Hydrol. Earth Syst. Sci., 14, 68783 2010 Dy -K

www.hydrol-earth-syst-sci.net/14/687/2010/ Hydrology and
© Author(s) 2010. This work is distributed under Earth SYStem
the Creative Commons Attribution 3.0 License. Sciences

Evaluation of a bias correction method applied to downscaled
precipitation and temperature reanalysis data for the Rhine basin

W. Terink 1, R. T. W. L. Hurkmans ", P. J. J. F. Torfs!, and R. Uijlenhoet!

IHydrology and Quantitative Water Management Group, Wageningen University, Wageningen, The Netherlands
“now at: Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UK

Received: 23 December 2009 — Published in Hydrol. Earth Syst. Sci. Discuss.: 13 January 2010
Revised: 6 April 2010 — Accepted: 8 April 2010 — Published: 22 April 2010

Abstract. In many climate impact studies hydrological mod- 1 Introduction

els are forced with meteorological data without an attempt to

assess the quality of these data. The objective of this studfRegional Climate Models (RCMs) are an important source of
was to compare downscaled ERA15 (ECMWF-reanalysisclimate input for hydrological models. RCMs are often em-
data) precipitation and temperature with observed precipiployed for downscaling General Circulation Model (GCM)
tation and temperature and apply a bias correction to theseutput and reanalysis data. Hydrological models are sub-
forcing variables. Precipitation is corrected by fitting it to sequently forced with RCM data to address the impact of
the mean and coefficient of variation (CV) of the observa-climate change on the hydrological response of river basins.
tions. Temperature is corrected by fitting it to the mean andFor examplede Wit et al.(2007) investigated the impact of
standard deviation of the observations. It appears that thelimate change by applying the HBV mod@&édrgstbm and
uncorrected ERA15 is too warm and too wet for most of the Forsman 1973 Lindstrom et al, 1997) to the Meuse basin,
Rhine basin. The bias correction leads to satisfactory resultg<leinn et al.(2005 investigated the impact of climate change
precipitation and temperature differences decreased signifto the Rhine basin by forcing the WaSiM-ETH model with
icantly, although there are a few years for which the cor-regional climate model (RCM) output, aturkmans et al.
rection of precipitation is less satisfying. Corrections were (2010 investigated the impact of climate change on stream-
largest during summer for both precipitation and tempera-flow dynamics of the Rhine basin by forcing the Variable In-
ture. For precipitation alone large corrections were appliedfiltration Capacity (VIC) modell{iang et al, 1994 with dif-
during September and October as well. Besides the statistickerent climate scenarios. Another example of the use of RCM
the correction method was intended to correct for, it is alsooutput as input for hydrological applications is givenKegy
found to improve the correlations for the fraction of wet days et al. (2006, who used the output of HadRM3H (RCM) as
and lag-1 autocorrelations between ERA15 and the observanput for a hydrological model to provide estimates of change
tions. For the validation period temperature is corrected venyin flood frequency between the 1970s and 2080s, for 15
well, but for precipitation the RMSE of the daily difference catchments across Great Britain. In additi&teele-Dunne
between modeled and observed precipitation has increasegt al. (2008 evaluated the impact of climate change on nine
for the corrected situation. When taking random years forlrish catchments by forcing the HBV-light model with RCA3
calibration, and the remaining years for validation, the spreadRCM) output to simulate streamflow in a reference period
in the mean bias error (MBE) becomes larger for the cor-(1961-2000) and a future period (2021-2060) under the Spe-
rected precipitation during validation, but the overal averagecial Report on Emissions Scenarios (SRES) A1B scenario.
MBE has decreased. Nowadays, modelers are aware of the uncertainty involved
in modeling, and the necessity to quantify the model output
reliability (Beven 1989. Spatially distributed models are
often forced with RCM output (e.g., REMQacoh 2001,
because observations are scarce on the spatial and tempo-
ral resolution at which these spatially distributed models are
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forced with RCM data, without an attempt to assess the qual2 Models and data
ity of the RCM data. Obviously, the reliability of the spa-
tially distributed model output is strongly dependent on the The Rhine basin is one of the largest river basins in West-
quality of the climate forcing dataChristensen et a{2008 ern Europe. The river Rhine originates in the canton of
state that one inherent source of uncertainty comes from th&rauliinden in the Swiss Alps and it drains portions of
RCM'’s inability to simulate present-day climate conditions Switzerland, Germany, France, Austria and the Nether-
accurately. Therefore it is of major importance that RCM lands before draining into the North Sea. Approaching the
output is validated with historical observations, before cali- Dutch border, the Rhine has an annual mean discharge of
brating the hydrological model with the RCM data. Applying 2395nts~! and an average width of 400m. Because of
a bias correction to the RCM data often seems necessary tihe various bifurcations in the lower Rhine, only the part
match the RCM data with the observatio@hébalova et al.  upstream of Lobith (the point where the river crosses the
2003 Kleinn et al, 2005 Leander and Buishan@007). It German-Dutch border) is considered in this study. The area
is hoped that the model skill under present day conditions isf the Rhine upstream of Lobith is about 185 00K urk-
carried over to future climate conditions. mans et aJ.2008. Figurel represents the Rhine basin up-
The major objective of this study was to compare ob- stream of Lobith.
served precipitation and temperature data with downscaled The bias correction is determined for ERA15/REMO re-
ERA15 data (downscaled with the RCM REMO), refered to analysis data for the period 1979-1995. ERA15/REMO data
as ERA15/REMO hereafter, investigate if there exists a cerconsists of downscaled ERA15 extended with operational re-
tain bias between the latter two, and finally apply a bias cor-analysis data to have a total period of 17 years (ECMWF
rection to correct for this bias. Our second objective was tore-analysi$, 1979—-1995). It contains reanalyses of multi-
test how well the correction parameters determined for a cerdecadal series of past observations, and it has become an
tain calibration period correct for the bias during a validation important and widely utilized resource for the study of at-
period. mospheric and oceanic processes and predictability. It is
Several studies have been performed in which a bias corknown that ERA15 has problems with precipitation estimates
rection method was applied to RCM data. For examighey (Zolina et al, 2004. These problems involve the parame-
et al.(2002 applied a gamma transform to correct RegCM2 terizations for the convective and stratiform parts, spin-up
precipitation data andeander and Buishan@007) applied  effects Kallberg 2002 Hagemann et 312002, and assim-
a power law transform, which corrects for the coefficient of ilation of different inputs which affect the model solution,
variation (CV) and mean of the precipitation valueday including precipitation. Many of these problems are partly
et al. (2002 found that the corrected precipitation data did accounted for in ERA40, which shows better consistency
not contain the day-to-day variability which was present inin many precipitation characteristicZdlina et al, 2004).
the observed data set. For this reason we have chosen to aRA40, however, was not downscaled by the REMO model
ply the method developed hHyeander and Buishan@007) to the resolution needed for our hydrological applications.
in this study, because for hydrological purposes we think itTherefore we were restricted to use ERAL5 in our study.
is important that the day-to-day variability of precipitation ERA15 was downscaled in two steps at the Max Plack Insti-
remains preserved. tute for Meteorology in Hamburg, Germany, to a resolution
This research is part of a larger research project in whichof 0.088, using their RCM REMOJacolh2003). In the first
the bias-corrected ERA15/REMO precipitation and temper-step REMO was nested within ERA15 (global) at a resolu-
ature fields are used to calibrate the VIC model. The cali-tion of 0.44. In the second step a REMO domain was nested
brated VIC model has been used for a climate impact studyin the first one. This resulted in a high resolution data set
for the Rhine basin and is described in more detaiHoyk- (0.088) for the Rhine and Elbe basindgcob et aJ.2008.
mans et al(2010. We hope the results of this bias correction To run the VIC model, several forcing parameters are neces-
study will facilitate other hydrologists in their search for a sary (i.e., precipitation, temperature, wind speed, incoming
suitable bias correction method. The bias correction methoghort- and longwave radiation, vapour pressure and specific
employed in this study can easily be applied to other riverhumidity). The bias correction is determined for precipita-
basins if there is enough forcing and observational data availtion and temperature only, because unfortunately no obser-
able. vations were available for the remaining parameters. There-
Section2 describes the area of interest for this study. Thisfore, these parameters are left uncorrected.
study uses data from a meteorological model. The meteo- Observations of precipitation and temperature were made
rological forcing data and observed data are also subject chvailable by the International Commission for the Hydrol-
Sect.2. Section3 explains the methodology used to cor- ogy of the Rhine basin (CHR)Sprokkereef2001). They
rect for the bias. The results of the analyses are describeg@rovide daily values of precipitation and temperature for 134
in Sect.4. Finally, Sect5 presents the conclusions and per- sub-basins (Figl) throughout the Rhine basin for the period
spectives.

Ihttp:/Avww.ecmwf.int
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Fig. 1. Left: location of the Rhine basin in Europe. Right: location of the 134 sub-basins for which observations are available at a temporal
resolution of 1 day.

1961-1995. The sub-division into 134 sub-basins has beeithe idea behind this approach is that corrections for oro-
employed for several previous studies in which the HBV graphy as well as the orientation of the terrain are taken
model has been applied to the Rhine badtbdrle et al. into account through the background grid. For Switzerland
2002 2005 Miilders et al.1999. Daily sub-basin values are (Dallenbach2000 and FranceWhite, 2001 a similar pro-
obtained using meteorological stations in Germany (DWD),cedure was followed, but they used the inverse distance inter-
Switzerland and France. For the German part of the basin theolation technique instead of the inverse squared distance in-
DWD uses data from ca. 4000 stations. The DWD has interterpolation technique. In additioBrandsma and Buishand
polated the observations to their REGNIE (Regionaliserung(1999 also used these observations provided by the CHR
raumlicher Niederschlagsverteilung) grids with a resolutionin the first report on multi-site generation of daily precipita-
of 60" longitude and 30 latitude using the following steps tion and temperature. Combining the period 1979-1995 of
(de Wit and Buishand®2007, Weerts et a].2008: ERA15/REMO with the period 1961-1995 of the observa-
tions results in the overlapping period 1979-1995 (17 years)
1. The available stations were assigned to the nearest gridfor assessing the bias.
point of the REGNIE-grid and the relative value to the
monthly average rainfall (based on the period 1961—
1995) was calculated. At that grid-point, this relative 3 Methodology
value was directly used;
3.1 Introduction
2. For all other grid-points, the relative values of all sta-
tions in a box of 20 grids around that grid-point were The first part of the analysis is based on the determination
used. These relative values were divided by the squaref the correction parameters for the entire period, while the
of the distance to the central grid-point (i.e. weighted focus of the second part is on a separate calibration and val-
with the inverse square of the distance). The number ofidation period. With the bias correction we try to match the
employed stations varies with the density of the stationsmost important statistics (temporal coefficient of variation
in that region. The average is about three to four; (CV), mean and standard deviation) of the ERA15/REMO
data with those of the CHR observations. The bias correc-
3. The sub-basin averages are then calculated as arithmetion applied in this study is based on that proposed_éy
averages of the grid cell values. ander and Buishan(R007 for a Meuse basin study. They
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found that a relatively simple non-linear correction, adjust- and mean of the observations. The bias correction of temper-
ing both the biases in the mean and variability, leads to aature was found to be more straightforward than that of pre-
better reproduction of observed extreme daily and multi-daycipitation, involving shifting and scaling to adjust the mean
precipitation amounts than the commonly used linear scalingand variance, respectively. In the following sub-sections, the
correction. This method of bias correction does not correctmethod used to calculate the bias correction for precipitation
for the fraction of wet and dry days and lag-1 autocorrela-and temperature will be described in detail.

tion. As was mentioned in Se@, we only have observations

available per sub-basin at a temporal resolution of one day3.2 Precipitation

We intend to use the bias-corrected data for calibration of the

VIC model Hurkmans et a2010. However, we would like ~ Because the bias in precipitation and temperature was found
to run VIC at a spatial resolution of 0.05 degrees and a tem10 vary spatially, bias corrections were carried out for each
poral resolution of 3 h. For this reason we cannot simply useof the 134 sub-basins individuallyLeander and Buishand
the observations for calibrating the VIC model, because the{2007) used a power transformation, which corrects the CV
all grid cells within a sub-basin would have the same valuesas Well as the mean. In this nonlinear correction each daily
for precipitation and temperature, implying that there is noPrecipitation amoun# is transformed to a correcteff* us-
spatial variation in the precipitation and temperature fields!n9:

within a sub-basin. Therefore, the correction parameters for

* b
precipitation are determined for each sub-basin to ensure thdt =¥ (4)

the temporal CV and mean for ERA15/REMO maich thosehe sampling variability of the 17-year means may introduce

of the observations for that specific sub-basin. Thus, wher, ystematic effect in the precipitation related results. In this

averaging all the gri(_j cell values within that sub-basin, andstudy we employed a length of 65 days to calculate the statis-
applying the correction parameters to the average of thesg.s for. This length is chosen for several reasons:
grid cell values, the temporal CV and mean should match

those of the observations. Therefore we first calculate the 1. Leander and Buishar(@007) selected 65 days to reduce
average daily precipitation for each sub-bdsas: the sampling variability based on a study Byabalova
et al. (2003, in which HadRM2 precipitation was cor-
= 1 N8 rected for a hydrological application to the Rhine basin.
Pra= ﬁzzpk’dﬂlh 1) Shabalova et a[2003 state that the sampling variabil-
i=th=1 ity is reduced using a 70-day window;

where P is the average precipitation for sub-bagion day

d, P the precipitation for cell and 3-hourly time step, and

N the total number of grid-cells within sub-basin With

P14 and the observed daily precipitation values for each
sub-basin we are able to determine the correction parame-

2. The block length cannot be chosen to be too small,
because then one would be correcting for differences
which are caused by natural variability instead of cor-
recting for systematic model errors;

tersa andb (for details, see Sect. 3.2). Withandb we 3 A sensitivity analysis for block lengths of 25, 35, 45,
subsequenty*calculate the corrected daily sub-basin precipi- 65, 85 and 105 days revealed that block lengths of 25,
tation valueP, ,. Thus we now have a corrected and uncor- 35 and 45 days improved corrections during Septem-

rected daily precipitation value for each sub-basin. The ratio  per/October, but lead to worse results for July/August.
between the corrected and uncorrected precipitation value is  gjock lengths of 85 and 105 days resulted in worse per-

defined as: formance for nearly all months (Fig);
=%
Rig= Pia @) 4. RMSE for daily precipitation differences were smaller
T Pia for 65-day block lengths than for lengths of 25, 35 and

45 days (Fig2);
whereRy, 4 is the correction factor to be applied to the each
of the uncorrected precipitation celiswithin sub-basink, Thus, in this study we determined the parameteend b

and 3-hourly time steps during dayd, according to: for every five-day period of the year, including data from all
years available, in a window including 30 days before and
P¢gin=Prd.in Ria (3)  after the considered five-day period. The determination of

. _ _ the b parameter is done iteratively. It was determined such
The derived correction parameterandb cannot directly be  that the CV of the corrected daily precipitation matches the

applied to the 3-hourly grid cell values because the correcy of the observed daily precipitation. In this way, the CV
tion function (see Sect. 3.2) is a power law function. If this is js only a function of parametéraccording to:

done, then the temporal CV and mean of the spatial average
of grid cell values in the sub-basin would not match the CV CV(P) = f(b) (5)
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Fig. 2. Left: Average monthly precipitation sums for various block e
lengths. “obs” denotes the observed precipitation, while “era” de- Block

notes the uncorrected ERA15/REMO precipitation. The sensitivi- o o .

ties are shown for block lengths of 25, 35, 45, 65, 85 and 105 daysFig- 3. Schematisation of the division of a year into 73 blocks

Right: RMSEs of daily precipitation differences for various block Of 5 days each for which the andb parameters are determined.
lengths. Top: daily precipitation throughout the year; Bottom: first 65 days
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in which P is the precipitation in a block of 65 days times _ _ .
17 years. With the determined parameigthe transformed Buishand 2007. For each sub-basin, the corrected daily

daily precipitation values are calculated using: temperaturd™ was obtained as:
p*=pb 6 =, 0(Tops) = = =
( ) T" = T ops+ = (Tera— T obs) + (T obs— T era) (7)
0 (Tera)

The parameten is then determined such that the mean of

the transformed daily values corresponds with the observeavhere Tera is the uncorrected daily temperature from
mean. The resulting parametedepends omb. At the end, ERA15/REMO andTyps is the observed daily temperature
each block of 5 days has its ownandb parameter, which  from the CHR data set. In this equation an overbar denotes
are assumed to be the same for each year. The bias correthie average over the considered period anthe standard
tion for the ERA15/REMO data set needs to be calculated fordeviation. This method was not appropriate for precipitation
the period 1979-1995, which has a total length of 17 yearsbecause it may cause negative values. Again both statistics
Figure3illustrates the division of a year into 73 blocks of 5 were determined for each 5-day block of the year separately,
days. For every 5-day block, a different seuaindb param-  using the same 65-day windows as for the bias correction of
eters is determined using the method described above. Thaaily precipitation.

top panel of Fig3 represents the daily precipitation through-

out the year. The bottom panel zooms in to the first 65 days

of the year resulting in 13 blocks of 5 days each. Parameterd Results

of block 7 are calculated using 30 days before and 30 days )

after the considered block, and taking into account all yearét-1  Introduction

for which the bias correction is applied. This results in 1105

(=17x65) values for the calculation of the CV and the mean.!n the following sub-sections the data are analyzed spa-

tially and temporally. We analyse how well the relevant
3.3 Temperature statistics (CV, standard deviation and mean) of the corrected

ERA15/REMO data match those of the observations after the
Temperature cannot be corrected using a similar power lavbias correction has been applied. Extended analyses are done
as was used for correcting precipitation, because temperaturen the behaviour of extremes, fraction of wet days and lag-1
is known to be approximately normally distributed. Correct- autocorrelations. This is done for precipitation and temper-
ing a normally distributed data set with a power law function ature separately. The sensitivity of the determineghd b
results in a data set which is not normally distributed. There-parameters is investigated by using bootstrappitigph and
fore we used a different technique for correcting tempera-Tibshiranj 1994. The last sub-section focuses on how well
ture. The correction of temperature only involves shifting the determined parameters for a calibration period (10 years)
and scaling to adjust the mean and variariceagider and  correct for the bias in a validation period (7 years).
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Fig. 4. Top: MBE for the uncorrected and corrected ERA15/REMO dard deviation are shown as well (thin lines); Bottom: scatter densi-
precipitation [mm] per sub-basin for the period 1979-1995; Bot- ties for the uncorrected and corrected ERA15/REMO and observed

tom: RMSE for the uncorrected and corrected ERA15/REMO pre-monthly precipitation sums for each year per sub-bagfhcoeffi-
cipitation [mm] per sub-basin for the period 1979-1995. cients for the uncorrected and corrected situation are shown as well.
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4.2 Precipitation +2mmdL. The uncorrected ERA15/REMO precipitation

is too wet for most of the Rhine basin, especially in the
Alps and in areas close to where the river Rhine is located.
The average precipitation is corrected to match the averagE"™ the top right panel of Fig, it can be concluded that
precipitation for each window of 65 days times 17 years. t the bias correction leads to satisfactory results. D|ﬁereqces
would also be of interest to know if the daily average pre- Petween the corrected ERA15/REMO and the observations
cipitation over the entire period has improved. Therefore theh@ve decreased notably. The spatial variation in the spread
average daily precipitation over the period 1979-1995 ha{f daily precipitation differences per sub-basin is quantified

been calculated for each sub-basin separately. The averag?é/ the root-mean-square-error (RMSE) of the daily precipita-
daily precipitation difference between the observations and'on difference between ERA15/REMO and the observations

4.2.1 Spatial precipitation difference

ERA15/REMO is given by: (bottom panel, Fig4) and is given by:
1 N
MBE = NZ(Pera,- — Pobs;) (8)
i=1 1Y 2
. . RMSE= _Z(Perai - Pobsi) (9)
where MBE is the Mean Bias ErroN the number of days, N =

Pera; the precipitation for ERA15/REMO at dayand Pops;

the precipitation for the observations at day The MBE

for the uncorrected and corrected situation is shown in theThere is hardly any difference in the RMSE of the uncor-
top panel of Fig.4 for each sub-basin separately. A pos- rected and corrected situation for most of the Rhine basin.
itive difference means that ERA15/REMO is wetter than The RMSE appears to have increased in some sub-basins and
the observed precipitation value for that specific sub-basindecreased in others. Based on these results it looks like the
As can be seen, the difference between the uncorrectedorrection method is less capable of correcting the daily pre-
ERA15/REMO and the observations varies betwe@nand  cipitation amount for these particular sub-basins.

Hydrol. Earth Syst. Sci., 14, 68783 2010 www.hydrol-earth-syst-sci.net/14/687/2010/



W. Terink et al.: Bias correction of downscaled precipitation and temperature reanalysis data 693

4.2.2 Temporal precipitation difference suggests that the employed method is less capable of correct-
ing the precipitation sum if the observed precipitation and
The Rhine basin is subject to a strong seasonal pattern iIERA15/REMO precipitation show an opposite signal. This
which wet winters and dry summers are quite common. Thisminimum for ERA15/REMO precipitation in September and
aspect is important for the correct timing of flood peaks. October was also found Wotlarski et al(2005. They com-
Therefore, we are interested to evaluate how well the biaspared 3 reference data sets with downscaled ERA15, using 4
corrected ERA15/REMO precipitation performs temporally. different RCMs. Kotlarski et al.(2005 found an overesti-
We already noticed that the daily average over the entire pemation of precipitation in REMO in June and subsequently a
riod has improved considerably (top panel Fy.However,  strong decrease of mean monthly rainfall until September.
it is certainly possible that the average monthly precipitationThis is probably connected to the annual cycle of vegeta-
sums of the corrected ERA15/REMO data differ from thosetion characteristics implemented in this model, which causes
of the observations, although the average ERA15/REMOstrong evaporation in early summer and consequently a rapid
precipitation over the entire period is unbiased. Averagedecline of soil water storage. In late summer, the dry soil pre-
monthly precipitation sums for the observations and the un+ents evaporation and therefore local water supply for the at-
corrected and corrected ERA15/REMO data are shown inmosphere, resulting in a decrease of precipitation. This late-
the top plot of Fig.5. Averages are calculated as weighted summer drying problem was also found Biagemann and
(based on sub-basin size) averages over the period 197%acob(2007), who used an ensemble of 10 RCMs to conduct
1995. Large differences between the observations and the urglimate simulations for current and future climate conditions.
corrected ERA15/REMO can be seen during May, June, JulyA |late-summer drying problem was found for all RCMs over
September and October. However, the bias correction seenGentral Europe and is a common feature in several RCMs.
to correct for this bias reasonably well. It seems that the cor- The correction method applied in this study uses the same
rection method is less capable of correcting the monthly prey, andb parameters for each year. We noticed that the correc-
cipitation sums during February, April and November. How- tion method performs quite well when considering the aver-
ever, the method was developed to correct for the mean angige monthly precipitation sums. It remains to be seen how
CV for blocks of 65 days, in which the determined 5-day well the method performs when considering individual years.
andb parameters will have an effect on the statistics of theTo answer this question, the average monthly precipitation
neighbouring and partly overlapping 65-day blocks. There-sum plus and minus one standard deviation has been plot-

fore, it may happen that average monthly precipitation sumsed as well (thin lines). Considering these results it seems
of the uncorrected ERA15/REMO data match those of thethat the correction method works quite well for the months

observations better than the corrected ERA15/REMO dataviay until October, but for November until April there are

does. three years in which the uncorrected data matches the ob-
It can be noticed that precipitation is corrected from aservations better than the corrected data does. To consider
wet to a drier situation for almost the entire year. Consid-poth the monthly performance for each year and the per-
ering Fig.5, the wet bias is especially large during sum- formance per sub-basin, the bottom plots of Fgepre-
mer. According toFrei et al.(2003, who studied precipi-  sent the relation between the observed and ERA15/REMO
tation statistics for the European Alps, wind field deforma- monthly precipitation sums for each year per sub-basin, both
tion and deflection of hydrometeors over the gauge orificefor the uncorrected (left plot) and corrected (right plot) sit-
results in a systematic measurement bias. Estimates of thigation in a scatter density plot. It can be noticed that the
error for the Alpine region are largest in winter (high wind monthly precipitation sums for the corrected situation match
speed, high fraction of snowfall), when the undercatch isthose of the observations better than those of the uncorrected
about 8% for gauges below 600 m above sea level. For sumsjtuation. Based on these results we conclude that the over-
mer the undercatch varies between 4% at low and 12% a&ll performance of the ERA15/REMO precipitation has im-
high-altitude stations. Therefore the large wet bias duringproved, although there are a few years for which the uncor-
summer could partly be a result of a systematic undercatch inected ERA15/REMO precipitation performs better.
the rain gauges. However, the undercatch is relatively small
(only 4%) for the largest part of the Rhine basin during sum-4.2.3 Variation and sensitivity of parameters
mer. Instead of individual rain gauges, we used sub-basin
averaged precipitation values, which are calculated using adThe determined andb parameters affect the corrected daily
vanced interpolation techniques in which orography and ori-precipitation value. It is of major importance how sensitive
entation of the terrain are taken into account (see S®ct. these parameters are to the period for which they were deter-
Based on this we assume that the effect of overcorrecting fomined. What would happen with the parameters if we had
undercatch is minimal. selected a different time period for determing the parame-
In September and October the correction is the other wayters? The two left panels of Fi§.show boxplots for the:
around, and according to the top plot of Figthe described andb parameters throughout the year. These boxplots are
method has some difficulties in correcting for this shift. This calculated for each block of 5 days, taking into account the
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Fig. 6. Top left: boxplot for parameter for each block of 5 days. The boxplot is calculated taking into account the values from all sub-
basins. Median values are represented with the horizontal red lines. Area-weighted average parameter values are shown with the black soli
line. Qutliers (red crosses) are calculated as values larger than 1.5 times the interquartile range. Top right: histogram of bootstrap values
for parameter: for 1000 random samples of 65 days from 17 years of data. Samples are taken from each of the sub-basins and from block
55, including 30 days before and after this block. Bottom left: boxplot for pararmet8ottom right: histogram of bootstrap values for
parameteb for block 55.

values from all sub-basins. Outliers are defined as valuesarger or smaller than for most of the sub-basins. Sub-basin 1
larger than 1.5 times the interquartile range and are indicatedsee Fig.1) is an outlier during almost the entire year. Sub-
with red crosses. It is clear that parametds smaller than  basin 119 (eastern part of Switzerland) hasugmarameter
one during almost the entire year. Parametavas deter-  which is smaller than 1.5 times its interquartile range for the
mined to fit the mean of ERA15/REMO with that of the ob- 26th and 27th block. The spread in thgparameter (Figb
servations. It can be concluded that the average precipitatiobottom left panel) is smaller than was the case for parameter
has to be corrected from a wet to a drier situation for almostz. Outliers can be found throughout the entire year, except
the entire year. This correction is especially large duringfor the first 55 days of the year. Large outliers toobccur
summer, as was already noticed from Fag.However, the  mainly in sub-basin 107. Small outliers foroccur mainly
spread in ther-parameter is smallest during summer. This for sub-basin 1. Parametgiis larger than one during almost
spread is large during winter, which implies a large variationthe entire year. The CV has to be corrected most during the
in the a-parameter for the various sub-basins. It could besummer months.

that the uncertainty of the-parameter is large during winter. T address the uncertainty concerning the determined

Outliers indicate sub-basins, especially during the first 2803nd 5 parameters, we applied bootstrapping for block 55
days of the year, for which the-parameter is substantially and all sub-basins. This is done because for this block the
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spread in botla andb is quite large. We took 1000 random Mean Standard deviation
- 10 12

samples of 65 days from the 17 years of data available for R uncorr: 0.54 R uncorr: 0,51

block 55, and determined for each sample a neamdb pa- g Roomio0 lo| e com: 1.00

uncorr: y = 0.68 x

rameter. The bootstrapping procedure is performed for each
of the sub-basins individually. The results of this analysis are
shown in the two histograms of Fi§. It can be concluded

)

corr:y =1.00 x

ERA15/REMO [mm]
(o2}

ERA15/REMO [mm]

that the uncertainty range for parameteis larger than for 2 R 4
parameteb. In other words, the largest uncertainty is asso- . corr:y =0.99 x )
ciated with correcting the mean of the precipitation values. 2 ogsewed?mm] 8 10 2 [im] 10 12
4.2.4 Statistics . cv et
R? uncorr: 0.

In Sect.3we described the method of the bias correction, that Reor 0% 70
is employed to fit the mean and CV for the precipitation data. T | """ g s
Figure 7 shows several scatter plots for the fitting statistics 2 _— g o 3 £,
as well as for the fraction of wet dayguer) and the lag- g s // 3 oo
1 autocorrelations. These statistics are calculated for each® | 7 G sor o R® corr: 0.66
of the sub-basins separately, resulting in 134 data points for vy
each graph. The observed statistics are plotted versus those *; 15 2 25 %0 = 0o 70
of the uncorrected and corrected ERA15/REMO data. Observed [] Observed [%]

Of course the mean, standard deviation and CV of the ob- Lag-1 autocorrelation
servations match those of the corrected ERA15/REMO al- ¢/ — o
most perfectly, because those were the fitting criteria. In-  5|Rcomo22 + Corected
terestingly, also the correlation between the fraction of wet . Uncorrected
days in the observations and in ERAL5/REMO has improved § *°| & 2 — coneces
significantly for the corrected ERA15/REMO data. Also the g 031 it
lag-1 autocorrelations of the corrected ERA15/REMO data “ I~ 7 |
match those of the observations better than those of the un- Pl e

corrected ERA15/REMO data. These results can be consid- °b1 02 o0z 04 o5 o6

ered as good, because the method of bias correction applied Observed (]

in this study was only intended to correct for the CV and

mean, not for the fraction of wet days or the lag-1 autocorre-rig 7. scatter plots of the statistics of the observed precipita-

lation. tion versus the corrected and uncorrected ERA15/REMO precipi-
For climate impact studies it is important that the hydro- tation. The statistics are calculated for each sub-basin over the pe-

logical model is capable of simulating the runoff generatedriod 1979-1995. The fraction of wet dayge) is the percentage

by large multi-day precipitation events well enough. Theseof days whereP > 0.3 mm. In each subplot the square of the cor-

large multi-day precipitation events often result in floods. relation coefficient R2) and slope of the linear regression line are

Therefore, we have selected all 10-day precipitation sumg!otted. The black line represents the- y line.

during winter. The non-exceedance probabilities for these

10-day precipitation sums have been investigated in &ig. .
0.95. However, for non-exceedance probabilities larger than

According toFurrer and KatZ2008 a Generalized Pareto
0.95 the uncorrected ERA15/REMO matches the 10-day pre-

distribution is capable of fitting high intensity precipitation ~:7° " -
data. Therefore we have fitted a Generalized Pareto distriCiPitation sums of the observations better than the corrected

bution through the data. The Generalized Pareto distributior?RA1S/REMO does. These differences are, however, quite
function is given by: small. More important is that the distribution of the 10-day

precipitation sums is not substantially disturbed by applying

x —9)‘1‘1% (10) a bias correction.

1
y= f(xlk,0,0)=— (1+k
o o
4.3 Temperature

wherek is the shape parameter,is the scale parameter and

6 is the threshold parameter. Only the fit to the observed4.3.1 Spatial temperature difference

10-day precipitation sums is shown, because the other two

fits are similar. All parameters are estimated using the max-The MBE for the uncorrected and corrected ERA15/REMO

imum likelihood method Aldrich, 1997). Both the uncor-  temperature for each sub-basin is shown in the top left panel
rected and corrected ERA15/REMO data match the obseref Fig. 9. A positive value corresponds to a higher tempera-

vations well for non-exceedance probabilities smaller thanture for the uncorrected ERA15/REMO data set. Differences
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Fig. 8. Non-excegdance probabilities of 10-day wintgr precipitation Fig. 10. Area-weighted monthly temperaturz(] over the entire
sums for the period 1979-1995. The 10-day precipitation sums ar@hine basin for the period 1979-1995. Results are shown for the
area-weighted averages. observations and the uncorrected and corrected ERA15/REMO.

MBE uncorrected MBE corrected ERA15/REMO is warmer than the observations for that part
of the Rhine basin. The top right panel of Fiyshows the
differences between both data sets after the correction has
been applied. It can be concluded that the bias correction
for temperature leads to good results. Differences have de-
creased substantially to values betwee®.4 and +0.4C.
Another point of interest is the spatial variation in the spread
of daily temperature differences per sub-basin. This is quan-
tified by the RMSE of the daily temperature difference be-

| tween ERA15/REMO and the observations (Fgbottom

10E 12E panel). In the uncorrected situation the RMSE is quite large
for some sub-basins. However, the RMSE for the corrected
temperature has decreased significantly. Based on these re-
sults it can be concluded that the applied correction method
adjusts the daily temperature values very well.

RMSE uncorrected RMSE corrected

455" N
4.3.2 Temporal temperature difference

50°N
3.5

50 N
Average monthly temperatures for the period 1979-1995 are
shown in Fig.10. Averages are calculated as area-weighted
averages over the entire Rhine basin. With the bias correction
we hope to capture the seasonal pattern of temperature. It can
AL ik 25 _n be concluded that the bias correction for temperature leads to
6E 8E 10E 12°E 6E 8E 10E 12°E satisfactory results. The bias-corrected ERA15/REMO tem-
perature matches the observed temperature almost perfectly
Fig. 9. Top: MBE for the uncorrected and corrected ERA15/REMO for each month. Corrections are largest during the summer

temperature 9C] per sub-basin for the period 1979-1995. Bot- months and smallest during winter. This is mainly caused by
tom: RMSE for the uncorrected and corrected ERAL5/REMO tem-, o yifference in mean temperature as shown later inJHig.

perature {C] per sub-basin for the period 1979-1995.

/

348N

4.3.3 Standard deviation and mean

in MBE vary between-1.5 and +3.5C for the uncorrected As mentioned in Sect3, the correction of temperature is
ERA15/REMO data. The MBE is positive for the largest more straightforward than for precipitation. It only involves
part of the Rhine basin, which means that the uncorrectedorrecting for the mean and the standard deviation. Therefore
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Fig. 11. Top: boxplot for the ratios of the ERA15/REMO standard Observed [] Observed []
deviations over the observed standard deviations. Bottom: boxplot Uncorrected  +  Corrected Uncorrected Corrected

for the differences between the ERA15/REMO average tempera-

tures and observed average temperatures. Boxplots are shown for o

each block of 5 days, where each box represents the spread betwe&ff- 12- Scatter plots of the statistics of the observed tempera-
all sub-basins. Area-weighted averages for each block of 5 days ar/€ Versus the corrected and uncorrected ERA15/REMO tempera-

represented with the solid black line. Median values are representeff!"®: The statistics are calculated for each sub-basin over the period
with the horizontal red lines while outliers are indicated with the 1979-1995. In each subplot the square of the correlation coefficient

2 . o .
red crosses and are calculated as values larger than 1.5 times &) @nd slope of the linear regression line are plotted. The black
interquartile range. line represents the=y line.

4.3.4 Statistics
it is interesting to know how the ratio of the ERA15/REMO
standard deviation over the observed standard deviation fofhe most important statistics for the uncorrected and cor-
temperature varies during the year. The spread in ratios forected ERA15/REMO temperature are plotted against those
all sub-basins, before the correction is applied, is representedf the observations in Figdl2. The considered statistics are
in the boxplot of Fig11 (top panel). A seasonal pattern can the mean, standard deviation, CV and lag-1 autocorrelation.
be distinguished from this figure. From January on, there isThey are calculated over the entire period 1979-1995, for
an upward trend until the start of summer, which suggests arach sub-basin separately. As mentioned before, the cho-
increasing variation in temperature for ERA15/REMO when sen method of bias correction only corrects for the mean
approaching summer. During summer this ratio again ap-and the standard deviation. This is clearly visible in the
proaches one, suggesting a similar standard deviation foplots of the mean, standard deviation and CV, where the cor-
the observed and ERA15/REMO temperature. Around mid-rected ERA15/REMO statistics are almost equal to those of
summer this ratio is increasing again, resulting in a largerthe observations. Despite the fact that the correlation coeffi-
spread in temperature for ERA15/REMO during this period. cients between the lag-1 autocorrelations for ERA15/REMO
The area-weighted average ratio of 1.05 suggests that thand the observations have increased for the corrected situ-
average spread in temperature for ERA15/REMO is largeration, the points have moved further away from the y
than that for the observations. The bottom panel of Ely.  line. However, considering the scale of the y-axis, this result
represents the spread in average temperature differences bgeems to be of minor importance.
tween the ERA15/REMOT(er9) and observed temperature
(Toby. Especially during summer the difference between4.4 Relation between precipitation and temperature
TeraandT ops tends to be larger, suggesting a much warmer
17-year average for ERA15/REMO than for the observations.The employed bias correction method adjusts precipitation
The 17-year average temperature appears to be warmer fand temperature separately. It is possible that there exists a
ERA15/REMO throughout the entire year for almost all sub- certain relation between these variables, which is disturbed
basins. The overal area-weighted average temperature di&fter applying a bias correction. Dependencies between the
ference of 0.868C suggests that the average temperature fordaily precipitation and temperature are shown in a scatter
ERA15/REMO is larger than that for the observations. density plot (Fig.13), taking into account values from all
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Fig. 13. Dependency between the daily precipitation and tempera-
ture of the observed and uncorrected and corrected ERALS/REMC -
data for the period 1979-1995. The squared correlation coefficien
for the correlation between precipitation and temperature is showr

as well. 48N

sub-basins. Results are shown for the observations and tr P
uncorrected and corrected ERA15/REMO data. The ex-

tremely low R? for the correlation between precipitation and Fig. 14. Top: MBE for the uncorrected and corrected
temperature indicates the absence of correlation. From thiERA15/REMO precipitation [mm)] per sub-basin for the validation
figure we can conclude that the pattern of points and correperiod 1989-1995. Bottom: RMSE for the uncorrected and cor-
lation coefficient are not drastically disturbed after the biasrected ERA15/REMO precipitation [mm] per sub-basin for the val-

correction is applied. This result is robust on a seasonal leveldation period 1989-1995.

12 E 6E 8E 10E 12E

as well.
4.5 Validation 4.5.2 Continuous period
4.5.1 Introduction The previously described bias correction method has been

applied to determine the correction parameters for the pe-
The previous analysis focused on the bias correction for théiod 1979-1988. These parameters have been used to cor-
entire period 1979-1995. In climate impact studies, the biagect precipitation and temperature for the period 1989-1995.
correction parameters are often determined for a certain refSimilar to Fig.4, the MBE for the uncorrected and corrected
erence period, and subsequently applied to a future climat&RALS/REMO precipitation per sub-basin are shown in the
period. Therefore we have selected 10 years from the petop panel of Fig.14 for the validation period 1989-1995.
riod 1979-1995 as a calibration period for determining theSpatial precipitation differences have been minimized for the
correction parameters, and applied the determined correctioforrected situation, although less notable than for the analy-
parameters for the remaining 7 years, known as the validatiogis for the entire period 1979-1995. We already noticed that
period. With this we want to evaluate how well the method the RMSE between the observed and ERA15/REMO precipi-
of Leander and Buishan@007) is capable of correcting an- tation was notimproved for the corrected situation when con-
other period for which the parameters were not determinedsidering the entire period 1979-1995. Looking at the valida-
This analysis is split into two parts, wherein the first part tion period (bottom panel Fidl4), it seems that the RMSE
uses the period 1979-1988 as the calibration period and theven increases for the corrected situation. This may result in
period 1989-1995 as the validation period. The second anaworse performance of a hydrological model, if the parame-
lysis takes 100 samples, in which each sample consists ofrs were used to correct a meteorological forcing dataset for
10 randomly chosen years from the period 1979-1995 whict period for which the parameters were not determined.
are used for calibration and the remaining 7 years are used Average monthly precipitation sums plus or minus one
for validation. With this analysis we want to quantify the un- standard deviation are shown in the top panel of Hig.
certainty associated with the selection of 10 calibration andfor the validation period 1989-1995. The correction method
7 validation years. does not lead to an improvement for the months February,
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Fig. 15. Top: average monthly precipitation sums [mm] for the
observations and the uncorrected and corrected ERA15/REMC e TE 10F 12E 6E BE 10E 12E
data for the validation periond 1989-1995 (solid lines). Average

monthly precipitation sums +/- one standard deviation are showngjg. 16,  Top: MBE for the uncorrected and corrected
as well (thin lines). Bottom: scatter densities for the uncorrectedeRA15/REMO temperature®C] per sub-basin for the validation
and corrected ERA15/REMO and observed yearly monthly precipi-period 1989-1995. Bottom: RMSE for the uncorrected and cor-

tation sums per sub-basin for the validation periond 1989-1885. rected ERA15/REMO temperatureQ] per sub-basin for the vali-
coefficients for the uncorrected and corrected situation are shown agation period 1989-1995.

well.

March, April, August and September. Considering the stan- 20
dard deviations, it seems that especially for March and
September there are some years for which the correction i
too wet. Similar to Fig5, the monthly precipitation sums 16
for each separate year and individual sub-basin are plotte:
in the scatter density plots of Fi¢5 (bottom panel) for the
uncorrected and corrected situation for the validation period
Considering ther? coefficients, we can see an overal im-
provement, although less important than for the entire cali-
bration period 1979-1995. Based on these results we cor
clude that the determined correction parameters are able t
correct ERA15/REMO precipitation in a validation period
during the warmer summer months, but that the uncorrecte:
precipitation is closer to the observations for most winter
months and especially for March and September. 0
The MBE for the wuncorrected and corrected J F£. M A ™M J J A S O N D
ERA15/REMO temperature per sub-basin are shown in Month
the top panel of Figl6 for the validation period. It appears Fig. 17. Area-weighted monthly temperature] over the en-
that the determined parameters for the calibration periodjre Rhine basin for the validation period 1989-1995. Results
1979-1988 work very well for the validation period, t00. are shown for the observations and the uncorrected and corrected
Also the RMSE between the daily ERA15/REMO tempera- ERA15/REMO.
ture and observed temperature is minimized, meaning that
the daily temperature values are corrected for the validation
period as well (bottom panel Fig6).
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Uncorrected

= = = Corrected
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Temperature PC]
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e} o N
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F|g. 18'. Top: histograms of 100 samples of average daily precipi Fig. 19. Top: histograms of 100 samples of average daily temper-
tation differences between the uncorrected and observed (left), and .

L . ature differences between the uncorrected and observed (left), and
between the corrected and observed precipitation (right) for the cals )
o . o o . between the corrected and observed temperature (right) for the cal-
ibration period. Bottom: similar, but for the validation period.

ibration period. Bottom: similar, but for the validation period.

Monthly temperature averages for the validation period ar€nd 13.04 mm for the uncorrected and corrected precipitation

shpwn in Fig.17. The correction parameters for temperature during the calibration period, and uncorrected and corrected
adjust the average monthly temperatures very well for the

lidati iod t for th ths N ber. D precipitation during the validation period, respectively. It is
validation period, except for the months November, DECEM- ot ¢jaar what causes this large spread in precipitation dif-
ber, January and February.

ference for the validated corrected precipitation. A possible
explanation could be some low frequency components in the
rainfall series. This is not further investigated as such in this

For this analysis we took 100 random samples of 10 yearapPer. We expect that larger sample sizes (in excess of 10
from the 17 years available, and used these years to deteyears) Iead.tq a decrease in the spread of precipitation blase§.
mine the correction parameters. The determined parame! Nerefore, itis recommended to use as many years as possi-

ters have been used to correct the ERA15/REMO data foP!€ to have the largest sample size for determining the correc-
the remaining 7 years, denoted as the validation period. Folion parameters. Results for temperature look more promis-
each validation sample we calculated the average daily pred- Large frequencies are now found to be centered around
cipitation and temperature value, averaged over the entiré€™ temperature difference for the validated corrected tem-
Rhine basin. The differences between the uncorrected angerature.

observed, and the corrected and observed values are taken

as a measure of how well t_he method per_forms for arang  conclusions and perspectives

domly chosen period for calibration and validation. The re-

sults of this analysis are shown in the histograms of E8. 5.1 Conclusions

and Fig.19for precipitation and temperature, respectively. It

is clear that for the majority of samples for the calibration pe- This study presents an application of a bias correction

riod the precipitation difference is smaller for the corrected method to downscaled ERA15 precipitation and temperature,
situation. For the validation period it turns out that for the and investigates how capable this method is for correcting

corrected situation the spread in precipitation differences inthese data for a bias with respect to observations. We also
creases, but that the overal average has improved. The totahalyzed how well the precipitation and temperature data are
absolute differences for the 100 samples are 7.99, 2.01, 8.18orrected during a certain validation period, using parameters

4.6 Random sampling
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701

determined for a calibration period. The most important re-method, in which the forcing variables are corrected preserv-
sults are: ing the energy balance. Such methods are currently unknown

1.

5.2

. Bootstrapping for the parametetsandb showed that

. When taking random years for calibration, the spread

to us and probably very time consuming. However, for cal-

Precipitation and temperature for the uncorrectedih ation purposes we expect precipitation and temperature
ERA1S5/REMO were found to be too wet and too warm 14 haye the largest influence on the performance of the hy-

for most of the Rhine basin; drological model. Moreover, for operational purposes wa-

Precipitation and temperature are corrected very wellter managers would be more interested in proba_@hnes than
for the calibration period 1979-1995; uncertainties. For a water manager the probability for e.g.
' a discharge exceeding a certain threshold would have more

. The RMSE of the daily precipitation difference between importance than the uncertainty present in RCM data and

the ERA15/REMO and observed precipitation is not subsequently the hydrological model output. Therefore, it
smaller for the corrected precipitation values; is very useful for ongoing research on climate impact stud-
ies to address the uncertainty in the RCM and hydrological

. The correction method also seems to improve the fracmodel, and translate this to the probability of e.g. the occur-

tion of wet days for precipitation and lag-1 autocorrela- rence of floods and droughts. We already mentioned that this
tions for precipitation and temperature; method of bias correction can easily be applied to other river
basins if enough meteorological data are available. However,
L2 : . the results in the current study are mainly focusing on the
the uncertainty is largest in correcting for the mean and_,". : - : .
Rhine basin. Therefore, it is uncertain how the correction

the spread for these parameters is largest during Wlnterr;nethodology performs in other river basins (with other data

. Determined correction parameters for the period 1979-Sets) and therefore it is not possible to define operational ap-

1988 are able to correct precipitation and temperaturePlications. Thus, it is recommended to apply the correction
for the period 1989-1995. Precipitation correction dur- method to several river basins and RCMs with several reso-

ing the validation period works well, especially for May, lutions in order to obtain information which could be useful

June, July and October. However, the validation re-for operational applications.

sults in over-adjustment of the monthly precipitation in ~ Currently there are other existing methods for bias cor-
March and September; rection available. For examplday et al. (2002 applied

a gamma transform to correct RegCM2 precipitation data.

. The RMSE has increased for the corrected They found that the corrected precipitation data did not con-

ERA15/REMO precipitation during the validation tain the day-to-day variability present in the observed data
period. This is mainly due to the over-adjustment of set. We have found that the correction method applied in the
precipitation in March and September; current study does not lead to a decrease in RMSE between
simulated and observed precipitation amounts. This suggests
) X that our method is not capable of preserving the day-to-day
In M,BE between ERA15/REMO gnd .the ob;ervaﬂons variability present in the observed data set either. The gamma
_has_lncreased for the corrected situation during the Val'transform is also evaluated Bjani et al(2010. They show
idation period. However, the °V‘?r‘?" average MBE hasthat the gamma transform is capable of correcting for sea-
fjec.reased.for the corrected precipitation during the Val'sonal means, but they do not show how the correction per-
idation period; forms on a daily basis. We think the day-to-day variability

. Temperature is corrected in a satisfactory manner for thedS &N important aspect when it comes to hydrological mod-

randomly selected years used as validation period; eling, because for hydrological applications it is important
that the model is capable of simulating the correct amount

Perspectives of streamflow at the right time and is therefore dependent on
the correct timing of precipitation events. A further inter-

In Hurkmans et al(2010 we use the bias-corrected precipi- esting experiment would be to evaluate the improvement of
tation and temperature to calibrate VIC and do a climate im-the hydrological model simulation with and without the bias-
pact study. VIC, however, needs other meteorological forc-corrected precipitation fields, using bias-corrected precipita-
ing data as well, such as wind speed, incoming short- andion fields from various correction methodsf Pelt et al.
longwave radiation, vapour pressure and specific humidity2009 Hay et al, 2002 DéqLg, 2007, Piani et al, 2010. This
Correcting precipitation and temperature only would violate was also suggested IRiani et al.(2010.

the energy balance present in ERA15/REMO. Unfortunately We noticed an increase in the RMSE for daily precipi-
there were no observations for the other forcing variablegation differences between ERA15/REMO and the observa-
available at the temporal and spatial resolution used in thigions for the validation period. Therefore it is recommended
study and they are therefore left uncorrected. For future worko determine the correction parameters for the same period
this could be addressed using a multi-variate bias correctioras for which the hydrological model will be calibrated. The
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uncertainty with the selection of 10 years for calibration andof the observed discharges. Therefore, if possible, we should
7 years for validation was quantified by taking 100 samples,always validate the simulated discharges with observed dis-
in which each sample consists of 10 randomly selected yearsharges when it comes to hydrological modeling with bias-
which are used for calibration and the remaining 7 years areorrected RCM data. This would only be possible with RCM
used for validation. This resulted in the fact that the spreaddata of the current climate, because observed discharges are
in MBE between ERA15/REMO and the observations in- obviously not available for a future climate.

creased for the corrected situation during the validation pe-
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