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Abstract. Coupled hydrogeophysical methods infer hydro-
logical and petrophysical parameters directly from geophys-
ical measurements. Widespread methods do not explicitly
recognize uncertainty in parameter estimates. Therefore, we
apply a sequential Bayesian framework that provides updates
of state, parameters and their uncertainty whenever measure-
ments become available. We have coupled a hydrological
and an electrical resistivity tomography (ERT) forward code
in a particle filtering framework. First, we analyze a syn-
thetic data set of lysimeter infiltration monitored with ERT.
In a second step, we apply the approach to field data mea-
sured during an infiltration event on a full-scale dike model.
For the synthetic data, the water content distribution and the
hydraulic conductivity are accurately estimated after a few
time steps. For the field data, hydraulic parameters are suc-
cessfully estimated from water content measurements made
with spatial time domain reflectometry and ERT, and the de-
velopment of their posterior distributions is shown.

1 Introduction

In recent years, the worth of geophysical methods in hy-
drological applications has increasingly become apparent
(e.g.Hubbard et al., 1999; Rubin and Hubbard, 2005; Linde
et al., 2006; Vereecken et al., 2006). Typically, hydro-
logical investigations rely on methods that disturb the soil,
like soil coring, tensiometry or Time Domain Reflectometry
(TDR). In contrast to that, non-invasive geophysical mea-
surements provide the possibility to eavesdrop on subsur-
face flow and transport processes without disturbing them.
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This way, spatio-temporal patterns of hydrological states can
be retrieved. In hydrogeophysical applications, hydrological
states and parameters are estimated through observations of
geophysical states (e.g. electrical resistivity). The possibly
unknown parameters encompass both hydrological parame-
ters determining flow and transport and petrophysical param-
eters that relate geophysical and hydrological state variables.

Geophysical surveys conducted to estimate subsurface
states or parameters have been approached in a three-step
manner (see e.g.Binley et al., 2002; Kemna et al., 2002;
Chen et al., 2004; Cassiani and Binley, 2005; Koestel et al.,
2008; Müller et al., 2010). First, a geophysical survey re-
trieves the geophysical state variables of the subsurface (e.g.
the electrical resistivity distribution). Next, a petrophysical
relationship is applied to transfer these into hydrological state
variables (e.g. water content or tracer concentration). Finally,
these state variables are used to drive a hydrological model
or they are used in a parameter estimation process.

The numerical inversion methods to obtain the geophysi-
cal state variables from the survey data have to solve a highly
nonlinear and mixed-determined problem. Typically, the res-
olution of the inversion result differs spatially, so that some
regions may be well resolved while others are prone to ex-
hibit interpretation errors (Day-Lewis et al., 2005). Fur-
thermore, available knowledge about factors driving hydro-
logic processes (e.g. amount of infiltration or precipitation)
does not enter into this conversion although it largely influ-
ences the observations.Rings and Hauck(2009) have studied
the varying resolution for surface-based Electrical Resistiv-
ity Tomography (ERT). They found that unresolved contrasts
and inversion artefacts may lead to quantification errors that
would produce unphysical hydrological properties. Conse-
quently, an improved inversion paradigm has become neces-
sary.
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Integrated or coupled inversion approaches aim at infer-
ring hydrological properties directly from the geophysical
measurements. The parameters of the hydrological model
and of the local-scale petrophysical relationship between
geophysical and hydrological states are perturbed to mini-
mize the difference between modelled and measured data.
Several authors have investigated coupled hydrogeophysical
inversion for hydrological modelling (Kowalsky et al., 2004;
Lambot et al., 2006; Jadoon et al., 2008; Rucker, 2009; Hin-
nell et al., 2010). These contributions used synthetic data
to evaluate the usefulness and applicability of coupled in-
version for simplified hydrological systems. Additionally,
newer studies are increasingly applying these methods to
actual field data, where the structural inadequacies of the
models, measurement errors and the assumptions inherent
to the petrophysical relationship complicate the inversion
problem (Kowalsky et al., 2005; Deiana et al., 2008; Looms
et al., 2008). In a recent contribution,Huisman et al.(2010)
have formulated the coupled inversion problem in a Bayesian
framework to explicitly recognize uncertainty. They argued
that the posterior uncertainty of the model parameters and
predictions is useful to explore the value of different mea-
surement types.

The coupled hydrogeophysical approach is especially
suited for problems where hydrological states are observed
by geophysical measurements on several occasions (i.e. time-
lapse geophysical surveys). When time-lapse geophysical
measurements are used to monitor hydrological processes
and to parameterize hydrological models, an inevitable ques-
tion is whether additional measurements still provide addi-
tional information to improve the hydrological model pa-
rameterization. AlthoughHuisman et al.(2010) showed that
a Bayesian framework is useful to address this question, their
framework only allows an answer a posteriori. For long-term
monitoring, it is more attractive to provide regular updates of
hydrological states, parameters and their uncertainty, using
the information that is available so far.

Typically, filtering techniques, such as the popular Kalman
filter (Kalman, 1960; Chen, 2003) are applied to update
states whenever new measurements become available (e.g.
Sepp̈anen et al., 2001). The classical Kalman filter relies on
linear behaviour in time, but additional filters have been de-
veloped that alleviate this problem, e.g. the extended Kalman
filter (see e.g.Kaipio and Somersalo, 2004) or the ensemble
Kalman filter (Evensen, 1994). Lehikoinen et al.(2009) have
applied the extended Kalman filter to the problem of dynam-
ical ERT inversion with explicit recognition of state uncer-
tainty. However, all Kalman-type filters rely on Gaussian
error distributions in the prior distribution.

A related family of filters are the particle filters. These
filters are based on a sequential Bayesian framework (Gor-
don, 1993; Doucet and de Freitas, 2001; Arulampalam et al.,
2002; Storvik, 2002; Chen, 2003; Cappe et al., 2007). They
have been designed to cope with arbitrary prior distributions.
The posterior probability distributions are approximated by

sampling at discrete supporting points carried by weighted
particles. This method is highly attractive for continuous
state monitoring and also has potential for parameter esti-
mation. A major advantage in a hydrogeophysical monitor-
ing application is that the filter provides updated posterior
distributions of states and parameters immediately after each
measurement. Particle filters have recently been introduced
into hydrology (see e.g.Weerts and El Serafy, 2006; Zhou
et al., 2006; Hsu et al., 2009). Although filtering techniques
are traditionally used to update state variables, they have
also been applied in conjunction with hydrological models
for parameter estimation (Kivman, 2003; Moradkhani et al.,
2005; Vrugt et al., 2005; Hendricks Franssen and Kinzel-
bach, 2008; Salamon and Feyen, 2009).

In this study, we apply particle filtering to the problem
of estimating hydraulic and petrophysical parameters from
ERT measurements made during infiltration in the unsatu-
rated zone. The rest of this study is organized as follows.
First, we introduce the concept and implementation of the
particle filter. Next, we apply the particle filter to estimate
the water content distribution and the saturated hydraulic
conductivity from a simple synthetic data set consisting of
ERT measurements made during infiltration into a lysime-
ter. Finally, we apply the particle filter to estimate hydraulic
and petrophysical parameters from ERT measurements made
during infiltration into a full-scale dike model. As a refer-
ence, we also determine these parameters from detailled spa-
tial time domain reflectometry (TDR) measurements.

2 Methods

2.1 State models

We want to describe the statex of a system, in our case
e.g. a vector containing water content or pressure head for
each element of a discretized representation of the subsur-
face. We can apply Bayesian analysis at each time step
T =1,...,t,t+1,... At time t , this analysis can estimate past
statesx1,...,xt−1 (smoothing), the current statext (filtering)
or the future statext+1 (forecasting).x can be seen as a ran-
dom variable in a stochastic model that translates the state in
time:

xt+1
= f (xt ,ξ ,ut )+αt+1 (1)

where the operatorf is the time propagation function that
translates the state in time fromt to t+1 driven by some ex-
ternal forcingut and modified by some static parametersξ .
αt+1 is Gaussian noise term that adds a stochastic diffusion
process to the translation.

From a statext+1, we can deduce an observationyt+1

from the observation process
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yt+1
= g(xt+1,ξ)+β t+1 (2)

whereg is an operator to determine the system response from
state and parameters, andβ t+1 again is a Gaussian term de-
scribing the measurement noise. The noise termαt+1 and
β t+1 are assumed to be independent random vectors.

2.2 Parameter estimation

The state-space has been formulated in the previous section,
where we assumed the parametersξ to be static. However,
in this study we want to focus on parameter estimation rather
than only filtering or forecasting of states. Therefore, we use
a series of parametersξ t , that shall converge to estimates of
the true static parametersξ for t → ∞. We assume these
ξ t to be pseudo-static, meaning that they are not modified
by external forcing, but only perturbed by a small Gaussian
noise process as

ξ t+1
= ξ t

+ζ t+1 (3)

whereζ t+1 is an independent Gaussian random vector im-
plemented as a static noise term as suggested byLiu and
West(2000). For simplification, we abbreviate the notation
asz=(x,ξ), wherez is also known as the augmented state
variable.

2.3 Sequential Bayesian filtering

Given the prior distribution of state and parameters
p(z0:t+1), we can obtain the posterior distribution from fil-
tering through the Bayesian theorem

p(z0:t+1
|y1:t+1) =

p(y1:t+1
|z0:t ) p(z0:t+1)

p(y1:t+1)
(4)

wherep(y1:t+1
|z0:t ) is a likelihood function for observations

given the previous states andp(y1:t+1) is the normalization
factor.

We approximate this pdf by a discrete set ofn=1...N par-
ticles zi by assigning a weight̂wi to each particlei. Then,
we can write:

p(z0:t+1
|y1:t+1) =

N∑
i=1

ŵt+1
i δ(z0:t+1

−z0:t+1
i ) (5)

whereδ() are Dirac delta functions. Initially, all particles are
assigned the same weightŵ0

i = 1/N .
Direct sampling from this posterior is generally very de-

manding or impossible, so we rather sample from a known
distribution q(z0:t+1

|y1:t+1) called a proposal distribution.
This way, we can define new weightswi as

wk+1
i =

p(z0:t+1
|y1:t+1)

q(z0:t+1|y1:t+1)
. (6)

The choice of a proposal distribution is a critical decision
(Arulampalam et al., 2002; Moradkhani et al., 2005), and is
conveniently taken to be equal to the prior distribution

q
(
z0:t+1
i |z0:t

i ,y1:t+1)
= p

(
z0:t+1

|z0:t
i

)
. (7)

The last step towards a sequential formulation is the assump-
tion that the proposal distribution is chosen so that it factor-
izes in a recursive way:

q(z0:t+1) = q(z0:t
|y0:t )q(zt+1

|z0:t ,yt+1) (8)

By combining Eqs. (7) and (8), we arrive at the simple form
for weight updating

wt+1
i = wt

ip
(
yt+1

|zt+1
i

)
. (9)

Due to the Markovian formulation of the time propagation
model in Eqs. (1) and (3) and the observation model in
Eq. (2), this is a valid formulation and can be used to im-
plement a particle filter.

2.4 Particle filter implementation

We implement a Sampling Importance Resampling (SIR) fil-
ter, which basically follows a three-step approach. The first
step is the time propagation of state and parameters which
samples the evolution densityp(zt+1

|zt ) and follows from
the models in Eqs. (1) and (3).

The second step is filtering, which assigns weights to the
particles based on the probability for an observation. The
observation is deduced from Eq. (2), then the weight is up-
dated according to Eq. (9). In the case that measurements
from j = 1,...,J different sources are available, we have
vectorsY j of measurement data (e.g. measured transfer re-
sistances or water content) and the modeled observationsyj ,
we evaluate the weightwi,j as the inverse of the distance
|Y t

i,j−yt
i,j |. If we assume to know the normalized, rela-

tive measurement errorrj of each method, we can obtain
wi =

∑
j rjwi,j . However, the filters implemented in this

study have been restricted to one measurement method.
After assigning and normalizing the weightswi , resam-

pling is used to prevent a concentration of weights in only
one or a few particles. To find out whether this is necessary,
an effective particle numberNe is determined as

Ne =

(∑
i

w2
i

)−1

. (10)

If Ne is larger than a threshold valueτ (e.g.τ=0.5), the par-
ticle set remains unchanged. Otherwise, this is an indication
that the particle set has become impoverished, as few par-
ticles contribute with considerable weight. To remedy this,
a new set of particles is determined using a resampling al-
gorithm. Douc et al.(2005) evaluated different resampling
techniques, and found that the residual resampling technique
(Liu and Chen, 1998) performed well. This resampling tech-
nique allocates

n′

i = bNwic (11)

copies of particlei in the new set and samples the remain-
ing L=N−

∑
i n

′

i particles from the multinomial distribution
Mult(L;w̃1,...,w̃N ) with

w̃i =
Nwi −n′

i

L
. (12)
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The weightwi for all new particles is again set towi=1/N .
For T →∞ andN→∞, the posterior is found so that the

weighted averageξ represents an appropriate parameter esti-
mate:

ξ =

∑
i

wiξ i (13)

Figure1 illustrates the particle filter method. We start with
a particle cloud that has been propagated to timet . In the
observation step, the particles are weighted according to how
well they fit with the data. Then, they are redistributed ac-
cording to their weights. A particle that has gained weight
during observation may split up into two or more new par-
ticles, and particles that had small weight after observation
may be removed from the cloud. Finally, the propagation car-
ries the particle states to timet+1, which in our case would
mean a forward model run from timet to t+1. These steps
are repeated as long as new measurements become available.

2.4.1 Time propagation

For each particlei, the functionf in Eq. (1) is evaluated by
a hydrological forward model run from timet to t+1. The
statext

i enters as the initial water content or pressure head at
time t .

The hydrological models used in this study are HYDRUS
(e.g.Simunek et al., 2008) for 2-D modelling domains and
PARSWMS (Hardelauf et al., 2007) for 3-D modelling do-
mains. They solve the Richards equation for unsaturated
water flow using a linear Galerkin approach in a finite el-
ement scheme. We assume that the parametric model by
van Genuchten(1980) can describe soil water retention and
hydraulic conductivity as:

Seff =
θ −θr

θS −θr

= (1+|αh|
n)−m (14)

k(h) = kS

√
Seff

[
1−

(
1−S

1/m

eff

)m
]2

(15)

where h is matrix potential (m),θ is the volumetric wa-
ter content (m3/m3), θr is the residual water content for
h→−∞, θS is the saturated volumetric water content,α is
the inverse of the air-entry value (m−1), n is an empirical
shape factor (–),m is a factor that can be connected ton

via m=1−1/n andkS is the hydraulic conductivity atθ=θS

(m/s).

2.4.2 Observations

To evaluate particle weights, the modelled observationy has
to be determined. In this study, we concentrate on ERT as
the geophysical observation method. To model the transfer
resistances that are measured during an ERT survey, we have
to determine the distribution of bulk resistivityρb from the

Fig. 1. Illustration of the filtering steps of observation and prop-
agation and the resampling scheme. Adapted fromChen(2003).

soil water content distribution. Therefore, the petrophysical
relationship byArchie (1942) is used:

ρb = ρw8−mA

(
θ

8

)−nA

(16)

whereρw is the pore water resistivity (�m), which is the
inverse of the pore water conductivityσw, 8 is the porosity
of the soil (m3/m3), mA is the cementation exponent (–) and
nA is the saturation exponent (–).Ulrich and Slater(2004)
determined saturation exponents ranging from 1.0 to 2.7 for
unconsolidated sands.

We use an ERT forward code byRuecker et al.(2006)
for 3-D modelling domains and the CRMOD code (Kemna
et al., 2000) for 2-D modelling domains. Both ERT for-
ward models were coupled to hydrological models following
the approach and considerations presented inHuisman et al.
(2010).

3 Numerical experiment

As a proof of concept, we use a synthetic data set of
simulated lysimeter infiltration monitored by cross-borehole
ERT. The model domain was set up as a cube of 1 m edge
length filled with a homogeneous material (withθr=0.001,
θS=0.27,kS=0.0015 m/s, α=4 andn=4.56). On each ver-
tical face of the cube, two electrode arrays were installed at
one third and two thirds of the width, with electrodes posi-
tioned below the surface from 0.1 m to 0.9 m every 0.1 m.
Electrode arrays were created for all possible combinations
of injection dipoles in one borehole and potential dipoles in
the borehole immediately across the injection borehole at
equal or greater depth. Model grids were created for the
hydrological simulation with 1000 equally sized hexagonal
cells that were further subdivided into 6000 tetrahedral cells.
The parameter mesh for the ERT model was of equal size,
but internally an irregular grid with tetrahedral cells was used
(seeRuecker et al., 2006).
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Water was infiltrated from all surface nodes into an ini-
tially dry medium (pressure headh=−1 m). After t=500 s,
the wetting front reached the bottom of the volume. Arti-
ficial measurements were created every 100 s with the ERT
forward model. For this simulation, a coarser internal ERT
forward grid was used as recommended byKaipio and Som-
ersalo(2004). The measurements were perturbed with 3%
Gaussian noise.

3.1 Implementation of the particle filter

For this 3-D simulation, the hydrological model PARSWMS
(Hardelauf et al., 2007) was coupled to the ERT forward code
by Ruecker et al.(2006). The state vector was initialized
uniformly for each particle with 1331 pressure head values
(one for each grid node) and a variablekS . The initial state
and parameter distribution were sampled from uniform dis-
tributions for N=1000 particles. Distribution bounds and
true values can be found in Table1. The particle filter has
been realized in a wrapper software code “Particle Filter-
ing Inversion-Friendly Framework” (PFIFF) implemented in
Python that connects the coupled models with the propaga-
tion, observation and resampling schemes.

For time propagation fromt to t + 1, the hydrological
model was run conditional to the particle’s parameterkS .
Then, α=ζ=2% Gaussian noise were added to the aug-
mented state to simulate a stochastic diffusion process.

We assumed that the petrophysical relationship was
known, and used it to transfer soil water content to bulk resis-
tivity for each cell. The resistivity distribution thus obtained
was used in the filtering step to simulate an ERT measure-
ment at timet+1. Then, particle weights were assigned and
normalized. Finally, the particles were resampled (each time
step, so that the resampling threshold wasτ=1) and their
weights reset to 1/N .

3.2 Results

Figure2 shows the distribution of particle weights immedi-
ately before the first resampling (t=100 s) and at the end of
the simulation (t=500 s). The figure implicitly contains the
variability in the state estimate, as can be seen from differ-
ent weights of particles with similar conductivity. The initial
distribution of the states was only1h=4 cm wide, so it is
evident that errors in the state have a large influence on the
weight. While most particles have a low weight, some parti-
cles near the true value ofkS=0.0015 m/s have a markedly
higher weight. At the final time step,t=500 s, the filtering
and resampling have caused most particles to converge to the
correct value. The weighted average ofkS is 0.00165 m/s,
which is a slight overestimation. The state variable is shown
for a 1-D vertical profile taken in the middle of the model do-
main for two time steps (Fig.3). The initial distribution was
sampled from an interval that underestimated the pressure
head (see Table1) for all particles. While at timet=300 s, the

Table 1. Initial state and parameter value and range.

Parameter True value Initial range

Initial pressure head −0.5 m −0.54...−0.50 m
Saturated hydraulickS 0.0015 m/s 0.0008...0.0042 m/s
conductivity

particle states show an even greater variability than in the ini-
tial distribution, the true state (blue line) is no longer on the
boundary of the distribution, but the particles gather around
it. This is true not only for the model parts near the surface,
where changes due to the infiltrating water front have influ-
enced the particle states, but also near the bottom, where the
stochastic diffusion process that is added to the time prop-
agation step combined with the resampling have influenced
the particle states to move into the right direction. In the final
time step, att=500 s, the mean state value of all particles suc-
cessfully retrieved the true state. Only in the lowest parts of
the model (where ERT sensitivity is very low), the variabil-
ity in pressure head is much higher. Finally, the results of the
parameter estimation are shown as a comparison of the ini-
tial prior and posterior pdf ofkS in the histograms in Fig.4.
The prior distribution was randomly sampled from a uniform
distribution, but the parameter estimation successfully trans-
formed the pdf into a posterior distribution approximating
a Gaussian distribution with a mean near the true value.

4 Full-scale dike model

4.1 Site description and measurements

Measurements have been taken on a full-scale dike model
(see Fig.5) located at the Federal Waterways Research In-
stitute in Karlsruhe, Germany. It has a height of 3.6 m and
a length of 22.4 m. The dike model was built homogeneously
of a well-graded, uniform sand, which was covered by a thin
soil layer overgrown by grass. Below the dike, there is a wa-
terproof sealing that creates a hydrological no-flow bound-
ary. The waterside can be flooded to just below the crest. At
the foot of the landside slope, there is a drain that removes ex-
cess water and ensures the stability of the model dike. More
details on the dike model can be found inScheuermann et al.
(2009) andRings et al.(2008).

The dike model is equipped with 12 vertically installed
TDR cables. By applying a reconstruction algorithm
(Schlaeger, 2005), permittivity profiles can be obtained along
these cables. These can be converted to spatially resolved
soil water content profiles by applying a petrophysical rela-
tionship, in this case a site-specific calibration (seeScheuer-
mann et al., 2009).
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Fig. 2. Weights of particles before resampling steps att=100 s andt=500 s.

Fig. 3. Vertical 1-D pressure head profiles. The blue line marks the true value, while each red line corresponds to one particle’s state. Green
lines mark the state pdf median and the 5% to 95% confidence interval.

Fig. 4. Prior and posterior probability distribution ofkS for the numerical case.

In 2007, water content measurements were taken using
TDR cables. During a similar experiment in 2005, ERT mea-
surements were made using a SYSCAL Junior instrument
(IRIS instruments) on a 8 m long line with 48 electrodes with
a spatial spacing of 0.16 m down the landside slope of the
dike (see Fig.5). Each ERT measurement consisted of 348
discrete arrays in the Wenner-Schlumberger configuration
with a fixed spacing of 0.16 m between potential electrodes
and a current electrodes spacing ranging between 0.48 m and
4.32 m. From these 348 arrays, only the 120 arrays with the

largest absolute change over time were selected for use in the
particle filter to reduce the computational burden.

A flooding was simulated, in which the water level was
raised to 2.4 m (1.2 m below the crest) within 48 h. Unfortu-
nately, no TDR measurements were taken during the flooding
experiment in 2005. On the other hand, fewer ERT measure-
ments were taken down the landside slope in 2007. As both
experiments were performed under very similar conditions
(with the difference that the water level was kept at the high-
est level for an additional 48 h in 2007 with a subsequent
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Fig. 5. Full-scale dike model at the Federal Waterways Research
Institute in Karlsruhe, Germany.

more rapid lowering of the water level), we use ERT mea-
surements taken at 12 different times over the course of
92 h from 2005 and TDR measurements taken at 14 differ-
ent times over the course of 96 h in 2007 for two runs of the
particle filter. Figure6 shows the evolution of the water level
and the measurement times for ERT and TDR.

At this point, we want to emphasize that the TDR data
are far superior to the ERT data because of the large amount
of invasive TDR data as compared to the non-invasive ERT
data. This is confirmed byHuisman et al.(2010), which
showed that the posterior uncertainty in the hydrologic pa-
rameters estimated from TDR is much smaller. Therefore,
the TDR measurements should be considered as a reference
to compare with the ERT parameter estimation results. This
large difference in information content is also the reason that
a simultaneous inversion of ERT and TDR data is not at-
tempted in this study.

4.2 Implementation of the particle filter

We follow the model setup byHuisman et al.(2010), where
a 2-D section coinciding with the ERT transect is modelled
using the hydrological code HYDRUS (Simunek et al., 2008)
coupled to the ERT forward code byKemna et al.(2000).
Different model grids were used for the hydrological and
ERT model. For the hydrological model, a discretization
with a total of 7603 elements was chosen with a denser dis-
tribution near the soil surface to account for steeper gradients
of pressure head at the soil-atmosphere interface. In contrast,
the ERT model grid needs only be refined near the electrode
positions. A discretization with 5924 elements was used so
that there was at least one node in between neighbouring
electrodes. The domain was extended into the subsurface, as
the hydrological no-flow boundary permits flow of electrical
current. InHuisman et al.(2010), the electrical conductiv-
ity assigned to this domain extension was optimized as an
additional parameter. In this study, we fixed the subsurface
electrical conductivity to this optimized value.

The particle filter approach needs considerable computa-
tional resources, but has the benefit that propagation and ob-
servation can be run independently for each particle. There-
fore, the PFIFF code was implemented in a parallelized ver-

Fig. 6. Heights of the water level in the 2005 and 2007 flooding
experiment. Points mark the times where measurements were taken,
either with ERT in 2005 or TDR in 2007.

sion which uses a multi-threaded root process that distributes
and starts model runs for different particles on other proces-
sors using MPI.

Two versions of the filter were run with different obser-
vation models. In the first version, the observation model
simply compared modelled and measured soil water con-
tent derived from spatial TDR. The second version used the
coupled electrical forward code to model ERT data at all
times when field ERT measurements were taken; then par-
ticles were weighted by the inverse of the difference between
measured and modelled apparent resistivity. The TDR run
usedN=3000 particles with 1% parameter noise, the ERT
run used 4096 particles with 3.5% parameter noise to ensure
sufficient exploration of the parameter space. Initial param-
eter estimates were sampled from uniform distributions (see
Tables2 and3) by stratified sampling. In both filter runs, re-
sampling was used if the effective particle number fell below
a threshold ofτ = 0.95. The TDR filter run took about 12 h
on four quadcore CPUs, the ERT run took 50 h on 6 quadcore
CPUs.

4.3 Results

Tables2 and3 show the results for the hydraulic and petro-
physical parameters estimated either from water content
measurements (TDR) or electrical measurements (ERT). For
each estimation method, the weighted average (see Eq.13),
the median and the 90% confidence interval have been cal-
culated from the posterior distribution. Figures7 and 8
show, for the six parameter estimates, the posterior distribu-
tions. For each parameter, the development of the 98% and
50% confidence intervals, median and weighted average are
shown.

The saturated hydraulic conductivitykS has been con-
strained by both methods. ERT has estimated a slightly
higherkS , but both values are near the values determined in
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Table 2. Initial and posterior parameter values for the dike and calibration to TDR. Units are m/s forkS and 1/m for α.

Parameter Lab value Initial range TDR: W. Av. 5% Median 95%

log(kS) −3.68 −5. . .−3 −3.39 −3.61 −3.39 −3.21
α 4 3. . . 10 5.4 3.2 5.1 8.8
n 2.2 1.4. . . 4.0 2.1 1.5 1.9 3.1

Table 3. Initial and posterior parameter values for the dike and calibration to ERT. Units are m/s forkS and(�m)−1 for σw.

Parameter Lab value Initial range ERT: W. Av. 5% Median 95%

log(kS) −3.68 −5. . .−3 −3.21 −3.47 −3.19 −2.99
nA 1.164 1. . . 2 1.13 1.06 1.13 1.22
σW – 0.01. . . 0.05 0.046 0.042 0.046 0.050

laboratory measurements. It is clearly visible that as soon
as markable changes in water content occur (after 24 h), the
filter quickly constrains the parameter range.

The distributions ofα andn in Fig. 7 have hardly been
constrained. A strong correlation between these parameters
was observed inHuisman et al.(2010), which leads to a very
slow convergence as many possible pairs ofα andn provide
acceptable simulations. This is also apparent in Fig.9. Here,
the distribution of particle weights is shown as a function
of the parametersn andα. The ridge of the weight land-
scape has approximately the same height for a large range
of parameter combinations, leading to a slowly converging
estimation. In the limited number of time steps of the filter-
ing process, no convergence could be achieved, however, the
median and weighted average approach the laboratory val-
ues. The petrophysical parametersnA andσw have been well
constrained as shown in Fig.8. The value ofnA agrees very
well with the estimate ofnA=1.16 byRings et al.(2008).

A comparison of water content distributions using labora-
tory and ERT calibratedkS for the 2005 experiment att=29 h
is shown in Fig.10. As the subsurface seen by ERT is limited
to a depth of about 1.5 m on the landside (seeRings et al.,
2008), ERT starts to detect changes in water content from
t=20 h on. At t=29 h, the parameterkS as estimated by
the coupled approach leads to a simulation with mostly es-
tablished saturated area (Fig.10, top row, right). The lower
kS as determined in the laboratory, however, leads to a satu-
rated area that would barely reach the region visible to ERT
(Fig. 10, top row, left). After t=29 h, a saturated area is
established and the measurements seem to carry few infor-
mation to additionally constrain the posterior distributions.
However, these time steps are important to allow the poste-
rior distribution to converge through additional resampling
steps.

The RMS error of the modelled ERT response in the last
time step is 311�m with a variance of only 16�m. This
is twice the RMSE as found by the MCMC optimization in
Huisman et al.(2010), which had 12 free parameters, but
a significant reduction from the initial RMS of 1966�m with
a variance of 989�m. From the small variance of the RMSE
in the final set of particles, it is concluded that the filter has
approximately converged to the posterior distribution that re-
flects the uncertainty and information content of the mea-
surements.

To evaluate the influence of the number of particles, we
repeated the ERT filter run with only 400 particles. While
the constraints on the parameter distributions look similar to
those in Fig.8 with only slightly wider bounds, the median
and weighted averages differ considerably between runs with
400 and 4096 particles. Figure11 shows the particle weight
distributions in thekS parameter space at timet=78 h. The
vertically striped structure is the effect of resampling and the
Gaussian noise on the parameters. For the 4096 parameters,
the density of particles is high enough so that it can be as-
sumed that the particle distribution approximates the pos-
terior distribution, although the space is not systematically
explored. For 400 particles, due to resampling, gaps in the
parameter distribution become apparent. In this case, the
filter run still worked for 400 particles because of the low-
dimensional parameter space. However, it is questionable
whether our standard implementation of the particle filter can
be successfully used to explore higher dimensional parame-
ter spaces. A possible remedy could be a larger Gaussian
noise on the parameters, e.g. expressed in terms of variance
multiplied with a factor as suggested by e.g.?. The factor
can also be systematically reduced over time. A combination
of particle filters with optimization concepts borrowed from
MCMC methods also seems promising to improve conver-
gence and parameter space exploration issues.
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Fig. 7. Posterior probability obtained from TDR measurements.
Distributions ofkS , α and n are shown with the 98% percentile
marked by light color, the 50% percentile marked in blue, the blue
line marking the median and the green dots marking the weighted
averages at each time step. Green diamonds on the axes mark the
laboratory values.

5 Conclusions

We have presented a sequential Bayesian framework for es-
timation of hydrological states and parameters from hydro-
geophysical measurements. This particle filter method ap-
proaches the pdfs of state and parameters by discrete sets of
particles which each carry state and parameters sampled from
initial distributions. Through time propagation and compar-
ison to measurement data, the particles are assigned weights
according to how well they describe the data. Over time and
with the help of a resampling technique, the particles ap-
proach the true distributions. Furthermore, the filtering ap-
proach has the benefit of providing updated posterior distri-

Fig. 8. Posterior probabilities obtained from ERT measurements.
Distributions ofkS , nA andσw are shown with the 98% percentile
marked by light color, the 50% percentile marked in blue, the blue
line marking the median and the green dots marking the weighted
averages at each time step. Green diamonds on the axes mark the
laboratory values.

butions of states and parameters whenever new measurement
data become available.

For a synthetic data set simulating lysimeter infiltration
monitored by ERT, this method was shown to be able to re-
trieve the correct model states and parameters and provide
a reasonable estimate of the remaining predictive uncertainty.
However, it was also apparent that small errors in the state
estimation can strongly affect parameter estimation, which
necessitates the use of an increased number of particles.

For field data, the focus was on parameter estimation;
therefore the states were not varied. The coupled hydrogeo-
physical approach has been applied to ERT and TDR data
collected during infiltration experiments on a full-scale dike
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Fig. 9. Particle weights,n andα for all particles in the filter run
calibrated to SWC measurements at the final time step.

Fig. 10.Water content distribution in the dike model at timet=29 h
for the 2005 experiment using either the laboratory measuredkS or
the (final)kS estimated from ERT.

model. This model dike allows experiments with temporal
changes in water content up to full saturation. It was mon-
itored by TDR cables in the dike body that measured soil
water content, and by ERT perpendicular to the crest on the
land side of the dike. Two particle filter runs were made.
In the first run, water content measured with TDR was used
as the observation model, while in the second run only ERT
measurements were analyzed using the coupled hydrogeo-
physical inversion approach. The first filter run estimated
three hydrological parameters, while the second estimated
kS and two petrophysical parameters. The parameter ranges
were successfully constrained forkS and the petrophysical
parameters. For all parameters, the weighted average of the
parameter distributions were in good agreement with values
obtained in laboratory measurements and previous studies.

The results of this study are encouraging and show that
sequential Bayesian methods are an appropriate estimation
technique for parameter estimation in hydrogeophysical sur-
veys. Even more, as updates of the posterior distributions
become available with new measurements, this can be used
for on-line parameter estimation in a permanent monitoring

Fig. 11. Particle weights andkS for ERT filter runs with 400 and
4096 particles at tmet=78 h.

installation, e.g. for the continuous monitoring of dike water
content. The filter can also be used to forecast future states
and to optimize experimental design. This may involve a spa-
tial focussing in regions where change will probably occur or
an optimization of the timing of measurements in a perma-
nently installed system.

Filtering techniques are mostly applied for state estima-
tion, where the propagation model places strict constraints
on the variability. For parameter estimation, no such con-
straints exist. The presented particle filter implementation
does not include a search strategy for the parameter space,
but instead relies on stratified sampling of the initial distri-
bution and random perturbations after each time step. This
necessitates a large number of particles, which is computa-
tionally prohibitive for a larger number of parameters. The
present technique provides a promising strategy for applica-
tions that focus on state estimation with few unknown pa-
rameters. To deal with higher-dimensional parameter spaces,
the current particle filter implementations are most likely not
suitable because of insufficient exploration of the parameter
space. Future developments of particle filtering are required
to overcome this limitation. In this respect, a combination of
particle filters with state-of-the-art Monte Carlo methods that
have been developed for (non-sequential) parameter space
exploration seems especially promising.
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