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Abstract. The snow surface temperature is an important
quantity in the snow energy balance, since it modulates the
exchange of energy between the surface and the atmosphere
as well as the conduction of energy into the snowpack. It is
therefore important to correctly model snow surface temper-
atures in energy balance snowmelt models. This paper fo-
cuses on the relationship between snow surface temperature
and conductive energy fluxes that drive the energy balance of
a snowpack. Time series of snow temperature at the surface
and through the snowpack were measured to examine energy
conduction in a snowpack. Based on these measurements we
calculated the snowpack energy content and conductive en-
ergy flux at the snow surface. We then used these estimates
of conductive energy flux to evaluate formulae for the cal-
culation of the conductive flux at the snow surface based on
surface temperature time series. We use a method based on
Fourier frequency analysis to estimate snow thermal proper-
ties. Among the formulae evaluated, we found that a mod-
ified force-restore formula, based on the superimposition of
the force-restore equation capturing diurnal fluctuations on a
gradually changing temperature gradient, had the best agree-
ment with observations of heat conduction. This formula is
suggested for the parameterization of snow surface tempera-
ture in a full snowpack energy balance model.

Correspondence to:C. H. Luce
(cluce@fs.fed.us)

1 Introduction

Energy balance snowmelt models include calculations for the
conduction of energy into the snow forced by surface energy
exchanges. Many fluxes at the snow surface are functions of
the snow surface temperature, which itself results from the
balance of fluxes to and from the surface. This paper exam-
ines models for the calculation of conductive energy flux at
the snow surface based on snow surface temperature using
measured time series of snow temperature at the snow sur-
face and through the snowpack. These measurements were
made as part of an effort to validate the energy components of
an energy balance snowmelt model and led to a more refined
understanding of how to parameterize snow surface temper-
ature in these models.

Conduction of heat from the snow surface into the snow-
pack depends on the temperature profile within the snow
that results from the history of previous energy exchanges
and surface temperatures interacting with snowpack thermal
properties. If the heat flux into the snowpack were steady
state, and snowpack thermal properties homogeneous, the
temperature profile would be linear, and the temperature gra-
dient constant with depth. Because snow surface heating
varies over the course of a day and over longer time peri-
ods, the temperature profile is nonlinear with depth, lead-
ing to complexity in the evolution of temperature and energy
fluxes.

One approach used by snowmelt models to account for this
nonlinearity is to discretize the snow into multiple layers, us-
ing, for example, finite difference schemes (Yen, 1967; An-
derson, 1976; Bl̈oschl and Kirnbauer, 1991; Jordan, 1991;
Gray et al., 1995; Marks et al., 1999; Bartelt and Lehning,
2002). Multiple layer models track heat stores and varying
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gradients with depth using linear approximations, with thin-
ner layers near the surface to represent the steeper and more
nonlinear temperature profile. In addition, these finite differ-
ence models may estimate changes in snow properties within
layers based on snow metamorphism (Colbeck, 1982; Jor-
dan, 1991; Arons and Colbeck, 1995; Bartelt and Lehn-
ing, 2002). The vertically distributed temperature and snow
property information internal to the snowpack is useful in
some applications, such as determining crystal development
at depth for snowpack strength or understanding microwave
satellite information. However, for many snowmelt model-
ing purposes, the heat fluxes at the surface and the base of the
snowpack (or other suitable control volume) are sufficient for
an energy balance, and they depend on the temperature gra-
dient and the properties of the snow at the surface and base.

Another approach, striving for parsimony, is to use a sin-
gle layer or a small number of layers in a snowmelt model.
Because inaccuracies in the modeling of internal snowpack
property details could lead to substantial errors in estimating
the vertically distributed snowpack temperature (Arons and
Colbeck, 1995), a minimum of model complexity is desir-
able. This is a special case of the general principle of par-
simony in modeling. Vertical integration of the snowpack
energy distribution also provides computational savings for
distributed modeling applications and may be an important
initial step in constructing spatially integrated models (Horne
and Kavvas, 1997; Luce et al., 1999; Luce and Tarboton,
2004). Some have investigated the problem from the point
of view of minimizing the number of layers needed while
still retaining essentially a finite difference solution (Jin et
al., 1999; Marks et al., 1999).

One of the primary reasons cited for the poor performance
of single-layer models in comparative validations is poor
representation of internal snowpack heat transfer processes
(Blöschl and Kirnbauer, 1991; Koivasulo and Heikinheimo,
1999). These authors have also specifically cited the errors
being most pronounced during cold periods before melt oc-
curs, indicating that heat flow more than water flow may be to
blame. Evaluations of the Utah Energy Balance model (Tar-
boton and Luce, 1996; Koivasulo and Heikinheimo, 1999)
showed that the model underestimated snowpack tempera-
ture during a cold spell because the conduction parameteriza-
tion overestimated the conduction within the snowpack. An
important question is whether this is a problem with the spe-
cific equilibrium gradient parameterization that this model
used or if it is an intrinsic drawback to the use of a single
layer model.

Frequency domain discretization is a common alternative
to spatial domain discretization for a number of disciplines
(Press et al., 1992). In frequency domain modeling, cal-
culations are done across variations in frequency instead of
across variations in space. Thus slow processes might be
modeled as a low-frequency component and faster processes
as high-frequency components. The force-restore approach
is an example application of the concept for snowpack and

soil temperature modeling considering a single dominant fre-
quency (diurnal) of thermal forcing (Deardorff, 1978; Hu
and Islam, 1995). The force-restore method has been ap-
plied for snowpack modeling in several land-surface hydrol-
ogy components for regional and global circulation models
(e.g. Dickinson et al., 1993). If we consider the frequency
domain approach in a general way, we have the opportunity
to test the utility of considering more than one frequency.

The purpose of this paper is to explore alternative formu-
lae derived from different frequency domain discretizations
that may be used to parameterize the conduction of energy
into a snowpack based on the surface temperature time series
and evaluate those formulae using observations of snowpack
energy content. In Sect. 2 we first review the theory associ-
ated with the frequency and amplitude of temperature time
series and conduction within snow based on the heat equa-
tion. We summarize important inferences regarding the lag-
ging of phase and dampening of the amplitude of periodic
forcing inputs with depth and indicate how measurements of
these can be used to infer thermal properties. We then review,
from the theory, the basis for formulae used to calculate the
surface temperature and estimate the surface energy flux in
snowmelt models. We suggest a modification to accommo-
date lower frequency variations. In Sect. 3 we describe the
measurements of temperature and ground heat flux that we
have used to test this theory. In Sect. 4 we describe the anal-
ysis that quantified the dampening and lagging of phase of
temperature with depth to estimate thermal properties. We
also describe the analysis of temperature time series used to
calculate the internal energy of the snow and energy flux at
the snow surface. Section 5 presents results where we show
the snow thermal properties derived from the frequency anal-
ysis. These properties are then used in the comparison of for-
mulae for calculation of conduction into the snow to compare
energy content and conductive flux at the surface and base of
the snowpack from these formulae to measurements.

2 Theory

2.1 Conduction with sinusoidal forcing

We can describe heat flow in the snowpack approximately
using the diffusion, or heat, equation and assuming homo-
geneity of properties (Yen, 1967),

∂T

dt
= k

∂2T

∂z2
(1)

whereT is the temperature (◦C), t is time (s),z is depth (m)
measured downwards from the surface, andk is the thermal
diffusivity (m2 s−1). Thermal diffusivity is related to thermal
conductivity and specific heat through

k = λ/Cρ (2)

whereλ is the thermal conductivity (J m−1◦C−1 s−1), C is
the specific heat (J kg−1◦C−1), andρ is the snow density
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(kg m−3). The diurnal cycle that dominates snow energy
fluxes can be approximated using a sinusoidal temperature
fluctuation at the surface, or upper boundary, given by

Ts = T +Asin(ωt) (3)

whereTs is the surface temperature (◦C), A is the amplitude
of the temperature fluctuation at the surface (◦C), T̄ is the
time average temperature at the surface (◦C), andω is the an-
gular frequency (0.2618 radians h−1 for a diurnal forcing).
For semi-infinite domain (0< z < ∞), the differential Eq. (1)
with boundary condition (Eq. 3) has solution (Berg and Mc-
Gregor, 1966)

T (z,t)= T̄ +Ae−
z
d sin

(
ωt −

z

d

)
(4)

In this solution, d is the damping depth (m), the depth
at which the amplitude is 1/e times the surface amplitude.
d is related to the thermal diffusivity and frequency by
d=(2k/ω)1/2.

The heat flux,Qc (W m−2), is the thermal conductivity
times the temperature gradient

Qc(z,t)= −λ
∂T

∂z
. (5)

Differentiating Eq. (4) with respect toz and substituting in
Eq. (5) gives

Qc(z,t)=
λ

d
Ae−

z
d

[
sin

(
ωt −

z

d

)
+cos

(
ωt −

z

d

)]
(6)

Here Qc is defined as positive in the positivez direction,
which is into the snow.

Evaluating Eq. (6) atz=0 to obtain the surface heat flux,
Qcs (W m−2), and using a trigonometric identity for the sum
of sine and cosine yields the surface heat flux as a function
of time,

Qcs=

√
2Aλ

d
sin

(
ωt +

π

4

)
. (7)

This shows that the temperature lags the heat flux byπ /4
radians, which is 1/8 of a cycle or 3 h for diurnal forcing.

Differentiating Eq. (4) with respect to time gives

∂T (z,t)

∂t
= Aωe−z/d cos(ωt −

z

d
) (8)

Comparing Eqs. (4) and (8) to (6) , the sine term in Eq. (6)
can, using Eq. (4), be replaced by(λ/d)(T (z,t)− T̄ ) while
the cosine term in Eq. (6) can, using Eq. (8), be replaced by
(λ/d)(1/ω)∂T (z,t)/∂t to give

Qc(z,t)=
λ

d

(
1

ω

∂T (z,t)

∂t
+T (z,t)− T̄

)
. (9)

This is the basis for the force-restore method to estimate the
surface heat flux (see also Eq. 10) of Hu and Islam, 1995).

Applied at the surface and using a finite difference approxi-
mation for∂Ts/∂t results in an estimate

Qcs=
λ

d

(
1

ω1t

(
Ts −Tslag1

)
+

(
Ts − T̄

))
(10)

where1t is the time step andTslag1 is the surface temperature
lagged by one time step, i.e. att−1t. For this approximation
to be valid,1t must be small compared to the daily time
scale.

2.2 Modeling snow surface temperature

In an energy balance snowmelt model it is important to con-
nect the energy fluxes above the snow surface to the con-
duction of energy into the snow. Conservation of energy
at the snow surface implies that the net energy exchanges
above the surface,QA, must balance the net fluxes below
the surface.QA comprises net solar and longwave radiation,
sensible and latent heat fluxes and the flux due to precipi-
tation. While these are sometimes taken as external forcing
to the snowmelt model, they do interact through dependence
on Ts . For example outgoing longwave radiation is related
to Ts through the Stefan-Boltzman equation, while sensible
heat flux is related toTs through the difference betweenTs

and air temperature. Thus, in general, we can writeQA(Ts).

The processes carrying heat from the surface into the snow-
pack comprise solid conduction, vapor phase diffusion, and
infiltration of meltwater generated at the surface. The fo-
cus in this paper is on the conduction/diffusion components,
Qcs, which are driven by temperature gradients. Since con-
duction depends on temperature at the surface as well as the
temperature profile within the snow, we writeQcs(Ts,Tave)

to explicitly show the dependence onTs , and to approxi-
mate the temperature within the snow as the average tem-
perature of the snowpack,Tave, which tracks the bulk en-
ergy state of the snowpack in a snowmelt model. Noting that
there is no storage of energy in a surface with no thickness,
one can estimateTs in an energy-balance model by setting
QA(Ts) = Qcs(Ts,Tave) and solving forTs . Three different
formulae for approximatingQcs(Ts,Tave) in this equation are
evaluated here.

The first and simplest formula for calculatingTs and esti-
mating the surface heat flux was a linear equilibrium gradi-
ent approach that we used earlier (Tarboton, 1994; Tarboton
et al., 1995; Tarboton and Luce, 1996). This estimates the
conduction of heat from the surface into the snowpack as
a function of the difference between the average snowpack
temperature (as estimated from the energy content) and the
surface temperature.

Qcs=
λ

d
(Ts −Tave) (11)

This can be obtained as a direct finite difference approxima-
tion of Eq. (5), assuming that d represents an effective depth
to the average temperature. It can also be obtained from
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Eq. (10) by neglecting the time gradient term and replacingT̄

by Tave. In this approximation the damping depth for a diur-
nal fluctuation has been used to scale the depth,d, over which
the gradient is approximated, and temperature at this depth
is taken as the average temperature of the snowpack,Tave.
The inclusion ofTave, is key because it connects the calcula-
tion of surface temperature to the energy state of the snow-
pack. Without this connection to the physical dependence
of Qcs on temperature within the snow, as represented by
Tave, snow surface temperatures would evolve independently
of the temperature of the rest of the snowpack, which does
not reflect our physical understanding. Earlier work (Tar-
boton and Luce, 1996; Koivasulo and Heikinheimo, 1999)
has shown that, when used in a snowmelt model with litera-
ture estimates of thermal conductivity, this equilibrium gradi-
ent approach results in an underestimation of snowpack tem-
perature during a cold spell.

While T̄ in Eq. (10) is identified as the steady-state time
average surface temperature in Eq. (3), it may also be inter-
preted from Eq. (4) as an invarying temperature at infinite
depth, or as the average temperature of the medium over the
semi-infinite domain (Hu and Islam, 1995). To use Eq. (10)
to calculateTs and surface heat flux, we replaceT̄ by Tave,
the average temperature of the snow over the finite depth of
the snowpack.

Qcs=
λ

d

(
1

ω1t

(
Ts −Tslag1

)
+(Ts −Tave)

)
(12)

When equated toQA(Ts) this provides the second formula
for calculatingTs and estimating heat flux in an energy bal-
ance snowmelt model.

The interpretation above of̄T as the average temperature
over depth is only the case if the diurnal fluctuation solu-
tion of Eq. (4) is not superimposed on any steady gradient or
lower frequency fluctuations. To account for lower frequency
fluctuations or a constant temperature gradient we can add to
Eq. (10) the flux due to the vertical gradient in temperature
averaged at a daily scale. This gradient is estimated using the
difference in the daily average surface temperature,T̄s , and
the daily average depth average snowpack temperature,T̄ave,
evaluated over a distancedlf .

Qcs=
λ

d

(
1

ω1t

(
Ts −Tslag1

)
+

(
Ts − T̄s

))
+

λ

dlf

(
T̄s − T̄ave

)
(13)

In this equation, we also substituted the daily average sur-
face temperature,̄Ts , for T̄ . This approximation combines
the diurnal cycle flux (Eq. 10), calculated over the time scale
of one day with a finite difference approximation similar to
Eq. (11) at longer time scales. The subscript, “lf”, ondlf indi-
cates lower frequency. We estimateddlf based on the depth of
penetration of a lower frequency surface temperature fluctu-
ation responsible for setting up this gradient,dlf =(2k/ωlf )

1/2.
The appropriate low frequency,ωlf , to use is not known; so
in this paper,ωlf is fitted to observations.

Equations (11), (12) and (13) are formulae that can be used
to parameterize conduction in a snowmelt model. Here we
evaluate each against measurements.

3 Measurements

The measurements used in this analysis were previously re-
ported in Tarboton (1994) as part of a test of the UEB
snowmelt model (Tarboton et al., 1995; Tarboton and Luce,
1996). Measurements were taken at the Utah State Univer-
sity Drainage Research Farm, west of Logan, Utah, near
the center of Cache Valley. Cache Valley is situated in the
Wasatch Mountains, east of the Great Salt Lake in Utah and
is similar to many valleys formed by faulting in the Basin
and Range Province of the western United States. It is ori-
ented north and south, about 110 km long and 15 km wide,
between two high ranges on the east and west, each about
1500 m higher than the valley floor, making the valley prone
to long winter inversions.

Snowpack and shallow soil temperatures were measured
using eight copper-constantin thermocouples and an infrared
thermometer. Two thermocouples were placed below the
ground surface at depths of 2.5 and 7.5 cm. Another ther-
mocouple was placed at the ground surface, and the remain-
ing five thermocouples were placed at 5, 12.5, 20, 27.5,
and 35 cm above the ground surface on a ladder constructed
of fishing line. Snowpack surface temperature was mea-
sured with two Everest Interscience model 4000 infrared
thermometers with 15-degree field of view. Time series of
these temperature measurements are shown in Fig. 1. Ground
heat flux was measured with a REBS ground heat flux plate
placed at 10 cm depth in the soil. Measurements were taken
each half-hour.

4 Analysis

Equation (4) forms the basis for a Fourier analysis of tem-
perature time series at multiple depths to estimate snowpack
properties. Fourier analysis of a single temperature trace pro-
vides estimates of the phase and amplitude of that trace for a
given frequency, diurnal in this case. Contrasting the phase
and amplitude of different layers provides an estimate of the
thermal properties between the measurements. Fourier anal-
yses of temperature time series in snowpacks have been used
in the past with best results for large diurnal temperature sig-
nals (Sturm et al., 1997). We know of no implementations of
this technique using modern sensors and sub-hourly data.

We examined the temperature patterns over 8 days of the
study period from 26 January to 2 February 1993, selected
because of lack of melt or accumulation. A function,f ,
spanning the full 8-day (192-h) duration,L, sampled on
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Figure 1. Temperature time series from thermocouples and infrared thermometer 

(surface).  The legend mimics the sequence of lines in the graphs, with warmer 

temperatures (and colors) corresponding to deeper thermocouples.  Zero and positive 

values give depths above the ground surface within the snow.  Negative distances refer to 

thermocouples beneath the ground. 

Fig. 1. Temperature time series from thermocouples and infrared thermometer (surface). The legend mimics the sequence of lines in the
graphs, with warmer temperatures (and colors) corresponding to deeper thermocouples. Zero and positive values give depths above the
ground surface within the snow. Negative distances refer to thermocouples beneath the ground. The snow was 39 cm deep during this period.

equal time steps,1t , may be approximated by its Fourier
series

f (t) = f̄ +

n/2∑
k=1

ak cos(kω0t)+bk sin(kω0t) (14)

where

ω0 =
2π

L
(15)

andn is the number of observations (n = L/1t).
The Fourier coefficients,ak andbk, quantify the amplitude

and phase associated with each frequencyωk = kω0 that is
present in the Fourier decomposition of the function. They
may be estimated from discrete data by

ak =

2
n−1∑
j=0

fjwj cos(ωkj1t)

n−1∑
j=0

wj

(16)

bk =

2
n−1∑
j=0

fjwj sin(ωkj1t)

n−1∑
j=0

wj

(17)

wherewj are the weights applied to each observation using
a window function. We used a Parzen window, which gives
the weights as,

wj = 1−

∣∣∣∣∣j −
1
2 (n−1)

1
2(n+1)

∣∣∣∣∣ (18)

Press et al. (1992). In our analysis, we are interested in the
diurnal frequency, with period,τ=24 h. For an analysis du-
ration of 192 h, this corresponds to 8 cycles, ork=8. We
estimateda8 and b8 from Eqs. (18) and (19). Noting the
trigonometric identity

a8cos(8ω0t)+b8sin(8ω0t) = Asin(8ω0t +φ) (19)

we can calculate

A =

√
a2

8 +b2
8 (20)

and

φ =
a8

|a8|
cos−1

(
b8

A

)
(21)

For negative values ofφ, we added 2π . The differences in the
value ofφ between the surface and each layer were used to
calculate of the value ofz/d for each layer from the sine term
of Eq. (4). Similarly, the value ofz/d was estimated from the
natural log of the ratios of the amplitude at the layer’s temper-
ature to the amplitude of the surface temperature, considering
the exponential decay term in Eq. (4). Knowing the vertical
position of each measurement in the snowpack, we calcu-
latedd, which provides a direct estimate of the diffusivity,k.
Snowpack density (observed average of 260 kg m−3 in our
study) and the specific heat of ice (2.09 kJ kg−1) were then
used to estimate a value of conductivity,λ, from Eq. (2). The
parameters estimated in this manner were used in the com-
parisons between the equations used to estimate surface heat
fluxes.

The energy content of a control volume comprising the
snow and soil above the heat flux plate buried at 10 cm was
estimated from the average snowpack temperature, the aver-
age soil temperature, and the snowpack surface temperature.
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Figure 2. Snowpack energy content over time. 

Fig. 2. Snowpack energy content over time.

For layers of the snowpack and soil between thermocouples,
we used the average temperature between the thermocouples.
Taking 0◦C ice as having 0 energy content, the energy con-
tent without any liquid water present in the snowpack is,

U = 〈Tsnow〉WsnowρwCice+〈Tsoil〉ρsoilCsoilDe (22)

where〈Tsnow〉 is the depth averaged snow temperature and
〈Tsoil〉 is the depth averaged soil temperature over the depth
of the soil above the heat flux plate,De (0.1 m), Wsnow
is the water equivalent of the snowpack (m),ρw is the
density of water (1000 kg m−3), ρsoil is the density of soil
(1700 kg m−3), Cice is the specific heat of ice (2.09 kJ kg−1)

andCsoil is the specific heat of soil (2.09 kJ kg−1). This mea-
sure of the energy content can only record energy content
when there is no water in the snowpack; thus it can only reli-
ably calculateU<0. For periods when U is greater than 0 due
to the presence of liquid water in the snowpack, this Eq. (22)
results in an underestimate that serves as a lower bound on
U . Figure 2 shows the snowpack energy content as measured
by snowpack temperature over the study period; positive es-
timates result from ground temperatures greater than 0 with
a shallow snowpack.

Figure 3 shows the magnitude of heat fluxes at the sur-
face of the snowpack inferred from the time series of energy
content and measured ground heat flux necessary to explain
the observed changes in snowpack energy content. During
the first two weeks of the period, all parts of the snowpack
were below freezing, so the energy content as measured by
the temperature is an accurate description of the energy of
the snowpack. During this period, there is an opportunity
to examine how to model changes in snowpack energy that
relate to the average snowpack temperature.

5 Results and discussion

5.1 Thermal properties

Table 1 presents thermal diffusivity values estimated from
the Fourier analysis and an estimate of the conductivity based
on the snowpack average density. The snow depth during this
period was 39 cm and the analysis used the thermocouples at
0, 5, 12.5, 20, and 27.5 cm above the ground. The thermo-
couple 35 cm above the ground was not used in the analysis
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Figure 3. Snowpack surface energy fluxes over duration of study period reported at half-

hourly intervals. 

Fig. 3. Snowpack surface energy fluxes over duration of study pe-
riod reported at half-hourly intervals.

because the precision of its position relative to the snow sur-
face was relatively worse and the results from it were unre-
alistic, presumably due to this positioning inaccuracy. In Ta-
ble 1a,z is the depth of the thermocouple from the snow sur-
face;φ is the phase of the temperature cycle from Eq. (21);
and z/d is calculated based on the difference in phase be-
tween the surface and the thermocouple using Eq. (4) Know-
ing z, we have an estimate ofd, which is related to diffusiv-
ity, k, by d=(2k/ω)1/2 and finallyλ by Eq. (2). In Table 1b
the amplitude of the diurnal variation at each measurement
point is calculated by Eq. (20), and the ratio of the amplitude
at each layer to the amplitude at the surface gives exp(-z/d)

from Eq. (4). The log of this givesz/d, and the remainder of
the calculations in Table 1b are the same as for Table 1a. The
agreement (generally within 10%) between the results con-
sidering just relative timing and those considering just rela-
tive amplitude supports use of the Fourier analysis procedure
with diurnal forcing.

As might be expected, the properties for the upper snow
layers differ from those of the lower layers, suggesting an
increase in effective conductivity that may be related to in-
creases in density with depth. Although the heat Eq. (1)
assumes homogeneity of snowpack thermal properties, it
has been shown for heat conduction problems that a non-
homogeneous diffusivity can be reasonably approximated by
effective parameters in the heat equation within constraints
of limited heterogeneity (Hanks et al., 1971).

For comparison among the three equations, there is a need
for an estimate of the effective density and conductivity. Be-
cause most of the variation in energy takes place in the upper
portion of the snowpack, we took the average of the conduc-
tivity values of the upper layer from the phase and amplitude
analyses,λ=0.058 W m−1 ◦C−1 as the best estimate. For ref-
erence, Sturm et al. (1997) estimate thermal conductivity to
average 0.093 W m−1 ◦C−1 at a density of 260 kg m−3 with
a range of 0.04 W m−1 ◦C−1 to 0.20 W m−1 ◦C−1 in the ob-
servations he reports.
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Table 1. Effective thermal parameters averaged from surface to depth z using(a) timing and(b) amplitude information as independent
estimates. Conductivity was calculated using estimated density of 260 kg m−3.

(a) Phase shift analysis

z φ z/d d k λ

cm radians cm m2 s−1 W m−1◦C

0 4.23 0.00
11.5 2.19 2.04 5.64 1.16 E-07 0.063

19 1.78 2.44 7.78 2.20 E-07 0.120
26.5 1.47 2.75 9.63 3.37 E-07 0.183

34 0.62 3.61 9.43 3.23 E-07 0.176
39 0.02 4.21 9.27 3.13 E-07 0.170

(b) Amplitude analysis

z Amplitude exp(−z/d) z/d d k λ

cm ◦C cm m2 s−1 W m−1◦C

0 5.52 1.00 0.00
11.5 0.59 0.11 2.23 5.16 9.67 E-08 0.053

19 0.35 0.06 2.75 6.92 1.74 E-07 0.095
26.5 0.28 0.05 2.97 8.91 2.89 E-07 0.157

34 0.11 0.02 3.96 8.58 2.68 E-07 0.145
39 0.04 0.01 4.86 8.02 2.34 E-07 0.127

5.2 Model comparison

Equations (11–13) estimate the conductive heat flux at the
surface of the snowpack as a function of the history of surface
temperature and the current energy content of the snowpack.
With direct measurements of the surface temperature and the
ground heat flux, we were able to model the time evolution of
snowpack energy content and surface heat conduction fluxes
without examining the details of the surface energy balance
(e.g. net radiation).

For Eq. (11), the equilibrium gradient equation, and
Eq. (12), the force-restore equation, the independently esti-
mated parameter value ofλ=0.058 W m−1◦C−1 yielded very
low energy contents relative to observations. However by
changing the conductivity to 0.01 W m−1 ◦C−1 for the equi-
librium gradient (Eq. 11) and 0.007 W m−1 ◦C−1 for the
force-restore (Eq. 12) approximate fits were possible (Fig. 4).
These are unrealistically low thermal conductivity values,
and result in severe damping of the daily variations in energy
content. Equation (13), the modified force-restore equation,
worked well with the conductivity independently estimated
from the frequency analysis and calibratingωlf , with the re-
sultant value corresponding to a period of 8.7 days, or using
dlf =(2k/ωlf )

1/2, an effective depth of 16 cm. The suggestion
is that physically realistic estimates of thermal conductivity
from formulae (e.g. Sturm et al., 1997) could be used with
such a model, leaving only a question about appropriate val-
ues forωlf .

Comparing half-hourly surface heat flux estimates from
the modified force-restore Eq. (13) to observations (Fig. 5)
shows strong agreement to fluctuations at this time scale.

This comparison uses conductivity and half-hourly changes
in internal energy (Fig. 3) derived from temperature measure-
ments that include the surface temperature, so is not a com-
pletely independent test of the model. Nevertheless, the mod-
ified force restore result in Fig. 5 is derived primarily from
the observed surface temperature and suggests the accuracy
to which the conduction of energy into a snowpack can be
parameterized in an energy balance snowmelt model based
on surface temperature forcing alone. The largest disagree-
ments are generally less than 10 W m−2 in the early evening
hours when the observed fluctuations in surface flux are not
sinusoidal, but show an abrupt reduction in cooling. Records
from a nearby airport suggest that this is likely related to the
formation of fog at that time and the consequent reduction in
net longwave losses (Luce, 2000).

Comparing surface heat flux estimates from all three equa-
tions (Fig. 6) is more easily done with a 3-h average and
shows that the equilibrium gradient approach (Eq. 11) pro-
duces a damped and lagged signal relative to the observations
and modified force-restore (Eq. 13), and the force-restore
model (Eq. 12) is in phase but damped.

Figure 7 compares 3-h average surface heat flux from the
modified force restore equation where now both snow con-
ductivity, λ, and lower frequency parameter,ωlf , were cal-
ibrated. Adjustments toωlf move the modeled line verti-
cally while adjustments to conductivity change the ampli-
tude of the diurnal fluctuations. At the half-hourly time scale,
the Nash-Sutcliffe (Nash and Sutcliffe, 1970) coefficient of
agreement goes from 0.58 without calibration to 0.73 when
conductivity is calibrated. The calibrated parameters are,
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Figure 4. Measured and modeled energy content during first 2 weeks.  Equilibrium 

gradient parameter used in Eq. 11 was λ = 0.01 W m-1 oC-1.  Force restore parameter used 

in Eq. 12 was λ = 0.007 W m-1 oC-1.  Modified force restore parameters used in Eq. 13 

were λlf = 0.058 W m-1 oC-1, ωlf corresponding to 8.7 days, dlf=(2k/ωlf) = 16 cm. 

Fig. 4. Measured and modeled energy content during first 2
weeks. Equilibrium gradient parameter used in Eq. 11 was
λ=0.01 W m−1 ◦C−1. Force restore parameter used in Eq. 12 was
λ=0.007 W m−1◦C−1. Modified force restore parameters used in
Eq. 13 wereλlf =0.058 W m−1◦C−1, ωlf corresponding to 8.7 days,
dlf =(2k/ωlf )=16 cm.
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Figure 5. Half-hourly surface conductive heat fluxes, observed and estimated from 

modified force-restore equation.  Parameters used in Eq. 13 were λ = 0.058 W m-1 oC-1, 

ωlf corresponding to 8.7 days, dlf=(2k/ωlf) = 16 cm. 

Fig. 5. Half-hourly surface conductive heat fluxes, observed and
estimated from modified force-restore equation. Parameters used in
Eq. 13 wereλ=0.058 W m−1◦C−1, ωlf corresponding to 8.7 days,
dlf =(2k/ωlf )=16 cm.

conductivity, λ=0.025 W m−1◦C−1 and ωlf corresponding
to a 3.7 day low frequency period, with effective depth
dlf =(2k/ωlf )

1/2, of 7 cm. These adjustments push conduc-
tivity just out of the range reported by Sturm et al. (1997).
While calibration of both conductivity and low frequency
period does improve the comparisons to measured energy
fluxes, it is reassuring that using the directly measured con-
ductivity and only calibratingωlf does result in quite good
comparisons.

6 Conclusions

Heat flow through the snowpack is considered a difficult and
complex process to model. So much so, that it has been
generally assumed that single-layer snowpack models must,
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Figure 6. Three-hour average surface conductive heat flux observations compared to 

three models over 5 day period.  Equilibrium gradient parameter used in Eq. 11 was λ = 

0.01 W m-1 oC-1.  Force restore parameter used in Eq. 12 was λ = 0.007 W m-1 oC-1.  

Modified force restore parameters used in Eq. 13 were λ = 0.058 W m-1 oC-1, ωlf 

corresponding to 8.7 days, dlf=(2k/ωlf) = 16 cm. 

Fig. 6. Three-hour average surface conductive heat flux
observations compared to three models over 5 day pe-
riod. Equilibrium gradient parameter used in Eq. 11 was
λ=0.01 W m−1◦C−1. Force restore parameter used in Eq. 12 was
λ=0.007 W m−1◦C−1. Modified force restore parameters used in
Eq. 13 wereλ=0.058 W m−1 ◦C−1, ωlf corresponding to 8.7 days,
dlf =(2k/ωlf )=16 cm.
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Figure 7. Three-hour average surface conductive heat flux observations compared to 

modified force restore formula calibrated to more closely approximate the diurnal range 

in surface heat fluxes.  Parameters used in Eq. 13 were λ = 0.025 W m-1 oC-1, ωlf 

corresponding to 3.7 days, dlf=(2k/ωlf) = 7 cm. 

 

Fig. 7. Three-hour average surface conductive heat flux observa-
tions compared to modified force restore formula calibrated to more
closely approximate the diurnal range in surface heat fluxes. Param-
eters used in Eq. 13 wereλ=0.025 W m−1◦C−1, ωlf corresponding
to 3.7 days,dlf =(2k/ωlf )=7 cm.

of necessity, err in estimates of heat conduction, with their
worst performance during cold periods. Making use of the
fact that the heating and cooling of the snowpack is primar-
ily diurnally forced, we substantially improved our descrip-
tions of heat flow in the snowpack. By recognizing further
that there are lower frequency forcings we can improve de-
scriptions for extended cold periods. Equation (13), based
on a force-restore model with a superimposed gradient, was
shown to reproduce measured half-hourly and three hour
average surface energy fluxes, as well as aggregate energy
content quite well using an independently measured ther-
mal conductivity and a calibrated low frequency parameter.
This suggests that this formula is a good candidate for the
parameterization of surface energy flux and calculation of
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surface temperature in an energy balance snowmelt model.
This formula calculates energy flux without detailed infor-
mation on the distribution of temperature over depth, so
presents a potential to approximate more complex multilayer
models in applications where computational simplifications
may be useful, as in lumped modeling of spatially heteroge-
neous snowpacks. Our analysis shows a reasonable approx-
imation in this case, and there would be benefit to testing
against more complex models and observations in other en-
vironments.

Following the logic of this approach to the extreme, we
could recognize that the forcing at the surface could be de-
composed into a Fourier series with multiple frequencies. Es-
timation of the parameters for that series would use the time
series of all previous surface temperatures – essentially the
same information used in finite difference models. In prin-
ciple the two numerical schemes would converge on a very
similar answer. Within this concept lies the seed for simpli-
fication. If we can recognize those few frequencies with the
greatest power, we can continue to represent the snowpack
as a single-layer, and only use such recent past temperature
information as needed.
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