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Abstract. The establishment of commercial forestry plan-
tations in natural grassland vegetation, results in increased
transpiration and interception which in turn, results in a
streamflow reduction. Methods to quantify this impact typi-
cally require LAI as an input into the various equations and
process models that are applied. The use of remote sensing
technology as a tool to estimate leaf area index (LAI) for use
in estimating canopy interception is described in this paper.
Remote sensing provides a potential solution to effectively
monitor the spatial and temporal variability of LAI. This is
illustrated using Hyperion hyperspectral imagery and three
vegetation indices, namely the normalized difference vege-
tation index (NDVI), soil adjusted vegetation index (SAVI)
and Vogelmann index 1 to estimate LAI in a catchment af-
forested withEucalyptus, Pinusand Acacia genera in the
KwaZulu-Natal midlands of South Africa. Of the three veg-
etation indices used in this study, it was found that the Vogel-
mann index 1 was the most robust index with anR2 and root
mean square error (RMSE) values of 0.7 and 0.3 respectively.
However, both NDVI and SAVI could be used to estimate the
LAI of 12 year oldPinus patulaaccurately. If the intercep-
tion component is to be quantified independently, estimates
of maximum storage capacity and canopy interception are re-
quired. Thus, the spatial distribution of LAI in the catchment
is used to estimate maximum canopy storage capacity in the
study area.

Correspondence to:H. H. Bulcock
(204501831@ukzn.ac.za)

1 Introduction

To the water resources planner who is ultimately interested
in the amount of water available, the vegetation canopy is
a barrier for precipitation to cross before reaching the soil
and possibly making its way to the river or dam (Davies,
2003). In South Africa, it has been estimated that commer-
cial forestry uses about 5% of the total available water sup-
ply (GCIS, 2007). By virtue of their physiology, extent of
coverage and location in the high rainfall catchment areas
of South Africa, commercially grown tree species impact on
the hydrological resources of the country with an even more
significant impacts at smaller spatial and temporal scales.
Between 1986 and 1998, the area under forestry in South
Africa increased by 27% to 1.44×106 ha, which constitutes
1.18% of the arable land (Gush, 2000), but is reported to
have decreased to approximately 1.27×106 ha over the past
five years, because of fire and withdrawal of some land from
production (Godsmark, 2008).

Vegetation cover or land cover influences hydrological
processes in many ways. Interception and transpiration is
a loss or sink term in the water balance of a catchment, and
evaporation and transpiration losses have been shown to in-
fluence downwind rainfall at regional scales (Shultz and En-
gman, 2000). Forest stand description typically includes fac-
tors related to the eco-physiological processes responsible
for forest growth. One of those factors is the stand leaf area
index (LAI). LAI is related to processes such as canopy inter-
ception, transpiration, photosynthesis, and leaf litterfall, and
used as an input to various ecosystem and hydrological mod-
els (Sprintsin et al., 2007) such as the ACRU Agrohydrolog-
ical model (Schulze, 1995), the 3PG model (Landsberg and
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Waring, 1997) and SIMPLE model (Ḧormann, 2007). Ne-
mani et al. (1993) found that LAI varies with microclimate
and soil water conditions. In their study, hilltops showed
a lower LAI owing to less available water and therefore
more stress, while the bottom of hill slopes had more wa-
ter, less stress, higher temperatures, possibly more nutrients,
and therefore higher LAI values.

Accurate monitoring and assessment of water resources is
necessary for sustained water resource management. Earth
observation data have formed the basis for acquiring data
remotely for many years (Landgrebe, 1999) and are now
viewed as a time and cost-effective way to undertake large-
scale monitoring (Okin et al., 2001). Remote sensing has
been widely recognised as a valuable tool for the detection
and analyses of data, both spatially and temporally, with sig-
nificant advantages over point sources (Bongonko, 2005) and
is becoming increasingly useful in southern Africa, where
components of the hydrological cycle, such as rainfall, evap-
oration, plant water use and runoff show great variation in
both time and space (Jewitt, 2002), and where traditional
monitoring is extremely limited. The past decade has seen
a particularly rapid increase in the number of launched satel-
lites, as well as an improvement in both spatial and spec-
tral resolution of data they produce. The planned launch of
several new satellites will lead to further improvements in
the quality of remotely sensed data (Dye et al., 2002). The
ability to rapidly assess LAI using vegetation indices (VIs)
from remotely sensed imagery provides a means to rapidly
assess stand productivity over a wide geographic area. There
are a growing number of studies that are using hyperspec-
tral remote sensing to estimate the LAI of forest and crop
canopies such as those by Delegido et al. (2008), Haboudane
et al. (2004) and Zhang et al. (2005). In addition to pro-
viding alternative means to estimate forest productivity in
the long term, this approach may complement existing ap-
proaches aimed at estimating water use of various crops in
fulfilment of the National Water Act of 1998. The Act makes
provision for the classification of various crops and land use
practices as streamflow reduction activities (SFRA), which
are then subject to controls to ensure equity in water allo-
cation (Ghebremicael et al., 2004). Current tools to assess
water use by commercial afforestation tend to focus on total
evaporation and are limited in their consideration of intercep-
tion from forest canopies as a separate process.

In this study, data from the Hyperion sensor on board
the EO-1 satellite, the first hyperspectral sensor to operate
from space was used to estimate LAI in a small afforested
catchment in the KwaZulu-Natal Midlands of South Africa.
The satellite estimates were verified using measurements ob-
tained from the field site using a handheld LI-COR LAI-2000
plant canopy analyzer. The information from this analysis
was then used to map interception storage capacity over the
same area. Ultimately, this approach will provide for bet-
ter spatial estimation of canopy interception, which is a little
studied aspect of forest water use in South Africa.

2 Canopy interception and leaf area index

Interception is one of the most neglected and underestimated
processes in rainfall-runoff analysis. Some models disregard
it completely, based on the assumption that it is generally a
small portion of the total evaporation (Savenije, 2004). How-
ever, Beven (2001) states that evaporation from intercepted
water on leaf surfaces in rough canopies can be very effi-
cient and could form a significant component of the total wa-
ter balance in some environments. In a forest with a closed
canopy, the interception of precipitation is a major compo-
nent of the influence that forests exert on the hydrological
cycle (Jewitt, 2005) and may be simply defined as the dif-
ference between gross rainfall and net rainfall (net rainfall
being the sum of stemflow and throughfall). A broader defi-
nition by Savenije (2004) is that interception accounts for the
part of the rainfall that is captured before it can take part in
the subsequent runoff and sub-surface processes. This defi-
nition is more useful for hydrological modelling, where the
focus is surface runoff, the soil moisture budget, transpira-
tion, recharge and ground water processes.

Interception loss from forests depends on the atmospheric
conditions that drive evaporation and rainfall characteristics,
but also the nature and density of the forest stand. This de-
pends on the tree physiology, but also management practice
and the age of the trees, older trees have denser canopies and
correspondingly higher canopy storage, and higher intercep-
tion loss than younger trees (Jewitt, 2005). The dependence
of the storage capacity on the LAI is highlighted by con-
sidering Eq. (1) developed by von Hoyningen-Huene (1981)
which is still recognised as an accurate, non-crop specific
estimate of maximum storage capacity (Sc

max) (mm) as high-
lighted by Kozak et al. (2007).

Sc
max= 0.935+0.498(LAI )−0.00575(LAI 2) (1)

The subsequent process of throughfall is the water that
falls to the ground either directly through gaps in the
canopy, or indirectly by having dripped off leaves, stems
and branches after the storage capacity has been reached.
The amount of direct throughfall and, conversely indirect
throughfall is controlled by the canopy coverage (c), a mea-
sure of which is the LAI (Davies, 2003).

Van Dijk and Bruijnzeel (2001a, b) modified the well-
known Gash et al. (1995) revised model allowing it to be
applied to rapidly growing vegetation where the LAI is
changing through time. For this model, LAI is defined as
the cumulative one-sided area of (healthy) leaves per unit
area. LAI andc, can be related to one another via the
Beer-Lambert equation which describes the attenuation of
radiation (i.e. photosynthetically active radiation, PAR) as
a function of LAI. PAR however, does not penetrate far
through leaves, therefore the Beer-Lambert equation may be
expressed in terms of canopy cover fraction using similar
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Figure 1. Location of Mistley-Canema Estate in KwaZulu-Natal, South Africa.  

Table 1. LAI measurements taken with the LI-COR LAI 2000 canopy analyzer in four 

commercial forest stands at Mistley-Canema on 21 June 2007 at 4:30pm on a clear and sunny 

day, used for model validation. 

Pine 

12year 

Pine 

15year 

Wattle 

4year 

Eucalyptus 

10year 

2.62 3.61 2.89 1.98 

2.72 3.67 2.92 2.13 

2.84 3.76 3.00 2.29 

2.89 3.80 3.41 2.36 

2.93 3.85 3.46 2.65 

2.94 3.90 3.60 3.01 

2.99 3.99 3.62 3.95 

3.02 3.79 3.89 2.62 

3.22 3.81 3.94 2.71 

3.26 3.76 4.19 2.53 

 

Fig. 1. Location of Mistley-Canema Estate in KwaZulu-Natal, South Africa.

parameters. The relationship betweenc and LAI is thus given
by Eq. (2).

c = 1−e−K.LAI (2)

whereK is the extinction coefficient. The value ofK for
a particular radiation wavelength depends on the inclination
angle and distribution of the leaves, and for PAR usually
ranges between 0.6 and 0.8 in forests (van Dijk and Brui-
jnzeel, 2001a, b).

The water that is retained on the leaves is then evapo-
rated from the wet canopy surface, which has been found
to evaporate at rates in excess of available net radiation and
potential evaporation because of advection and the low aero-
dynamic resistance of wet canopies (Schulze, 1995; Davids
et al., 2005). Equation (3) provides a conservative estimate
of enhanced wet canopy evaporation rate,Ew (mm day−1)

(Schulze, 1995), which incorporates LAI as a governing pa-
rameter.

Ew = Er(0.267LAI+0.33) for LAI > 2.7 (3)

where:Er – A-pan equivalent reference potential evaporation
(mm day−1), LAI – Leaf area index (dimensionless)

By implication, wet canopy evaporation proceeds at a rate
of 1.67 times that of potential evaporation for LAI=5.

Considering canopy interception is dependant on the
storage capacity (Sc), canopy cover (c) and wet canopy
evaporation (Ew), all of which are related to the LAI.
Von Hoyningen-Huene (1983) in Schulze (1995) developed

Eq. (4) based on extensive research conducted on a num-
ber of agricultural crops and related their interception loss
(mm day−1) to gross daily rainfall (Pg) and LAI as:

Il = 0.30+0.27Pg +0.13LAI −0.013P 2
g

+0.0285Pg.LAI −0.007LAI2. (4)

The LAI and gross precipitation are used as the canopy
structure and climatic descriptors respectively. Al-
though the equation was developed for agricultural crops,
Schulze (1995) found that the equation performed well on
Pinus patula, and therefore it was deduced that the Von
Hoyningen-Huene approach has potentially widespread ap-
plication and is encouraged as the interception loss estimator
in the ACRU agrohydrological model (Schulze, 1995).

3 Methodology

3.1 Site description

The Mistley-Canema estate is situated in the Seven Oaks
district in the KwaZulu-Natal Midlands, South Africa as
shown in Fig. 1. According to Camp (1997) the South
African Bioresource Group (BRG) is “moist midlands mist-
belt”. The climate is humid, with an annual rainfall ranging
from 800mm to 1280 mm per annum and the mean annual
temperature is 17◦C. The natural vegetation of the area was
previously indigenousThemeda triandragrassland. Only a
few relic patches ofThemeda triandragrassland remain, as

www.hydrol-earth-syst-sci.net/14/383/2010/ Hydrol. Earth Syst. Sci., 14, 383–392, 2010



386 H. H. Bulcock and G. P. W. Jewitt: Spatial mapping of leaf area index

the high potential of the arable areas has meant that little
value has been placed on the natural vegetation. Commercial
afforestation has long been practiced in the area and is the
most widespread land use, with gum (Eucalyptus), pine (Pi-
nus) and wattle (Acacia) being the species of choice. Sugar-
cane is also grown at sites where drainage of cold air is good,
ensuring that no frost or only light frost occurs (Everson et
al., 2006).

3.2 Hyperion hyperspectral satellite

Hyperspectral images acquire many, very narrow, contigu-
ous spectral bands, covering the visible, near-infrared, mid-
infrared, and thermal infrared regions of the electromagnetic
spectrum, allowing for the construction of an almost contin-
uous spectrum for every pixel in the scene. The Hyperion
sensor on board the EO-1 satellite was the first hyperspec-
tral sensor to operate from space and orbits at an altitude
of 705 km. This sensor has a spectral resolution of 10 nm
and covers 242 bands from 380–2500 nm. The spatial reso-
lution of the image is 30 m and the swath width of an image is
7.5 km. The Hyperion data used in this study were acquired
on 21 July 2006 (Govender et al., 2007).

3.3 LAI measurement and model development

The LI-COR LAI-2000 plant canopy analyzer (LAI-2000,
LI-COR, Inc., Lincoln, Nebraska, USA) was used to measure
plantation forest LAI in each of the three tree species. Due
to the height of the trees, it was not possible to take measure-
ments above the canopy. Thus the “remote mode” method
was used, i.e. two control units are used to log the above
and below canopy readings respectively. At each of the four
study sites (i.e. 12 year old pine, 15 year old pine, 4 year old
wattle and 10 year old eucalyptus) ten sets of four reading
were taken at each plot for model development and then re-
peated for model validation. Each of the points were taken at
random beneath the canopy. A separate syncronised instru-
ment was located in an open area and was taking readings
every 15 s, representing the above canopy readings. Dur-
ing the data processing stage the above and below canopy
readings were compared to determine the fraction of light
transmitted or absorbed by the canopy. A sunlit canopy was
avoided by taking readings just before sunset when the solar
elevation is low (below 45◦). A 45◦ view lens was used to
restrict the view of the sensor. The models were developed
by overlaying the points where the LAI readings were taken
on the images that had been corrected with each of the three
vegetation indices (i.e. NDVI, SAVI and Vogelmann 1). The
pixel values for each point were then extracted and related to
its corresponding LAI value. A linear regression model was
then fitted to the data using Microsoft® Excel 2003.

3.4 Atmospheric correction of Hyperion image

Atmospheric correction is a pre-processing procedure that is
undertaken to compensate for the effects of atmospheric par-
ticles through absorption and scattering of the radiation. The
objective of performing an atmospheric correction is to re-
trieve the surface reflectance from the remotely sensed im-
age by removing atmospheric effects. The conversion in-
volved the removal of atmospheric absorptions and scattering
as well as removal of the shape of the solar irradiance spec-
trum. Atmospheric and radiometric corrections were per-
formed using the ENVI 4.3 remote sensing software pack-
age using the empirical line method of atmospheric correc-
tion. This method compares radiance values reflected from
the surface to reflectance values measured on the ground
with a calibrated hand-held spectrometer (Research Systems
Inc., 2005). Using several ground truth data targets, the re-
lationship between radiance at sensor and reflectance on the
ground can be extracted. Since the effect of the atmosphere is
multiplicative (by gasses) and additive (by aerosols) linearity
is assumed in each wavelength (i.e. image layer) and a gain
and offset are used as estimates of these atmospheric effects
on radiance. After calculating these for all wavelengths, the
gains and offsets could be applied to the image as a whole
and the reflectance in all pixels can be estimated.

3.5 Vegetation indices

The relation between remotely sensed measurements and
vegetation parameters is captured by various vegetation in-
dices. A vegetation index is defined as a mathematical com-
bination of channels or bands that indicates the presence or
condition of green vegetation (Lillesand and Kiefer, 1999).
Much work has centered on seeking correlations between
various plant canopy attributes and a variety of vegetation
indices (Dye et al., 2002). The most commonly used veg-
etation indices utilize the information contained in the red
and near infrared reflectances; either as ratios or differences
(Dye et al., 2002). Live green plants absorb solar radiation
in the photosynthetically active radiation (PAR) spectral re-
gion (between 400 and 700 nm), which they use as a source
of energy in the process of photosynthesis. Leaf cells have
also evolved to scatter (i.e. reflect and scatter) solar radiation
in the near-infrared (NIR) region (700 to 1300 nm) because
the energy is not sufficient to synthesize organic molecules.
If the plant absorbed strongly in the NIR, the result would
be that the plant would overheat (Gates, 1980). Vegetation
indices are routinely used to determine green biomass, green
leaf area, LAI, stand biomass, percent ground cover, amount
of photosynthetically active vegetation, photosynthesis activ-
ity and productivity (Baret and Guyot, 1991). Hundreds of
vegetation spectral indices have been reported in the litera-
ture, but few are commonly used and have been tested in dif-
ferent vegetation studies. Near infrared/Red (NIR/R) spec-
tral band ratios such as the Soil Adjusted Vegetation Index
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(SAVI), Eq. (5) and Normalized Difference Vegetation Index
(NDVI), Eq. (8) are widely used to estimate LAI over large
areas.

The SAVI is expressed as follows:

SAVI =
(1+L)(NIR−R)

NIR+R+L
(5)

whereL=0.5, and is an adjustment factor to minimize the
backscatter effect of soil background reflectance through the
canopy.

According to Schultz and Engman (2000), LAI is related
to SAVI as follows:

SAVI = c1−c2e
−c3.LAI (6)

where:

c1 = 0.69; c2 = 0.59; c3 = 0.91

Therefore: LAI =
−ln(SAVI +0.371)

0.48
(7)

The Normalized Difference Vegetation Index (NDVI) is
one of the oldest, most well known, and most frequently
used VIs having been used to study vegetation and phenology
since the early 1970’s. The combination of its normalized
difference formulation and use of the highest absorption and
reflectance regions of chlorophyll make it robust over a wide
range of conditions and because it minimises the effects of
topography, no prior knowledge of the ground conditions are
required, and it is sensitive to the photosynthetically active
vegetation (McGwire et al., 2000). It can, however “saturate”
in dense vegetation conditions when LAI becomes high. Sat-
uration occurs when the vegetation index value no longer in-
creases with an increase in biomass or LAI (Dye et al., 2002).
The NDVI ratio is the ratio of shortwave infrared and red re-
flectance. NDVI is defined by the following equation:

NDVI =
NIR− red

NIR+ red
(8)

Another vegetation index is the Vogelmann Red Edge In-
dex 1 (VOG1) (Vogelmann, 1993), which is a narrowband
reflectance measurement that is sensitive to the combined ef-
fects of foliage chlorophyll concentration, canopy leaf area,
and water content. Applications include vegetation phenol-
ogy (growth) studies, precision agriculture, and vegetation
productivity modelling. VOG1 is defined by the following
equation:

VOG1=
Reflectance at 740 nm

Reflectance at 720 nm
(9)

Narrowband greenness VIs are a combination of re-
flectance measurements sensitive to the combined effects of
foliage chlorophyll concentration, canopy leaf area, foliage
clumping, and canopy architecture. Narrowband greenness
VIs are designed to provide a measure of the overall amount
and quality of photosynthetic material in vegetation, which is

essential for understanding the state of vegetation. These VIs
use reflectance measurements in the red and near-infrared
regions to sample the “red edge” portion of the reflectance
curve. The “red edge” is a term used to describe the steeply
sloped region of the vegetation reflectance curve between
690 nm and 740 nm that is caused by the transition from
chlorophyll absorption and near-infrared leaf scattering. Use
of near-infrared measurements, with much greater penetra-
tion depth through the canopy than red measurements, al-
lows estimation of the total amount of green material in the
column (RSI, 2005).

Narrowband greenness VIs are more sophisticated mea-
sures of general quantity and vigor of green vegetation than
the broadband greenness VIs. Making narrowband measure-
ments in the red edge allows these indices to be more sensi-
tive to smaller changes in vegetation health than the broad-
band greenness VIs, particularly in conditions of dense veg-
etation where the broadband measures can saturate. Narrow-
band greenness VIs are intended for use with high spectral
resolution imaging data, such as that acquired by hyperspec-
tral sensors (RSI, 2005).

3.5.1 Accuracy assessment

To evaluate how well the estimated values obtained from
the remotely sensed data compare to the observed data mea-
sured using the LI-COR LAI canopy analyser, the Root Mean
Squared Error (RMSE) (Eq. 10) statistic was used. The
closer the RMSE is to zero, the better the result.

RMSE=

√√√√√ n∑
(E−O)2

n
(10)

Where: E – The estimated value,O – the observed value,
andn – the number of samples.

4 Results

The LAI values were measured on the 21 June 2007 us-
ing the LI-COR LAI- 2000 canopy analyzer as described in
Sect. 3.3. These were used to develop the relationships with
the three vegetation indices and are shown in Table 1.

The relationships established between the measured LAI
of all the sampled species and the three vegetation indices
used are shown in Figs. 2–4.

From Fig. 2 it can be seen that the Pine 12 yr and the Wattle
4 yr can be estimated well when using the NDVI. The LAI of
Pine 15 will be underestimated and Eucalyptus 10yr will be
overestimated using the regression model obtained.

From Fig. 3 it can be observed that Pine 12 can be fairly
well estimated, but the other species are scattered both above
and below the regression model.
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Figure 2. Relationship between observed LAI and NDVI at Mistley-Canema Estate on 21 
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Table 2: Accuracy assessment results 

Vegetation

 

Index 
R2 RMSE

 

NDVI 0.39

 

0.43 

SAVI 0.46

 

0.41 

VOG 1 0.70

 

0.30 

 

Fig. 4. Relationship between observed LAI and the Vogelmann Index 1 at Mistley-Canema Estate on 21 June 2007.
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Figure 5. Average LAI estimated using three different vegetation indices. 
Fig. 5. Average LAI estimated using three different vegetation indices.

Table 1. LAI measurements taken with the LI-COR LAI 2000
canopy analyzer in four commercial forest stands at Mistley-
Canema on 21 June 2007 at 04:30 p.m. on a clear and sunny day,
used for model validation.

Pine Pine Wattle Eucalyptus
12 year 15 year 4 year 10 year

2.62 3.61 2.89 1.98
2.72 3.67 2.92 2.13
2.84 3.76 3.00 2.29
2.89 3.80 3.41 2.36
2.93 3.85 3.46 2.65
2.94 3.90 3.60 3.01
2.99 3.99 3.62 3.95
3.02 3.79 3.89 2.62
3.22 3.81 3.94 2.71
3.26 3.76 4.19 2.53

Figure 4 shows that the LAI of all species can be estimated
with a fair degree of accuracy using the Vogelmann index 1.
Pine 12 shows the best correlation with the regression model.

Based on the analyses above, of the three vegetation in-
dices used in this study, the Vogelmann index 1, was the most
successful for estimating the LAI for all species. TheR2 and
the RMSE values as shown in Table 2, for each of the three
vegetation indices used, confirm that the Vogelmann index 1
is the most suitable index to use for the estimation of LAI
in this case study. The Vogelmann index 1 performed better
than the NDVI and SAVI because it is a narrowband index
as apposed to a broadband index. The NDVI and SAVI are
susceptible to saturating in dense vegetation. This saturation
occurs when the vegetation index no longer increases signif-
icantly with an increase in biomass or LAI as can be seen
when using the SAVI for wattle 4 yr and eucalyptus 10 yr

Table 2. Accuracy assessment results.

Vegetation Index R2 RMSE

NDVI 0.39 0.43
SAVI 0.46 0.41

VOG 1 0.70 0.30

where the slope of the of the data points increases steeper
than the trendline. The narrowband VOG 1 index penetrates
deeper through the canopy and allows for better estimations
of biomass or LAI in denser vegetation. A comparison of
the estimated and observed LAI values for each land use is
shown in Fig. 5.

Figure 5 shows that the average estimated LAI values cor-
respond well with the observed values.

Using this information, the data obtained from the Hype-
rion image can be converted into an image of LAI for the
study area as shown in Fig. 6, which has been performed us-
ing the Vogelmann index 1. Furthermore, the image that has
been created for the LAI (Fig. 6) can be used to estimate the
maximum storage capacity as shown in Fig. 7, by applying
the von Hoyningen-Huene (1981) equation (Eq. 1). Simi-
larly, the daily interception could be estimated if the daily
rainfall was known by using Eq. (4), described in Sect. 2.

Figure 7 represents the maximum storage capacity for the
same classes (i.e. using the same LAI values) as represented
in Fig. 6.

5 Discussion and conclusion

Field based methods of estimating LAI and biomass of
forestry plantations are expensive and time consuming. Re-
motely sensed LAI values provide a means of gaining spatial
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Figure 6. The LAI distribution over the Mistley-Canema Estate using the Vogelmann index 1 

on 21 June 2007. 

Fig. 6. The LAI distribution over the Mistley-Canema Estate using
the Vogelmann index 1 on 21 June 2007.

information about various plant biophysical attributes that
can be used in hydrological and process based growth mod-
els and can be determined relatively cheaply and easily us-
ing satellite imagery (Megown et al., 2000). The ability to
remotely predict LAI and eventually water use over a large
area is sought after by various stakeholders and the forestry
industry, as well as water resources managers and planners.
Due to the future availability and accessibility of hyperspec-
tral sensors in southern Africa there should be an increased
interest in using high spectral resolution data for a wide vari-
ety of environmental applications

There has however been a reluctance to use remote sens-
ing for hydrological applications by the hydrology commu-
nity at large and in southern Africa in particular. This can
be attributed to reasons such as, the unavailability to the rel-
evant hardware and software, lack of knowledge of the ap-
plication of remote sensing techniques and the reluctance to
change conventional and well established methods (Shultz
and Engman, 2002). Now in its 4th decade, the use of earth

 

26

  

Figure 7. The maximum storage capacity over the Mistley-Canema Estate using the 

Vogelmann index 1 on 21 June 2007. 

Fig. 7. The maximum storage capacity over the Mistley-Canema
Estate using the Vogelmann index 1 on 21 June 2007.

observation data in water resources is however becoming
increasingly popular and has been used by researchers such
as Dye et al. (2002), Ghebremicael et al. (2004), Sprintsin et
al. (2007), Kongo and Jewitt (2007), to mention but a few.

The results obtained from this study show that the use of
remote sensing for the estimation of LAI is possible with a
relatively high degree of accuracy. The potential to use re-
mote sensing to estimate LAI on a large scale and link this
to water resources studies at various scales is just one pos-
sible application. For example, with this data, the canopy
interception can be estimated using the equations described
in Sect. 2 and represented visually to obtain a better under-
standing of the spatial variability of canopy interception or
maximum storage capacity, as shown in Fig. 7. The method-
ology used in this study is repeatable elsewhere, but the mod-
els developed are site and image specific and should not be
used elsewhere. This is because the reflectance values would
vary in different images depending on which satellite was
used to acquire the image and how the image was corrected.

It can be concluded from this study that remote sensing
is a valuable tool for the estimation of LAI for applications
in hydrology, such as modelling canopy interception. With
a limited amounted of field work, LAI measurements can
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be utilised at large spatial scales, and with the launch of
southern African satellites, data availability should improve.
Although remote sensing may reduce the amount of field
work needed, it cannot be excluded completely without a
detrimental impact and high levels of uncertainty on the out-
come of the task. It is important to accurately estimate LAI as
Xiao et al. (1998) found that modelling canopy interception
was most sensitive to storage capacity and LAI as the storage
capacity is directly related to the LAI. Similarly, Limousin et
al. (2008) found that a 25% reduction in storage capacity re-
duces interception loss by 8.6%

The most robust vegetation index in this study was found
to be the Vogelmann index 1 having anR2 value of 0.7 and
RMSE of 0.3. The Vogelmann index 1 was developed to
be used with high spectral resolution data such as the hy-
perspectral data used in this study and justifies the good re-
sults obtained. Also, the Vogelmann index 1 performed bet-
ter than the NDVI and SAVI because it is a narrowband in-
dex as apposed to a broadband index. NDVI and SAVI are
susceptible to saturating in dense vegetation. This satura-
tion occurs when the vegetation index no longer increases
significantly with an increase in biomass or LAI. This can be
seen when using the SAVI for wattle 4yr and eucalyptus 10yr
where the slope of the of the data points increases steeper
than the trendline. The narrowband VOG 1 index penetrates
deeper through the canopy and allows for better estimations
of biomass or LAI in denser vegetation. The SAVI and NDVI
hadR2 values of 0.46 and 0.39, and RMSE of 0.43 and 0.41
respectively. However, the SAVI and NDVI were able to
be used to estimate certain species accurately. For example,
NDVI can be used to estimate the LAI of 12 year oldPinus
patulaand 4 year old wattle accurately, even though it is not
as robust for all species as the Vogelmann index 1. Although
the SAVI and NDVI might not have produced results that are
as good as the Vogelmann index 1, it can be seen from Fig. 5
that the difference between the observed and predicted values
using the SAVI and NDVI are acceptable and suitable to use
in the estimation of canopy interception. Although the results
obtained in this study indicate that remote sensing techniques
can be used in interception studies, further fieldwork to ver-
ify the model is needed. Such field work on interception at
compartment scale as well as national scale are ongoing, and
form a second complementary phase to this study.
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