observed
10-day precipitation sums is shown, because the other two
fits are similar. All parameters are estimated using the max-
imum likelihood method (Aldrich, 1997). Both the uncor-
rected and corrected ERA15/REMO data match the obser-
vations well for non-exceedance probabilities smaller than
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Fig. 7. Scatter plots of the statistics of the observed precipita-
tion versus the corrected and uncorrected ERA15/REMO precipi-
tation. The statistics are calculated for each sub-basin over the pe-
riod 1979–1995. The fraction of wet days (fwet) is the percentage
of days whereP > 0.3 mm. In each subplot the square of the cor-
relation coefficient (R2) and slope of the linear regression line are
plotted. The black line represents thex = y line.

0.95. However, for non-exceedance probabilities larger than
0.95 the uncorrected ERA15/REMO matches the 10-day pre-
cipitation sums of the observations better than the corrected
ERA15/REMO does. These differences are, however, quite
small. More important is that the distribution of the 10-day
precipitation sums is not substantially disturbed by applying
a bias correction.

4.3 Temperature

4.3.1 Spatial temperature difference

The MBE for the uncorrected and corrected ERA15/REMO
temperature for each sub-basin is shown in the top left panel
of Fig. 9. A positive value corresponds to a higher tempera-
ture for the uncorrected ERA15/REMO data set. Differences
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Fig. 8. Non-exceedance probabilities of 10-day winter precipitation
sums for the period 1979–1995. The 10-day precipitation sums are
area-weighted averages.

Fig. 9. Top: MBE for the uncorrected and corrected ERA15/REMO
temperature [◦C] per sub-basin for the period 1979–1995. Bot-
tom: RMSE for the uncorrected and corrected ERA15/REMO tem-
perature [◦C] per sub-basin for the period 1979–1995.

in MBE vary between−1.5 and +3.5◦C for the uncorrected
ERA15/REMO data. The MBE is positive for the largest
part of the Rhine basin, which means that the uncorrected
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Fig. 10. Area-weighted monthly temperature [◦C] over the entire
Rhine basin for the period 1979–1995. Results are shown for the
observations and the uncorrected and corrected ERA15/REMO.

ERA15/REMO is warmer than the observations for that part
of the Rhine basin. The top right panel of Fig.9 shows the
differences between both data sets after the correction has
been applied. It can be concluded that the bias correction
for temperature leads to good results. Differences have de-
creased substantially to values between−0.4 and +0.4◦C.
Another point of interest is the spatial variation in the spread
of daily temperature differences per sub-basin. This is quan-
tified by the RMSE of the daily temperature difference be-
tween ERA15/REMO and the observations (Fig.9, bottom
panel). In the uncorrected situation the RMSE is quite large
for some sub-basins. However, the RMSE for the corrected
temperature has decreased significantly. Based on these re-
sults it can be concluded that the applied correction method
adjusts the daily temperature values very well.

4.3.2 Temporal temperature difference

Average monthly temperatures for the period 1979–1995 are
shown in Fig.10. Averages are calculated as area-weighted
averages over the entire Rhine basin. With the bias correction
we hope to capture the seasonal pattern of temperature. It can
be concluded that the bias correction for temperature leads to
satisfactory results. The bias-corrected ERA15/REMO tem-
perature matches the observed temperature almost perfectly
for each month. Corrections are largest during the summer
months and smallest during winter. This is mainly caused by
the difference in mean temperature as shown later in Fig.11.

4.3.3 Standard deviation and mean

As mentioned in Sect.3, the correction of temperature is
more straightforward than for precipitation. It only involves
correcting for the mean and the standard deviation. Therefore
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Fig. 11. Top: boxplot for the ratios of the ERA15/REMO standard
deviations over the observed standard deviations. Bottom: boxplot
for the differences between the ERA15/REMO average tempera-
tures and observed average temperatures. Boxplots are shown for
each block of 5 days, where each box represents the spread between
all sub-basins. Area-weighted averages for each block of 5 days are
represented with the solid black line. Median values are represented
with the horizontal red lines while outliers are indicated with the
red crosses and are calculated as values larger than 1.5 times the
interquartile range.

it is interesting to know how the ratio of the ERA15/REMO
standard deviation over the observed standard deviation for
temperature varies during the year. The spread in ratios for
all sub-basins, before the correction is applied, is represented
in the boxplot of Fig.11 (top panel). A seasonal pattern can
be distinguished from this figure. From January on, there is
an upward trend until the start of summer, which suggests an
increasing variation in temperature for ERA15/REMO when
approaching summer. During summer this ratio again ap-
proaches one, suggesting a similar standard deviation for
the observed and ERA15/REMO temperature. Around mid-
summer this ratio is increasing again, resulting in a larger
spread in temperature for ERA15/REMO during this period.
The area-weighted average ratio of 1.05 suggests that the
average spread in temperature for ERA15/REMO is larger
than that for the observations. The bottom panel of Fig.11
represents the spread in average temperature differences be-
tween the ERA15/REMO (T era) and observed temperature
(T obs). Especially during summer the difference between
T era andT obs tends to be larger, suggesting a much warmer
17-year average for ERA15/REMO than for the observations.
The 17-year average temperature appears to be warmer for
ERA15/REMO throughout the entire year for almost all sub-
basins. The overal area-weighted average temperature dif-
ference of 0.86◦C suggests that the average temperature for
ERA15/REMO is larger than that for the observations.
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Fig. 12. Scatter plots of the statistics of the observed tempera-
ture versus the corrected and uncorrected ERA15/REMO tempera-
ture. The statistics are calculated for each sub-basin over the period
1979–1995. In each subplot the square of the correlation coefficient
(R2) and slope of the linear regression line are plotted. The black
line represents thex = y line.

4.3.4 Statistics

The most important statistics for the uncorrected and cor-
rected ERA15/REMO temperature are plotted against those
of the observations in Fig.12. The considered statistics are
the mean, standard deviation, CV and lag-1 autocorrelation.
They are calculated over the entire period 1979–1995, for
each sub-basin separately. As mentioned before, the cho-
sen method of bias correction only corrects for the mean
and the standard deviation. This is clearly visible in the
plots of the mean, standard deviation and CV, where the cor-
rected ERA15/REMO statistics are almost equal to those of
the observations. Despite the fact that the correlation coeffi-
cients between the lag-1 autocorrelations for ERA15/REMO
and the observations have increased for the corrected situ-
ation, the points have moved further away from thex = y

line. However, considering the scale of the y-axis, this result
seems to be of minor importance.

4.4 Relation between precipitation and temperature

The employed bias correction method adjusts precipitation
and temperature separately. It is possible that there exists a
certain relation between these variables, which is disturbed
after applying a bias correction. Dependencies between the
daily precipitation and temperature are shown in a scatter
density plot (Fig.13), taking into account values from all
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Fig. 13. Dependency between the daily precipitation and tempera-
ture of the observed and uncorrected and corrected ERA15/REMO
data for the period 1979–1995. The squared correlation coefficient
for the correlation between precipitation and temperature is shown
as well.

sub-basins. Results are shown for the observations and the
uncorrected and corrected ERA15/REMO data. The ex-
tremely lowR2 for the correlation between precipitation and
temperature indicates the absence of correlation. From this
figure we can conclude that the pattern of points and corre-
lation coefficient are not drastically disturbed after the bias
correction is applied. This result is robust on a seasonal level
as well.

4.5 Validation

4.5.1 Introduction

The previous analysis focused on the bias correction for the
entire period 1979–1995. In climate impact studies, the bias
correction parameters are often determined for a certain ref-
erence period, and subsequently applied to a future climate
period. Therefore we have selected 10 years from the pe-
riod 1979–1995 as a calibration period for determining the
correction parameters, and applied the determined correction
parameters for the remaining 7 years, known as the validation
period. With this we want to evaluate how well the method
of Leander and Buishand(2007) is capable of correcting an-
other period for which the parameters were not determined.
This analysis is split into two parts, wherein the first part
uses the period 1979–1988 as the calibration period and the
period 1989–1995 as the validation period. The second ana-
lysis takes 100 samples, in which each sample consists of
10 randomly chosen years from the period 1979–1995 which
are used for calibration and the remaining 7 years are used
for validation. With this analysis we want to quantify the un-
certainty associated with the selection of 10 calibration and
7 validation years.

Fig. 14. Top: MBE for the uncorrected and corrected
ERA15/REMO precipitation [mm] per sub-basin for the validation
period 1989–1995. Bottom: RMSE for the uncorrected and cor-
rected ERA15/REMO precipitation [mm] per sub-basin for the val-
idation period 1989–1995.

4.5.2 Continuous period

The previously described bias correction method has been
applied to determine the correction parameters for the pe-
riod 1979–1988. These parameters have been used to cor-
rect precipitation and temperature for the period 1989–1995.
Similar to Fig.4, the MBE for the uncorrected and corrected
ERA15/REMO precipitation per sub-basin are shown in the
top panel of Fig.14 for the validation period 1989–1995.
Spatial precipitation differences have been minimized for the
corrected situation, although less notable than for the analy-
sis for the entire period 1979–1995. We already noticed that
the RMSE between the observed and ERA15/REMO precipi-
tation was not improved for the corrected situation when con-
sidering the entire period 1979–1995. Looking at the valida-
tion period (bottom panel Fig.14), it seems that the RMSE
even increases for the corrected situation. This may result in
worse performance of a hydrological model, if the parame-
ters were used to correct a meteorological forcing dataset for
a period for which the parameters were not determined.

Average monthly precipitation sums plus or minus one
standard deviation are shown in the top panel of Fig.15
for the validation period 1989–1995. The correction method
does not lead to an improvement for the months February,
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Fig. 15. Top: average monthly precipitation sums [mm] for the
observations and the uncorrected and corrected ERA15/REMO
data for the validation periond 1989–1995 (solid lines). Average
monthly precipitation sums +/- one standard deviation are shown
as well (thin lines). Bottom: scatter densities for the uncorrected
and corrected ERA15/REMO and observed yearly monthly precipi-
tation sums per sub-basin for the validation periond 1989–1995.R2

coefficients for the uncorrected and corrected situation are shown as
well.

March, April, August and September. Considering the stan-
dard deviations, it seems that especially for March and
September there are some years for which the correction is
too wet. Similar to Fig.5, the monthly precipitation sums
for each separate year and individual sub-basin are plotted
in the scatter density plots of Fig.15 (bottom panel) for the
uncorrected and corrected situation for the validation period.
Considering theR2 coefficients, we can see an overal im-
provement, although less important than for the entire cali-
bration period 1979–1995. Based on these results we con-
clude that the determined correction parameters are able to
correct ERA15/REMO precipitation in a validation period
during the warmer summer months, but that the uncorrected
precipitation is closer to the observations for most winter
months and especially for March and September.

The MBE for the uncorrected and corrected
ERA15/REMO temperature per sub-basin are shown in
the top panel of Fig.16 for the validation period. It appears
that the determined parameters for the calibration period
1979–1988 work very well for the validation period, too.
Also the RMSE between the daily ERA15/REMO tempera-
ture and observed temperature is minimized, meaning that
the daily temperature values are corrected for the validation
period as well (bottom panel Fig.16).

Fig. 16. Top: MBE for the uncorrected and corrected
ERA15/REMO temperature [◦C] per sub-basin for the validation
period 1989–1995. Bottom: RMSE for the uncorrected and cor-
rected ERA15/REMO temperature [◦C] per sub-basin for the vali-
dation period 1989–1995.
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Fig. 17. Area-weighted monthly temperature [◦C] over the en-
tire Rhine basin for the validation period 1989-1995. Results
are shown for the observations and the uncorrected and corrected
ERA15/REMO.
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Fig. 18. Top: histograms of 100 samples of average daily precipi-
tation differences between the uncorrected and observed (left), and
between the corrected and observed precipitation (right) for the cal-
ibration period. Bottom: similar, but for the validation period.

Monthly temperature averages for the validation period are
shown in Fig.17. The correction parameters for temperature
adjust the average monthly temperatures very well for the
validation period, except for the months November, Decem-
ber, January and February.

4.6 Random sampling

For this analysis we took 100 random samples of 10 years
from the 17 years available, and used these years to deter-
mine the correction parameters. The determined parame-
ters have been used to correct the ERA15/REMO data for
the remaining 7 years, denoted as the validation period. For
each validation sample we calculated the average daily pre-
cipitation and temperature value, averaged over the entire
Rhine basin. The differences between the uncorrected and
observed, and the corrected and observed values are taken
as a measure of how well the method performs for a ran-
domly chosen period for calibration and validation. The re-
sults of this analysis are shown in the histograms of Fig.18
and Fig.19for precipitation and temperature, respectively. It
is clear that for the majority of samples for the calibration pe-
riod the precipitation difference is smaller for the corrected
situation. For the validation period it turns out that for the
corrected situation the spread in precipitation differences in-
creases, but that the overal average has improved. The total
absolute differences for the 100 samples are 7.99, 2.01, 8.13
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Fig. 19. Top: histograms of 100 samples of average daily temper-
ature differences between the uncorrected and observed (left), and
between the corrected and observed temperature (right) for the cal-
ibration period. Bottom: similar, but for the validation period.

and 13.04 mm for the uncorrected and corrected precipitation
during the calibration period, and uncorrected and corrected
precipitation during the validation period, respectively. It is
not clear what causes this large spread in precipitation dif-
ference for the validated corrected precipitation. A possible
explanation could be some low frequency components in the
rainfall series. This is not further investigated as such in this
paper. We expect that larger sample sizes (in excess of 10
years) lead to a decrease in the spread of precipitation biases.
Therefore, it is recommended to use as many years as possi-
ble to have the largest sample size for determining the correc-
tion parameters. Results for temperature look more promis-
ing. Large frequencies are now found to be centered around
zero temperature difference for the validated corrected tem-
perature.

5 Conclusions and perspectives

5.1 Conclusions

This study presents an application of a bias correction
method to downscaled ERA15 precipitation and temperature,
and investigates how capable this method is for correcting
these data for a bias with respect to observations. We also
analyzed how well the precipitation and temperature data are
corrected during a certain validation period, using parameters
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determined for a calibration period. The most important re-
sults are:

1. Precipitation and temperature for the uncorrected
ERA15/REMO were found to be too wet and too warm
for most of the Rhine basin;

2. Precipitation and temperature are corrected very well
for the calibration period 1979–1995;

3. The RMSE of the daily precipitation difference between
the ERA15/REMO and observed precipitation is not
smaller for the corrected precipitation values;

4. The correction method also seems to improve the frac-
tion of wet days for precipitation and lag-1 autocorrela-
tions for precipitation and temperature;

5. Bootstrapping for the parametersa andb showed that
the uncertainty is largest in correcting for the mean and
the spread for these parameters is largest during winter;

6. Determined correction parameters for the period 1979–
1988 are able to correct precipitation and temperature
for the period 1989–1995. Precipitation correction dur-
ing the validation period works well, especially for May,
June, July and October. However, the validation re-
sults in over-adjustment of the monthly precipitation in
March and September;

7. The RMSE has increased for the corrected
ERA15/REMO precipitation during the validation
period. This is mainly due to the over-adjustment of
precipitation in March and September;

8. When taking random years for calibration, the spread
in MBE between ERA15/REMO and the observations
has increased for the corrected situation during the val-
idation period. However, the overal average MBE has
decreased for the corrected precipitation during the val-
idation period;

9. Temperature is corrected in a satisfactory manner for the
randomly selected years used as validation period;

5.2 Perspectives

In Hurkmans et al.(2010) we use the bias-corrected precipi-
tation and temperature to calibrate VIC and do a climate im-
pact study. VIC, however, needs other meteorological forc-
ing data as well, such as wind speed, incoming short- and
longwave radiation, vapour pressure and specific humidity.
Correcting precipitation and temperature only would violate
the energy balance present in ERA15/REMO. Unfortunately
there were no observations for the other forcing variables
available at the temporal and spatial resolution used in this
study and they are therefore left uncorrected. For future work
this could be addressed using a multi-variate bias correction

method, in which the forcing variables are corrected preserv-
ing the energy balance. Such methods are currently unknown
to us and probably very time consuming. However, for cal-
ibration purposes we expect precipitation and temperature
to have the largest influence on the performance of the hy-
drological model. Moreover, for operational purposes wa-
ter managers would be more interested in probabilities than
uncertainties. For a water manager the probability for e.g.
a discharge exceeding a certain threshold would have more
importance than the uncertainty present in RCM data and
subsequently the hydrological model output. Therefore, it
is very useful for ongoing research on climate impact stud-
ies to address the uncertainty in the RCM and hydrological
model, and translate this to the probability of e.g. the occur-
rence of floods and droughts. We already mentioned that this
method of bias correction can easily be applied to other river
basins if enough meteorological data are available. However,
the results in the current study are mainly focusing on the
Rhine basin. Therefore, it is uncertain how the correction
methodology performs in other river basins (with other data
sets) and therefore it is not possible to define operational ap-
plications. Thus, it is recommended to apply the correction
method to several river basins and RCMs with several reso-
lutions in order to obtain information which could be useful
for operational applications.

Currently there are other existing methods for bias cor-
rection available. For exampleHay et al. (2002) applied
a gamma transform to correct RegCM2 precipitation data.
They found that the corrected precipitation data did not con-
tain the day-to-day variability present in the observed data
set. We have found that the correction method applied in the
current study does not lead to a decrease in RMSE between
simulated and observed precipitation amounts. This suggests
that our method is not capable of preserving the day-to-day
variability present in the observed data set either. The gamma
transform is also evaluated byPiani et al.(2010). They show
that the gamma transform is capable of correcting for sea-
sonal means, but they do not show how the correction per-
forms on a daily basis. We think the day-to-day variability
is an important aspect when it comes to hydrological mod-
eling, because for hydrological applications it is important
that the model is capable of simulating the correct amount
of streamflow at the right time and is therefore dependent on
the correct timing of precipitation events. A further inter-
esting experiment would be to evaluate the improvement of
the hydrological model simulation with and without the bias-
corrected precipitation fields, using bias-corrected precipita-
tion fields from various correction methods (van Pelt et al.,
2009; Hay et al., 2002; Déqúe, 2007; Piani et al., 2010). This
was also suggested byPiani et al.(2010).

We noticed an increase in the RMSE for daily precipi-
tation differences between ERA15/REMO and the observa-
tions for the validation period. Therefore it is recommended
to determine the correction parameters for the same period
as for which the hydrological model will be calibrated. The
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uncertainty with the selection of 10 years for calibration and
7 years for validation was quantified by taking 100 samples,
in which each sample consists of 10 randomly selected years
which are used for calibration and the remaining 7 years are
used for validation. This resulted in the fact that the spread
in MBE between ERA15/REMO and the observations in-
creased for the corrected situation during the validation pe-
riod. At this moment, it is not clear what causes this dif-
ference for the validated corrected precipitation. A possi-
ble explanation could be some low frequency components in
the rainfall series. More research considering low frequency
components is recommended. However, the overal average
MBE has decreased for the corrected ERA15/REMO precip-
itation during the validation period.

In Hurkmans et al.(2010), we apply the same bias cor-
rection method to correct for the bias between a climate run
of the 20st century and the observations. This results in a
set of correction parameters which are different from those
derived in the current study. The climate run of the 20st cen-
tury is actually an ECHAM5 run which is downscaled with
REMO (Jacob, 2001). The correction parameters are subse-
quently applied to the future climate scenarios. These future
scenarios were created by forcing the ECHAM5 model with
IPCC carbon emission scenarios (A1B, A2 and B1;IPCC,
2000) and finally downscaling with REMO (Jacob, 2001).
We have shown that the derived correction parameters in a
calibration period are able to correct precipitation and tem-
perature in a validation period. This strategy of climate im-
pact assessment has been applied before by others; for exam-
ple van Pelt et al.(2009) applied a bias correction to down-
scaled ECHAM5 data, were ECHAM5 was downscaled with
RACMO2. They assessed the impact of climate change on
discharge for the Meuse basin by forcing ECHAM5 with
a transient (1950–2100) simulation of ECHAM5 using ob-
served greenhouse gases for 1950–2000, and using the SRES
A1B scenario for the 21st century.Lenderink et al.(2007)
used the hydrological model Rhineflow driven by meteoro-
logical data from a 90-year simulation with the HadRM3H
RCM for both present-day and future climate, using the same
bias correction for future climate as detected for present-day
climate. In all these studies, it is assumed that the bias cor-
rection parameters in the present-day climate remain invari-
ate in future climate projections. However,Christensen et al.
(2008) demonstrated that it is indeed necessary to correct for
a bias present in the RCM, but that the common assump-
tion of bias cancellation (invariance) in climate change pro-
jections can have serious limitations when temperatures in
the warmest months exceed 4–6◦C above present day con-
ditions. Thus correction parameters derived for the current
climate cannot always be used to correct precipitation and
temperature in a future climate. This study also demonstrates
that the assumption of a constant model bias may not hold,
because the determined correction parameters may result in
over-adjustment of precipitation during the validation period.
For hydrological applications this may lead to overestimation

of the observed discharges. Therefore, if possible, we should
always validate the simulated discharges with observed dis-
charges when it comes to hydrological modeling with bias-
corrected RCM data. This would only be possible with RCM
data of the current climate, because observed discharges are
obviously not available for a future climate.
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